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ANALYSIS OF THE RATIONAL KRYLOV SUBSPACE PROJECTION

METHOD FOR LARGE-SCALE ALGEBRAIC RICCATI EQUATIONS ∗

V. SIMONCINI†

Abstract. In the numerical solution of the algebraic Riccati equation A∗X +XA −XBB∗X +
C∗C = 0, where A is large, sparse and stable, and B, C have low rank, projection methods have
recently emerged as a possible alternative to the more established Newton-Kleinman iteration. In
spite of convincing numerical experiments, a systematic matrix analysis of this class of methods
is still lacking. We derive new relations for the approximate solution, the residual and the error
matrices, giving new insights into the role of the matrix A−BB∗X and of its approximations in the
numerical procedure. The new results provide theoretical ground for recently proposed modifications
of projection methods onto rational Krylov subspaces.
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1. Introduction. We consider the numerical solution of the algebraic Riccati
equation

A∗X +XA −XBB∗X +C∗C = 0, (1.1)

where A ∈ Rn×n is large and sparse, and B ∈ Rn×q, C ∈ Rp×n with q, p ≪ n; here and
in the following A∗ denotes the complex conjugate of A. For A stable1, the solution
matrix X of interest is the one that is symmetric positive semidefinite and such that
A − BB∗X remains stable. Equation (1.1) arises in many scientific and engineering
applications that require controlling a dynamical system, and it has been deeply
studied by applied algebraists and numerical mathematicians; we refer the reader to
[29] for a thorough description of the problem and its many mathematical relations.
In the recent book [11], the numerical treatment of this and related problems has
been discussed, both in the small and large scale cases. In the large scale setting,
with n≫ 103, a serious bottleneck is given by the fact that the possibly dense n × n
matrixX cannot be stored. Most numerical methods thus approximateX by means of
factored low-rank matrices, e.g., X ≈ ZZ∗, so that only Z needs to be stored. Different
approaches have been explored to solve (1.1) under this constraint, and for quite some
time a variant of the Newton method, the Newton-Kleinman iteration, has been the
most popular approach [28],[16],[10],[8]. Low-rank subspace iteration strategies have
also been considered in the past few years, see, e.g., [1],[7],[31]. Other forms of data-
sparse approximations include multilevel [19] and hierarchical [20] methods, which
rely on available structure in the data.

Projection-type methods also yield low rank approximations, however they had
not been used for the Riccati equation until very recently. In fact, projection methods
are extensively employed in the solution of algebraic linear systems and eigenvalue
problems. In the past decade, specific choices of approximation spaces have shown
that projection methods are particularly effective also for linear matrix equations such
as the Lyapunov and Sylvester equations [38]. Lately, the projection idea has been
applied to the algebraic (quadratic) Riccati equation [26],[25], with surprisingly good
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2 V. Simoncini

results, to the point that better performance is often observed than with Newton-
based procedures [40]. Moreover, ad-hoc parameter selections have been proposed
to further enhance particularly effective approximation spaces [31]. This strong nu-
merical evidence however is lacking of any theoretical justification: the procedure is
mainly based on its linear counterpart and therefore it seems to completely disre-
gard the quadratic term −XBB∗X . Nonetheless, fast convergence to the sought after
solution is usually observed.

The aim of this paper is to start an analysis that will lead to a better understand-
ing of this class of methods. By looking at the computed quantities from different
perspectives, we are able to give new insights into the role of the approximate so-
lution Xk in the various contexts where the Riccati equation is extensively studied.
We start in section 3 with model order reduction of linear dynamical systems, where
approximation by projection is a recognized important tool, and show that Xk carries
information on the optimal function value in the reduced control problem. In section 5
we deepen our knowledge of Xk and the associated residual, which allows us to derive
new expressions for the residual matrix and justify recently proposed enhancements
of a popular space in model order reduction, that is the rational Krylov subspace. A
key role in our discussion will be played by the residual matrix,

Rk ∶= A
∗Xk +XkA −XkBB

∗Xk +C
∗C. (1.2)

By simple algebra, it is customary to rewrite Rk as

Rk = (A
∗ −XkBB

∗)Xk +Xk(A −BB
∗Xk) +C

∗C +XkBB
∗Xk, (1.3)

which highlights the occurrence of the matrix A∗ − XkBB
∗. This matrix and its

projected version will be ubiquitous in the paper, and are the true players in the
approximation process. Finally, the connection between the approximation of the
matrix equation and the invariant subspace setting is highlighted in section 6. While
our interest was motivated by the good performance of rational Krylov methods,
which are the main focus of section 5, many of the results in fact hold for more
general projection methods. We believe that our analysis helps provide good ground
to characterize projection methods as a natural and effective strategy for solving the
Riccati equation.

The following notation and definitions will be used. For X ∈ Rn×n, X ≥ 0 means
that X is symmetric and positive semidefinite, while X > 0 means that is symmetric
and positive definite. A stable matrix is a square matrix with all its eigenvalues in
the open left-half complex plane. An n × n matrix A is passive if its field of values,
{z ∈ C ∶ z = (x∗Ax)/(x∗x), 0 ≠ x ∈ Cn}, is all in the open left-half complex plane. In
denotes the identity matrix of size n, and the subscript will be avoided whenever clear
from the context. A pair (A,B) is controllable if the matrix [B,AB, . . . ,An−1B] is
full row rank, and (C,A) is observable if (A∗,C∗) is controllable. A pair (A,B) is
stabilizable if there exists a matrix X such that A −BB∗X is stable. The Euclidean
norm ∥ ⋅ ∥ for vectors and its induced norm for matrices will be used, together with
the Frobenius norm for matrices, defined as ∥A∥2F = ∑i,j ∣ai,j ∣2, where A = (ai,j).

