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Abstract

Motivated by networked systems in random environment and controlled hybrid stochas-
tic dynamic systems, this work focuses on modeling and analysis of a class of switching
diffusions consisting of continuous and discrete components. Novel features of the models
include the discrete component taking values in a countably infinite set, and the switching
depending on the value of the continuous component involving past history. In this work,
the existence and uniqueness of solutions of the associated stochastic differential equations
are obtained. In addition, Markov and Feller properties of a function-valued stochastic pro-
cess associated with the hybrid diffusion are also proved. In particular, when the switching
rates depend only on the current state, strong Feller properties are obtained. These prop-
erties will pave a way for future study of control design and optimization of such dynamic
systems.
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1 Introduction

Owing to the demand of modeling, analysis, and computation of complex networked systems,
much attention has been devoted to building more realistic dynamic system models. It has
been well recognized that in many real-world applications, traditional models using continuous
processes represented by solutions to deterministic differential equations and stochastic differen-
tial equations alone are often inadequate. Arising from control engineering, queueing networks,
manufacturing and production planning, parameter estimation, filtering of dynamic systems,
ecological and biological systems, and financial engineering, etc., numerous complex systems
contain both continuous dynamics and discrete events. The discrete events in these systems are
not normally representable by solutions of the usual differential equations. Because of the de-
mand, switching diffusions (also known as hybrid switching diffusions) have drawn growing and
resurgent attention. A switching diffusion is a two-component process (X(t), α(t)) in which the
continuous component X(t) evolves according to the diffusion process whose drift and diffusion
coefficients depend on the state of α(t), whereas α(t) takes values in a set consisting of isolated
points. Because of their importance, many papers have been devoted to such hybrid dynamic
systems; see [10, 20, 26, 27] and the references therein. In their comprehensive treatment of
hybrid switching diffusions, Mao and Yuan [14] focused on α(t) being a continuous-time and ho-
mogeneous Markov chain independent of the Brownian motion and the generator of the Markov
chain being a constant matrix. Realizing the need, treating the two components jointly, Yin and
Zhu [25] extended the study to the Markov process (X(t), α(t)) by allowing the generator α(t)
to depend on the current state X(t). Properties of the underlying process including recurrence,
positive recurrence, ergodicity, Feller properties, stability, and invariance among others were in-
vestigated. Such study provides us with a clear picture of the underlying processes. Nevertheless,
in both of the aforementioned books and most related papers to date, the switching process α(t)
is assumed to have a finite state space. One question naturally arises. What happens if the
switching process has a countable state space? Much of the argument in [25] relies on the inter-
play of stochastic processes and the associated systems of partial differential equations. Because
the state space of α(t) was assumed to be a finite set, one can essentially treat a system of partial
differential equations with a finite number of equations. When we consider problems involving a
countable state space, the number of equations becomes infinite. Much more complex situation
is encountered. Different methods have to be developed to treat the systems.

There are plenty of real-world applications involving such switching diffusions. Perhaps, one
of the most widely used control models in the literature is the so-called LQG (linear quadratic
Gaussian regulator) problem; see [2, pp.165-166] for a traditional model. However, for many
new applications in networked systems, it has been found that in addition to the random noise
represented by Brownian type of disturbances, there is a source of randomness owing to the
presence of random environment that can be modeled by a continuous-time Markov chain. Let
α(t) be a continuous-time Markov chain with state space Z+ (the set of positive integers) and
generator Q. Consider the controlled dynamic system

dX(t) = [A(α(t))X(t) +B(α(t))u(t)]dt+ σ(α(t))dW (t),
X(s) = x, for s ≤ t ≤ T,

(1.1)

where X(t) ∈ R
n1 is the continuous state variable, u(t) ∈ R

n2 is the control, A(i) ∈ R
n1×n1 and

B(i) ∈ R
n1×n2 are well defined and have finite values for each i ∈ Z+. One may wish to find the
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optimal control u(·) so that the expected quadratic cost function

J(s, i, x, u(·)) = E
[∫ T

s

[X⊤(t)M(α(t))X(t) + u⊤(t)N(α(t))u(t)]dt+X⊤(T )DX(T )
]

(1.2)

is minimized. The use of α(t) stems from the formulation of discrete events, and the use of
Z+ enlarges the applicability of previous consideration of finite state space cases. Switched
dynamic systems can also be found in, for example, modeling impatient customers and customer
abandonment of Markov-modulated service speeds in the heavy-traffic regime and the many-
server systems in the Halfin-Whitt regime and the non-degenerate slowdown regime; see [4]. We
also refer the reader to Whitt [24] for further reading on limit results in queueing theory and
many references therein. In fact, in most of the queueing models, the discrete set is countable
rather than finite.

Two more dynamic systems are to be presented in the next section, in which the main interests
are to find long-term behavior and control design in an ecological system and to find optimal
strategies under long-run average criteria for a pollution management problem. In order to study
the aforesaid problems, we first need to ensure that the systems under consideration have unique
solutions and that the solutions possess good properties. Motivated by these examples, we take
up the challenge of considering a nonlinear hybrid diffusion (X(t), α(t)) whose discrete component
α(t) has an infinite state space in this paper. Moreover, in lieu of allowing the switching process
to depend on the current state X(t) only, we assume that it is past dependent. That is, we
assume that the generator of α(t) depends on the past history of the continuous process. This
paper provides conditions for the existence and uniqueness of the solutions for given initial data,
and to demonstrate the Markov-Feller property of a function-valued stochastic process associated
with the equation. Our study will build a bridge for future study on related control systems.

The rest of the paper is organized as follows. The formulation of hybrid switching diffusions
with past-dependent switching and countably many possible switching locations is given in Sec-
tion 2. The existence and uniqueness of solutions to the stochastic equations are then proved
under suitable conditions in Section 3. Section 4 studies the Markov and Feller properties of a
function-valued stochastic process associated with our equation. The proof for the Feller prop-
erty is rather complex because the state space of α(t) is infinite, the space of continuous functions
is not locally compact, and we do not assume uniform continuity of the switching intensities. In
section 5, the strong Feller property of the hybrid diffusion without past-dependent switching is
given. Section 6 provides further remarks and points out future research directions. Finally, we
provide the proofs of some technical results in an appendix.

2 Formulation

Let r be a fixed positive number. Denote by C([a, b],Rn) the set of Rn-valued continuous functions
defined on [a, b]. In what follows, we mainly work with C([−r, 0],Rn), and simply denote it by
C := C([−r, 0],Rn). Denote by |x| the Euclidean norm of x ∈ R

n. For φ ∈ C, we use the norm
‖φ‖ = sup{|φ(t)| : t ∈ [−r, 0]}. For y(·) ∈ C([−r,∞),Rn) and t ≥ 0, we denote by yt the so-called
segment function (or memory segment function) yt(·) := y(t+ ·) ∈ C. Let (Ω,F , {Ft}t≥0,P) be a
complete filtered probability space with the filtration {Ft}t≥0 satisfying the usual condition, i.e.,
it is increasing and right continuous while F0 contains all P-null sets. Let W (t) be an Ft-adapted
and R

d-valued Brownian motion. Suppose b(·, ·) : Rn × Z+ → R
n and σ(·, ·) : Rn × Z+ → R

n×d,
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where Z+ = N \ {0} = {1, 2, . . . }, the set of positive integers. Consider the two-component
process (X(t), α(t)), where α(t) is a pure jump process taking value in Z+, and X(t) satisfies

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t). (2.1)

We assume that if α(t−) := lims→t− α(s) = i, then it can switch to j at t with intensity qij(Xt)
where qij(·) : C → R. When qi(φ) :=

∑∞
j=1,j 6=i qij(φ) is uniformly bounded in (φ, i) ∈ C × Z+,

and qi(·) and qij(·) are continuous, one may view the aforementioned assumption as

P{α(t+∆) = j|α(t) = i, Xs, α(s), s ≤ t} = qij(Xt)∆ + o(∆) if i 6= j and
P{α(t+∆) = i|α(t) = i, Xs, α(s), s ≤ t} = 1− qi(Xt)∆ + o(∆).

(2.2)

However, when qi(φ) and qij(φ) are either discontinuous or unbounded, it does not seem ap-
propriate to use (2.2) to model the switching intensity. To formulate the problem in a general
setting without the boundedness and continuity assumptions mentioned above, we construct α(t)
as the solution to a stochastic differential equation with respect to a Poisson random measure.
We elaborate on the idea below. Let p(dt, dz) be a Poisson random measure with intensity
dt×m(dz) and m is the Lebesgue measure on R such that p(·, ·) is independent of the Brownian
motion W (·). Let p̃ be the Poisson point process associated with p(·, ·) (see e.g., [22]). Then p̃

can lie in a set A with intensity m(A), that is, the expected number of Poisson points lying in
A during the period dt is dt × m(A). Using this fact, for each i ∈ Z, we can construct disjoint
sets {∆ij(φ), j 6= i} such that m(∆ij(φ)) = qij(φ). Let p̃ govern the switching of α(t) in the
manner that if α(t−) = i and there is a Poisson point in ∆ij(Xt) at time t, then α(t) = j. If
α(t−) = i and there is no Poisson point in ∪j 6=i∆ij(Xt) at time t, α(t) remains i. Using this idea,
we formulate the equation for α(t) as follows. For each function φ : [−r, 0] → R

n, and i ∈ Z+, let
∆ij(φ), j 6= i be the consecutive left-closed and right-open intervals of the real line, each having
length qij(φ). That is,

∆i1(φ) = [0, qi1(φ)), ∆ij(φ) =
[ j−1∑

k=1,k 6=i

qik(φ),

j∑

k=1,k 6=i

qik(φ)
)
, j > 1, j 6= i.

Define h : C × Z+ × R 7→ R by h(φ, i, z) =
∑∞

j=1,j 6=i(j − i)1{z∈∆ij(φ)}, where 1{z∈∆ij(φ)} = 1 if
z ∈ ∆ij , otherwise 1{z∈∆ij(φ)} = 0, is the indicator function. The process α(t) can be defined as
a solution to

dα(t) =

∫

R

h(Xt, α(t−), z)p(dt, dz).

The pair (X(t), α(t)) is therefore a solution to the system of equations




dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t)

dα(t) =

∫

R

h(Xt, α(t−), z)p(dt, dz).
(2.3)

A strong solution to (2.3) on [0, T ] with initial data (φ, i0) being C×Z+-valued and F0-measurable
random variable, is an Ft-adapted process (X(t), α(t)) such that

• X(t) is continuous and α(t) is cadlag (right continuous with left limits) almost surely (a.s.).

• X(t) = φ(t) for t ∈ [−r, 0] and α(0) = i0
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• (X(t), α(t)) satisfies (2.3) for all t ∈ [0, T ] a.s.

