
Spanners for Directed Transmission Graphs∗

Haim Kaplan† Wolfgang Mulzer‡ Liam Roditty§ Paul Seiferth‡

Abstract

Let P ⊂ R2 be a planar n-point set such that each point p ∈ P has an associated radius rp > 0.
The transmission graph G for P is the directed graph with vertex set P such that for any p, q ∈ P ,
there is an edge from p to q if and only if d(p, q) ≤ rp.

Let t > 1 be a constant. A t-spanner for G is a subgraph H ⊆ G with vertex set P so
that for any two vertices p, q ∈ P , we have dH(p, q) ≤ tdG(p, q), where dH and dG denote the
shortest path distance in H and G, respectively (with Euclidean edge lengths). We show how to
compute a t-spanner for G with O(n) edges in O(n(logn+ log Ψ)) time, where Ψ is the ratio of
the largest and smallest radius of a point in P . Using more advanced data structures, we obtain
a construction that runs in O(n log5 n) time, independent of Ψ.

We give two applications for our spanners. First, we show how to use our spanner to find a
BFS tree in G from any given start vertex in O(n logn) time (in addition to the time it takes to
build the spanner). Second, we show how to use our spanner to extend a reachability oracle to
answer geometric reachability queries. In a geometric reachability query we ask whether a vertex
p in G can “reach” a target q which is an arbitrary point in the plane (rather than restricted to
be another vertex q of G in a standard reachability query). Our spanner allows the reachability
oracle to answer geometric reachability queries with an additive overhead of O(logn log Ψ) to the
query time and O(n log Ψ) to the space.

1 Introduction

A common model for wireless sensor networks is the unit-disk graph: each sensor p is
modeled by a unit disk centered at p, and there is an edge between two sensors if and
only if their disks intersect [11]. Intersection graphs of disks with arbitrary radii have
also been used to model sensors with different transmission strengths [4, Chapter 4].
Intersection graphs of disks are undirected. However, for some networks we may want a
directed model. In such networks, a sensor p that can transmit information to a sensor q
may not be able to receive information from q. This motivated various researchers to
consider what we call here transmission graphs [23,27]. A transmission graph G is defined
∗This work is supported in part by GIF project 1161, DFG project MU/3501/1 and ERC StG 757609.

A preliminary version appeared as Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth.
Spanners and Reachability Oracles for Directed Transmission Graphs. Proc. 31st SoCG, pp. 156–170.
†School of Computer Science, Tel Aviv University, Israel, haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany {mulzer,pseiferth}@inf.fu-berlin.de
§Department of Computer Science, Bar Ilan University, Israel liamr@macs.biu.ac.il

1

ar
X

iv
:1

60
1.

07
79

8v
3

 [
cs

.C
G

]
 2

 O
ct

 2
02

0

1 Introduction 2

for a set P of points where each point p ∈ P has a (transmission) radius rp associated
with it. Each vertex of G corresponds to a point of P , and there is a directed edge from
p to q if and only if q lies in the disk D(p) of radius rp around p. We weight each edge
pq of G by the distance between p and q, denoted by |pq|.

As many other kinds of geometric intersection graphs, a transmission graph may be
dense and may contain Θ(n2) edges. Thus, if one applies a standard graph algorithm, like
breadth first search (BFS), to a dense transmission graph, it runs slowly, since it requires
an explicit representation of all the edges in the graph. For some applications a sparse
approximation of G that preserves distances suffices. Therefore, given a transmission
graph G, implicitly represented by a list of points and their associated radii, it is desirable
to construct a sparse approximation of G that preserves its connectivity and proximity
properties. We want to construct this approximation efficiently, without generating an
explicit representation of G.

For any t > 1, a subgraph H of G is a t-spanner for G if the distance between
any pair of vertices p and q in H is at most t times the distance between p and q in
G, i.e., dH(p, q) ≤ t · dG(p, q) for any pair p, q (see [22] for an overview of spanners for
geometric graphs). Fürer and Kasivisawnathan show how to compute a t-spanner for
unit- and general disk graphs that are variations of the Yao graph [12, 28]. Peleg and
Roditty [23] give a construction for t-spanners in transmission graphs in any metric space
with bounded doubling dimension. We continue these studies by giving an almost linear
time algorithm that constructs a t-spanner of a transmission graph of a planar set of
points (P ⊂ R2) in which the edges are weighted according to the Euclidean metric (i.e.
|pq| is the Euclidean distance between p and q).

Our construction is also based on the Yao graph [28]. The basic Yao graph is a
t-spanner for the complete graph defined by n points in the plane (with Euclidean
distances as the weights of the edges). To determine the points adjacent to a particular
point q, we divide the plane by equally spaced rays emanating from q and connect q
to its closest point in each wedge (the number of wedges increases as t gets smaller).
Adapting this construction to transmission graphs poses a severe computational difficulty,
as we want to consider, in each wedge, only the points p with q ∈ D(p) and to pick
the closest point to q only among those. Since finding the exact closest point turns out
to be difficult, we need to relax this requirement in a subtle way, without hurting the
approximation too much. This makes it possible to construct the spanner efficiently.

Even with a good t-spanner at hand, we sometimes wish to obtain exact solutions
for certain problems on disk graphs. Working in this direction, Cabello and Jejĉiĉ gave
an O(n logn) time algorithm for computing a BFS tree in a unit-disk graph, rooted
at any given vertex [5]. For this, they exploited the special structure of the Delaunay
triangulation of the disk centers. We show that our spanner admits similar properties for
transmission graphs. As a first application of our spanner, we get an efficient algorithm
to compute a BFS tree in a transmission graph rooted at any given vertex.

For another application, we consider reachability oracles. A reachability oracle is a
data structure that can answer reachability queries: given two vertices s and t determine
if there is a directed path from s to t. The quality of a reachability oracle is measured

2 Preliminaries and Notation 3

by its query time, its space requirement, and its preprocessing time. For transmission
graphs, we can ask for a more general geometric reachability query: given a vertex s and
any point q ∈ R2, determine if there is a vertex t such that there is a directed path from
s to t in G, and q lies in the disk of t. We show how to extend any given reachability
oracle to answer geometric queries with a small additive increase in space and query time.

Our Contribution and the Organization of the Paper. An extended abstract of this
work was presented at the 31st International Symposium on Computational Geometry [16].
This abstract also discusses the problem of constructing efficient reachability oracles for
transmission graphs. While we were preparing the journal version, it turned out that a
full description of our results would yield a large and unwieldy manuscript. Therefore,
we decided to split our study on transmission graphs into two parts, the present paper
that studies fast algorithms for spanners in transmission graphs, and a companion paper
that deals with the construction of efficient reachability oracles [17].

In Section 3, we show how to compute, for every fixed t > 1, a t-spanner H of G. Our
construction is quite generic and can be adapted to several situations. In the simplest
case, if the spread Φ (i.e., the ratio between the largest and the smallest distance in P)
is bounded, we can obtain a t-spanner in time O(n(logn+ log Φ)) (Section 3.1). With a
little more work, we can weaken the assumption to a bounded radius ratio Ψ (the ratio
between the largest and smallest radius in P), giving a running time of O(n(logn+log Ψ))
(Section 3.2). Note that a bound on Φ implies a bound on Ψ: let dmax be the largest
distance and dmin be the smallest distance between any pair of distinct points in P . We
can set all radii larger than dmax to be dmax and all radii smaller than dmin to dmin/2.
This does not change the transmission graph and we have Ψ ≤ 2Φ. Using even more
advanced data structures, we can compute a t-spanner in time O(n log5 n), without any
dependence on Φ or Ψ (Section 3.3).

In Section 4.1 we show how to adapt a result by Cabello and Jejĉiĉ [5] to compute a
BFS tree in a transmission graph, from any given vertex p ∈ P , in O(n logn) time, once
we have the spanner ready.

In Section 4.2 we show how to use a spanner to extend a reachability oracle to answer
geometric reachability queries. Specifically, we show that any reachability oracle for a
transmission graph with radius ratio Ψ, that requires S(n) space, and answers a query
in Q(n) time, can be extended in O(n logn log Ψ) time, to an oracle that can answer
geometric reachability queries, requires S(n) +O(n log Φ) space, and answers a query in
Q(n) +O(logn log Φ) time.

2 Preliminaries and Notation

We let P ⊂ R2 denote a set of n points in the plane. Each point p ∈ P has a radius
rp > 0 associated with it. The elements in P are called sites. The spread of P , Φ, is
defined as Φ = maxp,q∈P |pq|/minp 6=q∈P |pq|, and the radius ratio Ψ of P is defined as
Ψ = maxp,q∈P (rp/rq). A simple volume argument shows that Φ = Ω(n1/2). Furthermore,
as stated in the introduction, we can always assume that Ψ ≤ 2Φ. Given a point p ∈ R2

3 Spanners for Directed Transmission Graphs 4

and a radius r, we denote by D(p, r) the closed disk with center p and radius r. If p ∈ P ,
we use D(p) as a shorthand for D(p, rp). We write C(p, r) for the boundary circle of
D(p, r).

τ

σ
diam(σ)

d(σ, τ)

Fig. 1: The grid (green) and two
cells σ and τ .

Our constructions make extensive use of planar
grids. For i ∈ {0, 1, . . . }, we define Qi to be the
grid at level i. It consists of axis-parallel squares
with diameter 2i that partition the plane in a grid-
like fashion (the cells). We write diam(σ) for the
diameter of a grid cell σ. Each grid Qi is aligned
so that the origin lies at the corner of a cell. The
distance d(σ, τ) between two grid cells σ, τ is the
smallest distance between any pair of points in
σ × τ , see Figure 1. We assume that our model of
computation allows us to find in constant time for
any given point the grid cell containing it.