2. Background on projection methods. Projection methods usually gener-
ate a sequence of nested approximation spaces, Kk ⊆ Kk+1, k ≥ 1, where an approxi-
mate solution is determined. Let the columns of Vk ∈ R

n×dk span the space Kk, where
dk is the space dimension, with dk ≤ dk+1. An approximation to X in (1.1) is sought
as Xk = VkYkV

∗
k ≈X , where Yk is determined by imposing some additional condition.
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A Galerkin method is characterized by an orthogonality condition of the residual to
the given space, namely Rk ⊥ Kk, where Rk is as defined in (1.2); the orthogonality
is with respect to the standard matrix inner product, so that the Galerkin condition
reads

V ∗k RkVk = 0. (2.1)

As the subspace grows, the residual is forced to belong to a smaller and smaller space.
When dk = n then clearly it must be Rk = 0 and a solution to (1.1) is determined,
in exact arithmetic. The main goal is to determine a sufficiently good approximate
solution Xk for dk ≪ n. To obtain Yk we substitute Xk into the expression for the
residual matrix in (2.1):

V ∗k (A∗VkYkV ∗k + VkYkV ∗k A − VkYkV ∗k BB∗VkYkV ∗k +C∗C)Vk = 0
V ∗k A

∗VkYk + YkV ∗k AVk − YkV ∗k BB∗VkYk + V ∗k C∗CVk = 0,
where we used that V ∗k Vk = Idk

. Setting Tk = V
∗
k AVk, Bk = V

∗
k B and C∗k = V

∗
k C

∗ we
see that Yk can be obtained by solving the reduced Riccati equation

T ∗k Yk + YkTk − YkBkB
∗
kYk +C∗kCk = 0. (2.2)

Under the assumption that A is passive, Tk is stable, therefore (2.2) admits a unique
stabilizing positive semidefinite solution Yk, which is then used for constructing Xk.

The effectiveness of the whole procedure depends on the choice of Kk. The ap-
proximation spaces explored in the (quite recent) literature are all based on block
Krylov subspaces generated with A or with rational functions of A and starting term
C∗ [26],[25],[40]. In section 5 we will analyze the case of the block rational Krylov
subspace, while the results of the next two sections hold for any approximation space.

3. Order reduction of dynamical systems by projection. The Riccati
equation is tightly connected with the time-invariant linear system

{ ẋ(t) = Ax(t) +Bu(t), x(0) = x0
y(t) = Cx(t), (3.1)

where u(t) and x(t) are the control (or input) and state vectors, while y(t) is the
output vector; x0 is the initial state. We note that x(t) also depends on both x0 and
u(t), but this will not be explicitly reported in the notation. Let us introduce the
following quadratic cost functional2

J (u,x0) = ∫ ∞

0

(x(t)∗C∗Cx(t) + u(t)∗u(t))dt.
The Riccati equation matrix X is used in the solution of the following linear-quadratic
regulator problem:

inf
u
J (u,x0),

which consists in finding an optimal control function u∗(t) associated with the system
(3.1), at which the function J attains its infimum. The following well known result

2Here we consider a simplified version to make an immediate connection with the Riccati equation
stated in (1.1).
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connects the optimal cost problem with the solution of the algebraic Riccati equation
(1.1); see, e.g., the relevant part of [29, Theorem 16.3.3] in our notation.

Theorem 3.1. Let the pair (A,B) be stabilizable and (C,A) observable. Then
there is a unique solution X ≥ 0 of (1.1). Moreover,

i) For each x0 there is a unique optimal control, and it is given by u∗(t) =
−B∗X exp((A −BB∗X)t)x0 for t ≥ 0;

ii) J(u∗, x0) = x∗0Xx0 for all x0 ∈ C
n.

The optimal control function u∗(t) in the theorem above is in fact determined as
u∗(t) = −B∗Xx(t), giving rise to the closed-loop dynamical system

ẋ(t) = (A −BB∗X)x(t), x(0) = x0,
whose solution is x(t) = exp((A −BB∗X)t)x0 for t ≥ 0 [24].

A reduced order model aims at representing the given large dynamical system by
means of a significantly smaller one. This can be done by projecting data onto a sig-
nificantly smaller space. A popular strategy in this class is to use the Rational Krylov
subspace to reduce the coefficient matrices by projecting them onto an appropriate
vector space [3]. The solutions of the reduced system can effectively approximate the
original state and control in case the space trajectories do not occupy the whole state
space. In practice, this means that the original model can be well represented by far
fewer degrees of freedom [2].

A quantity of interest to the control community that is used to monitor the quality
of the reduced system is the transfer function, for which a large literature is available;
see, e.g., [3],[9],[18],[37] and their references. Here we focus on the reduction process,
and show that the subspace projection allows one to determine the optimal control
of the reduced dynamical system. Let the dk ≪ n orthonormal columns of Vk ∈ R

n×dk

span the computed subspace, and, as in the previous section, let Tk = V
∗
k AVk, Bk =

V ∗k B, C∗k = V
∗
k C

∗. Then we can define the reduced order system

{ ˙̂x(t) = Tkx̂(t) +Bkû(t), x̂(0) = V ∗k x0.
ŷ(t) = Ckx̂(t), (3.2)

Clearly, as dk → n the reduced system approaches the original one. For smaller
dk, the quantity xk(t) = Vkx̂(t) is an approximate state of the original system.

Corollary 3.2. The solution matrix Yk of (2.2) is the unique non-negative
solution that gives the feedback optimal control û∗(t), t ≥ 0, for the system (3.2).

Proof. Let

Ĵk(û, x̂0) = ∫ ∞

0

(x̂(t)∗C∗kCkx̂(t) + û(t)∗û(t))dt.
be the cost functional associated with (3.2). By applying Theorem 3.1, an optimal
control for the reduced system is û∗(t) = −B∗kYk exp((Tk − BkB

∗
kYk)t)x̂0, where Yk

solves the reduced Riccati equation

T ∗k Y + Y Tk − Y BkB
∗
kY +C∗kCk = 0, (3.3)

with the reduced state x̂(t) = exp((Tk −BkB
∗
kYk)t)x̂0. Equation (3.3) is precisely the

Riccati equation obtained by Galerkin projection of the original large scale matrix
equation (1.1) onto the given subspace.
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Theorem 3.1(ii) implies

Ĵk(û∗, x̂0) = x̂∗0Ykx̂0 = x∗0VkYkV ∗k x0 = x∗0Xkx0.

Therefore, if Xk →X as dk →∞, the optimal value of the reduced functional yields an
estimate to the minimum functional cost via the approximate solution Xk = VkYkV

∗
k

to the large Riccati equation.
An approximate control function uk(t) for the unreduced functional J (uk, x0) is

obtained directly using the approximation Xk, bypassing the reduced functional Ĵ .
Indeed, if we assume that the approximate Riccati solution Xk is stabilizing, we can
write

uk(t) = −B∗Xkxk(t), with xk(t) = exp((A −BB∗Xk)t)x0. (3.4)

SubstitutingXk = VkYkV
∗
k we get uk(t) = −(B∗Vk)YkV ∗k exp((A−B(B∗Vk)YkV ∗k )t)x0.