We will show in the Appendix that the solution (X(t), α(t)) to (2.3), satisfies (2.2) under suitable
conditions. Let f(·, ·) : Rn × Z+ 7→ R be twice continuously differentiable in x and bounded in
(x, i) ∈ R

n × Z+. We define the “operator” Lf(·, ·) : C × Z+ 7→ R by

Lf(φ, i) =∇f(φ(0), i)b(φ(0), i) +
1

2
tr
(
∇2f(φ(0), i)A(φ(0), i)

)

+

∞∑

j=1,j 6=i

qij(φ)
[
f(φ(0), j)− f(φ(0), i)

]

=
n∑

k=1

bk(φ(0), i)fk(φ(0), i) +
1

2

n∑

k,l=1

akl(φ(0), i)fkl(φ(0), i)

+
∞∑

j=1,j 6=i

qij(φ)
[
f(φ(0), j)− f(φ(0), i)

]
,

(2.4)

where b(x, i) = (b1(x, i), . . . , bn(x, i))
⊤, ∇f(x, i) = (f1(x, i), . . . , fn(x, i)) ∈ R

1×n and ∇2f(x, i) =
(fij(x, i))n×n are the gradient and Hessian of f(x, i) with respect to x, respectively, with

fk(x, i) = (∂/∂xk)f(x, i), fkl(x, i) = (∂2/∂xk∂xl)f(x, i), and
A(x, i) = (akl(x, i))n×n = σ(x, i)σ⊤(x, i),

with z⊤ denoting the transpose of z. Suppose that (X(t), α(t)) satisfies (2.3) and that for any
T > 0,

sup
t∈[0,T ]

{qα(t)(Xt)} < ∞ a.s. (2.5)

Let ξk = inf{t > 0 : qα(t)(Xt) ≥ k}, k ∈ Z+. By noting that h(Xt, z) = 0 if z /∈ [0, qα(t)(Xt)) and
that

∫

R

[
f
(
φ(0), i+ h(φ, i, z)

)
− f(φ(0)), i)

]
m(dz) =

∞∑

j=1,j 6=i

qij(φ)
[
f(φ(0), j)− f(φ(0), i

]
,

we have from Itô’s formula (see [1, Theorem 4.4.7]) that

f(X(t ∧ ξk), α(t ∧ ξk))− f(X(0), α(0))

=

∫ t∧ξk

0

Lf(Xs, α(s−))ds+

∫ t∧ξk

0

∇f(X(s), α(s−))σ(X(s), α(s−))dW (s)

+

∫ t∧ξk

0

∫ k

0

[
f
(
X(s), α(s−) + h(Xs, α(s−), z)

)
− f(X(s), α(s−))

]
µ(ds, dz)

=

∫ t∧ξk

0

Lf(Xs, α(s−))ds+

∫ t∧ξk

0

∇f(X(s), α(s−))σ(X(s), α(s−))dW (s)

+

∫ t∧ξk

0

∫

R

[
f
(
X(s), α(s−) + h(Xs, α(s−), z)

)
− f(X(s), α(s−))

]
µ(ds, dz),

where µ(ds, dz) is the compensated Poisson random measure given by

µ(ds, dz) = p(ds, dz)−m(dz)ds.
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Under condition (2.5), there exists a random integer k0 = k0(ω) such that t ∧ ξk = t for any
k > k0. As a result,

f(X(t), α(t))− f(X(0), α(0)) =

∫ t

0

Lf(Xs, α(s−))ds+M1(t) +M2(t) a.s., (2.6)

where M1(·) and M2(·) are local martingales, defined by

M1(t) =

∫ t

0

∇f(X(s), α(s−))σ(X(s), α(s−))dW (s),

M2(t) =

∫ t

0

∫

R

[
f
(
X(s), α(s−) + h(Xs, α(s−), z)

)
− f(X(s), α(s−))

]
µ(ds, dz).

(2.7)

It should be noted that L is not the generator of the Markov process (Xt, α(t)). However this
operator is very useful for analyzing the process (X(t), α(t)). In view of (2.7), if τ1 ≤ τ2 are
stopping times that are bounded above by T a.s., and f(·, ·) and Lf(·, ·) are bounded and (2.5)
holds, then

Ef(X(τ2), α(τ2)) = Ef(X(τ1), α(τ1)) + E

∫ τ2

τ1

Lf(Xt, α(t−))dt.

Remark 2.1. If α(t) depends on the continuous state, but there is no past dependence (that is,
Xt is replaced by X(t) in (2.2), and φ and φ(0) are replaced by the current state X(t) = x in
(2.4), respectively), then L is indeed the generator of the process (X(t), α(t)). Even in this case,
the current paper settles the matter of the state space of the switching process being countable
thus generalizes the study of finite state space cases as considered in [25].

Example 2.2. This example stems from applications in ecological systems and biological control.
Consider the evolution of two interacting species. One is micro, which is described by a logistic
differential equation perturbed by a white noise. The other is macro, we assume that its number
of individuals follows a birth-death process. Let X(t) be the density of the micro species and
α(t) the population of the macro species. The life cycle of a micro species is usually very
short, so it is reasonable to assume that the evolution of X(t) can be described by the following
past-independent equation

dX(t) = X(t)
[
a(α(t))− b(α(t))X(t)

]
dt+ σ(α(t))X(t)dW (t), (2.8)

where a(i), b(i), σ(i) are positive constants for each i ∈ Z+.
On the other hand, the reproduction process of α(t) is assumed to be non-instantaneous.

More precisely, suppose the reproduction depends on the period of time from egg formation to
hatching, say r. Then we have

dα(t) =

∫

R

h(Xt, α(t−), z)p(dt, dz), (2.9)

where h(φ, i, z) =
∑∞

j=1,j 6=i(j−i)1{z∈∆ij(φ)}, ∆i,i+1(φ) = [0, βi(φ)), ∆i,i−1(φ) = [0, δi(φ)), ∆i,j(φ) =
∅ if j /∈ {i − 1, i, i + 1} or i = 0. Usually βi(φ), δi(φ) can be given in the integral from

βi(φ) =
∫ 0

−r
β̃i(t)φ(t)dt, δi(φ) =

∫ 0

−r
δ̃i(t)φ(t)dt, for some appropriate weighting functions β̃i, δ̃i.

As can be seen from the above, the switching process at t in fact depends on past history of the
stateX(·). Investigating the interactions between the two species are very important to biological
control. A basic biological control problem aims to choose a suitable living organism to control a
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particular pest (see e.g., [5, 12]). This chosen organism might be a predator, parasite, or disease,
which will attack the harmful insect. To design and evaluate effectiveness of a biological control,
some questions should be answered first. For example, under which conditions the species will
be permanent forever or they will extinct at some instance? Whether or not there is an invariant
measure associated with the system under consideration. Mathematically, these questions are
related to the stability and ergodicity of the corresponding stochastic systems, which will be
studied in a future paper.

Example 2.3. Pollution management is vitally important and has a significant impact on envi-
ronment. A major issue is concerned with the tradeoff of pollution accumulation and consump-
tion, which affects environmental policy making. Following the seminal paper of Keeler et al.
[9], much work has been devoted to the study of optimal control of dynamic economic systems.
In [8], Kawaguchi and Morimoto treated a pollution accumulation problem of maximizing the
long-run average welfare using a controlled diffusion model. Assume that an economy consumes
some good and meanwhile generates pollution. The pollution stock is gradually degraded and
its instantaneous growth rate incorporates a random disturbance with mean zero and constant
variance. The social welfare is defined by the utility of the consumption net of the disutility of
pollution. The problem is to find optimal consumption strategies for the society in the long-run
average sense. Departing from their formulation, we consider an extension of their model. Sup-
pose that there is a switching process α(t) taking values in Z+ such that α(t) represents the level
of pollution at time t. Assume that the stock of pollution at time t is given by X(t), a real-
valued process, and there is a positive real-valued function ρ(·) so that for each i ∈ Z+, the rate
of pollution decay is ρ(i). The consumption rate (or flow of pollution) is a control process, which
is denoted by c(t) at time t; the social utility function of the consumption c is denoted by U(c),
whereas the social disutility of the pollution stock x is D(x). We say that the consumption rate
is admissible if it is Ft-measurable, where Ft = {(X(s), α(s)) : s ≤ t} such that 0 ≤ c(t) ≤ K0

for some K0 > 0. The ultimate objective is to maximize the long-run average welfare

J(c(·)) = lim inf
T→∞

1

T
E

∫ T

0

[U(c(t))−D(X(t))]dt, (2.10)

subject to
dX(t) = [c(t)− ρ(α(t))X(t)]dt+ σ(X(t), α(t))dW (t). (2.11)

Assume that the pollution level α(·) satisfies the conditions (2.2). First, it is reasonable that the
level of pollution can be modeled by a continuous-time process taking values in Z+. Second, to
be more realistic, the pollution level depends on the pollution stock X(t) as well as some past
history as given in (2.2). As another generalization of [8], we assume that σ in fact depends on
(X(t), α(t)), and the switching rate depends on some past history of the pollution stock X(·) as
in (2.2), and σ2(x, i) > 0 for each i ∈ Z+. Treating the optimal pollution management problem,
it is natural to consider the replacement of the average in (2.10) by the average with respect to
an invariant measure (if it exists) of the controlled systems. To do so, we need to make sure that
(2.11) indeed has an invariant measure. Before this matter can be settled, we need to show that
the system has a unique solution for each initial data, and the solution possesses certain desired
properties such as Markov and Feller properties.
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3 Existence and Uniqueness of Solutions

We are now in a position to prove the existence and uniqueness in the strong sense of a solution
with given initial data under suitable conditions. We give several sets of conditions. The main
reason is due to the past dependence and the use of Z+. First in contrast to the case of switching
process staying in a finite set, care needs to be exercised regarding uniformity with respect to
the switching set. Second, the past dependence requires careful handling of the use of Lipschitz
continuity etc. and the uniformity with respect to the element in the corresponding function
spaces. Depending on the preference, Assumptions 3.1 allows certain bounds to be dependent
of the switching state i, but uniform in the variable in the function space, whereas Assumption
3.2 requires uniformity in the bounds w.r.t. i, but requires the past dependent part be localized.
Assumptions 3.3 and 3.4 relax the Lipschitz condition to local Lipschitz together with certain
growth conditions presented by using bounds with the help of Lyapunov functions.

Assumption 3.1. Assume the following conditions hold.

(i) For each i ∈ Z+, there is a positive constant Li such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ Li|x− y| ∀x, y ∈ R
n.

(ii) qij(φ) is measurable in φ ∈ C for all i and j ∈ Z+. Moreover,

M := sup
φ∈C,i∈Z+

{qi(φ)} <∞.

