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LOCAL STRUCTURE OF SINGULAR PROFILES FOR A

DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION

YURI CHER, GIDEON SIMPSON, AND CATHERINE SULEM

Abstract. The Derivative Nonlinear Schrödinger equation is an L
2-

critical nonlinear dispersive equation model for Alfvén waves in space
plasmas. Recent numerical studies [12] on an L

2-supercritical extension
of this equation provide evidence of finite time singularities. Near the
singular point, the solution is described by a universal profile that solves
a nonlinear elliptic eigenvalue problem depending only on the strength
of the nonlinearity. In the present work, we describe the deformation
of the profile and its parameters near criticality, combining asymptotic
analysis and numerical simulations.

1. Introduction

The derivative nonlinear Schrödinger (DNLS) equation

{

iut + uxx + i
(
|u|2u

)

x
= 0, x ∈ R

u(x, 0) = u0(x).
(1.1)

is a canonical equation arising from the Hall-Magnetohydrodynamics equa-
tions. It appears in the context of Alfvén waves propagating along an am-
bient unidirectional magnetic field in a long wavelength regime [20]. More
recently, it was used to model rogue waves and plasma turbulence [18]. Un-
der the gauge transformation,

ψ(x, t) = u(x, t) exp

{
i

2

∫ x

−∞
|u(y, t)|2dy

}

,(1.2)

(1.1) becomes

iψt + ψxx + i|ψ|2ψx = 0.(1.3)

Eq. (1.3) has appeared as a model for ultrashort optical pulses, [2, 16,21].
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Solutions to the DNLS equation exist locally in time in H1(R) and they
can be extended for all time if the initial conditions are sufficiently small
in L2, namely ‖u0‖2 <

√
2π [8, 9]. The global in time result relies on two

invariants of the equation,

Mass: M [u] ≡
∫

|u|2 dx,(1.4)

Hamiltonian: H[u] ≡
∫ (

|ux|2 + 3
2ℑ(|u|

2uūx) +
1
6 |u|

6
)

dx(1.5)

and the sharp constant in a Gagliardo-Nirenberg inequality. Very recently,
Wu [22] showed that the upper bound on the L2-norm of the initial condi-

tions can be increased to ‖u0‖2 <
√
4π using the conservation of momentum

(1.6) Momentum: I[u] ≡
∫
(
ℑ(ūux)− 1

2 |u|
4
)
dx

and a different Gagliardo-Nirenberg inequality. As discussed below, DNLS
has a two-parameter family of solitary waves that decay exponentially fast at
infinity (bright solitons) as well as algebraic solitons (lumps). It is interesting
to notice that

√
4π is the L2-norm of the lump soliton (see (2.4) with σ =

1). Furthermore, DNLS is completely integrable via the inverse scattering
transform [10] and has an infinite number of conserved quantities. Recent
works using the inverse scattering method provide global solutions for initial
conditions in a spectrally determined (open) subset of weighted Sobolev
spaces containing a neighborhood of zero, [11,17]. Global well-posedness for
large data remains an open problem.

Equation (1.3), along with (1.1), is invariant to the scaling transfor-

mation ψ 7→ ψλ = λ−
1

2ψ(λ−1x, λ−2t). It is L2-critical in the sense that
‖ψλ‖L2 = ‖ψ‖L2 and has the same scaling properties as the focusing non-
linear Schrödinger equation,

(1.7) iut +∆u+ |u|2σ u = 0, u : (x, t) ∈ R
d ×R → C,

with dσ = 2. However, it has very different structural properties, such as
the aforementioned integrability. In contrast, it is well known that for the
L2-critical and supercritical NLS equations (dσ ≥ 2), blowup occurs for
initial conditions with L2-norm exceeding that of the ground state.

In the context of dispersive equations, the comparative study of equations
with critical and supercritical nonlinearities has been very fruitful, [15, 20].
From this perspective, and to gain additional insight into the properties of
solutions to the DNLS equations, a generalization of (1.3) was introduced,

iψt + ψxx + i|ψ|2σψx = 0,(1.8)

that we will refer to as “gDNLS”, [12, 13]. If σ > 1, the gDNLS equation
is L2-supercritical. Recent work by Hayashi and Ozawa [7] shows that it is
locally well-posed in H1 and globally well-posed if the initial conditions are
small enough; see Ambrose and Simpson for related results on the periodic
problem, [1]. Numerical simulations performed in [12] strongly indicate that
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(1.8) may present finite time singularities when σ > 1. More specifically,
near the singular point, (x∗, t∗), the solution is locally approximated by

ψ(x, t) ≈
(

1

2a(t∗ − t)

)1/4σ

Q

(

x− x∗
√

2a(t∗ − t)
+
b

a

)

e
i
(

θ+ 1

2a
ln t∗

t∗−t

)

.(1.9)

The blow-up profile Q is a complex-valued function solving the nonlinear
eigenvalue problem

Qξξ −Q+ ia
(

1
2σQ+ ξQξ

)
− ibQξ + i|Q|2σQξ = 0.(1.10)

The coefficient b can be changed, or even eliminated by translating the
independent variable (as long as a 6= 0). It was observed numerically that
the amplitude |Q| of the profile has only one maximum. In this work, we will
choose the coefficient b so that max |Q| is at the origin. The coefficients a,
b, and the function Q all depend on σ, but were observed in the simulations
to be universal (up to simple scalings), in the sense that the same values
emerged, regardless of the initial conditions, for the time dependent problem.

The local structure of ψ, near the singularity, can be extracted using time
dependent rescaling. First, we note that gDNLS is invariant under the trans-

formation ψ 7→ ψλ = λ−
1

2σψ(λ−1x, λ−2t). This motivates the introduction
of the scaled dependent and independent variables:

ψ(x, t) = λ(t)−
1

2σ v(ξ, τ), ξ =
x− x0(t)

λ(t)
, τ =

∫ t

0

dt′

λ2(t′)
.(1.11)

The scaling factor λ(t) is chosen to be proportional to ‖ψx‖−q
L2 , q = 2σ/(σ+

1), while the shift x0(t) is used to keep the bulk of the solution at the origin.
The rescaled function v satisfies

{

ivτ + vξξ + iα(τ)
(

v
2σ + ξvξ

)
− iβ(τ)vξ + i|v|2σvξ = 0

α = −λdλ
dt , β = λdx0

dt .
(1.12)

For large τ , it was observed that v ∼ eiCτQ(ξ) and the parameters α(τ), β(τ)
tend to constant values independent of the initial conditions. Substituting
in v ∼ eiCτQ(ξ), canceling out the time harmonic piece, and applying a
simple rescaling turns (1.12) into (1.10). Under the transformation (1.11)
the conserved quantities scale like

M(ψ) = λ1−
1

σM(v), H(ψ) = λ−1− 1

σH(v), I(ψ) = λ−
1

σ I(v).