3 Spanners for Directed Transmission
Graphs

3.1 Efficient Spanner Construction for a Set of Points with Bounded
Spread

First, we give a spanner construction for the transmission graph whose running time
depends on the spread. Later, in Section 3.2, we will tune this construction so that the
running time depends on the radius ratio. The main result which we prove in this section
is as follows.

Theorem 3.1. Let P be a set of n points in the plane with spread Φ. For any fixed
t > 1, we can compute, in O(n log Φ) time, a t-spanner for the transmission graph G of
P . The construction needs O(n log Φ) space.

q

p

r

Fig. 2: A cone Cq (blue) at a site q. Since
q /∈ D(r), we pick the edge pq.

Let ρ be a ray originating from the origin
and let 0 < α < 2π. A cone with opening
angle α and middle axis ρ is the closed region
containing ρ and bounded by the two rays
obtained by rotating ρ clockwise and counter-
clockwise by α/2.

Given a cone C and a point q ∈ R2, we
write Cq for the copy of C obtained by trans-
lating the origin to q. We call q the apex of
Cq. Ideally, our spanner should look as follows.
Let C be a set of k cones with opening angles
2π/k that partition the plane. For each site

q ∈ P and each cone C ∈ C, we pick the site p ∈ P ∩ Cq with q ∈ D(p) that is closest
to q (see Figure 2). We add the edge pq to H. The resulting graph has O(kn) edges.

3 Spanners for Directed Transmission Graphs 5

Using standard techniques, one can show that H is a t-spanner, if k is large enough as a
function of t. This construction has been reported before and seems to be folklore [7, 23].

Unfortunately, the standard algorithms for computing the Yao graph do not seem to
adapt easily to our setting without a penalty in their running times [10]. The problem
is that for each site q and each cone Cq, we need to search for a nearest neighbor of q
only among those sites p ∈ Cq such that q ∈ D(p). This seems to be hard to do with the
standard approaches. Thus, we modify the construction to search only for an approximate
nearest neighbor of q and argue that picking an approximately shortest edge in each cone
suffices to obtain a spanner.

We partition each cone Cq into “intervals” obtained by intersecting Cq with annuli
around q whose inner and outer radii grow exponentially; see Figure 3. There can be
only O(log Φ) non-empty intervals. We cover each such interval by O(1) grid cells whose
diameter is “small” compared to the width of the interval. This gives two useful properties.
(i) We only need to consider edges from the interval closest to q that contains sites with
outgoing edges to q; all other edges to q will be longer. (ii) If there are multiple edges
from the same grid cell, their endpoints are close together, and it suffices to consider only
one of them.

qr

s

p

Fig. 3: A cone Cq covered by discretized intervals. We only need one of the edges pq, rq
for H.

To make this approach more concrete, we define a decomposition of P into pairs of
subsets of P contained in certain grid cells. These pairs represent a discretized version of
the intervals (see Definition 3.2 below). This is motivated by another spanner construction
based on the well-separated pair decomposition (WSPD). Let c > 1 be a parameter. A
c-WSPD for P is a set of pairs (Ai, Bi), . . . , (Am, Bm) such that Ai, Bi ⊆ P , and for each
pair a, b of points of P there is a single index j such that a ∈ Aj and b ∈ Bj or vice versa.
Furthermore, for any 1 ≤ i ≤ m we have that cmax{diam(Ai),diam(Bi)} ≤ d(Ai, Bi).
Here diam(Ai) is the diameter of Ai and d(Ai, Bi) is the minimum distance between any
pair a, b with a ∈ Ai and b ∈ Bi. Callahan and Kosaraju show that there always exists a
WSPD with m = O(n) pairs which can be computed efficiently [6].

It is well known [22] that one can obtain a t-spanner for the complete (undirected)
Euclidean graph with vertex set P from a c-WSPD, for a large enough c = c(t), by
putting in the spanner an edge ab for each pair (Ai, Bi) in the WSPD, where a is an
arbitrary point in Ai and b is an arbitrary point in Bi. It turns out that a similar
approach works for transmission graphs. However, since they are directed, we need to
find for each site in Bi an incoming edge from a site in Ai, if such an edge exists, and

3 Spanners for Directed Transmission Graphs 6

vice versa. This causes two difficulties: we cannot afford to check all possible edges in
Ai ×Bi, since this would lead to a quadratic running time, and we cannot control the
indegree of a site p since it may belong to many sets Ai and Bi. We address the second
problem by taking only O(1) edges into a particular site q, within each of the k cones of
the Yao construction described above. For the first problem, we identify in each Ai a
special subset that “covers” all edges from a site in Ai to a site in Bi, such that each site
appears in a constant number of such subsets.

The concrete implementation of this idea is captured by Definition 3.2. A pair (Ai, Bi)
corresponds to sets P ∩ σ and P ∩ τ for two grid cell σ, τ that have the same diameter
and that are well separated (Property (i)). For a grid cell τ , we denote by mτ the site
of largest radius in P ∩ τ and we define a particular subset Rτ ⊆ P ∩ τ to be the set of
sites assigned to τ . Property (ii) in Definition 3.2 guarantees that each edge pq of G with
q ∈ σ and p ∈ τ is either “represented” in the decomposition by an edge originating in
mτ or we have that p ∈ Rτ . Specifically, edges pq with q ∈ P ∩σ and p ∈ P ∩ τ such that
the disk D(p) is “large” relative to |pq| are represented by the edge mσq. This allows us
to define the sets Rσ such that each site appears in O(1) such sets, see Figure 4.

Definition 3.2. Let c > 2 and let G be the transmission graph of a planar point set P .
A c-separated annulus decomposition for G consists of a finite set Q ⊂

⋃∞
i=0Qi of grid

cells, a symmetric neighborhood relation N ⊆ Q×Q between these cells, and a subset of
assigned sites Rσ ⊆ P ∩σ for each grid cell σ ∈ Q. A c-separated annulus decomposition
for G has the following properties:

(i) For every (σ, τ) ∈ N , diam(σ) = diam(τ), and d(σ, τ) = γ diam(σ), for some
γ ∈ [c− 2, 2c).

(ii) for every edge pq of G, there is a pair (σ, τ) ∈ N with q ∈ σ, p ∈ τ , and either
p ∈ Rτ or q ∈ D(mτ).

The following fact is a direct consequence of Definition 3.2. For each cell σ ∈ Q, we
define its neighborhood as N(σ) = {τ | (σ, τ) ∈ N}.

Lemma 3.3. For each cell σ ∈ Q, we have |N(σ)| = O(c2), and for each cell τ ∈ Q the
number of cells σ ∈ Q such that τ ∈ N(σ) is O(c2).

Proof. This follows from Definition 3.2(i) via a standard volume argument.

Given this decomposition, we first present a simple (and rather inefficient) rule for
picking incoming edges such that the resulting graph is a t-spanner. Then we explain
how to compute the decomposition using a quadtree. Finally, we exploit the quadtree to
make the spanner construction efficient.

Obtaining a Spanner. Let t > 1 be the desired stretch. We pick a suitable separation
parameter c and a number of cones k that depend on t, as specified later. Let (Q, N,Rσ)
be a c-separated annulus decomposition for G. For a cone C ∈ C and an integer ` ∈ N,
we define C` as the cone with the same middle axis as C but with an opening angle `

3 Spanners for Directed Transmission Graphs 7

σ

(a) By Property (i) in Definition 3.2
N(σ) covers an annulus.

qp
mτ

τ σ

(b) SinceD(mτ) (red) does not contain q, we need to
put p in Rτ to cover the edge pq (Property (ii)).

Fig. 4: Illustration of Definition 3.2

times larger than the opening angle of C. For σ ∈ Q, let Cσ be the copy of C with the
center of σ as the apex.

To obtain a t-spanner H ⊆ G, we pick the incoming edges for each site q ∈ P and
each cone C ∈ C as follows (see Algorithm 1). We consider the cells of Q containing q in
increasing order of diameter. Let σ be one such cell containing q that we process. We
traverse all neighboring cells τ of σ, that are contained in C2

σ. For each such neighboring
cell τ , we check if there exists a site r ∈ Rτ ∪ {mτ} that has an outgoing edge to q. If
such a site exists, we add to H an edge to q from a single, arbitrary, such site r. After
considering all neighbors τ of σ we terminate the processing of q and C if we added at
least one edge incoming to q. If we have not added any edge into q while processing
all neighbors τ of σ we continue to the next largest cell containing q. We use here the
extended cones C2

σ (instead of the cone Cq) to gain certain flexibility that will be useful
for later extensions of Algorithm 1.

1 Qq ← cells of Q that contain q
2 Sort the cells in Qq in increasing order by diameter
3 Make q active
4 while q is active do
5 σ ← next largest cell in Qq
6 foreach cell τ ∈ N(σ) that is contained in C2

σ do
7 if there is a r ∈ Rτ ∪ {mτ} with q ∈ D(r) then
8 Take an arbitrary such r, add the edge rq to H, and set q to inactive

Algorithm 1: Selecting the incoming edges for q and the cone C.

For each cone C ∈ C and each site q ∈ P there is only one cell σ ∈ Qq that produces
incoming edges for q. We have k cones and |N(σ)| = O(c2) by Lemma 3.3, so q has
O(c2k) incoming edges. It follows that the size of H is O(n) since c and k are constants.