Theorem 3.1. Under Assumption 3.1, for each initial data (ξ, i0), there exists a unique solution

(X(t), α(t)) to (2.3).

Proof. It is well-known that part (i) of Assumption 3.1 guarantees the existence and uniqueness
of strong solutions to the following diffusion

dY (t) = b(Y (t), i)dt+ σ(Y (t), i)dW (t) for each i ∈ Z+. (3.1)

Then, given a stopping time τ and an Fτ -measurable R
n-valued random variable y = y(τ)

(depending on τ), there exists a unique strong solution to (3.1) in [τ,∞) satisfying Y (τ) = y(τ)
(see [14, Remark 3.10]). We can now construct the solution to (2.3) with initial data (ξ, i0) by
the interlacing procedure similar to [1, Chapter 5]. Let Ỹ (0)(t), t ≥ 0 be the solution with initial
data ξ(0) to

dỸ (0)(t) = b(Ỹ (0)(t), i0)dt+ σ(Ỹ (0)(t), i0)dW (t).

We also set Ỹ (0)(t) = ξ(t) for t ∈ [−τ, 0]. Let

τ1 = inf{t > 0 :

∫ t

0

∫

R

h(Ỹ (0)
s , i0, z)p(ds, dz) 6= 0} and

i1 = i0 +

∫ τ1

0

∫

R

h(Ỹ (0)
s , i0, z)p(ds, dz),

and Ỹ (1)(t), t ≥ τ1 be the solution with Ỹ
(1)
τ1 = Ỹ

(0)
τ1 to

dỸ (1)(t) = b(Ỹ (1)(t), i1)dt+ σ(Ỹ (1)(t), i1)dW (t). (3.2)
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Define

τ2 = inf{t > τ1 :

∫ t

τ1

∫

R

h(Ỹ (1)
s , i1, z)p(ds, dz) 6= 0} and

i2 = i1 +

∫ τ2

τ1

∫

R

h(Ỹ (1)
s , i1, z)p(ds, dz).

Note that, in the notation above, Ỹ
(k)
t is the function s ∈ [−r, 0] 7→ Ỹ (k)(t+ s). Continuing this

procedure, let τ∞ = lim
k→∞

τk and set

X(t) = Ỹ (k)(t), α(t) = ik if τk ≤ t < τk+1. (3.3)

Clearly, X(t) satisfies that for every t ≥ 0,





X(t ∧ τk) = X(0) +

∫ t∧τk

0

[
b(X(s), α(s))ds+ σ(X(s), α(s))dW (t)

]

α(t ∧ τk) = i0 +

∫ t∧τk

0

∫

R

h(Xs, α(s−), z)p(ds, dz).

(3.4)

To show that X(t) is a global solution, we need only prove that τ∞ = ∞ a.s. For any T > 0,

P{τk ≤ T} =P
{∫ T∧τk

0

∫

R

1{z∈[0,qα(s−)(Xs))}p(ds, dz) = k
}

≤P
{∫ T∧τk

0

∫

R

1{z∈[0,M)}p(ds, dz) ≥ k
}

≤P
{∫ T

0

∫

R

1{z∈[0,M)}p(ds, dz) ≥ k
}

=

∞∑

l=k

e−MT (MT )l

l!
.

(3.5)

It follows that P{τk ≤ T} → 0 as k → ∞. As a result τ∞ = ∞ a.s. By this construction, it can
be seen that X(t) is continuous and α(t) is cadlag almost surely. The uniqueness of (X(t), α(t))
follows from the uniqueness of Ỹ (k)(t) on [τk, τk+1] and the uniqueness of ik defined by

ik = ik−1 +

∫ τk

τk−1

∫

R

h(Ỹ
(k−1)
t , ik−1, z)p(dt, dz).

This concludes the proof.

Assumption 3.2. Assume the following conditions hold.

(i) There is a positive constant L such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ L|x− y|, ∀x, y ∈ R
n, i ∈ Z+.

(ii) qij(φ) is measurable in φ ∈ C for each (i, j) ∈ Z
2
+. Moreover, for any H > 0,

MH := sup
φ∈C,‖φ‖≤H,i∈Z+

{qi(φ)} <∞.
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Remark 3.2. We can use either Assumption 3.1 or Assumption 3.2 to obtain the existence and
uniqueness of solutions to (2.3). Recall that now Z+ is a countable set, so care must be taken
to distinct it with a finite state case. In Assumption 3.1, the Lipschitz constants of b(·, i), σ(·, i)
depend on i, and qi(φ) is assumed to be bounded uniformly in (φ, i) ∈ C × Z+. In contrast, the
uniform boundedness of qi(φ) is relaxed, but the Lipschitz constant of b(·, i), σ(·, i) is assumed
to be in i ∈ Z+.

Theorem 3.3. Under Assumption 3.2, for each initial data (ξ, i0), there exists a unique solution

(X(t), α(t)) to (2.3).

Proof. Without loss of generality, we may assume that (ξ, i0) is bounded, since we can use the
truncation method in [3, Theorem 3 in §6] to obtain the result for general (ξ, i0) once we have
proved for the case (ξ, i0) being bounded. Construct the process (X(t), α(t)) as in the proof of
Theorem 3.1. We need to show that τ∞ = ∞ a.s. Following the proof of [13, Lemma 3.2, p. 51],
there is a K = K(T ) such that

E

(
sup

0≤t≤T∧τk

|X(t)|2
)
≤ K ∀ k ∈ Z+.

As a result, for any ε > 0, there is an Hε such that

P{‖Xt‖ ≤ Hε ∀ t ∈ [0, T ∧ τk]} > 1−
ε

2
. (3.6)

Let ηHε
= inf{t ≥ 0 : ‖Xt‖ ≥ Hε} and MHε

= supφ∈C,‖φ‖≤Hε,i∈Z+
{qi(φ)} <∞. Then

P{τk ≤ T ∧ ηHε
} =P

{∫ T∧τk∧ηHε

0

∫

R

1{z∈[0,qα(s−)(Xs))}p(ds, dz) = k
}

≤P
{∫ T∧τk∧ηHε

0

∫

R

1{z∈[0,MHε)}
p(ds, dz) ≥ k

}

≤P
{∫ T

0

∫

R

1{z∈[0,MHε)}
p(ds, dz) ≥ k

}

=e−MHεT

∞∑

l=k

(MHε
T )l

l!
.

(3.7)

For sufficiently large k, we have

P{τk ≤ T ∧ ηHε
} ≤ e−MHεT

∞∑

l=k

(MHε
T )l

l!
≤
ε

2
. (3.8)

From (3.6) and (3.8), P{τk ≥ T} ≥ P({τk ∧ T < ηHε
} ∩ {τk > T ∧ ηHε

}) ≥ 1 − ε for sufficiently
large k. Thus, we obtain that P{τ∞ ≥ T} ≥ 1 − ε. It holds for every T > 0 and ε > 0, so we
obtain the desired result.

Remark 3.4. To obtain the existence and uniqueness of solutions, Assumptions 3.1 and 3.2 can
be relaxed by replacing the global Lipschitz conditions with local Lipschitz conditions together
with Lyapunov-type functions. To be specific, let V (·) : Rn 7→ R be twice continuously differen-

tiable in x. For each i ∈ Z+, let LiV (x) = ∇V (x)b(x, i) +
1

2
tr
(
∇2V (x)A(x, i)

)
. For instance

(1) of Assumption 3.1 and (1) of Assumption 3.2 can be replaced by the following Assumptions
3.3 and 3.4, respectively.
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Assumption 3.3. Assume the following conditions hold.

(i) For each H > 0, i ∈ Z+, there is a positive constant LH,i such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ LH,i|x− y|, ∀|x|, |y| ≤ H, i ∈ Z+.

(ii) For each i ∈ Z+, there exist a twice continuously differentiable function Vi(x) and a constant
Ci > 0 such that

lim
R→∞

(
inf{Vi(x) : |x| ≥ R}

)
= ∞ and LiVi(x) ≤ Ci(1 + Vi(x)) ∀ x ∈ R

n.

Assumption 3.4. Assume the following conditions hold.

(i) For each H > 0, i ∈ Z+, there is a positive constant LH,i such that

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ LH,i|x− y| ∀|x|, |y| ≤ H, i ∈ Z+.

(ii) There exist a twice continuously differentiable function V (x) and a constant C > 0 inde-
pendent of i ∈ Z+ such that

lim
R→∞

(
inf{V (x) : |x| ≥ R}

)
= ∞ and LiV (x) ≤ C(1 + V (x)) ∀ x ∈ R

n, i ∈ Z+.

Theorem 3.5. For given initial data (ξ, i0), there exists a unique solution (X(t), α(t)) to (2.3)
if either of the following conditions is satisfied

• Assumption 3.3 and (ii) of Assumption 3.1,

• Assumption 3.4 and (ii) of Assumption 3.2.

Proof. It is well known that Assumption 3.3 guarantees the existence and uniqueness of solutions
to (3.1). Hence, if (ii) in Assumption 3.1 is satisfied, we can prove the desired result by using the
proof of Theorem 3.1. Now, suppose Assumption 3.4 and (ii) of Assumption 3.2 hold. Similar
to the proof of Theorem 3.3, we can assume that (ξ, i0) is bounded. Consider X(t) and define
τk as in the proof of Theorem 3.1. Then X(t) is the solution with initial data (ξ, i0) to (2.3) on
[0, T ∧ τk) for any T > 0, k ∈ Z+. We have from the generalized Itô formula that

EV (X(T ∧ τk ∧ ηH)) = EV (ξ(0), i0) + E

∫ T∧τk∧ηH

0

LiV (X(t), α(t−))dt

≤ EV (ξ(0), i0) + CE

∫ T∧τk∧ηH

0

(1 + V (X(t))dt,

where ηH = inf{t ≥ 0 : |X(t)| > H}. Using the estimate above and the argument in [14,
Theorem 3.19], we can show that

EV (T ∧ τk ∧ ηH) ≤ K = K(ξ, T ) ∀H > 0, k ∈ Z+.

In view of the property lim
R→∞

(
inf{V (x) : |x| ≥ R}

)
= ∞, for any ε > 0, there is Hε > 0 such

that
P{ηHε

> T ∧ τk} > 1−
ε

2
∀ k ∈ Z+.

