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Abstract

Roberston and Seymour introduced tangles of order k as objects representing highly connected

parts of a graph and showed that every graph admits a tree-decomposition of adhesion <k in which

each tangle of order k is contained in a different part. Recently, Carmesin, Diestel, Hamann and Hun-

dertmark showed that such a tree-decomposition can be constructed in a canonical way, which makes

it invariant under automorphisms of the graph. These canonical tree-decompositions necessarily have

parts which contain no tangle of order k, which we call inessential. Diestel asked what could be said

about the structure of the inessential parts. In this paper we show that the torsos of the inessential

parts in these tree-decompositions have branch-width <k, allowing us to further refine the canonical

tree-decompositions, and also show that a similar result holds for k-blocks. We also use our methods

to further refine the essential parts in such a tree-decomposition in a similar fashion.

1 Introduction

A classical notion in graph theory is that of the block-cut vertex tree of a graph. It tells us that if we
consider the maximal 2-connected components of a connected graph G then they are arranged in a ‘tree-
like’ manner, separated by the cut vertices of G. A result of Tutte’s [11] says that we can decompose any
2-connected graph in a similar way. Broadly, it says that every 2-connected graph can be decomposed
in a ‘tree-like’ manner, so that the parts are separated by vertex sets of size at most 2, and every part,
together with the edges in the separators adjacent to it, is either 3-connected or a cycle. We call the
union of a part and the edges in the separators adjacent to it the torso of the part. In contrast to the first
example not every part, or even torso, of this decomposition is 3-connected, and indeed it is easy to show
that not every 2-connected graph can be decomposed in this way such that every torso is 3-connected.

It has long been an open problem how best to extend these results for general k, the aim being to
decompose a (k − 1)-connected graph into its ‘k-connected components’, where the precise meaning of
what these ‘k-connected components’ should be considered to be has varied. Tutte’s example shows us
that there may be parts of this decomposition which are not highly connected, but rather play a structural
role in the graph of linking the highly connected parts together, and further that the highly connected
parts of the decomposition may not correspond exactly to k-connected subgraphs.

Whereas initially these ‘k-connected components’ were considered as concrete structures in the graph
itself, Robertson and Seymour [9] radically re-interpreted them as tangles of order k, which for brevity
we will refer to as k-tangles1. Instead of being defined in terms of the edges and vertices of a graph, these
objects were defined in terms of structures on the set of low-order separations of a graph.

Robertson and Seymour showed that, given any set of distinct k-tangles T1, T2, . . . , Tn in a graph
G, there is a tree-decomposition (T,V) of G with precisely n parts in which the orientations induced
by the tangles Ti on E(T ) each have distinct sinks, where we say the tangle is contained in this sink.
We say that such a tree-decomposition distinguishes the tangles T1, T2, . . . , Tn. They showed further
that these tree-decompositions can be chosen so that the separators between the parts are in some way
minimal with respect to the tangles considered. We say that such a tree-decomposition distinguishes the
k-tangles efficiently. If we call the largest size of a separator in a tree-decomposition the adhesion of the
tree-decomposition, then in particular their result implies the following:

1Precise definitions of many of the terms in the introduction will be postponed until Section 2, where all the necessary
background material will be introduced.
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Theorem 1 (Robertson and Seymour [9]). For every graph G and k ≥ 2 there exists a tree-decomposition
(T,V) of G of adhesion <k which distinguishes the set of k-tangles in G efficiently.

More recently Carmesin, Diestel, Hamann and Hundertmark [1] described a family of algorithms
that can be used to build tree-decompositions which distinguish the set of k-tangles in a graph and are
canonical, that is, they are invariant under every automorphism of the graph.

Just as in Tutte’s theorem, where there were parts of the tree-decomposition whose torsos were not
3-connected, it is easy to show that the tree-decompositions formed in [1] must contain parts which do
not contain any k-tangle. Since the general motivation for these tree-decompositions is to decompose
the graph into its ‘k-connected components’ in a way that displays the global structure of the graph, it
is natural to ask further questions about the structure of these tree-decompositions. In [2] Carmesin et
al. analysed the structure of the trees that the various algorithms given in [1] produced. One particular
question that was asked is what can be said about the structure of the parts which do not contain a
k-tangle. We will call the parts of a tree-decomposition that contain a k-tangle essential, and those that
do not inessential.

For example, if the whole graph contains no k-tangle, then these canonical tree-decompositions tell us
nothing about the graph, as they consist of just one inessential part. However there are theorems which
describe the structure of a graph which contains no k-tangle. In the same paper where they introduced
the concept of tangles, Roberston and Seymour [9] showed that a graph which contains no k-tangle has
branch-width < k, and in fact that the converse is also true, a graph with branch-width ≥ k contains
a k-tangle. Having branch-width < k can be rephrased in terms of the existence of a certain type of
tree-decomposition (See e.g. [8]). A nice property of these tree-decompositions is that each of the parts
is in some sense ‘too small’ to contain a k-tangle. In this way these tree-decompositions witness that
a graph has no k-tangle by splitting the graph into a number of parts, each of which cannot contain a
k-tangle and similarly a k-tangle witnesses that a graph does not have such a tree-decomposition.

A natural question to then ask is, do the inessential parts in the tree-decompositions from [1] admit
tree-decompositions of the same form, into parts which are too small to contain a k-tangle? If so we
might hope to refine these canonical tree-decompositions by decomposing further the inessential parts.
By combining these decompositions we would get an overall tree-decomposition of G consisting of some
essential parts, each containing a k-tangle in G, and some inessential parts, each of which is ‘small’ enough
to witness the fact that no k-tangle is contained in that part.

We first note that we cannot hope for these refinements to also be canonical. For example consider
a graph formed by taking a large cycle C and adjoining to each edge a large complete graph Kn. Then
a canonical tree-decomposition which distinguishes the 3-tangles in this graph will contain the cycle C
as an inessential part. However there is no canonical tree-decomposition of C with branch-width < 3.
Indeed, if such a tree-decomposition contained any of the 2-separations of C as an adhesion set then,
since all the rotations of C lie in the automorphism group of G, every rotation of this separation must
appear as an adhesion set. However these separations cannot all appear as the adhesion sets in any
tree-decomposition, as every pair of vertices in a 2-separation of C are themselves separated by some
rotation of that separation.

If we drop the restriction that the refinement be canonical then, at first glance, it might seem like there
should clearly be such a refinement. If there is no k-tangle contained in a part Vt in a tree-decomposition,
(T,V), then by the theorem of Robertson and Seymour there should be a tree-decomposition of that
part with branch-width <k. However there is a problem with this naive approach, in that we have no
guarantee that we can insert the tree-decomposition of this part into the existing tree-decomposition.
In particular it could be the case that this tree-decomposition splits up the separators of the part Vt

in (T,V). One way to avoid this problem is to instead consider the torso of the part Vt. If we have a
tree-decomposition of the torso we can insert it into the original tree-decomposition, but it is not clear
that adding these extra edges can not increase the branch-width of the part. In fact it is easy to find
examples where choosing a bad canonical tree-decomposition to distinguish the set of k-tangles in a graph
results in inessential parts whose torsos have branch-width ≥ k.

For example consider the following graph: We start with the union of three large complete graphs,
KN1

, KN2
and KN3

, for N1, N2, N3 >> k. We pick a set of (k − 1)/2 vertices from each graph, which
we denote by X1, X2 and X3 respectively, and join each of these sets completely to a new vertex x. It
is a simple check that there are three k-tangles in this graph, corresponding to the three large complete
subgraphs. However, consider the following tree-decomposition of the graph into four parts KN1

∪ X2,
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KN2
∪ X3, KN3

∪ X1 and X1 ∪ X2 ∪ X3 ∪ {x}. This is a tree-decomposition which distinguishes the
k-tangles in the graph, and the part X1 ∪X2 ∪X3 ∪ {x} is inessential. However the torso of this middle
part is a complete graph of order 3(k − 1)/2 + 1, which can be seen to have branch-width ≥ k.

Figure 1: A graph with a bad tangle-distinguishing tree-decomposition.

We will show that, for the canonical tree-decompositions of Carmesin et al, the torsos of the inessential
parts all have branch-width <k and so it is possible to decompose the torsos of the inessential parts in
this way.

Theorem 2. For every graph G and k ≥ 3 there exists a canonical tree-decompositon (T,V) of G of
adhesion <k such that

• (T,V) distinguishes the set of k-tangles in G efficiently;

• The torso of every inessential part has branch-width <k.