In particular, since λ → 0 as τ → ∞, we have that M(Q) = ∞ while
I(Q) = H(Q) = 0. The blow-up profile equation is reminiscent of the profile
describing the singularity structure of radially symmetric L2-supercritical
NLS equations (1.7), with σd > 2 satisfying

Sξξ +
d−1
ξ Sξ − S + ia

(
1
σS + ξSξ

)
+ |S|2σS = 0, ξ > 0,(1.13)
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derived in [14] and studied in [6]. An asymptotic analysis near the critical
value σd→ 2 [20] provides the behavior of the parameter a

σd− 2 ∝ a−1e−
π
a , σd→ 2,(1.14)

and the profileQ is asymptotically close to NLS ground state. This approach
was key to predicting the generic blowup of solutions to critical NLS and its
log− log correction.

The simulations performed in [12] suggested that, as the nonlinearity
σ → 1, the coefficients a and b, viewed as functions of σ, behave as a → 0
and b → b0 > 0. In the present work, we perform a detailed asymptotic
study complemented by numerical results to describe the deformation of
profile Q and the behaviour of the parameters a(σ), b(σ) in the σ → 1 limit.
We find that

Q(ξ) ∼ L(ξ) exp

{

−i
(
aξ2

4
− bξ

2
+

1

4

∫ ξ

0
|Q|2

)}

(1.15)

where L(ξ) =
√

8
1+4ξ2

is the algebraic soliton of the DNLS solving

(1.16) Lξξ − L3 + 3
16L

5 = 0.

The parameters a(σ) and b(σ) behave like power laws of (σ − 1), namely:

a ∝ (σ − 1)γa , γa ≈ 3.2,(1.17a)

2− b ∝ (σ − 1)γb , γb = 2.(1.17b)

Our paper is organized as follows. In Section 2, we describe basic prop-
erties of the profile Q solution of (1.10). In Section 3, we present numerical
simulations of (1.10). Motivated by these calculations, we analyze the defor-
mation of the profile as σ → 1 and connect the behavior of Q at ±∞ using
asymptotic methods in Section 4. We complement it by a careful analysis
of the numerical data to predict relations between the parameters a and b
and σ in the limit σ → 1. In Section 5, we impose the vanishing momentum
condition to extract another relation between the parameters. Concluding
remarks are presented in Section 6. Finally, in Appendix A, we give the
proof of Proposition 2.3 on the behavior of the profile Q(ξ) for large ξ, and
in Appendix B, we provide details of the numerical methods, in particular
how we deal with solutions that decay slowly at infinity.

2. Preliminary Results

We recall basic properties of solutions to the profile equation (1.10), give
a preliminary discussion on the relation between them and soliton solutions
to the gDNLS equation.
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2.1. gDNLS Soliton Solutions. The gDNLS equation (1.8) has a two-
parameter family of soliton solutions in the form

ψω,c(x, t) = Rω,c(x− ct) exp

{

i
(

ωt+
c

2
(x− ct)− 1

2σ + 2

∫ x−ct

−∞
R2σ

ω,c

)}

,

where Rω,c, satisifies

(2.1) ∂ξξRω,c −
(

ω − c2

4

)

Rω,c −
c

2
|Rω,c|2σ Rω,c +

2σ+1
(2σ+2)2

|Rω,c|4σ Rω,c = 0,

subject to the boundary conditions Rω,c → 0 as ξ → ±∞. Eq. (2.1) has
smooth, real valued, solutions expressed in terms of hyperbolic functions for
all c and ω > c2/4. Without loss of generality, we fix ω = 1, denote c = b,
and suppress the subscripts. The equation for R is then

Rξξ −
(

1− b2

4

)

R− b

2
R2σ+1 + 2σ+1

(2σ+2)2
R4σ+1 = 0.(2.2)

For |b| < 2, the solutions are smooth and exponentially decaying,

R = Bσ ≡
(

(σ + 1)(4 − b2)

2(cosh(σ
√
4− b2ξ)− b

2)

) 1

2σ

.(2.3)

We refer to these as “bright” soliton solutions. In the limit b ր 2, another
solution emerges, the algebraic “lump” soliton

R = Lσ ≡
(

4(σ + 1)

1 + 4σ2ξ2

) 1

2σ

.(2.4)

Both types of solitons play roles in our study of the blowup profile.

2.2. Properties of the blow-up profile. We recall properties of solutions
to the profile equation (1.10). Details of the proofs can be found in [12].

Proposition 2.1. Let Q be a classical bounded solution of (1.10) with a > 0,
such that Qξ ∈ L2 and Q ∈ L4σ+2. Then its energy and momentum vanish:

H(Q) ≡
∫

R

(

|Qξ|2 + 1
σ+1 |Q|2σℑ(Q̄Qξ)

)

dξ = 0(2.5a)

I(Q) ≡ ℑ
∫

R

Q̄Qξdξ = 0.(2.5b)

Proof. We multiply (1.10) by Q̄ξξ and integrate the imaginary part of the
equation to get

−a
(
σ+1
2σ

)
∫

|Qξ|2 +
∫

|Q|2σℜ(QξξQ̄ξ) = 0.

In the second term we replace Qξξ using (1.10) leading to
∫

|Q|2σℜ(QξξQ̄ξ) = − a

2σ

∫

|Q|2σℑ(Q̄Qξ).

If a 6= 0 the identity (2.5a) follows.
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Similarly, multiplying (1.10) by Q̄ξ and taking the real part of the equation
gives

∂ξ|Qξ|2 + ∂ξ|Q|2 + a
σℑ
(
Q̄Qξ

)
= 0.

If a > 0, integrating over the real line gives (2.5b). �

Proposition 2.2. If Q is a solution of (1.10) with a > 0 and σ > 1, and
Q ∈ H1

⋂
L2σ+2, then Q ≡ 0.

Consequently, there are no nontrivial solutions that belong to H1∩L2σ+2.
The behaviour of solutions to (1.10) as ξ → ±∞ can be written as Q =

A±Q1 +B±Q2 where Q1 and Q2 behave at leading order as Q1 ≈ |ξ|− 1

2σ
− i

a

and Q2 ≈ e−iaξ
2

2 |ξ|1− 1

2σ
+ i

a . Note that for σ > 1, a > 0, Q1 /∈ L2 and
Q2ξ /∈ L2. We are interested in solutions of (1.10) with B± = 0, i.e. those
that behave like Q1 as |ξ| → ∞. These are the types of profiles which
correspond to finite energy solutions to the gDNLS equation.

Proposition 2.3. The large ξ behaviour of zero-energy solutions to (1.10)
is

Q = A±Q1 ≈ A±|ξ|−
1

2σ

(

1± b

2aσ|ξ|

)

e
− i

a

(

ln |ξ|± b
a|ξ|

)

, ξ → ±∞.(2.6)

This result is a slight refinement of Proposition 4.1 of [12]. A proof is
presented in Appendix A.

2.3. Phase–Amplitude Decomposition. To further analyse the profile
equation, we introduce the function P defined by

(2.7) Q = P exp

{

−i
(
aξ2

4
− bξ

2
+

1

2σ + 2

∫ ξ

0
|Q|2σ

)}

.