Next we show that H is a t-spanner. For this, we show that every edge pq of G is
represented in H by an approximate path. We prove this by induction on the ranks of

3 Spanners for Directed Transmission Graphs 8

the edge lengths. This is done in a similar manner as for the standard Yao graphs, but
with a few twists that require three additional technical lemmas. Lemma 3.4 deals with
the imprecision introduced by taking the cone C2

σ instead of Cq. It follows from this
lemma that if pq is contained in the cone Cq then Algorithm 1 picks at least one edge rq
with r ∈ C4

q . Lemma 3.5 and Lemma 3.6 encapsulate geometric facts that are used to
bound the distance between the endpoints r and p depending on whether |rq| is larger or
smaller than |pq|. Lemma 3.6 is due to Bose et al. [3] and for completeness we include
their proof.

Lemma 3.4. Let c > 3 + 2
sin(π/k) and let ` ∈ {1, . . . , bk/2c}. Consider a cell σ ∈ Qi and

a cone C ∈ C. Fix two points q, s ∈ σ. Every cell τ ∈ Qi with d(σ, τ) ≥ (c − 2)2i that
intersects the cone C`q is contained in the cone C2`

s . In particular, any point p ∈ C`q with
|pq| ≥ (c− 2)2i lies in a cell that is fully contained in C2`

s .

Proof. Let x be a point in τ ∩ C`q . By assumption, |xq| ≥ (c − 2)2i. Let D = D(x, 2i)
be the disk with center x and radius 2i. Then, τ ⊆ D. We show that C2`

s contains D
and thus τ . Since σ has diameter 2i, and C`q contains x, the translated copy C`s must
intersect D. If D ⊂ C`s, we are done. Otherwise, there is a boundary ray ρ of C`s that
intersects the boundary of D. Let y be the first intersection of ρ with the boundary of D.
See Figure 5.

Since s ∈ σ and x ∈ τ , the triangle inequality gives that |ys| ≥ |xs| − |xy| ≥ (c− 3)2i.
Let ρ′ be the boundary ray of C2`

s corresponding to ρ and let y′ be the orthogonal
projection of y onto ρ′. Since |ys| ≥ (c−3)2i and since the angle between ρ and ρ′ is π`/k,
we get that |yy′| ≥ (c− 3)2i sin(π`/k). It follows that |yy′| ≥ 2 · 2i for c > 3 + 2

sin(π`/k) .
This holds for any ` ∈ {1, . . . , bk/2c} if c ≥ 3 + 2

sin(π/k) . Thus, τ ⊂ D ⊂ C
2`
s .

x y

y′

ρ

ρ′

sD

σ
τ

q

Fig. 5: The boundary ray ρ of C`s intersects the boundary of D in y.

Let p be a site in Cq such that pq is an edge of G, and p ∈ τ ∈ N(σ) where σ is a
cell containing q. Then by Lemma 3.4, τ is contained in C2

σ. It follows that Algorithm 1
either finds an edge rq before processing σ, or finds an edge rq with r ∈ τ while processing
σ. By applying Lemma 3.4 again we get that r ∈ C4

q . This fact is described in greater
detail and is being used in the proof of Lemma 3.7 below.

Lemma 3.5. Let C ∈ C, and let q ∈ R2. Suppose there are two points p, r ∈ C4
q with

(c− 2)2i ≤ |pq| ≤ |rq| ≤ (c+ 1)2i. Then |pr| ≤ ((8π/k)(c+ 1) + 3)2i.

Proof. The points p and r lie in an annulus around q with inner radius (c − 2)2i and
outer radius (c+ 1)2i. Since p, r ∈ C4

q , when going from p to r, we must travel at most

3 Spanners for Directed Transmission Graphs 9

(8π/k)(c + 1)2i units along the circle around q with p on the boundary, then at most
3 · 2i units radially towards r. Thus, |pr| ≤ (8π/k)(c+ 1)2i + 3 · 2i.

qp

r

(8π/k)(c+ 1)2i

3 · 2i

(a) Lemma 3.5. Two sites in an annulus are
close to each other.

q
p

r
α

(b) Lemma 3.6. If α is small and |rq| ≤ |pq|,
then |pr| < |pq|.

Lemma 3.6 (Lemma 10 in [3]). Let k ≥ 25 be large enough such that

1 +
√

2− 2 cos(8π/k)
2 cos(8π/k)− 1 = 1 + Θ(1/k) ≤ t

for our desired stretch factor t. For any three distinct points p, q, r ∈ R2 such that
|rq| ≤ |pq| and α = ∠pqr is between 0 and 8π/k, we have |pr| ≤ |pq| − |rq|/t.

Proof. By the law of cosines and since 0 ≤ α ≤ 8k/π we have that

|pr|2 = |pq|2 + |rq|2 − 2|pq| · |rq| cosα ≤ |pq|2 + |rq|2 − 2|pq| · |rq| cos(8π/k)

Introducing t by adding and subtracting equal terms, this is

= |pq|2 − 2
t
|pq| · |rq|+ 1

t2
|rq|2 + t2 − 1

t2
|rq|2 − 2(t cos(8π/k)− 1)

t
|pq| · |rq|

=
(
|pq| − |rq|

t

)2
+ t2 − 1

t2
|rq|2 − 2(t cos(8π/k)− 1)

t
|pq| · |rq|.

We complete the proof by showing that under the assumptions of the lemma t2−1
t2 |rq|

2 −
2(t cos(8π/k)−1)

t |pq| · |rq| ≤ 0. We have that

t2 − 1
t2
|rq|2 − 2(t cos(8π/k)− 1)

t
|pq| · |rq| = |rq|

2

t2

(
t2 − 1− 2(t2 cos(8π/k)− t) |pq|

|rq|

)
≤ |rq|

2

t2

(
t2 − 1− 2(t2 cos(8π/k)− t)

)
,

where the last inequality follows since |pq| ≥ |rq| and

t ≥ 1 +
√

2− 2 cos(8π/k)
2 cos(8π/k)− 1 ≥ 1

2 cos(8π/k)− 1 ≥
1

cos(8π/k) ,

so t cos(8π/k) ≥ 1. Now we have that

t2 − 1− 2(t2 cos(8π/k)− t) = (1− 2 cos(8π/k))t2 + 2t− 1 ≤ 0

3 Spanners for Directed Transmission Graphs 10

if cos(8π/k) > 1/2 and
1 +

√
2− 2 cos(8π/k)

2 cos(8π/k)− 1 ≤ t .

The latter inequality holds by assumption and cos(8π/k) > 1/2 for k ≥ 25.

We are now ready to bound the stretch of the spanner H. This is done in two steps.
In the first step (Lemma 3.7) we prove that for any edge pq of G which is not in H, there
exists a shorter edge rq in H, such that r is “close” to p. This fact allows us to prove,
via a fairly standard inductive argument, that H is indeed a spanner of G.

Lemma 3.7. Let c and k be such that c > 3 + 2
sin(π/k) as required by Lemma 3.4, k

satisfies the conditions of Lemma 3.6 and, in addition, c ≥ 2 + 2t
t−1 and k ≥ 16πt

t−1 . Let
pq be an edge of G. Then either pq is in H or there is an edge rq in H such that
|pr| ≤ |pq| − |rq|/t.

Proof. Let N be the neighborhood relation of the c-separated annulus decomposition used
by Algorithm 1. Let (σ, τ) ∈ N be a pair of neighboring cells satisfying requirement (ii)
of Definition 3.2 with respect to pq. In particular we have that q ∈ σ and p ∈ τ . If there
is more than one such pair (σ, τ) ∈ N , we consider the pair with minimum diameter. Let
diam(σ) = 2i, that is σ, τ ∈ Qi.

Let C ∈ C be the cone such that p ∈ Cq. Since p ∈ Cq∩τ and since d(σ, τ) ≥ (c−2)2i,
Lemma 3.4 implies that τ ⊂ C2

σ. Hence, τ is considered for incoming edges for q (line 6
in Algorithm 1). We split the rest of the proof into two cases.
Case 1: q remains active until (σ, τ) is considered. Requirement (ii) of Definition 3.2
guarantees that Algorithm 1 finds an incoming edge rq for q with r ∈ τ . If r = p, we are
done, so suppose that r 6= p. Since diam(σ) = 2i and |rq| ≥ d(σ, τ) ≥ (c− 2)2i we have

|pr| ≤ 2i = |pq| − (|pq| − 2i) ≤ |pq| − (|rq| − 2 · 2i)
≤ |pq| − (|rq| − 2|rq|/(c− 2)) ≤ |pq| − |rq|(1− 2/(c− 2)) ≤ |pq| − |rq|/t,

for c ≥ 2 + 2t
t−1 .

q
r
p

στ

(a) Case 1: p and r are in the same cell σ.

qp
στ

r

σ

τ

(b) Case 2: p and r are in different cells with
different levels but in the same cone C4

q .

Case 2: q becomes inactive before (σ, τ) is considered. Then Algorithm 1 has selected
an edge rq while considering a pair (σ̄, τ̄) ∈ N with q ∈ σ̄, r ∈ τ̄ and diam(σ̄) ≤ 2i−1.
We now distinguish two subcases.

3 Spanners for Directed Transmission Graphs 11

Subcase 2a |rq| ≥ |pq|. From Property (i) of Definition 3.2, it follows that d(σ, τ) ≥
(c − 2)2i and therefore |pq| ≥ (c − 2)2i. It also follows from the same property that
d(σ̄, τ̄) ≤ 2c2i−1, so |rq| ≤ 2c2i−1 + 2 · 2i−1 = (c+ 1)2i. Combining these inequalities we
obtain that (c−2)2i ≤ |pq| ≤ |rq| ≤ (c+ 1)2i and therefore |pq| ≥ |rq|−3 ·2i. Lemma 3.5
implies that |pr| ≤ ((8π/k)(c+ 1) + 3)2i, and thus we have

|pr| ≤ ((8π/k)(c+ 1) + 3)2i

≤ |pq| − |pq|+ ((8π/k)(c+ 1) + 3)2i

≤ |pq| −
(
|rq| − 3 · 2i − ((8π/k)(c+ 1) + 3)2i

)
≤ |pq| −

(
|rq| − (8π(c+ 1)− 6)2i

k

)
≤ |pq| − |rq|

(
1− (8π(c+ 1)− 6)

k(c− 2)
)

≤ |pq| − |rq|
(
1− 16π

k

)
.