More recently another potential candidate for these ‘k-connected components’ has been considered in
the literature, called k-blocks. We say that a set of at least k vertices in a graph is (<k)-inseparable if no
set of <k vertices can separate any two of the vertices. A k-block is a maximal (<k)-inseparable set of
vertices. These k-blocks differ from subgraphs which are k-connected in the classical sense in that their
connectivity is measured in the ambient graph rather than the subgraph itself. For example if we take a
large independent set, I, and join each pair of vertices in I by k vertex disjoint paths, then I is a k-block,
even though as a subgraph it is independent. Carmesin, Diestel, Hundertmark and Stein [3] showed that,
for any graph G, there is a canonical tree-decomposition which distinguishes the set of k-blocks. The work
of Carmesin et al [1] extended the results of [3] to more general types of highly connected substructures
in graphs, and these results have been extended further by Diestel, Hundertmark and Lemanczyk [5] to
more general combinatorial structures, such as matroids.

As before, these tree-decompositions will have some parts which are essential, that is they contain
a k-block, and some parts which are inessential, and it is natural to ask about the structure of these
parts. Recently, Diestel, Eberenz and Erde [4] proved a duality theorem for k-blocks, analogous to the
tangle/branch-width duality of Robertson and Seymour. The result implies that a graph contains a
k-block if and only if it does not admit a tree-decomposition of block-width <k, where as before, every
part in a tree-decomposition of block-width <k is in some sense ‘too small’ to contain a k-block. We also
show a corresponding result for blocks.

Theorem 3. For every graph G and k ≥ 3 there exists a canonical tree-decompositon (T,V) of G of
adhesion <k such that

• (T,V) distinguishes the set of k-blocks in G efficiently;

• The torso of every inessential part has block-width <k.
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The main result in this paper, of which Theorems 2 and 3 are corollaries, is a lemma that gives
sufficient conditions on the separators of an inessential part in a distinguishing tree-decomposition for
the torso to have small width. These conditions seem quite natural and reasonable, in particular they
are satisfied by every part of the canonical tangle/block-distinguishing tree-decompositions constructed
by Carmesin et al.

In some sense the canonical tangle-distinguishing tree-decompositions tell us most about the structure
of the graph when the essential parts correspond closely to the tangles inside them. For example consider
the following two graphs, firstly two KNs overlapping in k−1 vertices and secondly two K3k/2s each with
a long path attached, of length N ′ = N − 3k/2, overlapping in a similar way, see Figure 2.

Figure 2: Two graphs with the same canonical k-tangle-distinguishing tree-decomposition.

Since the tangle-distinguishing tree-decompositions of Carmesin et al. only use essential separa-
tions, that is separations which distinguish some pair of k-tangles, they will construct the same tree-
decomposition for both of these graphs, with just two parts of size N . However in the second example a
more sensible tree-decomposition would further split up the long paths. This could be done in a way to
maintain the property that the inessential parts have small branch-width, and by separating these inessen-
tial parts from the essential part we have more precisely exhibited the structure of the graph. We will
also apply our methods to the problem of further refining the essential parts of these tree-decompositions.

In Section 2 we introduce the background material necessary for our proof and in Section 3 we prove
our central lemma and deduce the main results in the paper. In Section 4 we discuss how our methods
can also be used to further refine the essential parts of a tree-decomposition.

2 Background material

2.1 Separation systems and tree-decompositions

A separation of a graph G is a set {A,B} of subsets of V (G) such that A∪B = V and there is no edge of
G between A \B and B \A. There are two oriented separations associated with a separation, (A,B) and
(B,A). Informally we think of (A,B) as pointing towards B and away from A. We can define a partial
ordering on the set of oriented separations of G by

(A,B) ≤ (C,D) if and only if A ⊆ C and B ⊇ D.

The inverse of an oriented separation (A,B) is the separation (B,A), and we note that mapping every
oriented separation to its inverse is an involution which reverses the partial ordering.

In [7] Diestel and Oum generalised these properties of separations of graphs and worked in a more

abstract setting. They defined a separation system (
−→
S ,≤, ∗) to be a partially ordered set

−→
S with an

order reversing involution, ∗. The elements of
−→
S are called oriented separations. Often a given element

of
−→
S is denoted by −→s , in which case its inverse −→s ∗ will be denoted by ←−s , and vice versa. Since ∗ is

ordering reversing we have that, for all −→r ,−→s ∈ S,

−→r ≤ −→s if and only if ←−r ≥ ←−s .

A separation is a set of the form {−→s ,←−s }, and will be denoted by simply s. The two elements −→s and
←−s are the orientations of s. The set of all such pairs {−→s ,←−s } ⊆

−→
S will be denoted by S. If −→s = ←−s
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we say s is degenerate. Conversely, given a set S′ ⊆ S of separations we write
−→
S′ :=

⋃
S′ for the set

of all orientations of its elements. With the ordering and involution induced from
−→
S , this will form a

separation system. When we refer to a oriented separation in a context where the notation explicitly
indicates orientation, such as −→s or (A,B), we will usually suppress the prefix “oriented” to improve the
flow of the paper.

Given a separation of a graph {A,B} we can identify it with the pair {(A,B), (B,A)} and in this way
any set of separations in a graph which is closed under taking inverses forms a separation system. We
will work within the framework developed in [7] since we will need to use directly some results proved
in this abstract setting, but also because our results are most easily expressible in this framework. An
effort has been made to state the results in the widest generality, so as to be applicable in the broadest
sense, however we will always have in mind the motivating example of separation systems which arise as
sets of separations in a graph, and so a reader will not lose too much by thinking about these separation
systems solely in those terms.

The separator of a separation −→s = (A,B) in a graph is the intersection A ∩ B and the order of
a separation, |−→s | = ord(A,B), is the cardinality of the separator |A ∩ B|. Note that if −→r = (A,B)
and −→s = (C,D) are separations then so are the corner separations −→r ∨ −→s := (A ∪ C,B ∩ D) and
−→r ∧ −→s := (A ∩ C, ,B ∪D) and the orders of these separations satisfy the equality

|−→r ∨ −→s |+ |−→r ∧ −→s | = |−→r |+ |−→s |.

Hence the order function is a submodular function on the set of separations of a graph, and we note also
that it is clearly symmetric.

Figure 3: Two separations (A,B) and (C,D) with the corner separation (A ∪C,B ∩D) marked.

For abstract separations systems, if there exists binary operations ∨ and ∧ on
−→
S such that −→r ∨−→s is

the supremum and −→r ∧−→s is the infimum of −→r and −→s then we call (
−→
S ,≤, ∗,∨,∧) a universe of (oriented)

separations, and we call any real, non-negative, symmetric and submodular function on a universe an
order function.

Two separations r and s are nested if they have ≤-comparable orientations. Two oriented separations
−→r and −→s are nested if r and s are nested 2. If −→r and −→s are not nested we say that the two separations
cross. A set of separations S is nested if every pair of separations in S is nested, and a separation s is
nested with a set of separations S if S ∪ {s} is nested.

A separation −→r ∈
−→
S is trivial in

−→
S , and ←−r is co-trivial, if there exist an s ∈ S such that −→r < −→s and

−→r <←−s . Note that if −→r is trivial, witnessed by some s, then, since the involution is order reversing, we
have that −→r < −→s < ←−r . So, in particular, ←−r cannot also be trivial. Separations −→s such that −→s ≤ ←−s ,
trivial or not, will be called small and their inverses co-small.

In the case of separations of a graph, it is a simple check that the small separations are precisely those
of the form (A, V ). Furthermore the trivial separations can be characterised as those of the form (A, V )

2In general we will use terms defined for separations informally for oriented separations when the meaning is clear, and
vice versa
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such that A ⊆ C ∩D for some separation (C,D) such that {C,D} 6= {A,B}. Finally we note that there
is only one degenerate separation in a graph, (V, V ).

A tree-decomposition of a graph G is a pair (T,V) consisting of a tree T and family V = (Vt)t∈T of
vertex sets Vt ⊆ V (G), one for each vertex t ∈ T such that:

• V (G) =
⋃

t∈T Vt;

• for every edge e ∈ G there exists some t ∈ T such that e ∈ G[Vt];

• Vt1 ∩ Vt2 ⊆ Vt3 whenever t3 lies on the t1 − t2 path in T .

The sets Vt in a tree-decomposition are its parts and the sets Vt ∩ Vt′ such that (t, t′) is an edge of T
are the adhesion sets. The torso of a part Vt is the union of that part together with the completion of
the adhesion sets adjacent to that part, that is

Vt = G|Vt
∪

⋃

(t,t′)∈T

KVt∩Vt′
.

The width of a tree-decomposition is max{|Vt|−1 : such that t ∈ T }, and the adhesion is the size of the

largest adhesion set. Deleting an oriented edge e = (t1, t2) ∈
−→
E (T ) divides T − e into two components

T1 ∋ t1 and T2 ∋ t2. Then (
⋃

t∈T1
Vt,

⋃
t∈T2

Vt) can be seen to be a separation of G with separator
Vt1 ∩ Vt2 . We say that the edge e induces this separation. Given a tree-decomposition (T,V) it is easy to
check that the set of separations induced by the edges of T form a nested separation system. Conversely
it was shown in [3] that every nested separation system is induced by some tree-decomposition, and so
in a sense these two concepts can be thought of as equivalent.