We have extracted a portion of the phase corresponding to the gDNLS soli-
ton as well as a quadratic part as is often the case in the study of NLS
equations. P is complex valued and solves

Pξξ +
(
1
4(aξ − b)2 − 1

)
P − ia(σ−1)

2σ P + 1
2(aξ − b)|P |2σP

+ 2σ+1
(2σ+2)2 |P |

4σP − σ
σ+1 |P |

2(σ−1)ℑ(P̄Pξ)P = 0.
(2.8)

When a = 0, we can also assume that P is real valued, and (2.8) becomes
(2.2). This illustrates the connection between the blowup profile and the
soliton. When a 6= 0, the function P is complex valued and it is useful to
decompose it into a real valued amplitude and phase. Setting P = Aeiφ,
we observe that only the derivative of the phase appears in the equations.
Therefore, letting ψ = φξ, we have the system:

Aξξ +
(
1
4 (aξ − b)2 − 1− ψ2

)
A+

(
1
2(aξ − b)− σ

σ+1ψ
)

A2σ+1

+ 2σ+1
(2σ+2)2

A4σ+1 = 0,
(2.9a)

ψξA+ 2ψAξ =
a(σ−1)

2σ A.(2.9b)
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(2.9b) can be written as

(
A2ψ

)

ξ
= a(σ−1)

2σ A2

leading to an expression of ψ in terms of A2

ψ(ξ) =
ψ(0)A2(0)

A2(ξ)
+
a(σ − 1)

2σA2(ξ)

∫ ξ

0
A2(η)dη.(2.10)

Alternatively, writing (2.9b) as
(
A2ψ

)

ξ

A2ψ
=
a(σ − 1)

2σψ
,

we have the relation

A2(ξ) =
C2

|ψ| exp
{
a(σ − 1)

2σ

∫ ξ

ξ0

dη

ψ(η)

}

.(2.11)

C2 = A2(ξ0)|ψ(ξ0)| is a constant of integration. In both cases, the unknown
constants depend on σ. For reference, the derivatives of the phase of Q and
that of P are related as

(2.12) θξ = ψ − aξ − b

2
− 1

2σ + 2
|Q|2σ

3. Numerical simulation of the profile equation

Here, we briefly summarize our approach to solving (1.10) and make some
preliminary obsevations on the profiles.

3.1. Solvability and Boundary Conditions. To solve for the profile Q,
and the parameters a and b, it is necessary to impose a sufficient number
of boundary conditions and solvability conditions. These are as follows : (i)
Since the profile equation is invariant under multiplication by a constant
phase, we assume Q(0) ∈ R; (ii) Proposition 2.3 gives a far-field, asymp-
totically linear approximation of Q which will be used to construct Robin
boundary conditions, eliminating the constants A+ and A−; (iii) The pa-
rameter b can be changed by a translation in ξ. Under the assumption that
the profile has a unimodal amplitude, which is consistent with numerical
observations, we assume that the maximum of the amplitude occurs at the
origin. We express this internal boundary condition as |Q|ξ(0) = 0.

Preliminary numerical simulations of (1.10) subject to above boundary
conditions were performed in [12]. It was observed that the amplitude A of
Q is highly asymmetric and that the parameter a tends rapidly to zero as
σ → 1. In the next section, we improve these numerical results and make
observations that will guide us in the asymptotic analysis near σ = 1. In
particular, we identify regions of validity of different approximations and
corresponding turning points.
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3.2. Numerical methods. The blow-up profile is computed for a sequence
of values of σ approaching one by continuation. We use a second-order finite
difference scheme, together with a Newton solver to solve the system for a
given value of σ. Each successful computation is used as a starting guess for
the next smaller value of σ in the sequence. We also make use of Richardson
extrapolation to improve upon computed quantities, such as the parameters
a and b. We computed the solution over a range of σ from σ = 2 down
to 1.044, below which our solver struggled. We report quantities computed
from this interval, σ ∈ [1.044, 2]. Details on the numerical methods can be
found in Appendix B.

3.3. Numerical Observations. Figure 1 shows the amplitude |Q| near the
origin for several values of σ close to 1, computed with the above method.
As mentioned before, we see that |Q| is highly asymmetric, decaying much
faster for ξ > 0 than for ξ < 0.

20
10

0

ξ

-10
-201.04

1.06

σ

1.08

0

1

2

3

1.1

|Q
|

Figure 1. Amplitude |Q| of the blowup profile for various
values of σ close to 1.

As σ decreases, the parameter a decreases rapidly to zero and the profile
Q tends to a soliton solution of the DNLS. The parameter b increases to
a limiting value b0 ≡ lim

σ→1
b. Recall that soliton solutions (2.3) and (2.4)

to (2.2) are defined for |b| < 2 and b = 2 respectively. When σ = 1 and

|b| < 2, the Hamiltonian of (2.1) (with R = B1) is H(B1) = −b
√
4− b2

and its momentum is P (B1) = −2
√
4− b2, while when b = 2 (and R = L1)

both the energy and momentum vanish. By construction, the profile Q
has a vanishing Hamiltonian and momentum. We thus make the Ansatz



SINGULAR PROFILES OF A DNLS EQUATION 9

σ − 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

a

0

0.05

0.1

0.15

0.2

(a) a vs. σ

σ − 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ǫ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) ǫ vs. σ

Figure 2. Numerically computed parameters a and ǫ = 2−b
for a range of σ ∈ [1.044, 1.2].

ǫ ≡ 2 − b → 0 while ǫ
a ≫ 1. We will show that this assumption leads to

a consistent asymptotic analysis of all the parameters. The behaviour of a
and ǫ for a range of values of σ is illustrated in Figure 2.

Turning to the amplitude and phase equations of Q, (2.9a) and (2.9b), we
see in Figure 3 that ψ ≡ (argP )ξ is very small in a large region containing
the origin and the modified profile P is essentially real. Rewriting (2.9a) in
terms of ǫ gives

Aξξ +
(
1
4(aξ + ǫ)2 − (aξ + ǫ)− ψ2

)
A

+
(

−1 + 1
2(aξ + ǫ)− σ

σ+1ψ
)

A2σ+1 + 2σ+1
(2σ+2)2A

4σ+1 = 0.
(3.1)

If ψ is very small, the linear term in this equation reduces to
(
1
4(aξ + ǫ)2 − (aξ + ǫ)

)
A(3.2)

which is negative if ξ ∈
(
− ǫ

a ,
4−ǫ
a

)
. We thus define the turning points

(3.3) ξ− ≡ − ǫ

a
, ξ+ ≡ 4− ǫ

a
.

Figure 3 shows how the behaviour of ψ changes near these points for several
values of σ. For large |ξ|, the term (3.2) is positive, it must be compensated

by ψ2 to avoid oscillations of the amplitude. As |ξ| → ∞, ψ ≈ aξ
2 and we

confirm in Figure 3 that ψ achieves this behaviour when |ξ| is much larger
than the turning points.