The third inequality follows since |pq| ≥ |rq| − 3 · 2i as we argued above, and the fifth
inequality follows since 2i ≤ |rq|/(c − 2). The last inequality holds for c ≥ 5 (which
follows from our assumptions). Now we clearly have that

|pq| − |rq|
(
1− 16π

k

)
≤ |pq| − |rq|/t,

for k ≥ 16πt
t−1 .

Subcase 2b |rq| < |pq|. By assumption, we have p ∈ Cq ⊂ C4
q . Furthermore, by

applying Lemma 3.4 with the midpoint of σ̄ as q, r as p, and q as s, in the statement
of the lemma, we get that r ∈ C4

q . Since p, r ∈ C4
q and since the opening angle of C4

q is
8π/k, it follows from Lemma 3.6 that |pr| ≤ |pq| − |rq|/t.

Lemma 3.8. For any t > 1, there are constants c and k such that H is a t-spanner for
the transmission graph G.

Proof. We pick the constants c and k so that Lemma 3.7 holds. We prove by induction
on the indices of edges when ordered by their lengths, that for each edge pq of G, there is
a path from p to q in H of length at most t|pq|. For the base case, consider the shortest
edge pq in G. By Lemma 3.7, if pq is not in H then there is an edge rq in H such that
|pr| ≤ |pq| − |rq|/t. Since pq is an edge of G, it follows that rp ≥ |pq| and therefore pr
must also be an edge of G, and it is shorter than pq. This gives a contradiction and
therefore pq must be in H.

For the induction step, consider an edge pq of G. If pq is in H we are done. Otherwise
by Lemma 3.7 there is an edge rq in H such that |pr| ≤ |pq| − |rq|/t. As argued above,
pr is an edge of G shorter than |pq| so by the induction hypothesis, there is a path from
p to r in H of length no larger than t|pr|. It follows that

dH(p, q) ≤ dH(p, r) + |rq| ≤ t|pr|+ |rq| ≤ t(|pq| − |rq|/t) + |rq| ≤ t|pq|,

as required.

3 Spanners for Directed Transmission Graphs 12

Finding the Decomposition. We use a quadtree to define the cells of the decomposition.
We recall that a quadtree is a rooted tree T in which each internal node has degree four.
Each node v of T is associated with a cell σv of some grid Qi, i ≥ 0, and if v is an internal
node, the cells associated with its children partition σv into four congruent squares, each
with diameter diam(σv)/2. If σv is from Qi then we say that v is of level i. Note that all
nodes of T at the same distance from the root are of the same level.

Let c be the required parameter for the annulus decomposition. We scale P such that
the closest pair in P has distance c. (We use P to denote also the scaled point set). Let
L be the smallest integer such that we can translate P so that it fits in a single cell σ of
QL. Since c is constant and P has spread Φ, the diameter of P (after scaling) is cΦ and
therefore L = O(log Φ). We translate P so that it fits in σ and we associate the root r of
our quadtree T with this cell σ, i.e. σr = σ. By the definition of a level, r is of level L.

We continue constructing T top down as follows. We construct level i− 1 of T , given
level i, by splitting the cell σv of each node v, whose cell σv is not empty, into four
congruent squares, and associate each of these squares with a child of v. We stop the
construction of T after generating the cells of level 0. The scaling which we did to P
ensures that each cell of a leaf node at level 0 contains at most one site.

We now set Q = {σv | v ∈ T}. We define N as the set of all pairs (σv, σw) ∈ Q×Q
such that v and w are at the same level in T and d(σv, σw) ∈ [c− 2, 2c) diam(σv).1 For
σ ∈ Q, we define Rσ to be the set of all sites p ∈ σ ∩ P with rp ∈ [c, 2(c+ 1)) diam(σv).

Lemma 3.9. (Q, N,Rσ) is a c-separated annulus decomposition for G.

Proof. Property (i) of Definition 3.2 follows by construction. To prove that Property (ii)
holds consider an edge pq of G. Let i be the integer such that |pq| ∈ [c, 2c)2i. Let σ, τ be
the cells of Qi with p ∈ σ and q ∈ τ . By construction, σ and τ are assigned to nodes of
the quadtree and thus contained in Q. Since diam(σ) = diam(τ) = 2i, we have

(c− 2)2i ≤ |pq| − 2 diam(σ) ≤ d(σ, τ) ≤ |pq| < c2i+1,

and therefore (σ, τ) ∈ N by our definition of N . Since pq is an edge of G, it follows that
rp ≥ |pq| ≥ c2i. If rp < (c+ 1)2i+1, then p ∈ Rσ. Otherwise, rmσ ≥ rp ≥ (c+ 1)2i+1, and
q ∈ τ ⊂ D(mσ).

Computing the Edges of H. We find edges for each cone C ∈ C separately as follows.
For each pair of neighboring cells σ and τ ∈ N(σ) such that τ is contained in C2

σ we find
all incoming edges to sites in σ from sites in τ simultaneously. To do this efficiently, we
need to sort the sites in σ along the x and y directions. Therefore, we process the cells
bottom-up along T in order of increasing levels. This way we can obtain a sorted list of
the sites in each cell σ by merging the sorted lists of its children. See Algorithm 2.

Note that the edges selected by Algorithm 2 have the same properties as the edges
selected by Algorithm 1. Thus, by Lemma 3.8, the resulting graph is a t-spanner. Let Q
be the set of active sites in σv when processing v. Let τ ∈ N(σv) such that τ is contained

1 We denote the interval [adiam(σv), b diam(σv)) by [a, b) diam(σv).

3 Spanners for Directed Transmission Graphs 13

1 for i = 0, . . . , L do
2 foreach v ∈ T of level i do
3 Q← active sites in σv ∩ P

// preproccesing
4 Sort Q in x and y-direction by merging the sorted lists of the children of v

foreach τ ∈ N(σv) contained in C2
σv do

5 R← Rτ ∪ {mτ}
// edge selection

6 For each site q ∈ Q, find a r ∈ R with q ∈ D(r), if it exists; add the
edge rq to H

7 Set all q ∈ Q for which at least one incoming edge was found to inactive

Algorithm 2: Selecting the edges for H for a fixed cone C.

in C2
σv and let R = Rτ ∪ {mτ}. Assume |Q| = n and |R| = m. To find the edges from

sites in R to sites in Q efficiently, we use the fact that these sets of sites are separated by
a line parallel to either the x- or the y-axis.

Assume without loss of generality that ` is the x-axis, the sites of R are above ` and
the sites of Q are below `, and assume that Q is sorted along `. For each site p ∈ R we
take the part of D(p) which lies below ` and compute the union of these “caps”. This
union is bounded from above by ` and from below by the lower envelope of the arcs of
the boundaries of the caps. The complexity of the boundary of this union is O(m) and it
can be computed in O(m logm) time [25]. See Figure 8.

Once we have computed this union we check for each q ∈ Q whether q lies inside it.
This can be done by checking whether the intersection, z, of a vertical line through q
with the union is above or below q. If q is above z then we add the edge rq to H where r
is the site such that z ∈ ∂D(r). We perform this computation for all sites in Q together
by a simple sweep in the x-direction while traversing in parallel the lower envelope of the
caps and the sites of Q. This clearly takes O(m+ n) time.

`
R

Q

Fig. 8: The lower envelope (orange), the sites Q (red) and R (blue), and the sweepline
(green).

We thus proved the following lemma.

Lemma 3.10. Let Q, R, and ` be as above with |Q| = n and |R| = m. Suppose that Q
is sorted along ` and that ` separates Q and R. We can compute in O(m logm+ n) time
for each q ∈ Q one disk from R that contains it, provided that such a disk exists.

3 Spanners for Directed Transmission Graphs 14

Analysis. We prove that Algorithm 2 runs in O(n log Φ) time and uses O(n log Φ) space.
The running time is dominated by the edge selection step described in Lemma 3.10. We
argue that each site participates in O(1) edge selection steps as a disk center (in R)
and in O(log Φ) edge selection steps as a vertex looking for incoming edges. From these
observations (and the fact that Φ = Ω(n1/2)) the stated time bound essentially follows.

Lemma 3.11. We construct the spanner H of the transmission graph G in O(n log Φ)
time and space.

Proof. The quadtree T can be computed in O(n log Φ) time and space [2], and within
this time bound we can also compute N(σv), Rσv , and mσv for each node v ∈ T .

Merging the sorted lists of the sites in σw for each child w of v to obtain the sorted
list of the sites in σv (line 4 in Algorithm 2) takes time linear in the number of sites in
σv. Summing up over all nodes v in a single level of T we get that the total merging time
per level is O(n), and O(n log Φ) for all levels.

To analyze the time taken by the edge selection steps (line 6 in Algorithm 2), consider
a particular pair (σ, τ) ∈ N for which the algorithm runs the edge selection step. By
Lemma 3.10, if we charge mτ by O(1), each disk center in Rτ by O(logn) and each active
site in σ ∩ P by O(1) then the total charges cover the cost of the edge selection step
for (σ, τ). There are O(n log Φ) nodes in T and therefore O(n log Φ) cells τ in Q. By
Lemma 3.3 each such cell τ participates in an edge selection step of O(c2) = O(1) pairs.
So the total charges to the site mτ over all cells τ , is O(n log Φ).