We say that a nested set of separations N ′ refines a nested set of separations N if N ′ ⊇ N , and
similarly a tree-decomposition (T ′,V ′) refines a tree-decomposition (T,V) if the set of separations induced
by the edges of T ′ refines the corresponding set of separations for T .

2.2 Duality of tree-decompositions

There are a number of theorems that assert a duality between certain structurally ‘large’ objects in a
graph and an overall tree structure. For example a graph has small tree-width if and only if it contains
no large order bramble [10]. In [7] a general theory of duality, in terms of separation systems, was
developed which implied many of the existing theorems. Following on from the notion of tangles in graph
minor theory [9] these large objects were described as orientations of separations systems avoiding certain
forbidden subsets.

An orientation of a set of separations S is a subset O ⊆
−→
S which for each s ∈ S contains exactly one

of its orientations −→s or ←−s . A partial orientation of S is an orientation of some subset of S, and we say
that an orientation O extends a partial orientation P if P ⊆ O.

In our context we will think of an orientation O on some set of graph separations as choosing a side
of each separation s = {A,B} to designate as large. For example given a graph G and the set S of all
separations of the graph G, we denote by

−→
Sk = {−→s ∈

−→
S : |−→s | < k},

the set of all orientations of order less than k. If there is a large clique (of size ≥ k) in G then for
every s = {A,B} ∈ Sk we have that the clique is contained entirely in A or B. So this clique defines
an orientation of Sk by picking, for each {A,B} ∈ Sk the orientated separation such that the clique is
contained in second set in the pair.

We call an orientation O of a set of separations S consistent if whenever we have distinct r and s
such that −→r < −→s , O does not contain both ←−r and −→s . Note that a consistent orientation must contain
all trivial separations −→r , since if −→r < −→s and −→r <←−s then, whichever orientation of s is contained in O
would be inconsistent with ←−r .

Given a set of subsets F ⊆ 2
−→
S we say that an orientation O is F-avoiding if there is no F ∈ F such

that F ⊆ O. So for example an orientation is consistent if it avoids F = {{←−r ,−→s } : r 6= s,−→r < −→s }.
In general we will define the ‘large’ objects we consider by the collection F of subsets they avoid. For
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example a k-tangle in a graph G can easily be seen to be equivalent to an orientation of Sk which avoids
the set of triples

Tk = {{(A1, B1), (A2, B2), (A3, B3)} ⊆
−→
Sk :

3⋃

i=1

G[Ai] = G}.

(Where the three separations need not be distinct). That is, a tangle is an orientation such that no three
small sides cover the entire graph, it is a simple check that any such orientation must in fact also be
consistent. We say that a consistent orientation which avoids a set F is an F-tangle.

Given a set F ⊆ 2
−→
S , an S-tree over F is a pair (T, α), of a tree T with at least one edge and a

function α :
−→
E (T )→

−→
S from the set

−→
E (T ) := {(x, y) : {x, y} ∈ E(T )}

of orientations of it’s edges to
−→
S such that:

• For each edge (t1, t2) ∈
−→
E (T ), if α(t1, t2) =

−→s then α(t2, t1) =
←−s ;

• For each vertex t ∈ T , the set {α(t′, t) : (t′, t) ∈
−→
E (T )} is in F ;

For any leaf vertex w ∈ T which is adjacent to some vertex u ∈ T we call the separation −→s = α(w, u)
a leaf separation of (T, α). A particularly interesting class of such trees is when the set F is chosen to
consist of stars. A set of non-degenerate oriented separations σ is called a star if −→r ≤ ←−s for all distinct
−→r ,−→s ∈ σ. In what follows, if we refer to an S-tree without reference to a specific family F of stars, it

can be assumed to be over the set of all stars in 2
−→
S . We say that an S-tree over F is irredundant if there

is no t ∈ T with two neighbours, t′ and t′′ such that α(t, t′) = α(t, t′′). If (T, α) is an irredundant S-tree

over a set of stars F , then it is easy to verify that the map α preserves the natural ordering on
−→
E (T ),

defined by letting (s, t) ≤ (u, v) if the unique path in T between those edges starts at s and ends at v
(see [[7], Lemma 2.2]).

Given an irredundant S-tree (T, α) over a set of stars and an orientation O of S, O induces an
orientation of the edges of T , which will necessarily contain a sink vertex. If the orientationO is consistent
then this sink vertex, which we will denote by t, will be unique. We say that O is contained in t. If
S = Sk for some graph G, we have that (T, α) defines some tree-decomposition (T,V) of G, and we say
that O is contained in the part Vt. So, each F -tangle of S must live in some vertex of every such S-tree,
and by definition this vertex give rise to a star of separations in F . In this way, each of the vertices in
an S-tree over F (and each of the parts in the corresponding tree-decomposition when one exists) is ‘too
small’ to contain an F -tangle.

Suppose we have a separation −→r which is neither trivial nor degenerate. In applications −→r will be a
leaf separation in some irredundant S-tree over a set F of stars. Given some −→s ≥ −→r , it will be useful to
have a procedure to ‘shift’ the S-tree (T, α) in which −→r is a leaf separation to a new S-tree (T, α′) such
that −→s is a leaf separation. Let S≥−→r be the set of separations x ∈ S that have an orientation −→x ≥ −→r .
Since −→r is a leaf separation in an irredundant S-tree over a set of stars we have by the previous comments

that the image of α is contained in
−→
S ≥−→r .

Given x ∈ S≥−→r \ {r} we have, since −→r is non-trivial, that only one of the two orientations of x, say
−→x is such that −→x ≥ −→r . So, we can define a function f ↓

−→r
−→s

on
−→
S ≥−→r \ {

←−r } by3

f ↓
−→r
−→s (−→x ) := −→x ∨ −→s and f ↓

−→r
−→s (←−x ) := (−→x ∨ −→s )∗.

Given an S-tree (T, α) and −→s ≥ −→r as above let α′ := f ↓
−→r
−→s
◦α. The shift of (T, α) onto −→s is the

S-tree (T, α′).

We say that −→s emulates −→r in
−→
S if −→r ≤ −→s and for every

−→
t ∈
−→
S ≥−→r \ {

←−r }, −→s ∨
−→
t ∈
−→
S . Given a

particular set of stars F ⊆ 2
−→
S we say further that −→s emulates −→r in

−→
S for F if −→s emulates −→r in

−→
S

and for any star σ ⊂
−→
S ≥−→r \ {

←−r } in F that contains an element
−→
t ≥ −→r we also have f ↓

−→r
−→s

(σ) ∈ F .
The usefulness of this property is exhibited by the following lemma, which is key both in the proof of
Theorem 5 from [7], and will be essential for the proof of our central lemma.

3The exclusion of ←−r here is for a technical reason, since it could be the case that −→r < ←−r , however we want to insist
that f ↓

−→
r

−→
s

(←−r ) is the inverse of f ↓
−→
r

−→
s

(−→r )
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Figure 4: Shifting a separation −→x ≥ −→r under f ↓
−→r
−→s
.

Lemma 4. [[7], Lemma 4.2] Let (
−→
S ,≤,∗ ) be a separation system, F ⊆ 2

−→
S a set of stars, and let (T, α)

be an irredundant S-tree over F . Let −→r be a nontrivial and nondegenerate separation which is a leaf

separation of (T, α), and is not the image of any other edge in T , and let −→s emulate −→r in
−→
S . Then the

shift of (T, α) onto −→s is an S-tree over F ∪ {{←−s }} in which −→s is a leaf separation, associated with a
unique leaf.

It is shown in [[7], Lemma 2.4] that if we have an S-tree over F , (T, α), and a set of non-trivial and
non-degenerate leaf separations, −→r i, of (T, α) then there also exists an irredundant S-tree over F , (T ′, α′),
such that each −→r i is a leaf separation of (T ′, α) and is not the image of any other edge in T ′.

We say a set F ⊆ 2
−→
S forces a separation −→r if {←−r } ∈ F or r is degenerate. Note that the non-

degenerate forced separations in F are precisely those separations which can appear as leaf separations

in an S-tree over F . We say F is standard if it forces every trivial separation in
−→
S .

We say that a separation system
−→
S is separable if for any two non-trivial and non-degenerate separa-

tions −→r ,←−r ′ ∈
−→
S such that −→r ≤ −→r ′ there exists a separation s ∈ S such that −→s emulates −→r in

−→
S and

←−s emulates←−r ′ in
−→
S . We say that

−→
S is F-separable if for all non-trivial and non-degenerate −→r ,←−r ′ ∈

−→
S

that are not forced by F such that −→r ≤ −→r ′ there exists a separation s ∈ S such that −→s emulates −→r in
−→
S for F and ←−s emulates ←−r ′ in

−→
S for F . Often one proves that

−→
S is F -separable in two steps, first by

showing it is separable, and then by showing that F is closed under shifting: that whenever −→s emulates

some −→r in
−→
S , it also emulates that −→r in

−→
S for F .