We now consider the amplitude equation (3.1). For 0 ≤ ξ ≪ ǫ
a , aξ+ ǫ ≈ ǫ

and (3.1) essentially reduces to (2.2) satisfied by the bright soliton (2.3)
with parameter b = 2 − ǫ. On the negative side, for ξ ≤ 0, the terms aξ
and ǫ work against each other and we find that the lump soliton (2.4) better
approximates the solution. However, when ξ approaches ξ− = − ǫ

a , the
phase becomes important and the amplitude deviates from (2.4) as shown
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ξ

-200 0 200 400 600 800 1000

ψ

-3

-2

-1

0

1

2

3

4

5

6
σ = 1.044

σ = 1.053125

σ = 1.0625

Figure 3. Phase derivative ψ at several values of σ. Note
the change in behaviour near the turning points ξ− = − ǫ

a

and ξ+ = 4
a .

ξ

-101 -100 -10-1
10-2

10-1

100

|Q|
Lσ

Bσ

(a)

ξ

10-1 100 101
10-4

10-3

10-2

10-1

100

|Q|
Bσ

(b)

Figure 4. |Q| calculated at σ = 1.044 and compared to
both the lump and bright solitons for − ǫ

a ≤ ξ ≤ 0 (left) and
the bright soliton for 0 ≤ ξ ≤ ǫ

a (right). The vertical lines
correspond to |ξ| = ǫ

a
.

in Figure 4 (a). This deviation is a source of difficulty in the asymptotic
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analysis. Figure 4 (b) displays |Q| for ξ > 0 compared to the bright soliton
(2.3).

Remark 3.1. For ξ ≪ ǫ−1/2, the bright and lump solitons nearly coincide.

We are now in a position to better interpret the asymmetry of the profile
amplitude. The turning point ξ+ ≈ 4

a grows very rapidly. When 1 ≪ ξ < ξ+,
the nonlinear terms in (3.1) are negligible and the negative linear term (3.2)
forces the amplitude to decay very rapidly. Figure 5 shows the amplitude
for several values of σ close to 1 and we clearly see this fast decay up to
the turning point ξ+. In this region the WKB method provides a good
approximate solution. Meanwhile, on the negative side, |ξ−| = ǫ

a grows
moderately and the linear term is very small for ξ ∈ (ξ−, 0). We observe
only a moderate decay of the amplitude for negative values of ξ. When
ξ < ξ− away from the turning point, the WKB method provides a good
approximation to the solution. Finally, when |ξ| is large and far away from
the turning points, the amplitude is well approximated by the leading order

asymptotics |Q| ≈ A±|ξ|−
1

2σ .
In the next section, we derive a formal asymptotic analysis motivated by

these observations and describe the leading order behaviour of the parame-
ters a and ǫ as σ → 1.

0 200 400 600 800 1000

|Q
|

10-300

10-200

10-100

100

ξ

σ = 1.044

σ = 1.053125

σ = 1.0625

Figure 5. |Q| computed at several values of σ. Note the
rapid decay up to the turning point ξ+ = 4

a marked with ©.
.
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4. Asymptotic analysis

The numerics indicate that, as σ → 1, the parameters a(σ), b(σ) tend to 0
and 2 respectively, while the profile Q tends to the lump soliton (2.4). In this
section, we investigate the deformation of Q and the parameters a(σ), b(σ)
using asymptotic methods and analysis of the numerical data. In the course
of the calculation, three additional parameters come into play, the coeffi-
cients A+, A− appearing in the large |ξ| behaviour of Q (see equation(2.6))
and the derivative of the phase at the origin ψ(0).

Section 4.1 concentrates on the region ξ > 0. We connect the bright
soliton (2.3) which approximates P (defined in (2.7)) close to the origin to
the asymptotic behaviour at large ξ (2.6) using WKB method. We obtain
two relations between the above parameters, given in equations (4.1) and
(4.24).

In Section 4.2 we examine the region ξ < 0. Close to the origin, the
lump soliton (2.4) approximation is valid, however nonlinear effects become
important near the turning point ξ−. A precise analytic form of the profile
in the (relatively small) region containing the turning point remains an open
problem, nevertheless we are able to find a relation between the parameters
(Eq (4.26)). Lacking a precise description of the profile in the intermediate
region, we carefully analyze our numerical data and find that the turning
point behaves like a power law in (σ − 1): a/ǫ ∼ (σ − 1)α with α ≈ 1.2.
(Section 4.2.2.)

4.1. Asymptotic analysis of the profile for ξ > 0.

Proposition 4.1. As σ → 1, the behaviour of the coefficient A+ defined in
(2.6) is given by

A+ ≈ 4ǫ3/4a−1/2 exp

{

−π
a
+

2

3

ǫ3/2

a

}

.(4.1)

Proof. We use the approach presented in Chapter 8 of [20] to connect the
behaviour of Q as ξ → +∞ to the bright soliton approximation valid for
ξ ≪ ǫ

a . First, we introduce the function S, which relates to Q by

(4.2) S = Q exp

{

i

(
aξ2

4
− bξ

2

)}

.

S satisifies

Sξξ −
(
1− 1

4(aξ − b)2
)
S − iaσ−1

2σ S + 1
2 (aξ − b)|S|2σS + i|S|2σSξ = 0,

(4.3)

and as ξ → +∞,

SAsymp = A+ξ
−1

2σ exp

{

i

(
aξ2

4
− bξ

2
− 1

a
ln ξ

)}

.(4.4)
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For sufficiently large ξ ≫ 1, the nonlinear terms in (4.3) are negligible and
we may write

Sξξ =
(
1− 1

4 (aξ − b)2
)
S.(4.5)

Setting x = 1
2(aξ − b), (4.5) becomes

a2

4 Sxx = (1− x2)S,(4.6)

and the solution can be approximateed by the WKB method. For x > 1,

SR
WKB =

1

(x2 − 1)
1

4

(

CRei(
π
4
+
∫ x
1

√
s2−1ds) +DRei(

π
4
−
∫ x
1

√
s2−1ds)

)

.(4.7)

When x≫ 1,

2

a

∫ x

1

√

s2 − 1ds ≈ 1

a
(x2 − lnx) ≈ aξ2

4
− bξ

2
− 1

a
ln ξ,(4.8)

implying that DR = 0. Matching the amplitudes of (4.7) and (4.4), we find

CR =

√
a

2
A+.(4.9)

The right hand side of (4.6) vanishes at the turning point x = 1. The WKB

approximation (4.7) is valid for x− 1 ≫ a
2

3 . If, in addition, x− 1 ≪ 1, (4.7)
can be simplified to

SR
WKB ≈ CR

(2(1 − x))
1

4

e
i
(

π
4
+ 4

√
2

3a
(x−1)

3
2

)

.(4.10)

On the other hand, when |x− 1| ≪ 1, we replace (4.6) by

a2

4 Sxx = 2(1 − x)S.(4.11)

In the variable t = 2a−
2

3 (1− x), (4.11) is the Airy equation

Stt = tS(4.12)

whose solution is SAiry = a1Ai(t) + a2 Bi(t). In terms of the variable t, the

region a
2

3 ≪ x− 1 ≪ 1 corresponds to (−t) ≫ 1. Using the asymptotics of
Ai and Bi as t→ −∞,we obtain

SAiry ≈ 1
√
π(−t) 1

4

(

a1 sin

(
π

4
+

2

3
(−t) 3

2

)

+ a2 cos

(
π

4
+

2

3
(−t) 3

2

))

.