Then, proceeding similarly as in the proof of Theorem 3.3 yields the existence and uniqueness of
solutions with initial data (ξ, i0) to (2.3).
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Example 3.6. (cont. of Example 2.2) We come back to Example 2.2 in Section 1. We want to
show that X(t) > 0 for all t ≥ 0 under certain conditions. To proceed, we can set Y (t) = lnX(t)
to obtain

dY (t) = [a(α(t)−
σ2(α(t))

2
− b(α(t)) exp(Y (t))]dt+ σ(α(t))dW (t). (3.9)

To demonstrate (2.8) and (2.9) has a unique solution with X(t) > 0 for all t ≥ 0, it is equivalent
to show that (3.9) and (2.9) has a strong solution on [0,∞). Let V (y) = ey + e−y. By direct
calculation,

LiV (y) =b(i) + (σ2(i)− a(i))e−y + a(i)ey − b(i)e2y

≤c(i) + (σ2(i)− a(i))V (y),

where c(i) = max
y∈R

{b(i) + (2a(i)− σ2(i))ey − b(i)e2y}. Applying Theorem 3.3, we can see that the

equation has a unique solution if one of the following is satisfied

• βi(φ)+δi(φ) is bounded uniformly in φ ∈ C+ := {ψ ∈ C : ψ(t) > 0 ∀t ∈ [−r, 0]} and i ∈ Z+.

• c(i) and σ2(i) − a(i) are bounded above uniformly and for each i ∈ Z+, βi(φ) + δi(φ) is
bounded in each compact subset of φ ∈ C+.

It can be shown by applying the result of the next section that the process (Yt, α(t)) has the
Markov-Feller property if βi(·) and δi(·) are continuous in addition to one of the above conditions.

Example 3.7. (cont. of Example 2.3) To study the long-run average control problem in Example
2.3, it is important to make sure that the system under consideration processes ergodicity. Before
the ergodicity can be verified, we need (2.11) has a unique solution for each initial condition.

Denote the control set by K̃ and assume it is a compact and convex set. Using a relaxed control
representation mt(·) (see [11]) to represent the consumption rate c(·), we can rewrite (2.11) as

dX(t) =
[ ∫

K̃

c(u)mt(du)− ρ(α(t))X(t)
]
dt+ σ(X(t), α(t))dW (t). (3.10)

Assume that for each i ∈ Z+, σ(x, i) satisfies the conditions in Assumption 3.1 (i), and Q(φ)
satisfies Assumption 3.1 (ii). Then the conditions of Theorem 3.1 are all verified. As a result,
(3.10) has a unique solution for each initial condition.

4 Markov and Feller Properties

This section establishes the Markov and Feller properties of the process (Xt, α(t)). While the
Markov property can be derived by the well-known arguments, it requires much more efforts to
obtain the Feller property. As already seen in the previous section, the past dependence and the
use of Z+ make the analysis more complex than that of the switching diffusions with diffusion-
dependent switching living in a finite set. To overcome the difficulties, in this section, we carry out
the analysis by introducing some auxiliary or intermediate processes. First, it would be better if
we could untangle the past dependence of the switching process and the infinity of the cardinality
of its state space. For this purpose, we introduce a continuous-time Markov chain independent of
the past and continuous state; we call this process γ(t). Then naturally, associated with γ(t), we
examine a pair of process (Z(t), γ(t)). Even after this introduction, in the analysis, we still need
to look into the details of the switching process α(t) such as when it jumps and the post jump
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location etc. To do so, we introduce another auxiliary process Y (t), which is a “fixed”-i process.
We then have another pair of processes (Y (t), β(t)) to deal with. These auxiliary processes help
us to establish the desired results. Their connections and interactions will be further specified
in what follows.

First, note that the Brownian motion and the Poisson point process associated to p(dt, dz)
possess stationary strong Markov property, that is, for any finite stopping time η, {W ∗(t)}t≥0 =
{W (t+η)−W (η)}t≥0 is an F∗

t -Brownian motion and p∗([t, t+s)×U) = p([t+η, t+s+η)×U) is
a Poisson random measure with density dt×m(dz) (see [22, Theorem 101]). Hence, by standard
arguments, we can obtain the following theorem whose proof is omitted. In fact, the theorem
can be proved essentially by imitating the proof in [17, Chap. 5], [1, Chap. 6], or [15, Chap. 7].

Theorem 4.1. Assume that the hypotheses of Theorem 3.1, or Theorem 3.3, or Theorem 3.5
are satisfied. Let (X(t), α(t)) be a solution to (2.3). Then (Xt, α(t)) is a homogeneous strong

Markov process taking value in C × Z+ with transition probabilities

P (φ, i, t, A× {j}) = P{Xφ,i
t ∈ A, α(t) = j},

where Xφ,i(t) is the solution to (2.3) with initial data (φ, i) ∈ C × Z+.

We proceed with obtaining the Feller property of (Xt, α(t)). Assuming that the hypotheses of
Theorem 3.1, or Theorem 3.3, or Theorem 3.5 are satisfied leads to the existence and uniqueness
of strong solutions. Next, we introduce an auxiliary hybrid diffusion with Markov switching.
Let γi(t) be a Markov chain starting at i with generator Q̃ = (ρij) for (i, j) ∈ Z+ × Z+, where
ρii = −1 and ρij = 2−j if j < i and ρij = 2−j+1 if j > i, that is,

Q̃ =




−1 1/2 1/4 · · ·
1/2 −1 1/4 · · ·
1/2 1/4 −1 · · ·
...

...
...

. . .


 .

We recursively define a sequence of stopping times {θik} with θik being the first jump time of
γi(t) after θik−1 as follows

θi0 = 0, θik = inf{t > θik−1 : γ
i(t) 6= γi(θik−1)}, k ∈ Z+.

For (φ, i) ∈ C × Z+, let Z
φ,i(t) be the solution to

dZ(t) = b(Z(t), γ(t))dt + σ(Z(t), γ(t))dW (t) , t ≥ 0

satisfying Zφ,i(t) = φ(t) in [−r, 0] and γ(0) = i. Similar to Girsanov’s theorem, which tells
us how to convert an Itô process to a Brownian motion under a change of measure, we aim to
establish a change of measure allowing us to “convert” a hybrid diffusion with past-dependent
switching to a hybrid diffusion with Markov switching. To establish such a change of measure, we
need to find the distribution of jump times of α(t). Because of the interactions between α(t) and
X(t), we need to introduce another auxiliary (or intermediate) process, which helps to examine
the distribution of the jump times of α(t). Let (Y φ,i(t), βφ,i(t)) be the solution to




dY (t) = b(Y (t), i)dt+ σ(Y (t), i)dW (t), t ≥ 0

dβ(t) =

∫

R

h(Yt, β(t−), z)p(dt, dz), t ≥ 0
(4.1)
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satisfying Y φ,i(t) = φ(t) in [−r, 0] and βφ,i(0) = i. By the definition, αφ,i(t) = βφ,i(t), Xφ,i(t) =
Y φ,i(t) up to the first jump time of the two process α(t) and β(t). There is an advantage working
with (Y φ,i(t), βφ,i(t)). Unlike the pair (X(t), α(t)) in which α(t) depends on the continuous state,
the process Y φ,i(t) evolving for a fixed discrete state i that does not depend on βφ,i(t). Thus, it
is easier to examine, for example, the first jump time of βφ,i(t) (or αφ,i(t)).

Next we recursively define sequences of stopping times associated with β(t) and α(t) so that
λφ,ik and τφ,ik are the first jump times of the processes βφ,i(t) and αφ,i(t) after λφ,ik−1 and τφ,ik−1,
respectively. More specifically, for k ∈ Z+, let

λφ,i0 = 0, λφ,ik = inf{t > λφ,ik−1 : β
φ,i(t) 6= βφ,i(λφ,ik−1)}, i ∈ Z+.

and
τφ,i0 = 0, τφ,ik = inf{t > τφ,ik−1 : α

φ,i(t) 6= αφ,i(τφ,ik−1)}, i ∈ Z+.

To simplify the notation, we put

αφ,ik := αφ,i(τφ,ik ), βφ,ik := βφ,i(λφ,ik ), γik := γi(θik),

and
Xφ,i

(k) := Xφ,i

τ
φ,i

k

, Y φ,i

(k) := Y φ,i

λ
φ,i

k

, Zφ,i

(k) := Zφ,i

θi
k

,

where we use the subscript k with parentheses to avoid confusion with the function-valued pro-
cesses Xφ,i

t , Y φ,i
t , Zφ,i

t at t = k.

Lemma 4.2. Let g : C × R+ × Z+ 7→ R be a bounded and measurable function, and FW
T be the

σ-algebra generated by {W (t), t ∈ [0, T ]}. The following assertions hold:

(i) P
(
{λφ,i1 > t}

∣∣FW
T

)
= E

[
1{λφ,i1 >t}

∣∣∣FW
T

]
= exp

(
−

∫ t

0

qi(Y
φ,i
s )ds

)
∀ t ∈ [0, T ].

(ii) E

[
g(Y φ,i

(1) , λ
φ,i
1 , βφ,i1 )1{λφ,i1 ≤T}

∣∣∣FW
T

]
=

∞∑

j=1,j 6=i

∫ T

0

g(Yt, t, j)qij(Yt) exp(−

∫ t

0

qi(Ys)ds)dt.

As indicated previously, it is difficult to estimate the difference of Xφ1,i
t and Xφ2,i

t because the
states of αφ1,i(t) and αφ2,i(t) may differ significantly due to the continuous state dependence.
In contrast, it is considerably easier to compare Zφ1,i

t and Zφ2,i
t because of the continuous-state-

dependent switching is replaced by the continuous-state-independent Markov chain. With help
of the intermediate process (Y (t), β(t)) and Lemma 4.2, we obtain the following change of mea-
sure formula, which is a bridge to connect the continuous-state-dependent and continuous-state-
independent processes.

Proposition 4.3. For any T > 0, let f(·, ·) : C × Z+ 7→ R be a bounded continuous function.

For any l = 0, 1, . . . , any ik ∈ Z+ with ik 6= ik+1 and k = 1, . . . , l + 1, and any (φ, i) ∈ C × Z+,

E

[
f(Xφ,i

T , αφ,i(T ))1{τφ,i
l

≤T<τφ,i
l+1}

l∏

k=1

1{αφ,i

k
=ik}

]

=exp(T )E
[
f(Zφ,i

T , il)1{θi
l
≤T<θi

l+1}

l∏

k=1

(
1{γi

k
=ik}

qikik+1
(Zφ,i

(k))

ρikik+1

)
exp

{
−

∫ T

0

qγi(s)(Z
φ,i
s )ds

}]
.

(4.2)
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Remark 4.4. The proofs of Lemma 4.2 and Proposition 4.3 will be given in the Appendix. We
are now in a position to prove the Feller property for the solution to (2.3). In addition to the
sufficient conditions for the existence and uniqueness of solution, we prove the Feller property of
the solution only with an additional condition that qij(φ) is continuous in φ for any i, j ∈ Z+.
There are some difficulties because the process {Xt} takes value in an infinite dimensional Banach
space and the switching {α(t)} has an infinite state space. Moreover, although we suppose that
qij(φ) is continuous, neither the uniform continuity in φ ∈ C nor equi-continuity in i, j ∈ Z+ is
assumed. Because of these difficulties, we divide the proof into several steps. First, we make the
following assumptions, which will be relaxed later.