By construction, each p ∈ P is assigned to O(1) sets Rτ and by Lemma 3.3 each τ
participates in an edge selection steps of O(c2) = O(1) pairs. It follows that the total
charges to a site p from edge selections steps of pairs (σ, τ) such that p ∈ Rτ is O(logn).

Finally, each site is active for O(c2) = O(1) pairs in N at each of O(log Φ) levels. So
the total charges to a site p from edge selections steps of pairs (σ, τ) such that p is active
in σ ∩ P is O(n log Φ). We conclude that the total running time of all edge selection
steps is O(n logn+ n log Φ) = O(n log Φ), since log Φ = Ω(logn).

Theorem 3.1 follows by combining Lemmas 3.8 and 3.11.

3.2 From Bounded Spread to Bounded Radius Ratio
Let P ⊂ R2 be a set of sites with radius ratio Ψ. We extend our spanner construction
from Section 3.1 such that the running time depends on Ψ, the ratio between the largest
to smallest radii, rather than on the spread Φ. This is a more general result as we may
assume that Ψ ≤ 2Φ (see Section 2). We prove the following theorem.

Theorem 3.12. Let P be a set of n sites in the plane with radius ratio Ψ. For any fixed
t > 1, we can compute a t-spanner for the transmission graph G of P in O(n(logn+log Ψ))
time and O(n log Ψ) space.

The main observation which we use is that sites that are close together form a clique
in G and can be handled using classic spanner constructions, while sites that are far away
from each other belong to distinct components of G and can be dealt with independently.

3 Spanners for Directed Transmission Graphs 15

Given t, we pick sufficiently large constants k = k(t) and c = c(t) as specified in
Section 3.1. We scale the input such that the smallest radius is c. Let M = cΨ be the
largest radius after we did the scaling. First, we partition P into sets that are far apart
and can be handled separately.

Lemma 3.13. We can partition P into sets P1, . . . , P`, such that each set Pi has diameter
O(nΨ) and for any i 6= j, no site of Pi can reach a site of Pj in G. Computing the
partition takes O(n logn) time and O(n) space.

Proof. We assign to each site p ∈ P an axis-parallel square Sp that is centered at p and
has side-length 2M . We define the intersection graph GS that has a vertex for each
site in P , and an edge between two vertices p and q if and only if Sp ∩ Sq 6= ∅. (GS is
undirected.)

If follows that if there is no (undirected) path from p to q in GS , then there is no
(directed) path from p to q in G. We can compute the connected components of GS in
O(n logn) time by sweeping the plane using a binary search tree [24]. Let P1, . . . , P` be
the vertex sets of these connected components. By construction, each set of sites Pi has
diameter O(nM) and for any i 6= j, no site in Pi can reach a site in Pj in G.

By Lemma 3.13, we may assume that the diameter of our input set P is O(nΨ). We
compute a hierarchical decomposition T for P as in Section 3.1, with a little twist as
follows. We translate P so that it fits in a single grid cell σ of diameter O(nΨ). Starting
from σ, we recursively subdivide each non-empty cell into four congruent cells of half the
diameter. We do not subdivide cells of level 0 whose diameter is 1. We partition all cells
of a particular level in O(n) time and O(n) space.

We construct a quadforest T such that the roots of its trees correspond to the
non-empty cells of level L = dlog Ψe in our decomposition. Each internal node of T
corresponds to a non-empty cell obtained when subdividing the cell of its parent. It
suffices to store only the lowest L levels, since larger cells cannot contribute any edges
to the spanner (as we will argue below). The forest T requires O(n log Ψ) space and we
compute it in O(n(logn+ log Ψ)) time.

We cannot derive from T a c-separated annulus decomposition for G as we did in
Section 3.1. In particular a cell corresponding to a leaf of T may now contain many
sites that are adjacent in G. For edges induced by such pairs of sites we cannot satisfy
Property (ii) of Definition 3.2.

We can (and do) derive from T a partial c-separated annulus decomposition (Q, N,Rσ)
exactly as described in Section 3.1 before Lemma 3.9. This decomposition satisfies
Property (ii) of Definition 3.2 for all edges pq with d(σ, τ) ≥ (c− 2), where σ and τ are
the level 0 cells of T containing q and p, respectively. The proof that Property (ii) of
Definition 3.2 holds for these edges is the same as the proof of Lemma 3.9. In particular,
in the proof of Lemma 3.9, we argue that pairs of cells at level i guarantee Property
(ii) of Definition 3.2 for edges of length in [c, 2c)2i. Since the edges of G are of length
at most M = cΨ, the cells up to level L = dlog Ψe suffice to guarantee Property (ii) of
Definition 3.2 for all edges pq with d(σ, τ) ≥ (c− 2).

3 Spanners for Directed Transmission Graphs 16

We mark all sites of P as active, and we run Algorithm 2 of Section 3.1 using T and
the partial c-separated annulus decomposition that we derived from it. The resulting
graph H is not yet a t-spanner since the decomposition was only partial.

To make H a spanner we add to it more edges that “take care” of the edges not
“covered” by the c-separated annulus decomposition. We consider each pair of level 0 cells
σ and τ with d(σ, τ) < c− 2. The set of sites Q = (P ∩ σ) ∪ (P ∩ τ) form a clique, since
the distance between each pair of sites in Q is no larger than c. We compute a Euclidean
t-spanner for Q of size O(|Q|) in O(|Q| log |Q|) time [22] and for each (undirected) edge
pq of this spanner we add pq and qp to H. As each site p ∈ P participates in O(c2) such
spanners, we generate in total O(n) edges in O(n logn) time.

We now prove that H is indeed a t-spanner. The proof is analogous to the proof of
Lemma 3.8.

Lemma 3.14. For any t > 1, there are constants c = c(t) and k = k(t) such that H is
a t-spanner for the transmission graph G.

Proof. By construction, H is a subgraph of G. Let pq be an edge of G, and let σ and τ
be the level 0 cells with q ∈ σ and p ∈ τ . If d(σ, τ) < c− 2, then the Euclidean t-spanner
for σ and τ contains a path from p to q of length at most t|pq|.

For the remaining edges, the lemma is proved by induction on the rank of the edges
when we sort them by length, as in Lemma 3.8. The proof is almost verbatim as before;
we only comment on the base case. Let pq be the shortest edge in G. If the endpoints
p and q lie in level 0 cells whose distance is less than c − 2, we have already argued
that H contains an approximate path from p to q. Otherwise, the same argument as in
Lemma 3.8 applies, and the algorithm includes pq in H.

Using Lemma 3.14, Theorem 3.12 follows just as Theorem 3.1 in Section 3.1. The
analysis of the space and time required by our construction is exactly as in Lemma 3.11,
but now T has O(log Ψ) levels.

3.3 Spanners for Unbounded Spread and Radius Ratio
We eliminate the dependency of our bounds on the radius ratio at the expense of a more
involved data structure and an additional polylogarithmic factor in the running time.
Given P ⊂ R2 and the desired stretch factor t > 1, we choose appropriate parameters
c = c(t) and k(t) as in Section 3.2 and rescale P such that the distance between the
closest pair of points in P is c+ 2.

To get the spanner of G we compute a compressed quadtree T for P . A compressed
quadtree is a rooted tree in which each internal node has degree 1 or 4. Each node v is
associated with a cell σv of a grid Qi. If v has degree 4, then the cells associated of its
children partition σv into 4 congruent squares of half the diameter, and at least two of
them must be non-empty. If v has degree 1, then the cell associated with the only child
w of v has diameter at most diam(v)/4 and (σv \ σw) ∩ P = ∅. Each internal node of T
contains at least two sites in its cell and each leaf at most one site. For technical reasons
we assume that the cell associated with a leaf v has diameter 1. Since v contains a single

3 Spanners for Directed Transmission Graphs 17

point p we can artificially guarantee this by shrinking the cell associated with v to the
cell of diameter one containing p.

Note that, in contrast with (uncompressed) quadtrees, the diameter of σv may be
smaller than 2L−i, where i is the the distance of v to the root and 2L is the diameter of
the root. A compressed quadtree for P with O(n) nodes can be computed in O(n logn)
time [13].

To simplify the notation in the rest of this section, we write diam(v) instead of
diam(σv), and for two nodes v, w, we write d(v, w) for d(σv, σw).

Our approach is to use the algorithm from Section 3.1 on the compressed quadtree T .
One problem with this approach is that the depth of T may be linear, so considering
all sites for incoming edges at each level, as in Algorithm 2, would be too expensive.
We tackle this difficulty by using Chan’s dynamic nearest neighbor data structure to
speed up this stage. We achieve this speedup by reusing at a node v the largest structure
among the structures at the children of v. The data structure of Chan has the following
properties.

Theorem 3.15 (Chan, Afshani and Chan, Chan and Tsakalidis, Kaplan et al [1,8,9,18]).
There exists a dynamic data structure that maintains a planar point set S such that

(i) we can insert a point into S in O(log3 n) amortized time;

(ii) we can delete a point from S in O(log5 n) amortized time; and

(iii) given a query point q, we can find the nearest neighbor of a query point q in S in
O(log2 n) worst case time.

The space requirement is O(n).

We note that the history of Theorem 3.15 is a bit complicated: Chan’s original
paper [8] describes a randomized data structure with O(n log logn) space. Afshahni
and Chan [1] describe a randomized three-dimensional range reporting structure that
improves the space to O(n). Chan and Tsakalidis [9] show how to make both the dynamic
nearest neighbor structure and the range reporting structure deterministic. Kaplan et
al [18] reduce the amortized deletion time from O(log6 n) to O(log5 n), which gives the
current form of Theorem 3.15.