(4.13)

Matching the phases of (4.10) and (4.13) requires a1 = ia2, and matching
the amplitudes gives

a2 = a−
1

6

√
πCR.(4.14)
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For x < 1, the region 1 ≫ 1 − x ≫ a
2

3 corresponds to t ≫ 1. Using the
asymptotics of Ai and Bi as t→ +∞, we obtain

SAiry ≈ 1
√
πt

1

4

(
a1
2
e

−2

3
t
3
2 + a2e

2

3
t
3
2

)

≈ a2√
πt

1

4

e
2

3
t
3
2(4.15)

since the term with a negative exponent is negligible. On the other hand,
solving (4.6) for x < 1 by WKB gives

SL
WKB =

1

(1− x2)
1

4

(

CL
1 e

2

a

∫ x
1

√
1−s2ds + CL

2 e
− 2

a

∫ x
1

√
1−s2ds

)

.(4.16)

Noting that for (1− x) ≪ 1

2

a

∫ x

1

√

1− s2ds ≈ −4
√
2

3a
(1− x)

3

2 ,(4.17)

we have that for 1 ≫ 1− x≫ a
2

3 (4.16) simplifies to

SL
WKB ≈ 1

(2(1− x))
1

4

(

CL
1 e

− 4
√

2

3a
(1−x)

3
2 + CL

2 e
4
√

2

3a
(1−x)

3
2

)

.(4.18)

Finally, matching (4.18) to (4.15) and solving for CL ≡ CL
2 gives

a2 = a−
1

6

√
πCL,(4.19)

where we have again ignored the term with a negative exponent. The ap-
proximation (4.16) for S is real valued and we connect it to the bright soliton
approximation valid for ξ ≪ ǫ

a as described in Section 3.3.

We assume here that ǫ ≫ a
2

3 . This Ansatz will be checked a posteriori.
The WKB approximation thus remains valid in some region included in

ξ < ǫ
a . Indeed, we work within the region a−

1

3 ≪ ξ ≪ ǫ
a , equivalently

a
2

3 ≪ x+1 ≪ ǫ. This condition also ensures that ǫ−
1

2 ≪ a−
1

3 and the bright
soliton can be approximated as

Bσ(ξ) ≈ 2
√
2ǫe−

√
ǫξ.(4.20)

In this region 1− x2 ≈ 2(1 + x) = aξ + ǫ, so we approximate
∫ x

1

√

1− s2ds ≈ −π
2
+

2
√
2

3
(1 + x)

3

2 ≈ −π
2
+

1

3
ǫ
3

2 +
1

2

√
ǫaξ(4.21)

and the WKB approximation (4.16) can be written as

SL
WKB ≈ CLǫ−

1

4 exp

{

π

a
− 2

3

ǫ
3

2

a

}

e−
√
ǫξ.(4.22)

Matching (4.20) and (4.22) gives

CL = 2
√
2ǫ

3

4 exp

{

−π
a
+

2

3

ǫ
3

2

a

}

.(4.23)
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Finally, combining relations (4.9), (4.14), (4.19) and (4.23), we obtain rela-
tion (4.1) between A+, a, and ǫ.

�

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

10-300

10-200

10-100

100

σ − 1

A+

ǫ3/4√
a
exp

(

−

π
a
+ 2

3
ǫ3/2

a

)

Figure 6. Numerical verification of (4.1) relating the coef-
ficient A+ to a and ǫ.

In Figure 6 we verify the relation (4.1) against the value of A+ extracted
from the numerical integration of the boundary value problem and find an
excellent agreement for a large range of values σ from σ = 1.2 up to the
limit of our computation at σ = 1.044.

Proposition 4.2. To leading order in σ as σ → 1, the derivative of the
phase at the origin, ψ(0), is given by

ψ(0) ≈ −πa
8 (σ − 1) .(4.24)

Proof. We turn to the relation (2.10) between the phase derivative ψ and

the amplitude A. Take ξ0 >
4
a sufficiently large so that |Q(ξ0)| ≈ A+ξ

−1

2σ ,

ψ(ξ0) ≈ aξ0
2 , and denote k ≡

∫ ξ0
0 A2. For ξ > ξ0 we approximate (2.10) by

ψ(ξ) ≈ ψ(0)A2(0)

A2
+

ξ
1

σ +
a(σ − 1)k

2σA2
+

ξ
1

σ +
a(σ − 1)

2σA2
+

ξ
1

σ

∫ ξ

ξ0

A2
+η

−1

σ dη

=

(
1

A2
+

(

ψ(0)A2(0) +
a(σ − 1)k

2σ

)

− a

2
ξ
1− 1

σ
0

)

+
aξ

2
.
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Since A+ decays exponentially fast, we have

ψ(0) ≈ −a(σ − 1)k

2σA2(0)
.(4.25)

The main contribution to the integral k comes from the region where the
amplitude is approximated by the soliton, therefore to leading order as σ → 1
we have k ≈

∫∞
0 B2

σ ≈ 2π and A2(0) ≈ L1(0) = 8. �

σ − 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.01

-0.008

-0.006

-0.004

-0.002

0

ψ(0)

−

a(σ−1)k
2σA(0)2

Figure 7. Numerical verification of relation (4.25) for ψ(0)
for a range of values of σ.

Figure 7 confirms the relation (4.25) against the numerical simulations,
again finding excellent agreement. We check relation (4.25) rather than
(4.24) because the values of σ at which we compute are insufficiently close
to one for the constant k to have reach its limiting value.

4.2. Asymptotic analysis of the profile for ξ < 0.

4.2.1. Asymptotics of the parameter A−.

Proposition 4.3. To leading order in σ as σ → 1, the coefficient A− defined
in (2.6) is given by

A− ≈
√

4π (σ − 1).(4.26)

Proof. For sufficiently large |ξ|, ξ < 0, the function S satisfies (4.5) or,
equivalently, defining y = −1

2(aξ − b),

a2

4 Syy = (1− y2)S.(4.27)
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Using WKB, we have for y − 1 ≫ a
2

3 (equivalently |ξ − ǫ
a | ≫ a

−1

3 )

arg(S) ≈ π

4
+

2

a

∫ y

1

√

s2 − 1ds

from which it follows

ψ ≈ −
√

y2 − 1, and A ≈
√

a
2A−

(y2 − 1)
1

4

.(4.28)

We improve the approximation of the amplitude by using (2.11), giving us

A ≈ C−

(y2 − 1)
1

4

(

y +
√

y2 − 1
) σ−1

2σ
.(4.29)

When ξ → −∞, y → +∞ and (4.29) becomes A ≈
√
2C−a

− 1

2σ (−ξ)− 1

2σ .

Using Proposition 2.3, we have A ≈ A−(−ξ)−
1

2σ when ξ → −∞. Thus the
constants C− and A− are related by

C− =
a

1

2σ

√
2
A−.