We are now in a position to state the Strong Duality Theorem from [7].

Theorem 5. [[7], Theorem 4.3] Let (
−→
U ,≤, ∗,∨,∧) be a universe of separations containing a separation

system (
−→
S ,≤, ∗). Let F ⊆ 2

−→
S be a standard set of stars. If

−→
S is F-separable, exactly one of the following

assertions holds:

• There exists an S-tree over F .

• There exists an F-tangle of S.

The property of being F -separable may seem a rather strong condition to hold, however in [8] it is
shown that for all the sets F describing classical ‘large’ objects (such as tangles or brambles) the separation

systems
−→
Sk are F -separable. More specifically, by definition a k-tangle is a consistent orientation which

avoids the set Tk as defined earlier. In fact it is shown in [8] that a consistent orientation avoids Tk if
and only if it avoids the set of stars in Tk

T ∗
k = {{(Ai, Bi)}

3
1 : {(Ai, Bi)}

3
1 ⊆ Sk is a star and

⋃

i

G[Ai] = G}.

Note that T ∗
k is standard. Indeed it forces all the small separations (A, V ), and so it forces the trivial

separations. It can also be checked that
−→
Sk is T ∗

k -separable.
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The dual structure to a k-tangle is therefore an Sk-tree over T ∗
k . It is shown in [8] that the existence

of such an Sk-tree is equivalent to the existence of a branch-decomposition of width <k for all k ≥ 3. We
note that the condition that k ≥ 3 is due to a quirk in how branch-width is traditionally defined, which
results in, for example, stars having branch-width 1 but all other trees having branch-width 2, whilst
both contain 2-tangles.

If a tree-decomposition (T,V) of a graph G is such that the set of separations induced by the edges of
T is an Sk-tree over T ∗

k for some k, then there is some smallest such k′, and we say the branch-width of
the tree-decomposition is k′− 1. If no such k exists then we will let the branch-width be infinite. By the
preceding discussion we have that the branch-width (in the traditional sense) of a graph is the smallest k
such that G has a tree-decomposition of branch-width k (except when the branch-width of G is 1), and
so this should not cause too much confusion.

2.3 Canonical tree-Decompositions distinguishing tangles

Given two orientations O1 and O2 of a set of separations S we say that a separation s distinguishes O1

and O2 if −→s ∈ O1 and←−s ∈ O2. As in the previous section, every tree-decomposition, (T,V), corresponds
to some nested set of separations, N . We say that a tree-decomposition distinguishes O1 and O2 if
there is some separation in N which distinguishes O1 and O2. If O1 and O2 are consistent, then the
tree-decomposition will distinguish them if and only if they are contained in different parts of the tree.

As in Section 2.2 a k-block b can be viewed as an orientation of Sk. Indeed given any separation
(A,B) with ord(A,B) < k, since b is (<k)-inseparable, b ⊆ A or b ⊆ B, so we can think of b as orienting
each s ∈ Sk towards the side of the separations that b lies in. In [3] Carmesin, Diestel, Hundertmark
and Stein showed how to algorithmically construct a nested set of separations in a graph G (and so a
tree-decomposition) in a canonical way, that is, invariant with respect to the automorphism group of G,
which distinguishes all of its k-blocks, for a given k.

These ideas were extended in [1] to construct canonical tree-decompositions which distinguish all the
k-profiles in a graph, a common generalization of k-tangles and k-blocks. A k-profile can be defined as a
Pk-tangle of Sk, where

Pk = {σ = {(A,B), (C,D), (B ∩D,A ∪C)} : σ ⊆
−→
Sk}.

More generally, given a universe of separations (
−→
U ,≤, ∗,∨,∧) with an order function containing a

separation system (
−→
S ,≤, ∗), we can define as before an S-profile to be a PS-tangle of S where

PS = {σ = {−→r ,−→s ,←−r ∧←−s } : σ ⊆
−→
S }.

Given two distinct S-profiles P1 and P2 there is some s ∈ S which distinguishes them. Furthermore,
there is some minimal l such that there is a separation of order l which distinguishes P1 and P2, and we
define κ(P1, P2) := l. We say that a separation s distinguishes P1 and P2 efficiently if s distinguishes
P1 and P2 and |s| = κ(P1, P2). Given a set of profiles φ we say that a separation s is φ-essential if it
efficiently distinguishes some pair of profiles in φ. We will often consider in particular, as in the case of
graphs, the separation system arising from those separations in a universe of order <k, that is we define

−→
Sk = {−→u ∈

−→
U : |−→u | < k},

where in general it should be clear from the context which universe Sk lives in.
In [1] a number of different algorithms, which they call k-strategies, are described for constructing a

nested set of separations distinguishing a set of profiles. These algorithms build the set of separations
in a series of steps, and at each step there is a number of options for how to pick the next set of
separations. A k-strategy is then a description of which choice to make at each step. The authors
showed that, regardless of which choices are made at each step, this algorithm will produce a nested set
of separations distinguishing all the profiles in G. We say a set of profiles is canonical if it is fixed under
every automorphism of G. In particular the following is shown.

Theorem 6. [[1] Theorem 4.4] Every k-strategy Σ determines for every canonical set φ of k-profiles of
a graph G a canonical nested set NΣ(G,φ) of φ-essential separations of order <k that distinguishes all
the profiles in φ efficiently.

9



Note that any k-tangle, O, is also a k-profile. Indeed, it is a simple check that O is consistent. Also

for any pair of separations (A,B), (C,D) ∈
−→
Sk we have that G[A]∪G[C]∪G[B ∩D] = G, since any edge

not contained in A or C is contained in both B and D. Hence, {(A,B), (C,D), (B ∩ D,A ∪ C)} ∈ Tk,
and so Pk ⊆ Tk. Therefore any k-tangle, which by definition avoids Tk, must also avoid Pk, and so must
be a k-profile. Similarly one can show that the orientations defined by k-blocks are consistent and Pk

avoiding, and so k-profiles. Even more, there is some family Bk ⊇ Pk such that the orientations defined
by k-blocks are Bk-tangles, and if there is a Bk-tangle of Sk then the graph G contains a unique k-block
corresponding to this orientation.

One of the aims of [7, 8] had been to develop a duality theorem which would be applicable to k-profiles
and k-blocks. The same authors showed in [6] that there is a more general duality theorem of a similar
kind which applies in these cases, however the dual objects in this theorem correspond to a more general
object than the classical notion of tree-decompositions.

Nevertheless, it was posed as an open question whether or not there was a duality theorem for k-
profiles or k-blocks expressible within the framework of [7]. By Theorem 5 it would be sufficient to show
that there is a standard set of stars F such that the set of k-profiles or k-blocks coincides with the set
of F -tangles. Recently Diestel, Eberenz and Erde [4] showed that, if we insist the orientations satisfy a
slightly stronger consistency condition, this will be the case. We say that an orientation O of a separation
system S is regular if whenever we have r and s such that −→r ≤ −→s , O does not contain both ←−r and
−→s . We note that a consistent orientation is regular if and only if it contains every small separation. A
regular F-tangle of S is then a regular F -avoiding orientation of S, and a regular S-profile is a regular
PS-tangle. For most natural examples of separation systems there will not be a difference between regular
and irregular profiles. Indeed, in [4] it is shown that for k ≥ 3 every k-profile of a graph is in fact a
regular k-profile4.

We say a separation system is submodular if whenever −→r ,−→s ∈
−→
S either −→r ∧−→s or −→r ∨−→s ∈

−→
S . Note

that, if a universe U has an order function, then the separation systems Sk are submodular.

Theorem 7. [Diestel, Eberenz and Erde [4]] Let S be a separable submodular separation system contained

in some universe of separations (
−→
U ,≤, ∗,∨,∧), and let F ⊇ PS. Then there exists a standard set of stars

F∗ (which is closed under shifting, and contains {−→r } for every co-small −→r ) such that every regular
F-tangle of S is an F∗-tangle of S, and vice versa, and such that the following are equivalent:

• There is no regular F-tangle of S;

• There is no F∗-tangle of S;

• There is an S-tree over F∗.

In the case where S = Sk is the set of separations of a graph with k ≥ 3, we have that F ⊇ Pk, and
so every F -tangle is a k-profile, and so regular. Hence, in this case, we can omit the word regular from
the statement of the theorem. We note that Tk ⊇ Pk, (and in fact the T ∗

k of the theorem can be taken
to be the T ∗

k defined earlier) and so Theorem 7 also implies the tangle/branch-width duality theorem.
Applying the result to Pk or Bk also gives a duality theorem for k-blocks and k-profiles. As in the

case of tangles, if a tree-decomposition (T,V) of a graph G is such that the set of separations induced
by the edges of T is an Sk-tree over P∗

k for some k, then there is some smallest such k′, and we say the
profile-width of the tree-decomposition is k′ − 1. If no such k exists then we will let the profile-width
be infinite. The profile-width of a graph is then the smallest k such that G has a tree-decompositions of
profile-width k. Then, as was the case with tangles, Theorem 7 tells us that the profile-width of a graph
is the largest k such that G contains a k-profile. We define the block-width of a tree-decomposition and
graph in the same way.