The question then arises as of whether uk and û∗ are related. Comparing this expres-
sion with that of û∗(t), we see that they are close to each other as soon as

exp((V ∗k (A −BBXk)Vkt)V ∗k ≈ V ∗k exp((A −BB∗Xk)t).
Using the expansion of exp(z) in terms of power series and taking transpose conju-
gations, this approximation can be written as

(A∗ −XkBB
∗)ℓVk ≈ Vk (V ∗k (A∗ −XkBB

∗)Vk)ℓ , for any ℓ ∈ N.

This approximation becomes an equality as soon as range(Vk) is an invariant subspace
of A∗ −XkBB

∗. In general, however, the columns of Vk do not span an invariant sub-
space, therefore this connection is not sufficient to connect the two control functions.
The following proposition does provide a relation between the optimal reduced cost
functional value with the value of the original functional at uk.

Proposition 3.3. Assume that A −BB∗Xk is stable and that uk is defined as
in (3.4). With the previous notation it holds

∣J (uk, x0) − Ĵk(û∗, x̂0)∣ ≤ ∥Rk∥
2α

x∗0x0,

where α > 0 is such that ∥e(A−BB∗Xk)
∗t∥ ≤ e−αt for all t ≥ 0.

Proof. Using (1.3), let us write the Riccati residual equation as

(A −BBX∗k)∗Xk +Xk(A −BBXk) +XkBB
∗Xk +C∗C −Rk = 0.

Then

J (uk, x0) = ∫ ∞

0

(u∗kuk + x∗kC∗Cxk)dt
= ∫

∞

0

x∗0e
(A−BB∗Xk)

∗t(XkBB
∗Xk +C∗C)e(A−BB∗Xk)tx0dt

= x∗
0
Xkx0 + ∫

∞

0

x∗
0
e(A−BB∗Xk)

∗tRke
(A−BB∗Xk)tx0dt.

From x∗
0
Xkx0 = Ĵk(û∗, x̂0) and ∣ ∫ ∞0 x∗

0
e(A−BB

∗
Xk)

∗
tRke

(A−BB
∗
Xk)tx0dt∣ ≤ ∥Rk∥

2α
x∗
0
x0

the result follows.
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This theorem establishes a linear relation between the matrix equation residual
norm and the distance between the optimal value of the reduced functional and the
value of the approximate unreduced functional. As the residual norm goes to zero,
the two functional values coalesce, and this may occur for dk ≪ n, that is with a
projection space of much smaller dimension than the original one.

We conclude with a remark about the type of approximation space used. In
model order reduction, usually different projection spaces are used from the left and
from the right, so as to expand both in terms of C∗ and B. The connection between
this approach and the reduction of the (symmetric) Riccati equation deserves future
analysis.

4. Control stability properties of the subspace projection approxima-

tion. By using the residual equation, norm estimates for the error X −Xk can be
derived by using classical perturbations results. In this section we recall these classical
estimates, which can have a different flavor in our setting, where the perturbations
are not very small in general. Nonetheless, these results enable us to state that for
dk large enough the approximate solution Xk is rigorously equipped with all the nice
stabilizability properties of the exact solution. Moreover, they can be used to track
the progress in the approximation as the approximation space grows.

Unlike the linear equation case, a small residual norm does not necessarily imply
a small error, since the Riccati equation has more than one solution. Therefore, in
general an assumption is needed about the closeness of the approximate solution to
the sought after one, to be able to derive information on the error norm from the
residual norm.

Let X be an exact stabilizing solution, Ek = X −Xk the error and Rk = A
∗Xk +

XkA − XkBB
∗Xk + C∗C the residual. Subtract this residual equation from (1.1).

Then by adding and subtracting XBB∗Xk and EkBB
∗Xk in sequence, we obtain

(A∗ −XBB∗)Ek +Ek(A −BB∗X)+EkBB
∗Ek +Rk = 0.

We observe in passing that the second order term in Ek becomes negligeable for∥Ek∥≪ 1. From this Riccati equation for the error, under certain conditions a bound
on the error can be obtained. To this end we recall the definition of the closed-loop
Lyapunov operator

ΩX(Z) ∶= (A −BB∗X)∗Z +Z(A −BB∗X),
and observe that if H is the matrix solving (A−BB∗X)∗H+H(A−BB∗X) = −I, then∥H∥ = ∥Ω−1X ∥ = maxZ≠0(∥Ω−1X (Z)∥/∥Z∥); see [27, Lemma 2]. Note that ∥Ω−1X ∥ is the
reciprocal of the sep operator for the given matrix [41]. An interesting interpretation
of ∥Ω−1X ∥ in terms of the damping of the closed-loop dynamical system is also given in
[27].

Theorem 4.1. [27] Let X be a symmetric and positive semidefinite solution to
(1.1) such that A−BB∗X is stable. Assume that ∥X −Xk∥ < 1/(3∥B∥2∥Ω−1X ∥). If the
residual matrix Rk satisfies 4∥B∥2∥Ω−1X ∥2∥Rk∥ < 1 then

∥X −Xk∥ ≤ 2∥Ω−1X ∥ ∥Rk∥.
We refer the reader to [17] for more refined estimates. This bound is a generalization
to the nonlinear case of the well known bound for the (vector) norm of the error when
approximately solving a linear system Ax = b. We note that the “norm of the inverse”
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is replaced here with the norm of the closed-loop operator inverse, which takes into
account both the linear and the quadratic coefficient matrices.

We next recall a theorem on the sensitivity of the Lyapunov equation solution.
Theorem 4.2. [24, Theorem 2.2] Let A be stable and let H satisfy A∗H +HA =

−I. Let ∆A satisfy ∥∆A∥ < 1/(2∥H∥). Then A +∆A is stable.
This result enables us to state that if the error X −Xk is small enough, then Xk

is stabilizable; a similar result can also be found in [27, Lemma 1].
Corollary 4.3. Let A−BB∗X be stable and let Xk be an approximate solution

to (1.1) and Ek =X −Xk. If ∥BB∗Ek∥ < 1/(2∥Ω−1X ∥), then A −BB∗Xk is stable.
Proof. We write A −BB∗Xk = (A −BB∗X) +BB∗Ek =∶ Ã +∆Ã. We thus apply

Theorem 4.2 to Ã, ∆Ã: Ã is stable by hypothesis; moreover, if ∥BB∗Ek∥ = ∥∆Ã∥ <
1/(2∥Ω−1X ∥) then Ã +∆Ã is stable.