Returning to equation (2.10) for large negative |ξ| ≫ 1
a and approximating

A by its asymptotic behaviour we write

ψ(ξ) ≈ψ(0)A
2(0)

2σA2
−

|ξ| 1σ +
a(σ − 1)

2σA2
−

(
∫ − ǫ

a
−a−1/3

0
A2

)

|ξ| 1σ

−
(

1− 1

σ

)
C2
−

A2
−
|ξ| 1σ

∫ ∞

1+a2/3

(

y′ +
√

y′2 − 1
)

√

y′2 − 1
dy′.

(4.30)

We do not have a precise behaviour of the profile in the relatively small

region between − ǫ
a and − ǫ

a −a−
1

3 , but we have numerically verified that the
contribution of this small region to the above integrals is negligible compared

to the contribution of the interval (0,− ǫ
a). Denoting l =

∫ 0
− ǫ

a
A2 and using

the expression (4.25) for ψ(0), we write

ψ(ξ) ≈ −a(σ − 1)(k + l)

2σA2
−

|ξ| 1σ −
(
1− 1

σ

) C2

A2
−

∫ y

1

(

y′ +
√

y′2 − 1
)

√

y′2 − 1
dy′

=
1

2

(

a
1

σ − a(k + l)

A2
−

(
1− 1

σ

)
)

|ξ| 1σ +
aξ

2
.

(4.31)

Since ψ(ξ) ∼ aξ
2 as ξ → −∞, the coefficient of |ξ| 1σ vanishes and

A2
− = a1−

1

σ (k + l)
(
1− 1

σ

)
.(4.32)

In the limit σ → 1, k → 2π (see Proposition 4.2) while the main con-

tribution to the integral l =
∫ 0
ǫ/aA

2 comes from the region
(

− 1
2
√
ǫ
, 0
)

where the DNLS soliton (2.3) approximates A (see Figure 8). Therefore



18 CHER, SIMPSON, AND SULEM

σ − 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
∫

−1/2
√
ǫ

−ǫ/a
A2

∫ 0

−ǫ/a
A2

Figure 8. An estimate of the relative contribution of the
region ξ ∈ [−ǫ/a,−1/2

√
ǫ] (where the precise behaviour of

the profile remains unknown) to the integral l =
∫ 0
−ǫ/aA

2

appearing in (4.32)

l ≈
∫ 0
−∞ L2

1 = 2π and the relation (4.26) follows. In Figure 9, we observe

an excellent agreement of the numerical simulation with the formula (4.32).
Similar to our result for ψ(0), we check (4.32) rather than (4.26) since for
the values of σ we computed, the integrals k and l have not reached their
limiting values.

�

4.2.2. Variation of turning point ξ− in terms of σ. In the last section, we
obtained the function Q for negative values of ξ that satisfy conditions of
validity for the WKB method, namely ξ < − ǫ

a and |ξ + ǫ
a | > a−1/3. We

also know that for ξ < 0 with |ξ| ≪ ǫ
a , the amplitude is well approximated

by the DNLS soliton while the phase derivative ψ remains small. In order
to match these behaviours we need to approximate Q in the intermediate
region near ξ ∼ − ǫ

a . Unlike nearby the positive turning point ξ+ = 4
a , the

problem here is fully nonlinear. The equation satisfied by P reduces to

Pξξ ≈ (aξ + ǫ)P + |P |2P(4.33)

where both of the terms on the right hand side must be taken into account.
This equation can be transformed to one resembling a type II Painlevé
equation by setting t = a−2/3(aξ + ǫ) and u = a−1/32−1/2P :

utt = tu+ 2|u|2u.
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σ − 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A2

−

a1−1/σ(k + l)(1− 1/σ)

Figure 9. Numerical verification of (4.32) for A− describing
the asymptotic behaviour of Q as ξ → −∞.

The nonlinearity however is of the form |u|2u rather than the Painlevé u3

and known results about approximate solutions to Painlevé do not apply.
Instead, we turn to our numerical data and examine the behaviour of

the turning point as a function of σ. We will show in Section 5 that the
parameter ǫ behaves as a power law in (σ − 1) in the limit σ → 1 and
therefore make the Ansatz for ξ−:

a

ǫ
≈ C (σ − 1)α , σ → 1.(4.34)

We use a standard least squares algorithm to compute C and α and find
C ≈ 4 while α ≈ 1.2. Figure 10 illustrates the goodness of the fit for
σ ∈ [1.044, 1.1] with C and α obtained from a Richardson extrapolation of
the values of a and ǫ from simulations withN = 2.56×106 andN = 5.12×106

mesh points and σ ∈ [1.044, 1.1]. To check the validity of this Ansatz, we
change the range of σ values considered for the least square computation by
restricting σ to [1.044, σmax] and varying σmax. We do this for data obtained
from simulations performed at several different resolutions and report the
values obtained in Table 1. In the worst case, we observe relative differences
in the values of C and α at the order of 0.1%.

5. Vanishing momentum condition

In this Section, we use the zero momentum condition (2.5b) to obtain
an additional relation between ǫ and σ in the limit σ → 1. Combined with
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σ − 1
0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.08

0.1

0.12

0.14
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0.18

0.2

0.22

0.24
a/ǫ
C(σ − 1)α

Figure 10. A numerical test of model (4.34) over a range of
σ values. The values of C and α were computed using a least
square analysis Within this range of σ, we find C ≈ 4.03 and
α ≈ 1.23.

Table 1. Computed values of parameters α, C in (4.34).
Left: using simulations with N = 5.12× 106 and N = 2.56×
106 mesh points. Right: using simulations with N = 1.28 ×
106 and N = 2.56 × 106 mesh points.

σmax α C

1.100 1.2255 3.9754
1.095 1.2260 3.9809
1.090 1.2265 3.9873
1.085 1.2273 3.9959
1.080 1.2281 4.0049
1.075 1.2289 4.0149
1.070 1.2298 4.0253

σmax α C

1.100 1.2253 3.9737
1.095 1.2258 3.9791
1.090 1.2263 3.9853
1.085 1.2270 3.9933
1.080 1.2279 4.0028
1.075 1.2286 4.0112
1.070 1.2294 4.0201

(4.34), it gives the main conclusion of this study as stated in equations (1.15)
and (1.17).

Proposition 5.1. As σ → 1, the parameter ǫ satisfies, at leading order,
√
ǫ ∼ Cπ (σ − 1)(5.1)
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for some constant 2 < C < 24
7 .

Proof. In terms of phase and amplitude, Q = Aeiθ, the property I(Q) = 0
has the form

I(Q) ≡
∫ ∞

−∞
I(Q)dξ =

∫ ∞

−∞
θξA

2dξ = 0.(5.2)

We separate the domain into three regions: (i) −∞ < ξ / −ǫ
a ; (ii) ξ > 0;

(iii) −ǫ
a / ξ < 0 and denote I1, I2 and I3 the corresponding contributions

to I. In each region, we approximate the phase and amplitude of Q using
the analysis of the previous sections.