In a similar way as before, we can think of any part in a tree-decomposition of block-width at most
k − 1 as being ‘too small’ to contain a k-block, as the corresponding star of separations must lie in B∗

k,
and by Theorem 7 every k-block defines an orientation of Sk which avoids B∗

k.

4There do exist pathological examples of 2-profiles in graphs which are not regular, however they can be easily charac-
terized.
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3 Refining a tree-decomposition

Given a set of profiles of a graph, φ, we say a part Vt of a tree-decomposition is φ-essential if some profile
from φ is contained in this part. We will keep in mind as a motivating example the case φ = τk, the set of
k-tangles and, when the set of profiles considered is clear, we will refer to such parts simply as essential.
Conversely if no such profile is contained in the part we call it inessential. The main result of the paper
can now be stated formally.

Lemma 8. Let (
−→
U ,≤, ∗,∨,∧) be a universe of separations with an order function. Let φ be a set of

Sk-profiles and let F be a standard set of stars which contains {−→r } for every co-small −→r , and which is

closed under shifting, such that φ is the set of F-tangles. Let σ = {−→s i : i ∈ [n]} ⊆
−→
Sk be a non-empty

star of separations such that each si is φ-essential, and let F ′ = F ∪
⋃n

1 {
←−si}

Then either there is an F ′-tangle of Sk, or there is an Sk-tree over F ′ in which each −→s i appears as a
leaf separation.

If we compare Lemma 8 to Theorem 5, we see that Lemma 8 can be viewed in some way as a method of
building a new duality theorem from an old one, by adding some singleton separations to our set F . The
restriction to considering only Sk-profiles rather than those of arbitrary separation systems S contained
in U comes from the proof, where we need to use the submodularity of the order function to show that
certain separations emulate others. It would be interesting to know if the result would still be true for
any S which is separable, or even any pair F and S such that S is F -separable. The condition that F
contains every co-small separation as a singleton is to ensure that the F -tangles are regular F -tangles,
as we will need to use the slightly stronger consistency condition in the proof.

What does Lemma 8 say in the case of k-tangles arising from graphs? Recall that τk is the set of
T ∗
k -tangles, and that T ∗

k is closed under shifting, and contains {−→r } for every co-small −→r . Given a star

σ = {−→s i : i ∈ [n]} ⊆
−→
Sk we note that a T ∗

k ∪
⋃n

1{
←−s i}-tangle is just a T ∗

k -tangle which contains −→s i for
each i, and so it is a k-tangle which orients the star inwards. Conversely, an Sk-tree over T ∗

k ∪
⋃n

1{
←−s i}

in which each −→s i appears as a leaf separation will give a tree-decomposition of the part of the graph at
σ. In particular, since each of the separations in the tree will be nested with σ, the separators Ai ∩Bi of
the separations −→s i will lie entirely on one side of every separation in the tree, and so this will in fact be
a decomposition of the torso of the part (since any extra edges in the torso lie inside the separators).

Therefore, in practice this tells us that if we have a part in a tree-decomposition whose separators
are τk-essential then either there is a k-tangle in the graph which is contained in that part, or there is a
tree-decomposition of the torso of that part with branch-width <k. In the second case we can then refine
the original tree-decomposition by combining it with this new tree-decomposition. By applying this to
each inessential part of one of the canonical tree-decompositions formed in [1] we get the following result,
which easily implies Theorems 2 and 3 by taking F = T ∗

k and B∗
k respectively.

Corollary 9. Let k ≥ 3 and let F ⊇ Pk be such that the set φ of regular F-tangles is canonical. If F∗ is
defined as in Theorem 7 then there exists a nested set of separations N ⊆ Sk corresponding to an Sk-tree
(T, α) of G such that:

• there is a subset N ′ ⊆ N that is fixed under every automorphism of G and distinguishes all the
regular F-tangles in φ efficiently;

• every vertex t ∈ T either contains a regular F-tangle or {α(t′, t) : (t′, t) ∈
−→
ET )} ∈ F∗.

Proof. By Theorem 6 there exists a canonical nested set N ′ of φ-essential separations of order <k that
distinguishes all the regular F -tangles in φ efficiently, and by Theorem 7 φ is also the set of F∗-tangles.
Given an inessential part Vt in the corresponding tree-decomposition (T,V), this part corresponds to
some star of separations σ = {−→s i : i ∈ [n]} ⊆ N ′. Each −→s i ∈ N ′ is φ-essential, and, by Theorem 7, F∗

is a standard set of stars which is closed under shifting, and contains {−→r } for every co-small −→r . Hence,
by Lemma 8, if we let F ′ = F∗ ∪

⋃n
1 {
−→s i}, there is either an F ′-tangle of Sk, or an Sk-tree over F ′ in

which each −→s i appears as a leaf separation.
Suppose that there exists an F ′-tangle O. Since O avoids F ′ ⊇ F∗, it is also an F∗-tangle, and so

O ∈ φ. By assumption N ′ distinguishes all the regular F -tangles in φ, so O is contained in some part of
the tree-decomposition, and since O avoids {{←−s i} : i ∈ [n]}, it must extend σ, and so this part must be
Vt. However, this contradicts the assumption that Vt is inessential.
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Therefore, by Lemma 8, there exists an Sk-tree over F∗ ∪
⋃n

1{
←−s i} . This gives a nested set of

separations Nt which contains the set σ. If we take such a set for each inessential Vt then the set

N = N ′ ∪
⋃

Vt inessential

Nt

satisfies the conditions of the corollary.

We note that, whilst the existence of such a tree-decomposition is interesting in its own right, perhaps
a more useful application of Lemma 8 is that we can conclude the same for every tree-decomposition
constructed by the algorithms in [1]. So, we are able to choose whichever algorithm we want to construct
our initial tree-decomposition, perhaps in order to have some control over the structure of the essential
parts, and we can still conclude that the inessential parts have small branch-width.

Apart from the set τk of k-tangles there is another natural set of tangles for which tangle-distinguishing
tree-decompositions have been considered. Since a k-tangle, as a Tk-avoiding orientation of Sk, induces
an orientation on Si for all i ≤ k, it induces an i-tangle for all i ≤ k. If an i-tangle for some i is not
induced by any k-tangle with k > i we say it is a maximal tangle.

Robertson and Seymour [9] showed that there is a decomposition of the graph which distinguishes its
maximal tangles, but the theorem does not tell us much about the structure of this tree-decomposition.
The approach of Carmesin et al was extended by Diestel, Hundertmark and Lemanczyk [5] to show how
an iterative approach to Theorem 6 could be used to build canonical tree-decompositions distinguishing
the maximal tangles in a graph (in fact they showed a stronger result for a broader class of profiles which
implies the result for tangles). In particular, the results of [5] imply the following.

Theorem 10. If φ is a canonical set of tangles in a graph G, then there exists a canonical nested set
N (G,φ) of φ-essential separations that distinguishes all the tangles in φ efficiently.

In particular we can apply this to the set of maximal tangles. By looking directly at the proof in [5]
one can see the structure of the tree-decomposition formed. The proof proceeds iteratively, by choosing
for each i in a turn a nested set of (i − 1)-separations (that is, separations of order (i − 1)), which
distinguishes efficiently the pairs of i-tangles which are distinguished efficiently by an (i− 1)-separation,
such that this set is also nested with the previously constructed sets.

At each stage in the construction we have a tree-decomposition which distinguishes all the tangles
of order ≤ i in the graph. Some of these i-tangles however will extend to (i + 1)-tangles in different
ways (induced by distinct maximal tangles in the graph). The next stage constructs a nested set of
separations distinguishing such tangles, which gives a tree-decomposition of the torsos of the relevant
parts. In these tree-decompositions some parts will be ‘essential’, and containing (i + 1)-tangles, but
some will be inessential.

It is natural to expect that the inessential parts constructed at stage i should have branch-width
< i, by a similar argument as Corollary 9. However it is not always the case that the separators of the
inessential part satisfy the conditions of Lemma 8, since it can be the case that these inessential parts
have separators which are separations constructed in an earlier stage of the process, and as such might
not efficiently distinguish a pair of tangles of order i.

Question 11. Can we bound the branch-width of the inessential parts in such a tree-decomposition in a
similar way?

A positive answer to the previous question in the strongest form would give the following analogue of
Theorem 2.

Conjecture 12. For every graph G there exists a canonical sequence of tree-decompositions (Ti,Vi) for
1 ≤ i ≤ n of G such that

• (Ti,Vi) distinguishes every i-tangle in G for each i;

• (Tn,Vn) distinguishes the set of maximal tangles in G.