Another problem arises when we try to use the algorithm from Section 3.1 on the
compressed quadtree T . We need to define an appropriate neighborhood relation. The
neighborhood relation from Section 3.1 relied on the fact that in a quadtree each point
appears for every i in the appropriate range in exactly one cell whose diameter is 2i. This
is no longer the case in a compressed quadtree.

As in Section 3.1, the neighborhood relation N which we define here would consist of
pairs (σv, σw) such that diam(v) = diam(w) and d(v, w) ∈ [c − 2, 2c) diam(v). The set
Rσv would consist of all sites in σv ∩ P whose radius is in [c − 2, 2(c + 1)) diam(v), a
slightly larger interval than in the previous sections. To make sure that N and Rσ fulfill
Property (ii) of Definition 3.2, we insert O(n) additional nodes into T so that Q contains
the appropriate cells. To find these nodes, we adapt the WSPD algorithm of Callahan
and Kosaraju [6].

3 Spanners for Directed Transmission Graphs 18

Lemma 3.16. Given a constant c > 5, we can in O(n logn) time insert O(n) nodes
into T so that Q = {σv | v ∈ T} with N and Rσ defined as stated above is a c-separated
annulus decomposition for G. In the same time, we can compute N and all sets Rσ.

call wspd1(r) on the root of T
1 wspd1(v) :

2 if v is a leaf then
3 return ∅
4 else
5 Return the union of wspd1(w) and wspd2(w1, w2) for all children w and pairs

of distinct children w1, w2 of v
1 wspd2(v, w) :

2 if d(v, w) ≥ cmax{diam(v), diam(w)} then
3 return {v, w}
4 else if diam(v) ≤ diam(w) then
5 return the union of wspd2(v, u) for all children u of w.
6 else
7 return the union of wspd2(u,w) for all children u of v

Algorithm 3: Computing a well-separated pair decomposition from a compressed
quadtree T . We scale the input such that the distance between the closest pair of
points is c+ 2. This guarantees that when v and w are both leaves, wspd2(v, w)
returns {v, w}.

Proof. First, we run the usual algorithm for finding a c-well-separated pair decomposition
on T [6]; see Algorithm 3 for pseudocode. It is well known [21] that the algorithm runs
in O(n) time and returns a set W of O(n) pairs {v, w} of nodes in T such that

(a) for each two distinct sites p, q, there is exactly one {v, w} ∈W with q ∈ σv, p ∈ σw;

(b) for each {v, w} ∈W , we have c ·max{diam(v), diam(w)} ≤ d(v, w);

(c) for every call wspd2(v, w), max{diam(v), diam(w)} ≤ min{diam(v), diam(w)}, where
v, w are the parents of v and w in T ;

In particular, note that since we scaled P such that the closest pair has distance c+ 2,
(b) is satisfied by any pair of (non-empty) cells of Q0.

For each pair {v, w} ∈W , we insert two nodes v′ and w′ into T such that diam(v′) =
diam(w′) and such that d(v′, w′) is approximately c · diam(v′). Suppose that {v, w} was
generated through a call wspd2(v, w) in Algorithm 3 (the case that {v, w} was generated
through the call wspd2(v, w) is similar). Let r′ = min{d(v, w)/c,diam(w)} and let r be
equal to r′ rounded down to the highest power of 2.
Observe that

r ≤ diam(w) ≤ diam(v), (1)

3 Spanners for Directed Transmission Graphs 19

because r ≤ diam(w) by definition, and diam(w) ≤ diam(v) by (c) and our assumption
that wspd2(v, w) was called.
Furthermore, we have

max{diam(v),diam(w)} ≤ r. (2)

This follows from (c) if r′ = diam(w) and from (b) if r′ = d(v, w)/c (recall that diam(v)
and diam(w) are powers of two).

It follows from (1) and (2) that we can insert nodes v′ and w′ into T between v and
v and between w and w, respectively, such that diam(v′) = diam(w′) = r and such that
σv ⊆ σv′ ⊆ σv and σw ⊆ σw′ ⊆ σw.

We insert all these new nodes into T efficiently by partitioning them according to the
parent-child pair in T that they should be inserted between. We sort all the new nodes
x that should be inserted between each particular parent-child pair v, v by decreasing
diameter and remove “duplicate nodes”: That is among each group of nodes of the same
diameter we leave only one. Finally, we insert to T a path consisting of the remaining
nodes in order, making the first node on the path a child of v and the last node on the
path a parent of v. It takes O(n logn) time to insert all the O(n) new nodes.

To find the sets Rσ, we consider each site p ∈ P and we identify the nodes v in T
such that p ∈ Rσv in O(logn) time as follows. Since c > 5 there are at most two integers
i such that rp ∈ [c− 2, 2(c+ 1))2i. For each such i, we identify (in O(1) time) the cell
σ ∈ Qi containing p and then determine whether σ is associated with a node v in T . The
latter step requires O(logn) time with an appropriate data structure. If indeed there is
such a node v we insert p into Rσv . Thus, the total time we spend to find all sets Rσ is
O(n logn). We compute the pairs in N similarly also in O(n logn) time.

We now argue that this construction yields a c-separated annulus decomposition for
P . Property (i) of Definition 3.2 holds by construction. To prove that Property (ii) of
Definition 3.2 holds consider some edge pq in G.

Since W is a c-WSPD, by (a) there is a pair {v, w} ∈ W with q ∈ σv and p ∈ σw.
Suppose that {v, w} was generated through the call wspd2(v, w). Thus, we must have
inserted nodes v′ and w′ into T with σv ⊆ σv′ ⊆ σv, σw ⊆ σw′ ⊆ σw, and with
diam(v′) = diam(w′) = r. Hence, q ∈ σv′ and p ∈ σw′ .

We claim that (σv′ , σw′) ∈ N . To prove this claim observe that since r ≤ d(v, w)/c it
follows that

d(v′, w′) ≥ d(v, w)− 2r ≥ cr − 2r = (c− 2) diam(v′), (3)

Furthermore, if r′ = d(v, w)/c, then d(v, w)/2c < r ≤ d(v, w)/c and therefore

d(v′, w′) ≤ d(v, w) ≤ 2cr. (4)

Since {v, w} was generated through a call wspd2(v, w) we know that d(v, w) ≤
cdiam(w). So if r′ = diam(w) (implying r = r′ = diam (w′) = diam(v′)) then we have

d(v′, w′) ≤ d(v, w) + diam(v′) ≤ (c+ 1)r ≤ 2cr. (5)

By (3),(4) and (5), we get (σv′ , σw′) ∈ N . Finally, since pq is an edge of G, we
have rp ≥ d(v′, w′) ≥ (c − 2) diam(w′), by (3). If rp < (c + 1) diam(w′), then p ∈ Rσw′ .

3 Spanners for Directed Transmission Graphs 20

Otherwise let m be the site in σw′ ∩ P with the largest radius. Then, rm ≥ rp ≥
(c + 1) diam(w′), so D(m) contains σv′ and thus q. This establishes Property (ii) of
Definition 3.2.

Computing the Edges of H. As already mentioned, to construct the spanner H ⊆ G
for a stretch factor t > 1, we choose appropriate constants k = k(t) and c = c(t), scale P
such that the closest pair has distance c+ 2, and compute a compressed quadtree T for
P . To obtain a c-separated annulus decomposition (Q, N,Rσ) for G, we augment T with
O(n) nodes as described in the proof of Lemma 3.16.

We select the spanner edges for each cone C ∈ C separately, as follows. For each leaf
v of T , we create a dynamic nearest neighbor (NN) data structure Sv as in Theorem 3.15
containing initially the single point p ∈ σv ∩ P . We call a site p active if p ∈ Sv for some
node v in T . So initially, all sites of P are active. Then we process the nodes of T in
order of increasing diameter similarly to Algorithm 2 of Section 3.1.

Let w be the child of v such that |Sw| is largest. We generate Sv from Sw by inserting
into Sw all the active sites of the children of v other than w (we call this the preproccesing
step at v). Then we use Sv to do the edge selection for all τ ∈ N(σv) contained in C2

σv ;
see Algorithm 4. We take a site r ∈ R = Rτ ∪ {mτ} and repeatedly query Sv for the site
closest to r. Let q be the result. If rq is an edge in G, we add rq to H, delete q from Sv,
and do another query with r. Otherwise, we continue with the next site of R, until all of
R is processed. (This step is called the edge selection step at v.)

// preproccesing
1 Let w be the child of v whose Sw contains the most sites
2 Insert all active sites of each child w′ 6= w of v into Sw
3 Set Sv ← Sw
4 foreach τ ∈ N(σv) contained in C2

σv do
5 foreach r ∈ R = Rτ ∪ {mτ} do

// edge selection
6 q ← NN(v, r) // query Sv with r
7 while q ∈ D(r) and q 6= ∅ do
8 add the edge rq to H; delete q from Sv; q ← NN(v, r)
9 reinsert all deleted sites into Sv

10 delete all q from Sv for which at least one edge rq was found

Algorithm 4: Selecting incoming edges for the sites of a node v and a cone C.

The edges selected by Algorithm 4 have the same properties as the edges selected
by Algorithm 1. Thus, by Lemma 3.8 we obtain a t-spanner H. Next, we analyze the
running time.

Lemma 3.17. Algorithm 4 has a total running time of O(n log5 n) and it requires O(n)
space.

4 Applications 21

Proof. It takes O(n logn) to compute the compressed quadtree and to find the neighboring
pairs as in Lemma 3.16. Initializing the nearest neighbor structures Sv at the leaves v
takes O(n) time.

Consider now the preprocessing phases at internal nodes v. That is the construction
of Sv from Sw where w is a child of v, by inserting into it the active sites from structures
Sw′ from the children w′ 6= w of v. Since Sw is the largest structure among the structures
of the children of v, each time a site is inserted, the size of the nearest neighbor structure
that contains it increases by a factor of at least two. Thus, each site is inserted O(logn)
times. By Theorem 3.15 each such insertion takes O(log3 n) time. So the total time it
takes to perform all these insertions is O(n log4 n).