Assumption 4.1. Assume the following conditions hold.

(i) For each i ∈ Z+, b(x, i) and σ(x, i) are Lipschitz continuous functions that are vanishing
outside {x : |x| ≤ R} for some R > 0.

(ii) M := sup{qi(φ) : i ∈ Z+, φ ∈ C} <∞.

(iii) For each i, j ∈ Z+, j 6= i, qi(·) and qij(·) are continuous on C.

Before applying (4.2) to prove the continuous dependence of uf(φ, i) = Eφ,if(XT , α(T )) on
(φ, i), we first need the following lemma.

Lemma 4.5. Assume that Assumption 4.1 is satisfied. Let (φ0, i0) ∈ C ×Z+ with ‖φ0‖ ≤ R and

T > 0. For each ∆ > 0, there exist m = m(∆) ∈ Z+, nm = nm(∆) ∈ Z+, and dm = dm(∆) > 0
such that

P

(
{τφ,i0m+1 > T} ∩ {αφ,i0(t) ∈ Nnm

, ∀t ∈ [0, T ]}
)
≥ 1−∆, ∀‖φ− φ0‖ < dm,

where Nk = {1, . . . , k}.

This lemma allows us to confine our attention to a finite subset of Z+ (the state space of
αφ,i0(·)) and a finite number of jumps when φ is close to φ0. It is a crucial step in providing
some uniform estimates because we do not assume the equi-continuity of qij(·) in either i or

j. Since the switching intensity of αφ,i0(t) depends on Xφ,i0
t , in order to obtain Lemma 4.5, we

need to show that with an arbitrarily large probability, Xφ,i0
t , t ∈ [0, T ] belongs to a compact

set in C for any φ sufficiently close to φ0. Note that under some suitable conditions, sample
paths of a diffusion process in a finite interval [0, T ] are Hölder continuous. Thus, it is easy to
find a compact set in which sample paths of a diffusion process lie with a large probability. Our
arguments rely on this fact. However, the initial data φ of our process X(t) does not always
satisfy the Hölder continuity. Moreover, X(t) depends on the state of α(t). We therefore need
to introduce the following operator, which is motivated by merging trajectories of X(t) at jump
times. For A,B ⊂ C, we define the set of continuous functions that are formed by merging
functions in A and B as follows.

A ⊎ B := A ∪ B ∪ {ψ ∈ C :∃ψ1 ∈ A,ψ2 ∈ B, s ∈ [0, r] such that

ψ(t) = ψ1(s+ t) ∀ t ∈ [−r,−s], ψ(t) = ψ2(t + s− r) ∀ t ∈ [−s, 0]}.

By virtue of the Arzelá-Ascoli theorem, if A and B are compact, so is A⊎B. Using this fact and
the Hölder continuity of sample paths of a diffusion process, we can find a suitable compact set to
which Xφ,i0

t , t ∈ [0, T ], belongs with a large probability for any φ which is sufficiently close to φ0.
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Then, Lemma 4.5 can be proved. The details of the proof are postponed to the Appendix. Now,
we point out some nice properties of the diffusion process with Markov switching (Z(t), γ(t)),
which are useful to compare the sample paths of Z(t) with different initial values.

Lemma 4.6. Fix i0 ∈ Z+. For each k ∈ Z+ and ε > 0, there is an ~k = ~k(ε) > 0 such that

P

{
sup

t,s∈[0,T∧ιk],0<t−s<~k

|Zφ,i0(t)− Zφ,i0(s)|

(s− t)0.25
≤ 4

}
> 1− ε ∀ |φ(0)| ≤ R,

and

E

[
sup

t∈[0,T∧ιk]

|Zφ,i0 − Zψ,i0 |2
]
≤ C|φ− ψ|2,

where ιk = inf{t > 0 : γi0(t) > k} and C is some positive constant.

Proof. Since b(x, i) and σ(x, i) are Lipschitzian in x uniformly in Nk, by standard arguments
(e.g., [14, Theorem 3.23]), we can show that

E|x(t ∧ ιk)− x(s ∧ ιk)|
6 < C̃k(t− s)3, ∀0 ≤ s ≤ t ≤ T.

Using the Kolmogorov-Centsov theorem, we obtain the first inequality. The details are similar
to the proof of Lemma 4.5 in the Appendix. The second claim is proved in the same manner as
that of [25, Lemma 2.14].

Having Lemmas 4.5 and 4.6, we are ready to use the change of measure (4.2) to prove the
Feller property of (Xt, α(t)) under Assumption 4.1.

Proposition 4.7. Suppose that Assumption 4.1 is satisfied. Let f(·, ·) : C × Z+ 7→ R be contin-

uous and bounded. Then for any T > 0, uf(φ, i) = Ef(Xφ,i
T , αφ,i(T )) is a continuous function in

φ ∈ C.

Proof. We suppose without loss of generality that |f(φ, i)| ≤ 1 ∀ (φ, i) ∈ C × Z+. Fix (φ0, i0) ∈
C × Z+. We show that for any ∆ > 0, there exists d∗ = d∗(∆, φ0, i0) > 0 such that

∣∣Ef(Xφ,i0
T , αφ,i0(T ))− Ef(Xφ0,i0

T , αφ0,i0(T ))
∣∣ ≤ 3∆ ∀ ‖φ− φ0‖ < d∗. (4.3)

In view of Lemma 4.5, there are m, nm ∈ Z+, and dm > 0 such that

P

(
{τφ,i0m+1 > T} ∩ {αφ,i0(t) ∈ Nnm

, ∀t ∈ [0, T ]}
)
≥ 1−∆ ∀‖φ− φ0‖ <

dm
2
. (4.4)

Let ε = ε(∆) > 0 (to be specified later). Let ~k be as in Lemma 4.6. Denote

H̃ =
{
ψ(·) ∈ C : ‖ψ‖ ≤ R + 1 and sup

t,s∈[−r,0],0<t−s<~nm

|ψ(s)− ψ(t)|

(s− t)0.25
≤ 4

}

and K̃ = {φ0} ⊎ H̃. By the compactness of K̃, there is a d̃m > 0 such that

‖qij(ψ)− qij(φ)‖ < ε, |f(ψ, i)− f(φ, i)| < ε (4.5)

if φ ∈ K̃, i, j ∈ Nnm
and ‖ψ − φ‖ < d̃m. In view of Lemma 4.6, we can choose d̂m > 0 such that

P

{
sup

t∈[0,T∧ιk]

‖Zφ,i0
t − Zφ0,i0

t ‖ ≤ d̃m

}
< ε if ‖φ− φ0‖ ≤ d̂m. (4.6)
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Let Aφ be the event {τφ,i0m ≤ T < τφ,i0m+1, ιnm
> T} and l(T ) be the number of jumps up to time

T of γi0(t). It follows from Proposition 4.3 that

E
[
f(Xφ,i0

T , αφ,i0(T ))1Aφ

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1Aφ0

]

=exp(T )E

[
1{l(T )<m+1,ιnm>T}

[
g(Zφ,i0(·), γi0(·))− g(Zφ0,i0(·), γi0(·))

]]
,

(4.7)

where

g(Zφ,i0(·), γi0(·)) = f(Zφ,i0
T , γi0(T ))

l(T )∏

k=1

q
γ
i0
k
γ
i0
k+1

(Zφ,i0
(k+1))

ρ
γ
i0
k
γ
i0
k+1

exp
{
−

∫ T

0

qγi0 (s)(Z
φ,i0
s )ds

}
.

Let Dφ
m be the event

Dφ
m :=

{
sup

t∈[0,T∧ιk]

‖Zφ,i0
t − Zφ0,i0

t ‖ ≤ d̃m

}
∩
{

sup
t,s∈[0,T∧ιk],0<t−s<~nm

|Zφ0,i0(s)− Zφ0,i0(t)|

(s− t)0.25
≤ 4

}
.

Using (4.7) and the estimates in [25, Lemma 2.17], we obtain for l ≥ 1,

∣∣∣E
[
f(Xφ,i0

T , αφ,i0(T ))1
A

φ

l

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1
A

φ0
l

]∣∣∣

≤KE

[
1
{θ

i0
l
≤T<θ

i0
l+1,ιnm>T}

× sup
i∈Nnm

|f(Zφ,i0
T , i)− f(Zφ0,i0

T , i)|
]

+KE

[
1
{θ

i0
l
≤T<θ

i0
l+1,ιnm>T}

× sup
t∈[0,T ],i,j∈Nnm

|qij(Z
φ,i0
t )− qij(Z

φ0,i0
t )|

]

≤KE

[
1
{θ

i0
l
≤T<θ

i0
l+1,ιnm>T}

1
D

φ
m
× sup

i∈Nnm

|f(Zφ,i0
T , i)− f(Zφ0,i0

T , i)|
]

+KE

[
1
{θ

i0
l
≤T<θ

i0
l+1,ιnm>T}

1
D

φ
m
× sup

t∈[0,T ],i,j∈Nnm

|qij(Z
φ,i0
t )− qij(Z

φ0,i0
t )|

]

+ 2K(M + 1)P(Ω \Dφ
m),

where K is a constant depending only on T,m, nm.
Note that if ω ∈ {θi0l ≤ T < θi0l+1, ιnm

> T} ∩ Dφ
m, then Zφ0,i0

t ∈ K̃ and ‖Zφ,i0
t − Zφ0,i0

t ‖ ≤

d̃m ∀t ∈ [0, T ] which implies in view of (4.5) that

sup
i∈Nnm

|f(Zφ,i0
T , i)− f(Zφ0,i0

T , i)|+ sup
t∈[0,T ],i,j∈Nnm

|qij(Z
φ,i0
t )− qij(Z

φ0,i0
t )| < 2ε.

On the other hand, Lemma 4.6 and (4.6) imply that

P(Ω \Dφ
m) ≤ 3ε if ‖φ− φ0‖ ≤ d̂m.