Finally, we turn our attention to the special form of the approximate solution,
that is Xk = VkYkV

∗
k . The following result shows that after k iterations of a projection

method, the reduced solution matrix Yk is stabilizing.
Proposition 4.4. Let Tk be stable and (Tk−BkB

∗
kYk,C

∗
k) controllable. Let Yk be

the approximation obtained after k iterations of the chosen projection method. Then
Tk −BkB

∗
kYk is a stable matrix.

Proof. The symmetric matrix Yk solves the reduced matrix equation T ∗k Y +Y Tk−
Y BkB

∗
kY +C∗kCk = 0. Rewriting the equation, Yk satisfies

(T ∗k − YkBkB
∗
k)Yk + Yk(Tk −BkB

∗
kYk) + YkB∗kBkYk +C∗kCk = 0,

that is, Yk formally solves a Lyapunov equation. Since YkB
∗
kBkYk + C∗kCk ≥ C

∗
kCk,

Theorem 5.3.2(b) in [29] ensures that the eigenvalues of Tk − BkB
∗
kYk all lie in the

open left half-plane, that is the matrix is stable.
Next result tracks the modification in the approximate solution matrix Xk as the

subspace grows. It is important to realize that in general, the matrices Yk in the
sequence are computed by solving a new and expanding Riccati equation, therefore
the entries of Yk and Yk+1 are not related by a simple explicit recurrence.

Proposition 4.5. Let Xj be the approximate solution onto Kj for j = k, k + 1.
Then for k large enough,

∥Xk+1 −Xk∥ ≤ 2∥Ω−1Yk+1
∥∥Rk∥.

Proof. We write Xk+1 = Vk+1Yk+1V
∗
k+1 and Xk = VkYkV

∗
k = Vk+1Y̌k+1V

∗
k+1, where

Y̌k+1 is Yk padded with extra rows and columns to match the dimension of Yk+1,

and we recall that Vk+1 = [Vk,⋆]. Moreover, we set Tk+1 = [Tk, t(1)k+1; (t(1)k+1)∗,⋆]. Yk+1
solves the reduced equation T ∗k+1Y +Y Tk+1−Y Bk+1B

∗
k+1Y +C∗k+1Ck+1 = 0. Substituting

instead the matrix Y̌k+1 we obtain that the residual satisfies

ρk ∶= T
∗

k+1
Y̌k+1 + Y̌k+1Tk+1 − Y̌k+1Bk+1B

∗

k+1
Y̌k+1 +C

∗

k
Ck

= V ∗
k+1
(A∗Vk+1Y̌k+1V

∗

k+1
+ Vk+1Y̌k+1V

∗

k+1
A − Vk+1Y̌k+1V

∗

k+1
BB∗Vk+1Y̌k+1V

∗

k+1
+C∗C)Vk+1

= V ∗
k+1
(A∗Xk +XkA −XkBB∗Xk +C

∗C)Vk+1.

Therefore, ∥ρk∥ ≤ ∥Rk∥. Using Theorem 4.1, if ∥Yk+1 − Y̌k+1∥ < 1/(3∥Bk+1∥2∥Ω−1Yk+1
∥)

and ∥ρk∥ ≤ 1/(4∥Bk+1∥2∥Ω−1Yk+1
∥2) then
∥Yk+1 − Y̌k+1∥ ≤ 2∥Ω−1Yk+1

∥∥ρk∥.
Noticing that ∥Yk+1 − Y̌k+1∥ = ∥Xk+1 −Xk∥ the result follows.
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5. Rational Krylov subspace approximation. The approximation quality of
projection methods depends on the choice of the approximation space Kk. In the case
of the Lyapunov and Sylvester equations, a classical choice is the Krylov subspaceKk = range([C∗,A∗C∗, . . . , (A∗)k−1C∗]), first introduced for this problem by Saad in
[36]. Note that in general, C∗ ∈ Rn×p satisfies p ≥ 1, therefore the space is in fact
a “block” space, whose dimension is not greater than dk = pk. More recently and
motivated by the reduction of dynamical systems, rational Krylov subspaces have
shown to be very attractive. For s = [s1, s2, . . .], with sj ∈ C+, they are given by

Kk(A,C∗, s) ∶= range([C∗, (A − s2I)−1C∗, . . . , k−1∏
j=1

(A − sj+1I)−1C∗]).
If the problem data are real, the shifts are included in conjugate pairs. Moreover,
R(sj) > 0 therefore all inverses exist for A stable. We remark that the first block of
columns generating Kk is simply the matrix C∗; this corresponds to using an infinite
parameter s1 =∞ as first shift, and this will be an assumption throughout. Including
C∗ into the space is crucial for convergence, since the whole constant matrix term is
exactly represented in the approximation space. The effectiveness of the space now
depends on the choice of the parameters sj , j = 2,3, . . .. A lot of work has been devoted
to the analysis of ideal shifts, due to the relevance of rational Krylov subspaces in
eigenproblems [35],[33], matrix function evaluations [22],[14],[23], and Model Order
Reduction [21],[34],[15]; we refer the readers to [38] and to the references cited above.
We mention that for linear matrix equations, the choice of sj ∈ {0,∞} seems to be
particularly effective in many cases, since the computational cost of solving with the
coefficient matrix at each iteration can be somewhat mitigated, without dramatically
sacrificing the asymptotic convergence rate. Numerical experiments reported in [40]
show that for the algebraic Riccati equation this is no longer the case: the general
rational Krylov subspace appears to be superior in all considered examples, in terms
of subspace dimension, if the shifts are properly selected. This comparison deserves
further study [39]. For the sake of simplicity of exposition or unless it is explicitly
stated, in the rest of this section and its subsections we assume that C has a single
row, that is p = 1. There is no relevant difference for p > 1, except that the same shift
is applied to a block of p vectors, and that the involved matrices have dimensions
depending on pk.