• (Ti+1,Vi+1) refines (Ti,Vi) for each i;

• The torso of every inessential part in (Ti,Vi) has branch-width < i.
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3.1 Proof of Lemma 8

Proof of Lemma 8. Let us write

F = F ∪ {{←−x } : ←−s i ≤
←−x for some i ∈ [n]}.

We first claim that
−→
Sk is F -separable. We note that by [[8], Lemma 3.4] for every universe

−→
U and any

k ∈ N, the separation system
−→
Sk is separable. Therefore it is sufficient to show that F is closed under

shifting. By assumption F is closed under shifting, and the image of any singleton star {←−x } ∈ F under
some relevant f ↓

−→r
−→s

is {←−y } for some separation ←−x ≤ ←−y , and hence {←−y } ∈ F . Therefore, F is closed

under shifting. Furthermore, since F was standard, so is F . Hence, we can apply Theorem 5 to F .
By Theorem 5, either there exists an Sk-tree over F , or there exists an F -tangle. Since F ⊃ F ′, every

F -tangle is also an F ′-tangle, and so in the second case we are done. Therefore we may assume that
there exists an Sk-tree over F , (T, α). We will use (T, α) to form an Sk-tree over F ′.

Since there is no F -tangle, each F -tangle O must contain some←−s i. We note that, since by assumption
F contains every co-small separation, O is regular. Hence, since σ is a star, this ←−s i is unique. We claim

that, for every F -tangle O such that ←−s i ∈ O there is some leaf separation −→x ∈ α(
−→
E (T )) such that

←−x ≤ ←−s i.

Indeed, since O is a consistent orientation of
−→
Sk, it is contained in some vertex of (Tα). However,

the star of separations at that vertex, by definition of an F -tangle, cannot lie in F , and so must lie in
F \ F . Since each of these stars are singletons, the vertex must be a leaf. Therefore, there is some leaf
separation −→x such that ←−x ∈ O. Since {←−x } ∈ F \ F , it follows that ←−sr ≤

←−x for some r ∈ [n]. However,
since ←−s i ∈ O, and it was the unique separation in σ with that property, it follows that r = i, and so
←−s i ≤

←−x i as claimed.
If the only leaf separations in F \ F were the separations {−→s i : i ∈ [n]} then (T, α) would be

the required S-tree over F ′. In general however the tree will have a more arbitrary set {−→xi,j} of leaf
separations (along with some leaf separations arising as separations forced by F) where ←−s i ≤

←−xi,j , see
Figure 5. Note that there may not necessarily be any edges in this tree corresponding to the separations
si.

Figure 5: The Sk-tree over F with unlabelled leafs corresponding to separations forced by F .

We claim that each −→s i emulates some −→xi,j in
−→
Sk for F . By assumption, every si ∈ σ distinguishes

efficiently some pair O1 and O2 of F -tangles. Suppose that −→s i ∈ O1 and ←−s i ∈ O2. By our previous
claim, there is some leaf separation −→xi,j such that ←−xi,j ∈ O2. We claim that −→s i emulates this −→xi,j in
−→
Sk. Note that, since F is closed under shifting, it would follow that −→s i emulates −→xi,j in

−→
Sk for F . Note

that, since −→s i and
−→xi,j both distinguish two F -tangles, they are non-trivial and non-degenerate.
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Indeed, given any separation −→r ≥ −→xi,j we have that
−→s i ≥

−→s i∧
−→r ≥ −→xi,j and so −→s i∧

−→r distinguishes
O1 and O2. Therefore, since si distinguises O1 and O2 efficiently, |−→s i ∧

−→r | ≥ |−→s i|. Hence, by submod-

ularity, |−→s i ∨
−→r | ≤ |−→r | < k and so −→s i ∨

−→r ∈ Sk. Therefore the image of f ↓
−→xi,j
−→si

is contained in Sk and

so −→s i emulates −→xi,j in
−→
Sk. Furthermore, since −→xi,j is non-trivial and non-degenerate, by the comment

after Lemma 4 we can assume that T is irredundant, and that −→xi,j is not the image of any other edge in
T .

Since −→sn and −→xn,j satisfy the conditions of Lemma 4, we conclude that the shift of (T, α) onto −→sn is
an Sk-tree over F which contains −→sn as a leaf separation, and not as the image of any other edge. Let
us write (Tn, αn) for this Sk-tree.

If there is some leaf separation←−r of (Tn, αn) such that ←−sn <←−r then, since the leaf separations form
a star and ←−s i is the image of a unique leaf, we also have that −→s i < ←−r . Hence, −→r is trivial, and so
{←−r } ∈ F . Therefore (Tn, αn) is also an Sk-tree over

Fn = F ∪ {←−sn} ∪ {{
←−x } : ←−s i ≤

←−x for some i ∈ [n− 1]}.

If we repeat this argument for each 1 ≤ i ≤ n, we end up with a sequence of Sk-trees (Tn, αn),
(Tn−1, αn−1), . . . (T1, α1) over F such that (Tj , αj) is also an Sk-tree over

F j = F ∪ {
←−s i : i ≥ j} ∪ {{←−x } : ←−s i ≤

←−x for some i ∈ [j − 1]}.

We note that F1 = F ′, and so (T1, α1) is an Sk-tree over F ′, completing the proof.

4 Further refining essential parts of tangle-distinguishing tree-

decompositions

In some sense the tree-decompositions of Corollary 9 tell us most about the structure of the graph when
the essential parts correspond closely to the profiles inside them. However, as the example in Figure 2
shows, sometimes there can be essential parts which could be further refined, in order to more precisely
exhibit the structure of the graph.

In this section we will discuss how the tools from the paper can be used to achieve this goal. Given a

graph G we call a separation ←−x ∈
−→
Sk inessential if ←−x ∈ O for every k-tangle O of G. Given a k-tangle

O let M(O) be the set of maximal separations in O, and let MI(O) be the set of maximal inessential
separations. Our main tool will be the following lemma.

Lemma 13. Let G be a graph, O be a k-tangle of G and let ←−x ∈ MI(O) be non-trivial. Then there is
an Sk-tree over T ∗

k ∪ {
←−x }.

Proof. As in the proof of Lemma 8 let us consider the family of stars

F = T ∗
k ∪ {{

←−r } : ←−x ≤ ←−r }.

A similar argument show that this family is standard and closed under shifting, and so Theorem 5 asserts
the existence of a F -tangle, or an Sk-tree over F . As before, an F -tangle would be a k-tangle of G which
contains −→x , contradicting the fact that ←−x is inessential. Therefore, there is an Sk-tree over F . However,
O must live in some part of this tree-decomposition, and since O is T ∗

k -avoiding it must live in some leaf
vertex, corresponding to a singleton star {←−r } for some ←−x ≤ ←−r . However, ←−x was a maximal separation
in O and hence ←−r 6∈ O unless ←−r =←−x . Therefore the Sk-tree is in fact over T ∗

k ∪ {
←−x }.

Lemma 13 tell us that for every←−x ∈ MI(O) there is a tree-decomposition of the part of the graph be-
hind←−x with branch-width <k. So, we could perhaps hope to refine our canonical k-tangle-distinguishing
tree-decompositions further using these tree-decompositions. However, there is no guarantee thatMI(O)
will be nested with the τk-essential separations used in a k-tangle-distinguishing tree-decomposition, and
so we cannot in general refine such tree-decompositions naively in this way. Moreso, in order to decom-
pose as much of the inessential parts of the graph as possible we would like to take such a tree for each
such maximal separation, however again in general,MI(O) itself may not be nested.
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Our plan will be to find, for each ←−x ∈ MI(O), some inessential separation ←−u such that −→u emulates
−→x in

−→
S k, that is also nested with the separations from the k-tangle-distinguishing tree-decomposition.

Furthermore we would like to able to do this in such a way that the separations −→u emulating different
maximal separations form a star. Then, for each maximal separation, we could shift the Sk-tree given
by Lemma 13 to an Sk-tree over T ∗

k ∪ {
←−u }. These tree-decompositions could then be used to refine our

k-tangle-distinguishing tree-decomposition further. We will in fact show a more general result that may
be of interest in its own right.

4.1 Uncrossing sets of separations

Given two separations −→r ≤ −→s in an arbitrary universe with an order function, we say that −→s is linked
to −→r if for every −→x ≥ −→r we have that

|−→x ∨ −→s | ≤ |−→x |.

In particular we note that if −→r ,−→s ∈
−→
Sk, then

−→s being linked to −→r implies that −→s emulates −→r in
−→
Sk.

We first note explicitly a fact used in the proof of Lemma 8.

Lemma 14. Let (
−→
U ,≤, ∗,∨,∧) be a universe of separations with an order function, and let ←−s ≤ ←−r be

two separations in
−→
U . If ←−x is a separation of minimal order such that ←−s ≤ ←−x ≤ ←−r , then −→x is linked to

−→r .