Hence for ‖φ− φ0‖ ≤ d̂m, we have that

∣∣∣E
[
f(Xφ,i0

T , αφ,i0(T ))1Aφ

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1Aφ0

]∣∣∣ ≤ 2K(4 + 3M)ε, (4.8)

Note that

P
(
Ω \ Aφ

)
= P

(
{τφ,i0m+1 < T} ∪ {αφ,i0(t) /∈ Nnm

for some t ∈ [0, T ]}
)
< ∆,
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which implies
∣∣∣E

[
f(Xφ,i0

T , αφ,i0(T ))1Ω\Aφ

]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))1Ω\Aφ

]∣∣∣ ≤ 2∆. (4.9)

Choosing ε =
∆

2K(4 + 3M)
, we have from (4.8) and (4.9) that

∣∣∣E
[
f(Xφ,i0

T , αφ,i0(T ))
]
− E

[
f(Xφ0,i0

T , αφ0,i0(T ))
]∣∣∣ ≤ 3∆

if ‖φ− φ0‖ < d∗ :=
dm
2

∧ d̂m.

With the above technical preparations, we are now in a position to prove the main theorem
of this section. By using truncation arguments, we can obtain the Feller property of (Xt, α(t))
even if b(·, i), σ(·, i) do not vanish outside a bounded region and qi(φ) is not bounded. The precise
condition is given below.

Theorem 4.8. Let either Assumption 3.1 or Assumption 3.2 be satisfied. Assume further that

qij(·) is a continuous function for any i, j ∈ Z+. Then the solution to (2.3) has the Feller

property.

Proof. Let f(·, ·) : C ×Z+ 7→ R be a continuous function with |f(φ, i)| ≤ 1 ∀ (φ, i) ∈ C ×Z+. Fix
R > 0, T > 0. Suppose that ‖φ0‖ < R. Under the hypotheses of Theorem 3.1, or Theorem 3.3,
or Theorem 3.5, it is shown in the proofs of those theorems that for any ε > 0, there exists an
R̃ > 0 such that

P{‖Xφ,i0
t ‖ ≤ R̃} > 1−

ε

8
∀‖φ‖ ≤ R + 1. (4.10)

Let Φ(x) : Rn 7→ R be a twice continuously differentiable satisfying Φ(x) = 1 if |x| ≤ R̃ and
Φ(x) = 0 if |x| ≥ R̃ + 1. Let (X̃φ,i0

t , α̃φ,i0(t)) be the solution with initial data (φ, i0) to




dX̃(t) = Φ(X̃(t))b(X̃(t), α̃(t))dt+ Φ(X̃(t))σ(X̃(t), α̃(t))dW (t)

dα̃(t) =

∫

R

h(X̃t, α̃(t−), z)p(dt, dz).
(4.11)

Then (X̃φ,i0(t), α̃φ,i0(t)) = (Xφ,i0(t), αφ,i0(t)) up to the time that ‖Xφ,i0
t ‖ > R̃, which combined

with (4.10) implies

P{Ω̃φ,i0} > 1−
ε

8
, ∀ ‖φ‖ < R

where Ω̃φ,i0 := {X̃φ,i0
T = Xφ,i0

T , α̃φ,i0(T ) = αφ,i0(T )}. As a result, if ‖φ‖ < R, we have

∣∣∣Ef (Xφ,i0
T , αφ,i0(T ))− Ef(X̃φ,i0

T , α̃φ,i0(T ))
∣∣∣

≤E

[
1Ω̃c

φ,i0

∣∣∣f(Xφ,i0
T , αφ,i0(T ))− f(X̃φ,i0

T , α̃φ,i0(T ))
∣∣∣
]
(with Ω̃cφ,i0 = Ω \ Ω̃φ,i0)

≤2P
(
1Ω̃c

φ,i0

)
≤ 2

ε

8
=
ε

4
.

(4.12)

It follows from Proposition 4.7 that there exists a δ ∈ (0, 1) such that if ‖φ − φ0‖ < δ, we
have ∣∣∣Ef(X̃φ,i0

T , α̃φ,i0(T ))− Ef(X̃φ0,i0
T , α̃φ0,i0(T ))

∣∣∣ < ε

2
. (4.13)
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Since ‖f‖ ≤ 1, we can easily obtain from (4.12) and (4.13) that
∣∣∣Ef(Xφ,i0

T , αφ,i0(T ))− Ef(Xφ0,i0
T , αφ0,i0(T ))

∣∣∣

≤
∣∣∣Ef(X̃φ,i0

T , α̃φ,i0(T ))− Ef(X̃φ0,i0
T , α̃φ0,i0(T ))

∣∣∣

+
∣∣∣Ef(Xφ,i0

T , αφ,i0(T ))− Ef(X̃φ,i0
T , α̃φ,i0(T ))

∣∣∣

+
∣∣∣Ef(Xφ0,i0

T , αφ0,i0(T ))− Ef(X̃φ0,i0
T , α̃φ0,i0(T ))

∣∣∣

<
ε

2
+
ε

4
+
ε

4
= ε, if ‖φ− φ0‖ < δ.

The proof of the theorem is complete.

5 Feller Property of Hybrid Diffusion without Past De-

pendence

Now, we suppose that the qij , i, j ∈ Z+ associated with α(t) depend only the current state of
X(t). To be more precise qij(·) is a function from R

n to R for each (i, j) ∈ Z+×Z+. As a special
case of the hybrid diffusion with past-dependent switching, we obtain the following theorem.

Theorem 5.1. Assume that qij(·) is a continuous function for any i, j ∈ Z+. Assume further

that one of the following conditions is satisfied:

(A) Assumption 3.3 and qi(y) =
∑

j 6=i qij(y) is bounded uniformly in (i, y) ∈ Z+ × R
n.

(B) Assumption 3.4 and qi(y) is bounded uniformly in (i, y) ∈ Z+ ×K for each compact subset

K of Rn.

Then the unique solution to (2.3) is a Markov process having the Feller property.

Remark 5.2. If for each discrete state i ∈ Z+, the diffusion Y
(i)(t), which is the solution process

to
dY (i)(t) = b(Y (i)(t), i)dt+ σ(Y (i)(t), i)dW (t) (5.1)

has the strong Feller property, we do not need the continuity of qij(·) to get the Feller property
of (X(t), α(t)). In fact, we will obtain a stronger result, namely, the strong Feller property. The
condition for the strong Feller property of Y (i)(t) is essentially the ellipticity of A(x, i) or the
Hörmander condition for hyperellipticity (see e.g., [16, 23]).

Theorem 5.3. Assume that qij(·) is measurable for any i, j ∈ Z+ and either (A) or (B) in

Theorem 5.1 holds. If for each i ∈ Z+, the solution process Y (i)(t) to (5.1) has the strong

Feller property, then the unique solution to (2.3) has the strong Feller property, that is, for each

bounded measurable function g(y, i) : Rn × Z+ → R, the function (x, i) → Eg(Xx,i(T ), αx,i(T ))
is continuous for each T > 0.

Proof. We assume without loss of generality that |g(z, i)| ≤ 1 ∀z ∈ R
n, i ∈ Z+. Let Y y,i(t) be

the solution with initial data y to (5.1). Fix (x, i) ∈ R
n × Z+ and ε > 0. Under the assumption

(A) or (B), we can show that for each x ∈ R
n, there is a K > 0 satisfying

P((Ωy,iε )c) <
ε

8
∀y ∈ B(x, 1) := {z : |x− z| < 1}, (5.2)
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where Ωy,iε = {|Y y,i(t)| ≤ K ∀t ∈ [0, 1]}, (Ωy,iε )c = Ω \ Ωy,iε . Let M = supi∈Z+,|z|≤K qi(z) and

t0 ∈ (0, 1) satisfying 1− exp{−Mt0} <
ε

16
. It follows from (5.2) and (i) of Lemma 4.2 that

P{τ y,i > t0} > 1−
3ε

16
∀y ∈ B(x, 1), (5.3)

where

τ y,i := inf{t > 0 : αy,i(t) 6= i} = inf
{
t > 0 :

∫ t

0

∫

R

h(Y y,i(s), i, u)p(ds, du) 6= 0
}
.

Denote Φ(y, i) := Eg
(
Xy,i(T − t0), α

y,i(T − t0)
)
. The condition |g(y, i)| ≤ 1 implies |Φ(y, i)| ≤ 1

for all y ∈ R
n, i ∈ Z+. By the strong Feller property of Y (i)(t), there is a δ > 0 such that

|EΦ(Y y,i(t0), i)− EΦ(Y x,i(t0), i)| ≤
ε

4
∀y ∈ B(x, δ). (5.4)

By the strong Markov property of X(t), we have

Eg
(
Xy,i(T ), αy,i(T )

)
= EΦ(Xy,i(t0), α

y,i(t0))

= E
[
1{τy,i>t0}Φ(X

y,i(t0), α
y,i(t0))] + E

[
1{τy,i≤t0}Φ(X

y,i(t0), α
y,i(t0))].

(5.5)

Applying (i) of Lemma 4.2, we obtain

E
[
1{τy,i>t0}Φ(X

y,i(t0), α
y,i(t0))]

=E
[
Φ(Y y,i(t0), α

y,i(t0)) exp{−

∫ t0

0

qi(Y
y,i(s))ds}

]

=E
[
Φ(Y y,i(t0), α

y,i(t0))
]
+ E

[
1(Ωy,i

ε )cΦ(Y
y,i(t0), α

y,i(t0))
(
exp{−

∫ t0

0

qi(Y
y,i(s))ds} − 1

)]

+ E

[
1Ωy,i

ε
Φ(Y y,i(t0), α

y,i(t0))
(
exp{−

∫ t0

0

qi(Y
y,i(s))ds} − 1

)]
.

(5.6)
Note that if |g(z, i)| ≤ 1 ∀z ∈ R

n, i ∈ Z+ then |Φ(z, i)| ≤ 1 ∀z ∈ R
n, i ∈ Z+. We have the

following estimates for y ∈ B(x, δ) using (5.2), (5.3), (5.4), and the fact that |g(z, i)|, |Φ(z, i)| ≤
1 ∀z ∈ R

n, i ∈ Z+.

∣∣∣E
[
1(Ωy,i

ε )cΦ(Y
y,i(t0), α

y,i(t0))
(
exp{−

∫ t0

0

qi(Y
y,i(s))ds} − 1

)]∣∣∣ ≤ P((Ωy,iε )c) ≤
ε

8
, (5.7)

∣∣∣E
[
1Ωy,i

ε
Φ(Y y,i(t0), α

y,i(t0))
(
exp{−

∫ t0

0

qi(Y
y,i(s))ds} − 1

)]∣∣∣ ≤ 1− exp(−Mt0) ≤
ε

16
, (5.8)

E
[
1{τy,i≤t0}Φ(X

y,i(t0), α
y,i(t0))]

∣∣∣ ≤ P{τ y,i ≤ t0} ≤
3ε

16
. (5.9)

Applying estimates (5.4), (5.7), (5.8), and (5.9) to (5.5) and (5.6), we have

∣∣∣EΦ(Xy,i(T ), αy,i(T ))− EΦ(Xx,i(T ), αx,i(T ))
∣∣∣ ≤ ε, ∀y ∈ B(x, δ).