For k ≥ 1, the rational Krylov subspace with shifts s1, s2, . . . , sk satisfies the
following Arnoldi relation3 (see, e.g., [12], [30]):

A∗Vk = VkT
∗
k + v̂k+1g∗k , V ∗k Vk = I, (5.1)

where Kk = range(Vk), and v̂k+1βββ = vk+1sk−(I−VkV ∗k )A∗vk+1 is the QR decomposition
of the right-hand side matrix, and with g∗k = βββhk+1,kE

∗
kH

−1
k . The matrix

[ Hk

hk+1,kE
∗
k

]
contains the orthogonalization coefficients that generate the orthonormal columns of
Vk+1 (see, e.g., [15]). We set V1β0 = C

∗, the reduced QR factorization of C∗. By

3The conjugate-transposition in T ∗
k

is used for consistency in the notation employed for the
reduced Riccati equation.
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construction, the matrix [Vk, v̂k+1] has orthonormal columns as well.

Proposition 5.1. The matrix Xk satisfies the following algebraic Riccati equa-
tion

(A∗ − v̂k+1f∗k )X +X(A − fkv̂∗k+1) −XBB∗X +C∗C = 0,
where fk = Vkgk and gk is as in (5.1).

Proof. The residual satisfies

Rk = [Vk, v̂k+1] [ 0 Ykgk
g∗kYk 0

] [ V ∗k
v̂∗k+1
]

= v̂k+1g
∗
kYkV

∗
k + VkYkgkv̂∗k+1 = v̂k+1g∗kV ∗k Xk +XkVkgkv̂

∗
k+1. (5.2)

Substituting into equation (1.2) and collecting terms the result follows.

Since ∥f∗kXk∥ = ∥Rk∥/√2, the modified equation of Proposition 5.1 tends to the
original Riccati equation as convergence takes place. However, we cannot infer that
Xk is close to X in the backward error sense, since v̂k+1f

∗
k is not small in general.

5.1. The adaptive rational Krylov subspace. Several different selection
strategies have been proposed for the shifts sj . In the linear equation case, Penzl
([34]) suggested a pre-processing for the computation of a fixed number of shifts,
which are then applied cyclically. More recently, a greedy adaptive strategy was pro-
posed in [15] for the same class of problems, which determines the next shift during
the computation, so that the process can automatically learn from the convergence
behavior of the method. The shifts are selected by minimizing a particular rational
function on an approximate and adaptively adjusted spectral region of A. In [31] it
was observed that for the Riccati equation the inclusion of information on BB∗ dur-
ing the shift computation – in the form of eigenvalues of V ∗k (A∗ −XkBB

∗)Vk – may
be beneficial in certain cases. In the following we aim to justify this choice. To this
end, we need to set a rational function framework that parallels some of the matrix
relations obtained in the previous sections.

A relation corresponding to (5.1) can be obtained by using orthogonal rational
functions with respect to some inner product; see, e.g., [12]. We note that each vj
can be written as vj = ϕj(A)c/∥c∥, for some orthogonal rational function ϕj = pj/qj−1,
where pj , qj−1 are polynomials of degree at most j and j − 1, respectively. For j = 0
we define ϕ0 = 1. Let Φk−1(λ) = [ϕ0(λ), ϕ1(λ), . . . , ϕk−1(λ)]. Then,

λΦk−1(λ) = Φk−1(λ)T ∗k + ϕ̂k(λ)g∗k ; (5.3)

from (5.3) it follows that θ is a zero of ϕ̂k if and only θ is an eigenvalue of Tk. We
refer to [5, section 2.2] for a similar relation, where a different Arnoldi-type relation
is used.

A first attempt to justify the use of information from A−BB∗Xk can be obtained
by generalizing the argument in [15], working as if the problem were linear. For the
sake of notational simplicity, for the rest of this section we let Ak = A −BB∗Xk andTk = V ∗k AkVk = Tk −BkB

∗
kYk. Using (1.2) we can write the residual as

Rk = (A∗ −XkBB
∗)Xk +Xk(A −BB∗Xk) +C∗C +XkBB

∗Xk

= A∗kXk +XkAk +DkD∗k, (5.4)
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where Dk = [C∗,XkB]. We observe that all columns of Dk belong to Kk(A∗,C∗, s),
since Dk = Vk[E1β0, YkBk].

Remark 5.2. The rational Krylov subspace Kk(A∗,C∗, s) satisfies an Arnoldi-
type property for the matrix Ak. Indeed,

A∗kVk = A∗Vk −XkBB
∗Vk

= VkT
∗
k + v̂k+1g∗k − VkYkBkB

∗
k

= Vk(T ∗k − YkBkB
∗
k) + v̂k+1g∗k = VkT ∗k + v̂k+1g∗k.

By using the expression of the residual (5.4) as if it were the residual matrix of a
Lyapunov equation, we can follow the same reasoning as in [15] for the selection of the
next shift. However, as opposed to the linear case, all involved matrices now depend
on the iteration k. To simplify the presentation, in the following argument we assume
that C∗ = c ∈ Rn. Consider the shifted system (A∗k − sI)x = c, and an approximate
solution xk ∈Kk(A∗k, c, s). Then the residual can be written as

c − (A∗k − sI)Vk(T ∗k − sI)−1e1β0 = ψk(Ak)c
ψk(s) , ψk(z) = k

∏
j=1

z − λj
z − sj , (5.5)

where λj are the eigenvalues of Tk. The next shift sk+1 is then determined so that

sk+1 = arg(max
s∈∂Sk

∣ 1

ψk(s)∣) ,
where Sk ⊂ C

+ approximates the mirrored spectral region of Ak, and ∂Sk is its border.
Note that ψk is a multiple of ϕ̂k in (5.3). A major practical difference from the
adaptive procedure in the Lyapunov equation case is that Sk will change at each
iteration in agreement with the modifications in the spectrum of Ak. In fact, thanks
to the Arnoldi relation of Remark 5.2, the unknown spectral region of Ak is replaced
with the spectral region of Tk, which is computable after the approximate solution
Yk is determined. This approach is precisely the one explored in [31] for the Riccati
equation. As opposed to an adaptive shift selection based on A (see, e.g., [40]),
this approach includes information on the second order coefficient matrix, which may
be crucial when the term −BB∗X in A − BB∗X significantly modifies the spectral
properties of A (see Example 5.5). In the next section we give a rigorous formalization
of this argument.