Proof. Given any separation −→y > −→r we note that

←−s ≤ ←−x ≤ ←−x ∨←−y ≤ ←−r ,

and so by minimality of←−x we have that |←−y ∨←−x | ≥ |←−x |. Hence, by submodularity |−→y ∨−→x | = |←−y ∧←−x | ≤
|−→y |, and so −→x is linked to −→r . Note that, by symmetry, ←−x is linked to ←−s also.

In what follows we will need to use two facts about a universe of separations. The first is true for any
universe of separations, that for any two separations ←−x and ←−y

(←−x ∧←−y )∗ = −→x ∨−→y and (←−x ∨←−y )∗ = −→x ∧−→y .

The second will not be true in general, and so we say a universe of separations is distributive if for
every three separations ←−x ,←−y and ←−z it is true that

(←−x ∧←−y ) ∨←−z = (←−x ∨←−z ) ∧ (←−y ∨←−z ) and (←−x ∨←−y ) ∧←−z = (←−x ∧←−z ) ∨ (←−y ∧←−z ).

It is a simple check that the universe of separations of a graph is distributive.

Lemma 15. Let (
−→
U ,≤, ∗,∨,∧) be a distributive universe of separations with an order function, and let←−x1

and←−x2 be two separations in
−→
U . Let←−u1 be any separation of minimal order such that←−x1∧

−→x2 ≤
←−u1 ≤

←−x1

and let ←−u2 =←−x2 ∧
−→u1. Then the following statements hold:

• −→u1 is linked to −→x1 and −→u2 is linked to −→x2;

• |←−u1| ≤ |
←−x1| and |

←−u2| ≤ |
←−x2|;

• ←−u1 =←−x1 ∧
−→u2.

Proof. We note that −→u1 is linked to −→x1 by Lemma 14. We want to show that −→u2 is linked to −→x2, that
is, given any −→r > −→x2 we need that |−→r ∨ −→u2| ≤ |

−→r |. We first claim that −→r ∨ −→u2 =←−u1 ∨
−→r . Indeed,

−→r ∨−→u2 = −→r ∨ (−→x2 ∨
←−u1) = (−→r ∨ −→x2) ∨

←−u1 = −→r ∨←−u1.

We also claim that ←−x1 ∧
−→x2 ≤

←−u1 ∧
−→r ≤ ←−x1. Indeed,

←−x1 ∧
−→x2 ≤

←−u1 and ←−x1 ∧
−→x2 ≤

−→x2 ≤
−→r and so

←−x1 ∧
−→x2 ≤

←−u1 ∧
−→r ≤ ←−u1 ≤

←−x1.
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Therefore, by minimality of ←−u1 we have that |←−u1 ∧
−→r | ≥ |←−u1| and so, by submodularity, it follows that

|−→r ∨ −→u2| = |
←−u1 ∨

−→r | ≤ |−→r |,

as claimed.
By minimality of ←−u1 we have that |←−u1| ≤ |

←−x1|. Also we note that, since ←−u2 =←−x2 ∧
−→u1 we have that

|←−u2|+ |
←−x2 ∨

−→u1| ≤ |
←−x2|+ |

←−u1|.

However, |←−x2 ∨
−→u1| = |

←−u1 ∧
−→x2|, and we claim that

←−x1 ∧
−→x2 ≤

←−u1 ∧
−→x2 ≤

←−x1.

Indeed, that second inequality is clear since, ←−u1 ≤
←−x1. For the first we note that ←−x1 ∧

−→x2 ≤
−→x2, and

also ←−x1 ∧
−→x2 ≤

←−x1 ∧
−→u2 = ←−u1, and so ←−x1 ∧

−→x2 ≤
←−u1 ∧

−→x2. Hence, by the minimality of ←−u1, we have
|←−x2 ∨

−→u1| ≥ |
←−u1|. Hence it follows that |←−u2| ≤ |

←−x2|, as claimed.
For the last condition, we have that ←−u1 ≤

←−x1 and ←−u1 ≤
←−u1 ∨

−→x2 = −→u2, and so ←−u1 ≤
←−x1 ∧

−→u2.
However,

←−x1 ∧
−→u2 =←−x1 ∧ (−→x2 ∨

←−u1) = (←−x1 ∧
−→x2) ∨ (←−x1 ∧

←−u1) = (←−x1 ∧
−→x2) ∨

←−u1 ≤
←−u1,

and so ←−u1 =←−x1 ∧
−→u2.

We note that if we apply the above lemma to a pair of separations←−x1 and
←−x2 such that x1 distinguishes

efficiently a pair of regular k-profiles, which x2 does not distinguish, say ←−x1 ∈ P1 and −→x1 ∈ P2 and
←−x2 ∈ P1 ∩ P2, then

←−x1 is of minimal order over all separations ←−x1 ∧
−→x2 ≤

←−u1 ≤
←−x1. Hence, in Lemma

15, we can take ←−u1 =←−x1 and ←−u2 =←−x2 ∧
−→x1.

Indeed, suppose ←−x1 ∧
−→x2 ≤

←−u1 ≤
←−x1 is of minimal order. We note that ←−u1 ∈ P1 by regularity.

Similarly, let ←−u2 = ←−x2 ∧
−→u1 then ←−u2 ∈ P2 by regularity. Recall that, by Lemma 15 ←−u1 = ←−x1 ∧

−→u2.
Hence, −→u1 = −→x1 ∨

←−u2 ∈ P2. Therefore, u1 distinguishes P1 and P2 and so, by the efficiency of x1,
|←−x1| ≤ |

←−u1| as claimed.
The question remains as to what happens for a larger set of separations. It would be tempting to

conjecture that the following extension of Lemma 15 holds, where we note that, in general, (−→x ∧−→y )∧−→z =
−→x ∧ (−→y ∧−→z ) and so, when writing such an expression we can, without confusion, omit the brackets.

Conjecture 16. Let (
−→
U ,≤, ∗,∨,∧) be a distributive universe of separations with an order function, and

let {←−xi : i ∈ [n]} be a set of separations in
−→
U . Then there exists a set of separations {←−ui : i ∈ [n]} such

that the following conditions hold:

• {←−ui : i ∈ [n]} is a star;

• −→ui is linked to −→xi for all i ∈ [n];

• |←−ui| ≤ |
←−xi| for all i ∈ [n];

• ←−ui =
←−xi

∧
j 6=i
−→uj for all i ∈ [n].

However, it seems difficult to ensure that the fourth condition holds with an inductive argument. We
were able to show the following in the case of graph separations, by repeatedly applying Lemma 15. The
extra sets {←−r i} and φ appearing in the statement will be useful for the specific application we have in
mind, the conclusion when these are empty is the weakened form of the above conjecture.

Lemma 17. Let G be a graph, k ≥ 3, and let φ be the set of k-profiles in G. Suppose that {←−r i =
(Ai, Bi) : i ∈ [n]} is a star composed of φ-essential separations, which distinguish efficiently some set φ′

of regular k-profiles and let {←−xj = (Xj , Yj) : j ∈ [m]} ⊆
−→
Sk be such that ←−xj ∈ P for all j ∈ [m] and

P ∈ φ′. Then there exists a set {←−uj : j ∈ [m]} such that the following conditions hold:

• {←−r i : i ∈ [n]} ∪ {←−uj : j ∈ [m]} is a star;

• |←−uj | ≤ |
←−xj | for all j ∈ [m];
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• −→uj is linked to −→xj for all j ∈ [m];

• ←−xj

∧
i
−→r i

∧
k 6=j
−→xk ≤

←−uj ≤
←−xj for all j ∈ [m];

•
⋃m

j=1 Xj ∪
⋃n

i=1 Ai =
⋃m

j=1 Uj ∪
⋃n

i=1 Ai.

Proof. Let us start with a set of separations

Y = {←−y i : i ∈ [n+m]},

and some arbitrary order on the set of pairs Y (2). Initially we set ←−y i =
←−xj for j ∈ [m] and ←−ym+i =

←−r i

for i ∈ [n]. For each pair {←−y i,
←−y j} in order we apply Lemma 15 to this pair of separations and replace

{←−y i,
←−y j} with the nested pair given by Lemma 15. After we have done this for each pair, we let←−uj :=

←−y j

for each j ∈ [m].
Note that, since each←−xj is φ-inessential, and with each application of Lemma 15 we only ever replace

a separation by one less than or equal to it, ←−y j is also φ-inessential at each stage of this process for
j ∈ [m]. Also, {←−r i : i ∈ [n]} is a star, and so if we apply Lemma 15 to a pair ←−r i and ←−rk, neither is
changed. Therefore, by the comment after Lemma 15, we may assume that at every stage in the process
←−ym+i =

←−r i for each i ∈ [n]. In particular at the end of the process we have that

Y = {←−r i : i ∈ [n]} ∪ {←−uj : j ∈ [m]}.

To see that the first condition is satisfied we note that, given any pair of separations←−y i and
←−y j ∈ Y ,

at some stage in the process we applied Lemma 15 to this pair, and immediately after this step we have
that←−y i ≤

−→y j . Since Lemma 15 only ever replaces a separation with one less than or equal to it, it follows
that at the end of the process Y is a star. Therefore the family {←−r i : i ∈ [n]} ∪ {←−uj : j ∈ [m]} forms a
star.