The proof is complete.
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Remark 5.4. Sufficient conditions for the strong Feller property of (X(t), α(t)), in which the
rates of switching qij for i, j ∈ Z+ depend only on the current continuous stateX(t), was obtained
in Shao [19]. However, the conditions there are restrictive. To obtain the strong Feller property,
it is assumed in [19] that qij(x), b(x, i) and σ(x, i) are Lipschitz in x uniformly in i ∈ Z+. The
ellipticity of A(x, i) is also assumed to be uniform in (x, i) ∈ R

n × Z+. Moreover, it is assumed
that qij(x) = 0 if |i− j| < k for some constant k. It can be seen that our conditions in this paper
are much more relaxed compared with the aforementioned reference.

6 Further Remarks

This paper has been devoted to modeling and analysis of switching diffusions in which past-
dependent switching processes and countable switching sets are considered. Many problems
remain open. Based on our results, one may consider such properties as recurrence, ergodicity,
and stability. Future work may also be directed to the study of switching diffusions in which
the drift and diffusions are also past dependent. It is important to work out all the details of
the control problems presented in the previous sections, which may open up a new avenue for
investigation of a wide range of control and optimization problems involving switching diffusions
that are treated in this paper.

A Appendix

This section is devoted to the proofs of some technical results. To simplify the notation, we
denote by Pφ,i the probability measure conditional on the initial value (φ, i), that is, for any
t > 0,

Pφ,i{(Xt, α(t)) ∈ ·} = P{(Xφ,i
t , αφ,i(t)) ∈ ·},

Pφ,i{(Yt, β(t)) ∈ ·} = P{(Y φ,i
t , βφ,i(t)) ∈ ·},

and
Pφ,i{(Zt, γ(t)) ∈ ·} = P{(Zφ,i

t , γφ,i(t)) ∈ ·}.

Let Eφ,i be the expectation associated with Pφ,i. First, we prove the following result.

Lemma A.1. Let either Assumption 3.1 or Assumption 3.3 combined with (ii) of Assumption

3.1 be satisfied. Assume further that qi(·), qij(·) are continuous functions in C for each i, j ∈ Z+.

Then the solution (Xt, α(t)) to (2.3) satisfies (2.1) and (2.2).

Proof. It is clear that the solution (Xt, α(t)) to (2.3) satisfies (2.1). Fix φ ∈ C, i, j ∈ Z+, i 6= j.
Applying the generalized Itô formula to the function V (ψ, k) = 0 if k 6= j and V (ψ, j) = 1 we
have

Pφ,i{α(∆) = j} = Eφ,iV (X∆, α(∆) = Eφ,i

∫ ∆

0

qα(t),j(Xt)dt, for ∆ > 0,

where qii(φ) := −qi(φ) = −
∑

j 6=i qij(φ).
1 Since α(t) is cadlag and X(t) is continuous,

limt→0+ α(t) = i and limt→0+ Xt = φ Pφ,i-a.s. In light of the continuity of qij(·) we obtain
limt→0+ qα(t),j(Xt) = qij(φ) Pφ,i − a.s. which implies that

lim
∆→0+

1

∆

∫ ∆

0

qα(t),j(Xt)dt = qij(φ) Pφ,i − a.s.

1 qii(φ) is not defined in the journal version (SICON) of this paper
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Since qij(·) is uniformly bounded, so is
1

∆

∫ ∆

0

qα(t),j(Xt)dt. By virtue of the Lebegue dominated

convergence theorem, we have

lim
∆→0+

Pφ,i{α(∆) = j}

δ
= lim

∆→0+
Eφ,i

(
1

∆

∫ ∆

0

qα(t),j(Xt)dt

)
= qij(φ). (A.1)

In the same manner, applying the generalized Itô formula to the function V (ψ, k) = 1 if k 6= i
and V (ψ, i) = 0, we obtain that

lim
∆→0+

1− Pφ,i{α(∆) = i}

δ
= qi(φ). (A.2)

The proof is complete by noting that (2.2) follows from (A.1) and (A.2) and the Markov property
of (X(t), α(t)).

Next, we provide the proofs of some results in Section 4.

Proof of Lemma 4.2. To prove claim (i), we apply the generalized Itô formula to V (j) = 1 if
j = i, and V (j) = 0 if j 6= i. We have

V (β(λ1 ∧ t)) = −

∫ λ1∧t

0

qi(Ys)ds+

∫ λ1∧t

0

∫

R

(
V
(
i+ h(Yt, i, z)

)
− 1)

)
µ(ds, dz).

Since W (·) is independent of the Poisson random measure, taking the conditional expectation
with respect to FW

T yields

Eφ,i

[
1{λ1>t}

∣∣FW
T

]
=Eφ,i

[
V (λ1 ∧ t)

∣∣FW
T

]
= −Eφ,i

[ ∫ λ1∧t

0

qi(Ys)ds
∣∣FW

T

]
+ 1

=− Eφ,i

[ ∫ t

0

qi(Ys)ds1{λ1>s}

∣∣FW
T

]
+ 1

=−

∫ t

0

qi(Ys)Eφ,i
[
1{λ1>s}

∣∣FW
T

]
ds+ 1.

Hence,
d

dt
Eφ,i

[
1{λ1>t}

∣∣FW
T

]
= −qi(Yt)Eφ,i

[
1{λ1>t}

∣∣FW
T

]
.

Since Eφ,i

[
1{λ1>0}

∣∣FW
T

]
= 1, we obtain

Pφ,i

(
{λ1 > t}

∣∣FW
T

)
= Eφ,i

[
1{λ1>t}

∣∣FW
T

]
= exp

(
−

∫ t

0

qi(Ys)ds
)
. (A.3)

Now we prove claim (ii). First, we try to find the distribution of (λ1, β1) conditioned on FW
T

when λ1 ∈ [0, T ]. Fix j 6= i and let f(t, k) : [0, T ] × Z+ → Z+ be any bounded measurable
function satisfying f(t, k) = 0 if k 6= j. Applying the generalized Itô formula, we obtain

f(λ1 ∧ T, β(λ1 ∧ T )) =

∫ λ1∧T

0

qij(Yt)f(t, j)dt

+

∫ λ1∧T

0

∫

R

(
f
(
s, i+ h(Yt, i, z)

)
− f(Yt, i)

)
µ(ds, dz).
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Since W (·) is independent of the Poisson random measure, taking the conditional expectation
with respect to FW

T , we have

Eφ,i

[
f(λ1 ∧ T, β(λ1 ∧ T ))

∣∣FW
T

]
=Eφ,i

[ ∫ λ1∧T

0

qij(Yt)f(t, j)dt
∣∣∣FW

T

]

=Eφ,i

[ ∫ T

0

qij(Yt)f(t, j)dt1{λ1>t}dt
∣∣∣FW

T

]

=

∫ T

0

qij(Yt)f(t, j)E
[
1{λ1>t}

∣∣FW
T

]
dt

=

∫ T

0

qij(Yt)f(t, j) exp(−

∫ t

0

qi(Ys)ds)dt.

As a result, for t ∈ [0, T ],

Pφ,i

{
λ1 ∈ dt, β(λ1) = j

∣∣FW
T

}
= qij(Yt) exp(−

∫ t

0

qi(Ys)ds)dt.

Thus,

Eφ,i

[
g(Y(1), λ1, β1)1{λ1≤T}

∣∣∣FW
T

]

=

∞∑

j=1,j 6=i

∫ T

0

g(Yt, t, j)Pφ,i
{
λ1 ∈ dt, β(λ1) = j

∣∣FW
T

}

=

∞∑

j=1,j 6=i

∫ T

0

g(Yt, t, j)qij(Yt) exp(−

∫ t

0

qi(Ys)ds)dt

as desired.

Proof of Proposition 4.3. First, we prove (4.2) for the case l = 0. Since (Xt, α(t)) = (Yt, λ(t))
up to the moment α1 = λ1, we have

Eφ,i

[
f(XT , α(T ))1{τ1>T}

]
= Eφ,i

[
f(YT , i)1{λ1>T}

]

=Eφ,i

[
Eφ,i

(
f(YT , i)1{λ1>T}|F

W
T

)]
= Eφ,i

[
f(YT , i)Eφ,i

(
1{λ1>T}|F

W
T

)]

=Eφ,i

[
f(YT , i) exp

(
−

∫ T

0

qi(Ys)ds
)]
,

(A.4)

where the last equality is consequence of (i) of Lemma 4.2. Since γ(·) and Y (·) are independent,
Zt = Yt up to the moment θ1 and Pφ,i{θ1 > T} = exp(−T ), we obtain

Eφ,i

(
f(ZT , γ(T ))1{θ1>T} exp{−

∫ T

0

qi(Zs)ds}
)

=Eφ,i

(
f(YT , i)1{θ1>T} exp{−

∫ T

0

qi(Ys)ds}
)

=Pφ,i{θ1 > T}Eφ,i
(
f(YT , i) exp{−

∫ T

0

qi(Ys)ds}
)

=exp(−T )Eφ,i
(
f(YT , i) exp{−

∫ T

0

qi(Ys)ds}
)
.

(A.5)
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From (A.4) and (A.5), we have for t ∈ [0, T ] that

Ef(XT , α(T ))1{τ1>T} = exp(T )E
(
f(ZT , γ(T ))1{θ1>T} exp{−

∫ T

0

qi(Zs)ds}
)
. (A.6)

We now prove (4.2) for l = 1. Let g(φ, t, i), g̃(φ, t, i) : C×[0,∞)×Z+ → R be bounded measurable
functions and g(φ, t, i) = g̃(φ, t, i) = 0 if t > T . It follows from (ii) of Lemma 4.2 that

Eφ,ig(X(1), τ1, α1) = Eφ,ig(Y(1), λ1, β1)

=
∑

i1 6=i

∫ T

0

Eφ,i

(
g(Yt, t, i1)qii1(Yt) exp(−

∫ t

0

qi(Ys)ds)
)
dt.

(A.7)

On the other hand,

Eφ,i

[
g̃(Z(1), θ1, γ1) exp(−

∫ θ1

0

qi(Zs)ds)
]

=Eφ,i

[
g̃(Y(1), θ1, γt) exp(−

∫ θ1

0

qi(Ys)ds)
]

=
∑

i1 6=i

∫ T

0

Eφ,i

(
g̃(Yt, t, i1) exp(−

∫ t

0

qi(Ys)ds)
)
Pφ,i{θ1 ∈ dt, γ1 = i1}

=
∑

i1 6=i

∫ T

0

Eφ,i

(
g̃(Yt, t, i1) exp(−

∫ t

0

qi(Ys)ds)
)
ρii1 exp(−t)dt.