5.2. A new expression for the residual and the choice of shifts. In [4] a
new expression for the residual of the Sylvester equation was proposed. We extend
this expression to the case of the Riccati residual matrix. The new expression allows
an interpretation of the two-term sum in (5.2) by means of rational functions. Note
that the result also holds for B = 0, therefore its proof provides a more elementary
proof for the Lyapunov equation than in [4].

Proposition 5.3. Assume that the columns of C∗ belong to Range(Vk), and letTk = V ∗k AkVk = Tk −BkB
∗
kYk. Then the residual Rk satisfies

Rk = R̂kV
∗
k + VkR̂∗k, with R̂k = A

∗VkYk + VkYkTk +C∗(CVk),
so that ∥Rk∥F =√2∥R̂k∥F .
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Proof. By substituting R̂k in the expression for Rk we obtain,

R̂kV
∗
k + VkR̂∗k = A∗Xk + VkYkTkV ∗k − VkYkBkB

∗
kYkV

∗
k +C∗C

+XkA + VkT ∗k YkV ∗k − VkYkBkB
∗
kYkV

∗
k +C∗C

= Rk + 0,
where the reduced equation (2.2) and C∗CV V ∗ = C∗C were used; this proves the first
relation. The norm relation follows from V ∗k R̂k = 0, which can be readily verified.

We shall call R̂k the “semi”-residual matrix. The proposition above shows that
the residual norm of the Galerkin method for the Riccati equation is the same as that
of an associated Sylvester equation times the constant

√
2. As a consequence, we can

at least formally state that VkYkV
∗
k is a solution to the Riccati equation (1.1), that is

Rk = 0, if and only if Zk = VkYk is the solution to the Sylvester equation

A∗Z +ZTk +C∗CVk = 0, (5.6)

where Tk typically has dimensions much smaller than A. Note that this Sylvester
equation is in terms of A (and not of Ak = A−BB∗Xk), but also in terms of Tk. Let

ψk(z) = det(zI − Tk)
∏k

j=1(z − sj) =
∏k

j=1(z − θj)
∏k

j=1(z − sj) , (5.7)

where θj are the eigenvalues of Tk = V
∗
k AVk. Then the following representation holds

for the semi-residual R̂k. The result was first proved for the Sylvester equation in
[4] and then generalized to the multi-term linear case in [6]. We prove the result for
C∗ having a single column, the generalization to multiple columns can be obtained
by working with each column of C, since the whole matrix C is used to build the
approximation space.

Theorem 5.4. Assume that p = 1, that is C∗ = c ∈ Rn. Let ψk be the rational
function defined in (5.7) and assume that Tk = V ∗k AkVk is diagonalizable. The semi-

residual R̂k of Proposition 5.3 satisfies

R̂k = ψk(A∗)cc∗Vk(ψk(−Tk))−1.

Proof. Let Tk = QΘQ−1, with Θ = diag(θ1, . . . , θk). then the result follows from
standard arguments for shifted linear systems. Indeed, substituting this decomposi-
tion into R̂k in Proposition 5.3 it follows that R̂kQ = A

∗VkYkQ + VkYkQΘ + cc∗VkQ.
Let Z ∶= VkYkQ = [z1, . . . , zk], cηj ∶= cc∗VkQej and rj = R̂kQej, then we have

rj = (A∗ + θjI)zj + cηj .
Due to the Galerkin condition, the residuals rj are all proportional to v̂k+1, therefore
using (5.7) they can be written as rj = ϕ̂k(A∗)cηj/ϕ̂k(−θj). Collecting all columns

we get R̂kQ = ψk(A∗)cc∗VkQψk(−Θ)−1, where we recall that ψk is a multiple of ϕ̂k;
multiplying from the right by Q−1 the result follows.

We observe that the expression of the semi-residual generalizes the residual for-
mula for the shifted system in (5.5) to the case of matrix equations. The quantity(ψk(−T ∗k ))−1 plays the same scaling role as the scalar 1/ψk(s) in the shifted system
in (5.5). This new relation thus appears to be of interest on its own. Indeed, while for
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linear matrix equations a parallel with shifted systems had already been performed
(see [38, section 4.3] and references therein), the residual matrix associated to the
special Sylvester equation (5.6) had not been explicitly written down in terms of
polynomials or rational functions.

The new expression for R̂k suggests a way to determine the next shift sk+1. In-
deed, we first recall that the numerator of the rational function ψk is the characteristic
polynomial of Tk, which thus minimizes the numerator of ψk among all monic poly-
nomials of degree k. This makes ∥ψk(A)c∥ small among all rational functions ψk with
fixed denominator and monic numerator. With the next shift we thus want to make
the quantity (ψk(−Tk))−1 smaller in the expression for R̂k. Therefore, we determine
for which z in the spectral region of Tk the quantity (ψk(−z))−1 is large, and add a
root there for the construction of the next function ϕk. Therefore, sk+1 is chosen as
the solution to the following problem

sk+1 = arg max
s∈∂Sk

∣ 1

ψk(s) ∣ = arg max
s∈∂Sk

RRRRRRRRRRR
∏k

j=1(s − sj)
det(sI − Tk)

RRRRRRRRRRR , (5.8)

where here Sk is a region enclosing the eigenvalues of −Tk and ∂Sk is its border. This
approach should be compared with the original algorithm that uses Tk instead. This
modified selection strategy can be implemented very easily, with a slight modification
of the original algorithm in [15]: the algorithm needs to compute the eigenvalues ofTk = Tk −BkB

∗
kYk instead of those of Tk to determine the corresponding convex hull.

It is interesting to observe that for A Hermitian, working with the non-Hermitian
matrix Tk appears to be more complex than working with the Hermitian matrix Tk.
On the other hand, the matrix Tk has a key role in the Riccati semi-residual matrix,
and it takes into account the nonlinear term in the original equation. Clearly, if the
convex hulls of Tk and Tk are similar, and the same for those of A and of A−BB∗X ,
then no major differences will be observed between the two selection strategies. In
other words, if the field of values are similar, then the projection method based only
on the linear part will be able to decrease ∥R̂k∥ with a similar convergence rate.