To see that the second condition is satisfied we note that, whenever we apply Lemma 15 we only ever
replace a separation with one whose order is less than or equal to the order of the original separation.

To see that the third condition is satisfied we note that whenever we apply Lemma 15 we only ever
replace a separation with one whose inverse is linked to the inverse of the original separation. Therefore
it would be sufficient to show that the property of being linked to is transitive. Indeed, suppose that
−→r > −→s >

−→
t , −→r is linked to −→s and −→s is linked to

−→
t , all in some separation system S. Let −→x >

−→
t also

be in
−→
Sk.

However, since −→s is linked to
−→
t , it follows that |−→x ∨ −→s | ≤ |−→x |. Then, since −→x ∨ −→s ≥ −→s and −→r is

linked to −→s , it follows that |(−→x ∨−→s )∨−→r | ≤ |−→x ∨−→s | ≤ |−→x |. However, since −→s ≤ −→r , (−→x ∨−→s )∨−→r = −→x ∨−→r ,

and so −→r is linked to
−→
t .

To see that the fourth condition is satisfied let us consider ←−y j for some j ∈ [m]. There is some
sequence of separations←−xj =

←−v0 ≥
←−v1 ≥ . . . ≥ ←−v t =

←−uj that are the values
←−y j takes during this process,

corresponding to the t times we applied Lemma 15 to a pair containing the separation ←−y j . Suppose
that the other separations in those pairs were ←−y i1 ,

←−y i2 , . . . ,
←−y it , and let us denote by ←−wk the value of the

separations ←−y ik
at the time which we applied Lemma 15 to the pair {←−y j ,

←−y ik
}.

We claim inductively that for all 0 ≤ r ≤ t

←−v0

r∧

k=1

−→wk ≤
←−vr ≤

←−v0.

The statement clearly holds for r = 0. Suppose it holds for r − 1. We obtain ←−v r by applying Lemma 15
to the pair {←−v r−1,

←−wr}, giving us the pair {←−vr,
←−z}. We have that ←−vr−1 ∧

−→z =←−v r and so, since −→wr ≤
−→z

it follows that
←−vr−1 ∧

−→wr ≤
←−vr ≤

←−vr−1.

By the induction hypothesis we know that

←−v0

r−1∧

k=1

−→wk ≤
←−vr−1 ≤

←−v0,
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and so

←−v0

r∧

k=1

−→wk ≤
←−vr−1 ∧

−→wr ≤
←−vr ≤

←−v r−1 ≤
←−v0

as claimed.
For each of the ←−wk there is some separation ←−sk from our original set (that is some ←−r i or

←−xj) such
that ←−wk ≤

←−sk and so, since −→sk ≤
−→wk, and since we apply Lemma 15 to each pair of separations in our

original set, we have that

←−v0

∧

i

−→r i

∧

k 6=j

−→xj ≤
←−v0

t∧

k=1

−→wk.

So, recalling that ←−v0 =←−xj and ←−v t =
←−uj , we see that

←−xj

∧

i

−→r i

∧

k 6=j

−→xk ≤
←−uj ≤

←−xj

as claimed.
Finally we note that, if we apply Lemma 15 to a pair of separations (C,D) and (E,F ), resulting in

the nested pair {(C′, D′), (E′, F ′)}, then

C ∪ E = C′ ∪ E′.

Indeed, we have that (C ∩ F ′, D ∪ E′) = (C′, D′) and (E ∩D′, F ∪ C′) = (E′, F ′) and so we have that
C′∪E′ = (C ∩F ′)∪E′ ⊇ C and similarly C′∪E′ = C′∪ (E ∩D′) ⊇ E and so C′∪E′ ⊇ C ∪E. However,
since C′ ⊆ C and E′ ⊆ E we also have C′ ∪E′ ⊆ C ∪ E.

4.2 Refining the essential parts

The content of Lemma 17 can be thought of as a procedure for turning an arbitrary set of separations
into a star which is in some way ‘close’ to the original set, and is linked pairwise to the original set. We
note that the second property guarantees us that this star lies in the same Sk as the original set.

Let us say a few words about the other properties of the star which represent this closeness. It will
be useful to think about these properties in terms of how we can use this lemma to refine further an
essential part in a k-tangle-distinguishing tree-decomposition.

Suppose {←−xj : j ∈ [m]} =MI(O) for some k-tangle O, and {←−r i : i ∈ [n]} is the star of separations
at the vertex where O is contained in a tree-decomposition, specifically one where each ri distinguishes
efficiently some pair of k-tangles. By applying Lemma 17 we get a star {←−uj : j ∈ [m]} satisfying the
conclusions of the lemma. For each non-trivial ←−xj , by Lemma 13, there exists an irredundant Sk-tree
over T ∗

k ∪ {
←−xj} containing

←−xj as a leaf separation, such that ←−xj is not the image of any other edge. We
can then use Lemma 4 to shift each of these Sk-trees onto

−→uj , giving us an Sk-tree over T ∗
k ∪ {

←−uj} . If
←−xj is trivial then so is ←−uj , and so there is an obvious Sk-tree over T ∗

k ∪ {
←−uj} containing −→uj as a leaf

separation, that with a single edge corresponding to uj .
Doing the same for each k-tangle in the graph and taking the union all of these Sk-trees, together

with the tree-decomposition from Corollary 9, will give us a refinement of this tree-decomposition which
maintains the property of each inessential part being too small to contain a k-tangle, but also further
refines the essential parts. The properties of the star given by Lemma 17 give us some measurement of
how effective this process is in refining the essential parts of the graph.

We first note that, given a k-tangle O, which is contained in some part Vt of a k-tangle-distinguishing
tree-decomposition, by the fifth property in Lemma 17 every vertex in the part Vt which lies on the small
side of some maximal inessential separation in O will be in some inessential part of this refinement.

However this property is also satisfied by the rather naive refinement formed by just taking the union
of some small separations (Ai, V ) with the Ai covering the same vertex set. The problem with this naive
decomposition is it does not really refine the part Vt, since there is a still a part with vertex set Vt in the
new decomposition. Ideally we would like our refinement to make this essential part as small as possible,
to more precisely exhibit how the k-tangle O lies in the graph.

Our refinement comes some way towards this, as evidenced by the fourth condition . For example
if we have some separation ←−s = (A,B) which lies ‘behind’ some maximal inessential separation in O,
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that is ←−s ≤ ←−xj for some j, and is nested MI(O) ∪ {←−r i : i ∈ [n]}, then it is easy to check that the
fourth property guarantees it will also lie behind some ←−uk given by Lemma 17. So, in the refined tree-
decomposition, the part containing O will not contain any vertices that lie strictly in the small side of
such a separation, A \B.

Suppose {←−r i : i ∈ [n]} is an essential part in a tree-decomposition (T,V) containing a tangle O. We
say a vertex v ∈ V is inessentially separated from O relative to (T,V) if there is a separation (A,B) which
is nested withMI(O) ∪ {←−r i : i ∈ [n]} such that v ∈ A \B, and there exists some (X,Y ) ∈MI(O) such
that (A,B) ≤ (X,Y ). For example, in Figure 2, the vertices in the long paths are inessentially separated
from the tangles corresponding to the complete subgraphs relative to the canonical tangle-distinguishing
tree-decomposition.

Theorem 18. For every graph G and k ≥ 3 there exists a tree-decomposition (T,V) of G of adhesion
<k with the following properties

• The tree-decomposition (T ′,V ′) induced by the essential separations is canonical and distinguishes
every k-tangle in G;

• The torso of every inessential part has branch-width <k.

• For every essential part Vt which contains a tangle O, there are no vertices v ∈ Vt which are
inessentially separated from O relative to (T ′,V ′).

Given a vertex v ∈ V we say that that x is well separated from O if there is a separation (A,B) which is
nested withM(O) such that v ∈ A\B, and there exists some (X,Y ) ∈ M(O) such that (A,B) ≤ (X,Y ).

We can think of the vertices which are well separated from O as being ‘far away’ from O in the graph.
Indeed, if M(O) is a star, then O is a k-block, and the set of vertices well separated from O are just
the vertices not in the k-block. In general a tangle will not correspond as closely to a concrete set of
vertices as a k-block, and crossing separations inM(O) somehow demonstrate the uncertainty of whether
a vertex ‘lives in’ O or not. However, if a separation (A,B) ∈ O is nested withM(O), then O should be
in some way fully contained in B, and so the vertices in A \B are ‘far away’ from O.

Question 19. For every graph G, does there exist a tree-decomposition which distinguishes the k-tangles
in a graph, whose essential parts are small in the sense that for each k-tangle O, there is no vertex x
which can be well separated from O in the part of the tree-decomposition which contains O? Does there
exist such a tree-decomposition with the further property that the inessential parts have branch-width <k?
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