Region 1: When −∞ < ξ ≤ − ǫ
a , we change variables to y = −1

2(aξ − b)
and write

(5.3) I1 =

∫ − ǫ
a

−∞
θξA

2dξ =
2

a

∫ ∞

1
θξA

2dy

For y − 1 ≫ a
2

3 , A and θξ are well approximated by (4.28). Since θξ ≈
ψ − 1

2(aξ − b) = ψ + y, we have

A ≈ a
1

2σA−√
2(y2 − 1)

1

4

(

y +
√

y2 − 1
)σ−1

2σ
; θξ ≈ y −

√

y2 − 1.(5.4)

The contribution of the region 1 ≤ y − 1 ≤ a
2

3 , equivalently − ǫ
a − a−

1

3 ≤
ξ ≤ − ǫ

a (where the WKB analysis leading to (5.4) is no longer valid) to

I is negligible compared to that of the region y > 1 + a
2

3 . In Figure 11
we compare the values of I1 obtained from the numerical integration of
the solution to the boundary value problem (BVP) to those obtained by
inserting (5.4) into (5.3). We see a good agreement with a relative error of
less than 1%. The leading order contribution to I1 is therefore

2

a

∫ ∞

1+a
2
3

a
2A

2
−
(

y −
√

y2 − 1
)

√

y2 − 1
dy ≈ A2

−.

Using Propositon 4.3 we have

I1 ≈ 4π(σ − 1), σ → 1.(5.5)

Remark. Our numerical integration of the BVP did not reach values of
σ sufficiently close to 1 to allow a direct check of this relation.

Region 2: When ξ > 0, our simulations tell us that the amplitude A is
well approximated by the bright soliton (2.3) as long as ξ ≪ ǫ

a with its

region of validity extending at least to ξ = a
−1

3 ( see Figure 4). For ξ > ξ+,
we can approximate A using WKB, with an amplitude that is exponentially
small as a → 0 (see Proposition 4.1). Consequently, the contribution to I2
of the entire region ξ > a−1/3 is exponentially small; for ξ ∈ (a−1/3, ξ+), it
is small because

A(ξ) ≤ Bσ(a
−1

3 ) ≈
√
ǫ exp

(

−
√
ǫa

−1

3

)

,



22 CHER, SIMPSON, AND SULEM
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Figure 11. Comparison of the values of P1 obtained from
the numerical simulation with those obtained from (5.4).

while for ξ > ξ+, it will be small exponentially small because A+ is small
(Proposition 4.1). In both regimes, we can make use of (4.34), relating a
to ǫ and σ − 1. The consequence of this analysis is that the leading order
contribution to I2 is in ξ < a−1/3, where the amplitude and phase derivative
can be approximated by

(5.6) A ≈ Bσ =




(σ + 1)(4 − b2)

2
(

coshσ
√
4− b2ξ − b

2

)





1

2σ

; θξ ≈
b

2
− 1

2σ + 2
B2σ

σ .

We have omitted the aξ/2 term from the phase derivative because it’s contri-

bution to the integral for ξ < a−1/3 is O(a1/3) ≪ √
ǫ. Under the assumption

that
√
ǫ ∝ σ− 1, which will be our conclusion, O(a1/3) ≪ σ− 1, so the term

will be small relative to the main contributions to the integral, which are
O(

√
ǫ) and

(
σ− 1). Thus, the contribution of this region to the momentum

is approximated as

I2 ≈
∫ a−1/3

0
I ≈

∫ a−1/3

0

(
b

2
− 1

2σ + 2
B2σ

σ

)

B2σ
σ

≈
∫ ∞

0

(
b

2
− 1

2σ + 2
B2σ

σ

)

B2σ
σ

(5.7)
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The final approximation is due to the integral over (a−1/3,∞) of the ap-
proximate density being ≪ √

ǫ. Thus we include it for the convenience of
analytical integration.

Using these approximations, we expand I2 as

I2 ≈ I2(σ, ǫ) |σ=1 + (σ − 1)
∂I2
∂σ

(σ, ǫ) |σ=1

By direct integration,

(5.8) I2(σ, ǫ) |σ=1 =

∞∫

0

(
b

2
− B2

1

4

)

B2
1dξ = −

√

4− b2 ≈ −2
√
ǫ.

The second term in the expansion is given by

∂I2
∂σ

∣
∣
∣
∣
σ=1

≈
∫ ∞

0

∂

∂σ

[(
b

2
− B2σ

σ

2σ + 2

)

B2
σ

]∣
∣
∣
∣
σ=1

dξ.(5.9)

To approximate this integral, we first claim that the main contribution comes
from ξ < 1√

4−b2
≈ 1

2
√
ǫ
. To see this, we note that the bright soliton Bσ is a

function of u = σ
√
4− b2ξ ≈ 2

√
ǫξ and take great care when differentiating

with respect to σ under the integral sign. To wit, we split the integral into
2 parts at ξ0 =

1
σ
√
4−b2

and write

∂I2
∂σ

∣
∣
∣
∣
σ=1

=

∫ ξ0

0

∂

∂σ

[(
b

2
− B2σ

σ

2σ + 2

)

B2
σ

]∣
∣
∣
∣
σ=1

dξ

︸ ︷︷ ︸

≡I2,1

+ ξ−1
0

∫ ∞

1

∂

∂σ

[(
b

2
− B2σ

σ

2σ + 2

)

B2
σ

]∣
∣
∣
∣
σ=1

du

︸ ︷︷ ︸

≡I2,2

.

(5.10)

We now observe that the second integral, I2,2, tends to zero as σ → 1 while
the first tends to a finite value. Indeed, via direct computation, we obtain

I2,2 ≈
1

2
√
ǫ

∫ ∞

1

(
b

2
− B2

1

4

)(
1

2
B2

1 − 2B2
1 logB1

)

du

≈ 1√
ǫ

(
c1ǫ log ǫ+ c2ǫ+O(ǫ2)

)

≈ c1
√
ǫ log ǫ+ c2

√
ǫ

(5.11)

where B1 is the bright soliton with σ = 1 and c1 ≈ −2.33 and c2 ≈ −0.66 are
constant values. Under the Ansatz that ǫ behaves as a power law in (σ − 1),
I2,2 tends slowly to zero. For I2,1, the bright soliton nearly coincides with
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the lump and we have by direct computation

I2,1 ≈
∫ 1/2

√
ǫ

0

{

B6
1ξ sinh

√
4− b2ξ

4
√
4− b2

+

(
b

2
− B2

1

4

)(

−2B2
1 lnB1 +

B2
1

2
− B4

1ξ sinh
√
4− b2ξ√

4− b2

)}

dξ.

≈
∫ ∞

0

{
ξ2L6

1

4
+

(

1− L2
1

4

)(

−2L2
1 lnL1 +

L2
1

2
− ξ2L4

1

)}

dξ

= 2π,

(5.12)

where we take the limit ǫ → 0 in the penultimate step. Using (5.8) and
(5.12), we conclude that

(5.13) I2 ≈ −2
√
ǫ+ 2π(σ − 1), σ → 1.