We next report an example illustrating the expected behavior of the rational
Krylov method with or without the inclusion of the term −BkB

∗
kYk in the computation

of the spectral region in (5.8)4.
Example 5.5. We consider a small built-up example, where A is the Toeplitz

matrix A = −toeplitz(−1,−1.5,2.8,1,1,1) of size n=700 (this small size allows us
to easily compute all quantities for this theoretical analysis). Moreover, B = t1 and
C = [1,−2,1,−2,1,−2, ...]; this example is motivated by an example with similar data
in [31]. The parameter t takes the values tj = 5 ⋅ 10−j, so that for j = 3, ∥B∥ ≈ 1.
The left plot of Figure 5.1 shows the convergence history (relative residual norm) of
the rational Krylov method for each of the three different values of t, when the shifts
are adaptively computed on the spectral region of Tk, as in (5.8). The right plot
of Figure 5.1 shows the modification of the convex hull of A∗ − XBB∗ as t varies.
For the larger values of tj, the magnitude of B significantly influences the spectral
convex hull; by using the modified shift computation strategy, the method is able to
adapt to this change and capture the new problem features. We remark that by using
spectral information of Tk instead, the method takes about 12 iterations to converge,
irrespective of the value of t. We notice that for B of rank one, the matrix XBB∗

4The Matlab ([32]) code for the rational Krylov subspace method for the Riccati equation is
available at the author’s webpage http://www.dm.unibo.it/∼simoncin/software.html.

http://www.dm.unibo.it/~simoncin/software.html
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is also rank one, with a real positive eigenvalue whose magnitude depends on B and
thus on t. For ∥B∥ large, Figure 5.1 shows that for this example only one eigenvalue
of A∗ is significantly perturbed in A∗ −XBB∗, causing the extension of the original
spectrum to the left, by an amount depending on t.
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Fig. 5.1. Example 5.5. Left: Convergence history of rational Krylov method with modified shift

selection as t varies. Right: convex hull of A∗ −XBB∗ as t varies.

Example 5.5 shows that for these data, the magnitude of B influences the residual
convergence of the modified method in a counterintuitive way: the larger its norm,
the faster the method convergence. By using the modified shift selection, the isolated
eigenvalue of A∗−XBB∗ (see Figure 5.1) is readily located, and the residual is forced
to be small in that region as well.

In the next example we explore the influence of the nonsymmetry of Tk in the
shift computation, when A is symmetric.

Example 5.6. We consider the same setting as for Example 5.5, except that
now A = A0 ⊗ In0

+ In0
⊗ A0, with A0 = toeplitz(1,−2,1) ∈ Rn0×n0 , with n0 = 30

and ⊗ the Kronecker product, giving rise to a 900 × 900 symmetric negative definite
matrix. These data represent the scaled finite difference discretization of the Laplacian
on the unit square with homogeneous boundary conditions. As t varies, we compare
the performance of the method when S ⊂ R is associated with the symmetric matrix
Tk, with the case when S ⊂ C due to the use of Tk; to emphasize this dependence
will shall use S(Tk) and S(Tk), respectively. Table 5.1 shows the space dimension
required by the two approaches to reach an absolute residual norm of 10−9. Shown are
also the absolute residual and error norms at convergence, and the norm of the exact
solution. We report that all computed shifts were real also for Tk. The table shows
that the number of iterations for the residual to converge is always smaller when S(Tk)
is used, and it decreases with the magnitude growth of the B term, as in the previous
example. We also notice that when using Tk, the final error is significantly smaller
than in the modified version of the method; apparently, the residual lags behind in
convergence, when S(Tk) is used.

Figure 5.2 displays the residual convergence history for the two approaches, as t
varies. The initial steep phase of the residual in the modified approach is granted by the
fact that the approximation space immediately locates the isolated eigenvalue, and that
the residual appears to have a large component in the corresponding eigendirection.
After that, the convergence behavior depends on the rest of the spectrum. The original
solver maintains the same convergence rate for all values of t.
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t Spectral Space ∥Rk∥F ∥X −Xk∥F ∥X∥F
Region dim.

103 S(Tk) 21 1.8500e-10 1.6646e-13 4.9999e-03
S(Tk) 3 8.5599e-10 1.4389e-10

102 S(Tk) 23 3.1915e-10 3.0155e-13 4.9994e-02
S(Tk) 7 4.9612e-10 1.0148e-10

10 S(Tk) 25 9.6706e-10 2.5302e-13 4.9938e-01
S(Tk) 9 9.0853e-10 2.2998e-10

Table 5.1
Example 5.6. Comparison of performance for A symmetric. Number of iterations for the two

variants for the relative residual norm and final accuracies to go below 10−9.
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Fig. 5.2. Example 5.6. Convergence history of rational Krylov method with and without modi-

fied shift selection as t varies. Solid curves: use of Tk. Dashed curves: use of Tk.

By generalizing field of values results in [13],[4] it may be possible to exploit the
semi-residual form to analyze the convergence of the method, and its dependence onTk. A shortcoming in the analysis is that the field of values of the non-Hermitian
matrix Tk depends on k, and that its relation with the field of values of A∗−XBB∗ is
not easy to formalize, especially at an early stage of the convergence history. Resorting
to the residual expression in (5.4), it is possible to exploit some of the results available
in the literature for the Lyapunov equation. For instance, if the field of values of
A∗−XBB∗ and of A∗−XkBB

∗ is contained in a disk of center c > 0 and radius equal
to one for all k, then using [13, Theorem 4.11] we can state that the error satisfies

limk→∞∥X −Xk∥ 1

k ≤
2c2 + c − 1 − (2c + 1)√c2 − 1

c + 1 +√c2 − 1 =∶ γ.

The following example shows that this asymptotic bound can be descriptive of the
actual behavior.

Example 5.7. We consider A = −1/(3.2)A0 − I where A0 is the Grcar matrix,
A0 = toeplitz(−1,1,1,1,1) ∈ Rn×n, n = 1600, C = 1/∥1∥ and B ∈ Rn×p, p = 20 with
normally distributed random numbers, normalized so that its norm is about 5 ⋅ 10−2.
The left plot of Figure 5.3 shows the computed spectrum of A (‘×’ symbol), that of
A∗−XBB∗ (‘○’ symbol), the border of the field of values of both A and A∗−XBB∗ (thin
line), and the circle of center c = 1.25 and radius one, enclosing the field of values.
The right plot of Figure 5.3 displays the error norm history of the modified method
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(dashed line), and 10−2γk, The convergence rate is well captured by the theoretical
estimate γ at the early stage of the iterations.
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Fig. 5.3. Example 5.7. Left: Field of values and eigenvalue location. Right: Error norm

convergence history and estimate γk.