(A.8)

Substituting g̃(φ, t, i) = g(φ, t, i) exp(t)×
qii(φ)

ρii
into (A.8), we have

Eφ,i

[
g(Z(1), θ1, γ1) exp(θ1)×

qiγ1(Zs)

ρiγ1
exp(−

∫ θ1

0

qi(Zs)ds)
]

=
∑

i1 6=i

∫ T

0

Eφ,i

[
g(Yt, t, i1) exp(t)

qii1(Yt)

ρii1
exp(−

∫ t

0

qi(Ys)ds)
]
ρii1 exp(−t)dt

=
∑

i1 6=i

∫ T

0

Eφ,i

[
g(Yt, t, i1)qii1(Yt) exp(−

∫ t

0

qi(Ys)ds)
]
dt.

(A.9)

It follows from (A.7) and (A.9) that

Pφ,i{τ1 ∈ dt, α1 = i1, X(1) ∈ dφ1}

=Eφ,i

[
1{θ1∈dt,γ1=i1,Z(1)∈dφ1} exp(t)×

qiii(Zt)

ρii1
exp(−

∫ t

0

qi(Zs)ds)
]
.

(A.10)

We now use the strong Markov property of (Xt, α(t)) and (Zt, γ(t)), (A.10) as well as (A.6) with
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φ, i, T replaced by φ1, i1, T − t, respectively;

Eφ,if(XT , α(T ))1{τ1≤T<τ2}1{α1=i1}

=

∫ T

0

∫

C

[
P{τ1 ∈ dt, α1 = i1, X(1) ∈ dφ1} × Eφ1,i1f(XT−t, α(T − t))1{τ1>T−t}

]

=

∫ T

0

∫

C

[
Eφ,i

(
1{θ1∈dt,γ1=i1,Z(1)∈dφ1} exp(t)×

qiii(Zs)

ρii1
exp(−

∫ t

0

qi(Zs)ds)
)

× exp(T − t)Eφ1,i1f(ZT−t, γ(T − t))1{θ1>T−t} exp{−

∫ T−t

0

qi1(Zs)ds}
]

=exp(T )Eφ,i

[
f(ZT , γ(T ))1{θ1≤T<θ2}1{γ1=i1} exp

(
−

∫ T

θ1

qi1(Zs)ds
)

qii1(Z(1))

ρii1
exp

(
−

∫ θ1

0

qi(Zs)ds
)]
.

(A.11)

We have already proved (4.2) for l = 0, 1. Using the same argument, the induction, and the
strong Markov property of (Xt, α(t)) and (Zt, γ(t)), we can obtain (4.2) for any l ∈ Z+.

The proof of Lemma 4.5. By (3.5), we can find m ∈ Z+ such that

Pφ,i0

{
τm+1 < T

}
<

∆

2
, ∀ (φ, i) ∈ C × Z+. (A.12)

Now, let ε = ε(∆) > 0 (to be specified later). In view of [13, Theorem 4.3, p. 61], for each
i ∈ Z+, there is a constant Ci such that

Eφ,i0|Y (t)− Y (s)|6 ≤ Ci|t− s|3 ∀t, s ∈ [0, T ], ∀ ‖φ‖ ≤ R + 1. (A.13)

By the Kolmogorov-Centsov theorem (see [7, Theorem 2.8]), there is a positive random variable
hφi (ω) such that

Pφ,i0

{
sup

t,s∈[0,T ],0<t−s<hφi (ω)

|Y φ,i(t)− Y (s)|

(t− s)0.25
≤ 4

}
= 1.

Since Ci in (A.13) does not depend on φ ∈ {ψ : ‖ψ‖ ≤ R + 1}, it can be seen from the proof of
the Kolmogorov-Centsov theorem that for any ε > 0, there is a constant hi > 0 satisfying

Pφ,i0

{
sup

t,s∈[0,T ],0<t−s<hi

|Y (t)− Y (s)|

(s− t)0.25
≤ 4

}
> 1− ε, ∀ ‖φ‖ ≤ R + 1. (A.14)

Without loss of generality, we can choose hi+1 < hi, ∀i ∈ Z+. Let

Hi,T =
{
ψ(·) ∈ C([0, T ],R) : ‖ψ‖ ≤ R + 1 and sup

t,s∈[0,T ],0<t−s<hi

|ψ(s)− ψ(t)|

(s− t)0.25
≤ 4

}
,

and

Hi =
{
ψ(·) ∈ C : ‖ψ‖ ≤ R + 1 and sup

t,s∈[−r,0],0<t−s<hi

|ψ(s)− ψ(t)|

(s− t)0.25
≤ 4

}
.

Hence Hi+1,T ⊃ Hi,T and Hi+1 ⊃ Hi. For d > 0 and a compact set K ⊂ C, we define

Kd := {ψ ∈ C : ∃φ ∈ K such that ‖ψ − φ‖ < d}.
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Define K0 = {ψ(·) = φ0(·) + c : c ∈ R
n, |c| ≤ 1}, which is compact, and K1 = K0 ⊎Hi0 . For each

φ ∈ K1, there is nφ,i0 > i0 such that

∞∑

k=nφ,i0
+1

qi0,k(φ) = qi0(φ)−

nφ,i0∑

k=1,k 6=i0

qi0k(φ) <
ε

2
.

By the continuous of qi0 and qi0k(φ), there is a dφ,i0 > 0 such that

∞∑

k=n(φ)+1

qi0,k(φ
′) = qi0(φ

′)−

nφ,i0∑

k=1,k 6=i0

qi0k(φ
′) < ε ∀ ‖φ′ − φ‖ < dφ,i0.

Since K1 is compact, there exist n1 > 0 and d1 > 0 such that

∞∑

k=n1+1

qi0,k(φ) < ε ∀φ ∈ K1
d1
.

Define K2 = K1 ⊎ Hn1. Using the compactness of K2, there exist n2 > n1 and d2 ∈ (0, d1] such
that

∞∑

k=n2+1

qi,k(φ) < ε ∀i ∈ Nn1 , φ ∈ K2
d2
.

Continuing this way, for Km = Km−1 ⊎ Hnm−1 , there exists nm > nm−1 and dm ∈ (0, dm−1] such
that

∞∑

k=nm+1

qi,k(φ) < ε ∀i ∈ Nnm−1 , φ ∈ Km
dm
.

Set Kφ,1 = {φ} ⊎ Hi0 and Kφ,k = Kφ,k−1 ⊎ Hnk−1
for φ ∈ C and k = 2, . . . , m. It is not difficult

to verify that

Kφ,k ⊂ Kk
dk
∀ k = 1, . . . , m, for ‖φ− φ0‖ <

dm
2
. (A.15)

Denote by {Y (·) ∈ Hn0,T} the event {t ∈ [0, T ] 7→ Y (t) is a function belonging toHn0,T}. Clearly,
if Y (·) ∈ Hi0,T , then Yt ∈ Kφ,1 ∀t ∈ [0, T ]. Thus, we can proceed as follows:

Pφ,i0

{
τ1 ≤ T,

(
X(1), α1

)
/∈ Kφ,1 ×Nn1

}

=Pφ,i0

(
{τ1 ≤ T, α1 > n1} ∪ {τ1 ≤ T,X(τ1) /∈ Kφ,1}

)

=Pφ,i0

(
{λ1 ≤ T, β1 > n1} ∪ {λ1 ≤ T, Y (λ1) /∈ Kφ,1}

)

≤Pφ,i0{λ1 ≤ T, Y (·) ∈ Hn0,T , β1 > n1}+ P{Y (·) /∈ HT
n0
}

≤Eφ,i0

[
E
(
1{Y (·)∈Hn0,T

}1{λ1≤T,β1>n1}|F
W
T

)]
+ ε

=Eφ,i0

[
1{Y (·)∈Hn0,T

}E
(
1{λ1≤T,β1>n1}|F

W
T

)]
+ ε

=Eφ,i0

[
1{Y (·)∈Hn0,T

}

∫ T

0

∑

i>n1

qi0,i(Yt) exp
(
−

∫ t

0

qi0(Ys)ds
)
dt
]
+ ε

≤Eφ,i0

[
1{Y (·)∈Hn0,T

}

∫ T

0

εdt
]
+ ε ≤ (T + 1)ε.

(A.16)
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Similarly, if (φ1, i1) ∈ Kφ,1 ×N1, then Pφ1,i1

{
τ1 ≤ T,

(
X(1), α1

)
/∈ Kφ,2 ×Nn2

}
≤ (T + 1)ε. Using

the strong Markov property of (Xt, α(t)), we obtain

Pφ,i0

{
τ1 < T,

(
X(1), α1

)
∈ Kφ,1 ×Nn1 , τ2 ≤ T,

(
X(2), α2

)
/∈ Kφ,2 ×Nn2

}

≤Pφ,i0

{
τ1 < T,

(
X(1), α1

)
∈ Kφ,1 ×Nn1

}

× Pφ,i0

[{
τ2 ≤ T + τ1,

(
X(2), α2

)
/∈ Kφ,2 ×Nn2

}∣∣∣τ1 < T,
(
X(1), α1)

)
∈ Kφ,1 ×Nn1

]

≤ sup
(φ1,i1)∈K

φ
1×Nn1

Pφ1,i1

{
τ1 ≤ T,

(
X(1), α1

)
/∈ Kφ,2 ×Nn2

}
≤ (T + 1)ε.

Continuing this way, we can show for any k = 1, . . . , m that

Pφ,i0

{
τk ≤ T,

(
Xτk , αk

)
/∈ Kφ

k ×Nnk
,
(
X(j), αj

)
∈ Kφ

j ×Nnj
, j = 1, . . . , k−1

}
≤ (T +1)ε. (A.17)

Consequently,

Pφ,i0

{
∃k = 1, . . . , m : τk ≤ T and

(
X(k), αk

)
/∈ Kφ

k ×Nnk

}
≤ (T + 1)mε.

Hence, if we choose ε =
1

2m(T + 1)
∆,

Pφ,i0

{
∀k = 1, . . . , m : τk > T or αk ∈ Nnk

}

≥P

{
∀k = 1, . . . , m : τk > T or

(
X(k), αk

)
∈ Kφ

k ×Nnk

}
≥ 1−

∆

2
.

(A.18)

It follows from (A.12) and (A.18) that

Pφ,i0

(
{τm+1 > T} ∩

{
∀k = 1, . . . , m : τk > T or αk ∈ Nnk

})
≥ 1−∆.

It is easily verified that if ω ∈ {τm+1 > T} ∩ {∀k = 1, . . . , m : τk > T or αk ∈ Nnk
}, then

α(t) ∈ Nnm
, ∀t ∈ [0, T ]. The assertion of the lemma is proved.
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