For the edge selection, consider two nodes v and w in T whose cells are neighbors.
For each site r in R = Rσw ∪mσw , we perform one nearest neighbor query at line 6 of
Algorithm 4 (the initial query with r). We now evaluate what is the total time spent
performing these initial queries.

By Lemma 3.3 each cell has O(c2) neighbors so each site mσw generates O(c2) queries.
The total number of sites mσw is equal to the number of nodes in T , which is O(n).
Therefore the total number of initial nearest neighbor queries generated by sites mσw is
O(n).

Each site is assigned to Rσw for at most two nodes w and may generate O(c2) nearest
neighbor queries when we process the neighboring cells of each such cell σw. Therefore
the total number of initial nearest neighbor queries generated by sites in sets Rσw is also
O(n).

By Theorem 3.15 the time it takes to perform a query is O(log2 n) so the total time
spent by initial queries is O(n log2 n).

For each edge that we create in the while loop of line 7, we perform at most two
deletions, one insertion and one additional nearest neighbor query. Since H has O(n)
edges, the total time required to perform these operations is O(n log5 n) by Theorem 3.15.

The total size of the compressed quadtree and of the associated data structures is
O(n). Furthermore, a dynamic nearest neighbor structure with m elements requires
O(m) space [8]. Thus, since at any time each site lies in at most one dynamic nearest
neighbor structure, the total space requirement is O(n).

We conclude this section with the following theorem that follows from Lemma 3.17
and the discussion preceding it.

Theorem 3.18. Let P ⊂ R2 be an n-point set. For any t > 1, we can compute a
t-spanner for the transmission graph G of P in O(n log5 n) time and O(n) space.

4 Applications

We present two applications of our spanner construction. We show how to use it to
compute a breadth first search (BFS) tree from a particular vertex in a transmission
graph, and we show how to use it to extend a given reachability data structure for
additional queries specific to transmission graphs. In both applications, we need to

4 Applications 22

represent the union of a set of disks in the plane (in our case these are the disks D(p) for
p ∈ P). It is well-known that the boundary of this union has linear complexity [19]. To
represent it algorithmically, we use the power diagram, which is a weighted version of the
Voronoi Diagram. More specifically, the power distance between a point q, and a disk
with center p and radius r, is (d(p, r))2 − r2. The power diagram partitions the plane
into n regions, such that all points in a specific region have the same closest disk in power
distance. The power diagram of a set of n disks is of size O(n) and can be constructed in
O(n logn) time. If the power diagram is augmented with a point location structure, we
can locate the disk D that minimizes the power distance from a query point q in O(logn)
time. In particular we can determine in O(logn) time if q is in the union of the disks by
checking if q ∈ D [15, 20].

4.1 From Spanners to BFS Trees
We show how to compute the BFS tree in a transmission graph G from a given root
s ∈ P using the spanner constructions from the previous section. We adapt a technique
that Cabello and Jejĉiĉ developed for unit-disk graphs [5]. Denote by dh(s, p) the BFS
distance (also known as hop distance) from s to p in G. Let Wi ⊆ P be the sites
p ∈ P with dh(s, p) = i. Cabello and Jejĉiĉ used the Delaunay triangulation (DT) to
efficiently identify Wi+1, given W0, . . . ,Wi. We use our t-spanner in a similar manner for
transmission graphs.

Lemma 4.1. Let t be small enough, and let H be the t-spanner for G as in Theorem 3.1,
3.12 or 3.18. Let v ∈ Wi+1, for some i ≥ 1. Then, there is a site u ∈ Wi and a path
u = q`, . . . , q1 = v in H with dh(s, qj) = i+ 1 for j = 1, . . . , `.

Proof. We focus on the spanner from Theorem 3.12, since it has the most complicated
structure. The proof for the other constructions is similar and simpler.

Since v ∈ Wi+1, there is a w ∈ Wi with v ∈ D(w). If H contains the edge wv, the
claim follows by setting u = q2 = w and q1 = v. Otherwise, we construct the path
backwards from v (see Figure 9). Suppose we have already constructed a sequence
v = q1, q2, . . . , qk of sites in P such that (i) for j = 1, . . . , k − 1, qj+1qj is an edge of H;
(ii) for j = 1, . . . k, we have qj ∈ D(w) and dh(s, qj) = i+ 1; and (iii) for j = 1, . . . , k − 1,
|wqj+1| < |wqj |. We begin with the sequence q1 = v satisfying the invariant.

w

u

q1 = v

q2q3

Fig. 9: The partial path constructed backwards from v. Setting q4 = u will complete it.

4 Applications 23

Let c be the constant from the spanner construction of Section 3.2, and recall that we
scale P such that the smallest radius is c. Suppose that we have q1, . . . , qk and that wqk
is not an edge of H (otherwise we could finish by setting u = w). Let σ, τ ∈ Q0 be the
cells such that w ∈ τ and qk ∈ σ. We distinguish two cases, depending on d(σ, τ), and
we either show how to find u to complete the path from u to v or how to choose qk+1.

Case 1: d(σ, τ) < c − 2. Let Q = (P ∩ σ) ∪ (P ∩ τ). We have that w, qk ∈ Q. The
algorithm of Section 3.2 constructs a Euclidean spanner for Q and adds its edges to
H. In particular, there is a directed path π from w to qk that uses only sites of Q. By
construction, the pairwise distances between the sites of Q are all at most c. Thus, for
each p ∈ Q we have p ∈ D(w) and qk ∈ D(p), and therefore i ≤ dh(s, p) ≤ i+ 1. We set
u be the last site of π with dh(s, u) = i. To obtain the desired path from u to v we take
the subpath of π starting at u and concatenate it to the the partial path qk, . . . , q1 = v.

Case 2: d(σ, τ) ≥ c− 2. Since wqk is not an edge of H, by Lemma 3.7 there exists
an edge rqk in H with |wr| < |wqk|. We set qk+1 = r. Since qk ∈ D(w), we have
qk+1 ∈ D(w) and i ≤ dh(s, qk+1) ≤ i+ 1. If dh(s, qk) = i, we set u = qk+1 and are done.
Otherwise, qk+1 satisfies properties (i)–(iii) and we continue to extend the path.

Since the distance to w decreases in each step and since P is finite, this process
eventually stops and the lemma follows.

1 W0 ← {s}; d[s] = 0; π[s] = s; i = 0; and, for p ∈ P \ {s}, d[p] =∞ and
π[p] = NIL

2 while Wi 6= ∅ do
3 compute power diagram with point location structure PDi of Wi

4 queue Q←Wi ; Wi+1 ← ∅
5 while Q 6= ∅ do
6 p← dequeue(Q)
7 foreach edge pq of H do
8 u← PDi(q) // query PDi with q, D(u) minimizes the power

distance from q
9 if q ∈ D(u) and d[q] =∞ then

10 enqueue(Q, q); d[q] = i+ 1; π[q] = u; add q to Wi+1
11 i← i+ 1

Algorithm 5: Computing the BFS tree for G with root s using the spanner H.

The BFS tree for s is computed iteratively; see Algorithm 5 for pseudocode. Initially,
we set W0 = {s}. Now assume we have computed W0, . . . ,Wi. By Lemma 4.1, all sites
in Wi+1 can be reached from Wi in the subgraph of H induced by Wi ∪Wi+1. Thus, we
can compute Wi+1 by running a BFS search in H from the points of Wi using a queue
Q. Every time we encounter a new vertex q, we check if it lies in a disk around a site of
Wi, and is not yet in the BFS tree for s. If so, we add q to Wi+1 and to Q. Otherwise,
we discard q. To test whether q lies in a disk of Wi, we compute a power diagram for Wi

in time O(|Wi| log |Wi|) and query it with q.

4 Applications 24

A site p at level i is traversed by at most two BFS searches in H. In the first search
we discover that p is in Wi, and in the second search p is a starting point — this is
the search to discover Wi+1. It follows that an edge pq of H is considered twice by
Algorithm 5. Each time we consider the edge pq we spend O(logn) time for querying
a power diagram with q. Since H is sparse, the total time required is O(n logn). This
establishes the following theorem.

Theorem 4.2. Let P ⊂ R2 be a set of n points. Given a spanner H for the transmission
graph G of P as in Theorem 3.1, Theorem 3.12, or Theorem 3.18, we can compute in
O(n logn) additional time a BFS tree in G rooted at any given site s ∈ P .

4.2 Geometric Reachability Oracles
Let G be a directed graph. If there is a directed path from a vertex s to a vertex t in
G, we say s can reach t (in G). A reachability oracle for a graph G is a data structure
that can answer efficiently for any given pair s, t of vertices of G whether s can reach t.
Reachability oracles have been studied extensively over the last decades (see, e.g., [14,26]
and the references therein).

When G is a transmission graph we are interested in a more general type of reachability
query where the target t is not necessarily a vertex of G, but an arbitrary point in the
plane. We say that a site s can reach a point t ∈ R2 if there is a site q in G such that
t ∈ D(q) and such that s can reach q in G. We call a data structure that supports this
type of queries a geometric reachability oracle. We can use our spanner construction from
Theorem 3.12 to extend any reachability oracle for a transmission graph to a geometric
reachability oracle with a small overhead in space and query time. More precisely, we
prove the following theorem.

Theorem 4.3. Let P be a set of n points in the plane with radius ratio Ψ. Given a
reachability oracle for the transmission graph G of P that requires S(n) space and has
query time Q(n), we can obtain in O(n logn log Ψ) time a geometric reachability oracle for
G that requires S(n) +O(n log Ψ) space and can answer a query in O(Q(n) + logn log Ψ)
time.