6. Approximation of an invariant subspace. In this section we discuss the
natural, albeit gone almost unnoticed, role of the approximation matrix Xk in the
eigenvalue context. The problem of solving the large scale algebraic Riccati equation
for X ≥ 0 can be transformed into the problem of computing an approximate basis
for the stable invariant subspace of the following Hamiltonian matrix (see, e.g., [29])

H = [ A −BB∗
−C∗C −A∗ ] . (6.1)

Several different approaches have been devised to this end, see, e.g., [1],[7],[31] and
references therein. Here we show that the projection process described in the previous
sections can be equivalently applied to this context, providing further motivation for
the method.

Let Xk be the approximate solution to (1.1) obtained by the rational Krylov
subspace method. For some L ∈ Rn×n consider the eigenvalue residual

Sk = [ A −BB∗
−C∗C −A∗ ] [ IXk

] − [ I
Xk
]L.

For L = A−B∗BXk, the invariant space residual Sk and the matrix equation residual
Rk can be easily related, since

Sk = [ A −BB∗
−C∗C −A∗ ] [ IXk

] − [ I
Xk
] (A −B∗BXk) = [ 0Rk

] ,
so that ∥Sk∥ = ∥Rk∥. As a consequence of Proposition 5.1 the following result holds.

Proposition 6.1. The columns of the matrix [I;Xk] span an invariant subspace
of the matrix

Hk = [A − fkv̂∗k+1 −BB∗
−C∗C −(A − fkv̂∗k+1)∗] ,

and the spectrum of T ∗k −YkBkB
∗
k is a subset of the spectrum of A∗−XkBB

∗−v̂k+1f∗k .
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Proof. Writing the eigenresidual

Sk = [A − fkv̂∗k+1 −BB∗
−C∗C −(A − fkv̂∗k+1)∗][

I

Xk
] − [ I

Xk
](A − fkv̂∗k+1 −B∗BXk)

and using Proposition 5.1 we readily see that Sk = 0.

To prove the second assertion, we use the Arnoldi relation in (5.1). Let (θ, z) be
an eigenpair of T ∗ − YkBkB

∗
k . Then

(A∗ − v̂k+1f∗k −XkBB
∗)Vkz = (A∗Vk − v̂k+1f∗kVk −XkBB

∗Vk)z
= (VkT ∗k + v̂k+1g∗k − v̂k+1f∗kVk −XkBB

∗Vk)z
= (VkT ∗k −XkBB

∗Vk)z = Vk(T ∗k − YkBkB
∗
k)z = Vkzθ,

and the result follows.

The result above states that the approximate Riccati solution is associated with
an invariant subspace of a modification of the original matrix in (6.1), and that the
spectrum of T ∗k −YkBkB

∗
k is a portion of the spectrum of this modified problem. These

properties are a consequence of the Arnoldi relation (5.1), which indeed states that Vk
is an invariant subspace basis of a modification of A∗, namely of A∗ − v̂k+1f∗k . What
is noticeable in our context is that we can relate the spectral region over which we
seek the next shift in (5.8) with the spectral region of a relevant matrix back in R

n.

The approximation process leading to the computation of Yk can be interpreted
as a Galerkin method for the eigenvalue problem associated with H. Consider the
space

Vk = range([Vk 0
0 Vk

]) =∶ range(Vk).
Then by projecting H onto the space we obtain,

V∗kHVk = [ V ∗k AVk −V ∗k BB∗Vk−V ∗C∗CVk −V ∗k A∗Vk ] = [
Tk −BkB

∗
k−C∗kCk −T ∗k ] .

The block matrix on the right-hand side is the Hamiltonian matrix associated with
the reduced system. Using the reduced Riccati equation, it holds that

[ Tk −BkB
∗
k−C∗kCk −T ∗k ] [

I

Yk
] = [ I

Yk
](Tk −BkB

∗
kYk),

with Yk stabilizing. In terms of original space dimensions, let Vk[I;Yk] = [Vk;VkYk]
be the computed approximate eigenbasis. Then the residual is given by

Sk = [ A −BB∗
−C∗C −A∗ ][ VkVkYk

] − [ Vk
VkYk

] (Tk −BkB
∗
kYk).

It readily follows that the eigenresidual is orthogonal to the generated space, that is
it holds that (Vk)∗Sk = 0, therefore it satisfies a standard Galerkin condition. As
a consequence, for Tk − BkB

∗
kYk stable, Vk[I;Yk] approximates a basis of a stable

invariant subspace of the matrix H in the sense of Galerkin projection methods.
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7. Conclusions. By looking at the problem from different but highly related
perspectives, we have shown that projection methods are a natural device for solving
the algebraic Riccati equation. In particular, the reduced equation solves a reduced
linear-quadratic optimization problem, as is typical of model order reduction tech-
niques. By using classical arguments, we have related the residual with the error
of the current approximation. Moreover, we have derived a new expression for the
residual in terms of rational functions; this expression allows us to justify recent algo-
rithmic strategies for the choice of the shift parameters used in the construction of the
approximation space. In addition, this expression highlights the role of the quadratic
term, and explains why it often happens that good convergence occurs even without
taking the quadratic term into account during the construction of the approximation
space. The new relations for the residual in terms of rational functions can be the
starting point for a convergence analysis of the method. We notice that while we have
focussed on generic rational Krylov subspaces in section 5, many of the stated results
hold for other choices of approximation spaces, and in particular for polynomial and
extended Krylov subspaces.

Finally, we have shown that the computed quantities correspond to a Galerkin
approximation of the eigenvalue problem associated with the Hamiltonian matrix of
the dynamical system.

Acknowledgements. We would like to thank Dario Bini and Daniel Szyld for
insightful comments. This research is supported in part by the FARB12SIMO grant
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[22] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and opti-

mal pole selection, GAMM Mitteilungen, 36 (2013), pp. 8–31.
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