Given a query s, t with a target t ∈ R2, our strategy is to find a small subset Q ⊆ P
such that for each q ∈ Q, t ∈ D(q), and Q “covers the space around t” in the following
sense. For any disk D(p) such that t ∈ D(p) there is a site q ∈ Q with q ∈ D(p). In
particular the edge pq is in G.

Such a set Q satisfies that s can reach t if and only if s can reach some site q ∈ Q.
Once we have computed Q we decide whether s can reach t by querying the given
reachability oracle with s, q for all q ∈ Q. The answer is positive if and only if it is
positive for at least one site q ∈ Q.

In what follows, we construct a data structure of size O(n log Ψ) that allows to find
such a set Q of size O(1) in O(logn log Ψ) time. Theorem 4.3 is then immediate.

4 Applications 25

The Data Structure. We compute a 2-spanner H for G as in Theorem 3.12. Let k (the
number of cones) and c (the separation parameter) be the two constants used by the
construction of H, and recall that we scaled P such that the smallest radius of a site in P
is c. Let T be the quadforest used by the construction of H. The trees in T have depth
O(log Ψ) and each node v ∈ T corresponds to a grid cell σv from some grid Qi, i ≥ 0.
Our data structure is obtained by augmenting each node v ∈ T by a power diagram
PDσv for the sites in σv ∩ P , together with a point location data structure. This requires
O(|σv ∩ P |) space and O(|σv ∩ P | log |σv ∩ P |) time [15,20] for each v. Since any site of
P is in O(log Ψ) cells of T , we need O(n log Ψ) space and O(n logn log Ψ) time in total.

1 L← depth of T
2 for i = 0, . . . , L do
3 σ ← cell of Qi with t ∈ σ
4 foreach τ ∈ N(σ) contained in C2

σ do
5 q ← PDτ (t) // query PDτ with t
6 if t ∈ D(q), add q to Q
7 Stop if at least one q was added to Q

Algorithm 6: Query Algorithm for a cone C and a point t.

Performing a Query. Let a query point t ∈ R2 be given. Let σ be the cell in Q0 that
contains t. To find Q, we first traverse all non-empty cells τ ∈ Q0 with d(σ, τ) ≤ c− 2.
From each such cell τ , if there exists a site q ∈ τ ∩P such that t ∈ D(q) then we add one,
arbitrary, such site to Q. To determine if such a site exists, and to find one if it exists, we
query PDτ with t. Second, we go through all cones C ∈ C, and we run Algorithm 6 with
C and t to find the remaining sites for Q. Algorithm 6 is similar to Algorithms 1 and 2,
and computes the incoming edge of t if it would have been inserted into the spanner. We
go through the grids at all levels of T . For each level we consider the cell σ that contains
t and for each cell τ ∈ N(σ) that is contained in C2

σ we select a site with an edge to t if
there is one. Lemma 3.7 holds for the incoming edges of t and using this fact, we can
prove that our data structure has the desired properties.

Lemma 4.4. Let P be a set of n points in the plane with radius ratio Ψ. We can
construct in O(n logn log Ψ) time a data structure that finds for any given query point
t ∈ R2 a set Q ⊆ P such that |Q| = O(1) and for any site p ∈ P , if t ∈ D(p) we have that
D(p) ∩Q 6= ∅. The query time is O(logn log Ψ) and the space requirement is O(n log Ψ).

Proof. The construction time and the space requirement are immediate. For the query
time recall that T has depth O(log Ψ) and by Lemma 3.3, at each level we make O(c2)
queries to the power diagrams. It follows that it takes O(logn log Ψ) time to compute Q.

By construction, Q has size O(1). Indeed, at the first step, we add at most one site
for every cell of distance at most c − 2 from σ, and there are O(c2) such cells. In the
second step, for each cone, we only add sites from O(c2) cells at one level of T .

5 Conclusion 26

Now let p ∈ P be a site with t ∈ D(p). It remains to show that D(p) ∩ Q 6= ∅. If
p ∈ Q, we are done. If not, we let σ and τ be the cells in Q0 with t ∈ σ and p ∈ τ . If
d(σ, τ) ≤ c− 2 then there must be a site q ∈ τ ∩Q. Since diam(τ) = 1 and rp ≥ c, we
have q ∈ D(p). If d(σ, τ) > c − 2 then since pt is an edge in G that is not selected by
Algorithm 6, Lemma 3.7 guarantees that there is an edge qt with q ∈ Q and |pq| < |pt|.
Since t ∈ D(p) we also have q ∈ D(p). This finishes the proof.

5 Conclusion

We have described the first construction of spanners for transmissions graphs that runs
in near-linear time, and we demonstrated its usefulness by describing two applications.
Our techniques are quite general, and we expect that they will be applicable in similar
settings. For example, in an ongoing work we consider how to extend our results to
(undirected) disk intersection graphs. This would significantly improve the bounds of
Fürer and Kasiviswanathan [12].

Our most general spanner construction requires a dynamic data structure for planar
Euclidean nearest neighbors. It is an interesting challenge to find a simpler solution that
possibly avoids the need for such a structure.

Finally, we believe that our work indicates that transmission graphs constitute
an interesting and fruitful model of geometric graphs worthy of further investigation.
In a companion paper [17], we consider several questions concerning reachability in
transmission graphs. In particular, we describe several constructions of reachability
oracles for transmission graphs (see Section 4.2), providing many opportunities to apply
Theorem 4.3. Also, in this context our spanner construction plays a crucial role in
obtaining fast preprocessing algorithms.

Acknowledgments. We like to thank Paz Carmi and Günter Rote for valuable comments.
We also thank the anonymous referees for their careful reading of the paper and for
their insightful suggestions, and in particular for pointing out the problem of geometric
reachability queries as described in Section 4.2.

References

[1] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three dimensions.
In Proc. 20th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
180–186, 2009.

[2] M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[3] P. Bose, M. Damian, K. Douïeb, J. O’Rourke, B. Seamone, M. H. M. Smid, and
S. Wuhrer. π/2-angle Yao graphs are spanners. Internat. J. Comput. Geom. Appl.,
22(1):61–82, 2012.

5 Conclusion 27

[4] A. Boukerche. Algorithms and Protocols for Wireless Sensor Networks. Wiley Series
on Parallel and Distributed Computing. Wiley-IEEE Press, 1st edition, 2008.

[5] S. Cabello and M. Jejĉiĉ. Shortest paths in intersection graphs of unit disks. Comput.
Geom., 48(4):360–367, 2015.

[6] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42(1):67–90, 1995.

[7] P. Carmi, 2014. personal communication.

[8] T. M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor
queries. J. ACM, 57(3):Art. 16, 15, 2010.

[9] T. M. Chan and K. A. Tsakalidis. Optimal deterministic algorithms for 2-d and
3-d shallow cuttings. In Proc. 31st Int. Sympos. Comput. Geom. (SoCG), pages
719–732, 2015.

[10] M. S. Chang, N. F. Huang, and C. Y. Tang. An optimal algorithm for constructing
oriented Voronoi diagrams and geographic neighborhood graphs. Inform. Process.
Lett., 35(5):255–260, 1990.

[11] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math.,
86(1-3):165–177, 1990.

[12] M. Fürer and S. P. Kasiviswanathan. Spanners for geometric intersection graphs
with applications. J. Comput. Geom., 3(1):31–64, 2012.

[13] S. Har-Peled. Geometric Approximation Algorithms. American Mathematical Society,
2011.

[14] J. Holm, E. Rotenberg, and M. Thorup. Planar reachability in linear space and
constant time. In Proc. 56th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),
pages 370–389, 2015.

[15] H. Imai, M. Iri, and K. Murota. Voronoi diagram in the Laguerre geometry and its
applications. SIAM J. Comput., 14(1):93–105, 1985.

[16] H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth. Spanners and reachability oracles
for directed transmission graphs. In Proc. 31st Int. Sympos. Comput. Geom. (SoCG),
pages 156–170, 2015.

[17] H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth. Reachability oracles for directed
transmission graphs. arXiv:1601.07797, 2016.

[18] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
2495–2504, 2017.

5 Conclusion 28

[19] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Comput.
Geom., 1:59–70, 1986.

[20] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28–
35, 1983.

[21] M. Löffler and W. Mulzer. Triangulating the square and squaring the triangle:
quadtrees and Delaunay triangulations are equivalent. SIAM J. Comput., 41(4):941–
974, 2012.

[22] G. Narasimhan and M. H. M. Smid. Geometric spanner networks. Cambridge
University Press, 2007.

[23] D. Peleg and L. Roditty. Localized spanner construction for ad hoc networks
with variable transmission range. ACM Transactions on Sensor Networks (TOSN),
7(3):25:1–25:14, 2010.

[24] F. P. Preparata and M. I. Shamos. Computational geometry. An introduction.
Springer-Verlag, 1985.

[25] M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1996.

[26] M. Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM, 51(6):993–1024, 2004.

[27] P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Algorithmic models of
interference in wireless ad hoc and sensor networks. IEEE/ACM Transactions on
Networking, 17(1):172–185, 2009.

[28] A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. Comput., 11(4):721–736, 1982.

	1 Introduction
	2 Preliminaries and Notation
	3 Spanners for Directed Transmission Graphs
	3.1 Efficient Spanner Construction for a Set of Points with Bounded Spread
	3.2 From Bounded Spread to Bounded Radius Ratio
	3.3 Spanners for Unbounded Spread and Radius Ratio

	4 Applications
	4.1 From Spanners to BFS Trees
	4.2 Geometric Reachability Oracles

	5 Conclusion