Region 3: Near the origin, for ξ < 0, the amplitude is well approximated
by the bright soliton. However, as we approach ξ−, the linear term (aξ +
ǫ)P in (2.8) becomes less relevant and the lump soliton becomes a better
approximation . We thus subdivide the integral I3 into the regions − 1

2
√
ǫ
<

ξ < 0 and − ǫ
a < ξ < − 1

2
√
ǫ
.

σ − 1
0.05 0.1 0.15 0.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

∫ 0

−1/2
√
ǫ
I computed

∫ 0

−1/2
√
ǫ
I predicted

Figure 12. A comparison of the contribution to the momen-
tum P of the region [− 1

2
√
ǫ
, 0] from the numerical solution to

that predicted by the bright soliton approximation.
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Figure 12 compares the contribution to the momentum, over the interval
− 1

2
√
ǫ
< ǫ < 0, between the numerical solution and approximation (5.6),

using the bright soliton. We find that they are in good agreement over a
range of values of σ with a relative error of less than 2%. Therefore we

approximate the contribution of this interval by calculating
∫ 0
− 1

2
√

ǫ
I(Bσ) to

leading order. When − 1
2
√
ǫ
< ξ < 0, we expand the bright soliton near

σ = 1, ǫ = 0 as

Bσ(ξ) = L1(ξ) + (σ − 1)f1(ξ) + ǫf2(ξ)(5.14)

where L1 is the lump soliton (σ = 1) and f1, f2 are given by

f1(ξ) = − 1√
2

(
1

4ξ2 + 1

)3/2 [

12ξ2 +
(
8ξ2 + 2

)
log

(
8

4ξ2 + 1

)

− 1

]

,

f2(ξ) = − 16ξ4 + 3

6
√
2 (4ξ2 + 1)3/2

.

(5.15)

The contribution of this interval to I3 becomes

0∫

− 1

2
√

ǫ

I(Bσ) ≈
0∫

− 1

2
√

ǫ

I0 + (σ − 1)

0∫

− 1

2
√

ǫ

I1 + ǫ

0∫

− 1

2
√

ǫ

I2

where the integrands are computed at leading order using (5.14):

I0 =
(

1− L2
1

4

)

L2
1

I1 = 2L1f1

(

1− L2
1

4

)

− 1

2

(

L1f1 + L2
1 lnL1 −

L2
1

4

)

L2
1

I2 = 2f2L1

(

1− L2
1

4

)

− 1

2
(f2L1 + 1)L2

1.

Using Mathematica, we find:
∫ 0

− 1

2
√

ǫ

I0 ≈ −4
√
ǫ,

∫ 0

− 1

2
√

ǫ

I1 ≈ 2π,

∫ 0

− 1

2
√

ǫ

I2 ≈ − 1

3
√
ǫ
.(5.16)

To summarize, we have
∫ 0

− 1

2
√

ǫ

I(Bσ) ≈ −13

3

√
ǫ+ 2π(σ − 1).

For − ǫ
a < ξ < − 1

2
√
ǫ
, the bright soliton is not a valid approximation of

the amplitude. Although we do not have a precise analytic expression of Q
throughout this region, we observe, as illustrated in Figure 13, that

∫ − 1

2
√

ǫ

− ǫ
a

I(Lσ) >

∫ − 1

2
√

ǫ

− ǫ
a

I >
∫ − 1

2
√

ǫ

− ǫ
a

I(Bσ).
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σ − 1
0.05 0.1 0.15 0.2

0.5

0.6

0.7

0.8

0.9

1
∫
−1/2

√
ǫ

−ǫ/a I computed
∫
−1/2

√
ǫ

−ǫ/a I Bright Soliton
∫
−1/2

√
ǫ

−ǫ/a I Lump Soliton

Figure 13. Comparison of the contribution to the momen-
tum of the region [− ǫ

a ,− 1
2
√
ǫ
] obtained in the simulation with

the same quantity using the bright soliton and using the lump
soliton approximations.

When σ → 1, Lσ ≈ L1 + (σ − 1)f1 with f1 as in (5.15) and
∫ − 1

2
√

ǫ

− ǫ
a

I(Lσ) ≈ 4
√
ǫ.

On the other hand,
∫ − 1

2
√

ǫ

− ǫ
a

I(Bσ) can be estimated by the same methods

as in Region 2. Indeed, recognizing that the density I(Bσ) is even in ξ,
∫ 0

− ǫ
a

I(Bσ) =

∫ ǫ
a

0
I(Bσ) ≈

∫ ∞

0
I(Bσ) ≈ 2π(σ − 1)− 2

√
ǫ.

Combining the bounds and estimates for the two pieces of Region 3,
∫ − 1

2
√

ǫ

− ǫ
a

I(Bσ) ≈
7
√
ǫ

3
,

which gives us

I2 ∼ 2π(σ − 1)− µ
√
ǫ(5.17)

where µ is some constant satisfying 1
3 < µ < 2.

Combining the 3 regions, namely (5.5), and (5.13) and (5.17), we find
that

I(Q) ∼ 8π(σ − 1)− (µ+ 2)
√
ǫ.
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We now impose the vanishing momentum condition to get the main result
of this section:

√
ǫ ∼ 8π

µ+ 2
(σ − 1), 1/3 < µ < 2.(5.18)

We are unable to numerically check the leading order behaviour of ǫ in Eq.
(5.18) directly because we have not reached values of σ sufficiently close to
1 to ignore higher order corrective terms on the right hand side. Indeed, as
exhibited in (5.11), the corrections may be of intermediate order, and they
significantly affect the numerics. For this reason, we include a term of the
form f(σ) ∼ (σ − 1)2 log (σ − 1) in the right hand side of (5.18) and make
the Ansatz

√
ǫ = (C0 + C1 (σ − 1) log (σ − 1)) (σ − 1)α .(5.19)

We then use a nonlinear least squares algorithm to calculate C0, C1 and α.
We find that C0 ≈ 8, C1 ≈ 15 and α ≈ 1 (the latter being the result derived
in (5.18) analytically). The value C0 ≈ 8 corresponds to µ ≈ 1.1 in (5.18),
well within the predicted range. Figure 14 illustrates the goodness of the fit
of (5.18) for σ ∈ [1.035, 1.1] and values of C0, C1, and α obtained by a least
square analysis of Richardson extrapolation of ǫ values from computations
using N = 2.56×106 and N = 5.12×106 mesh points. To check the validity
of the obtained values we proceed as for the model (4.34): we restrict the
values of σ considered in the least square analysis to σ ∈ [1.044, σmax] and
vary σmax. We also use results from computations performed at different
resolutions and report the values obtained in Table 2. In the worst case, we
observe a relative difference between the obtained values on the order of 4%.

Table 2. A table of computed values for the parameters
α, C0 and C1 in (5.19). Left: using simulations with N =
5.12 × 106 and N = 2.56 × 106 mesh points. Right: using
simulations with N = 1.28 × 106 and N = 2.56 × 106 mesh
points.

σmax α C0 C1

1.100 1.045 8.037 15.226
1.095 1.045 8.020 15.177
1.090 1.044 8.004 15.128
1.085 1.043 7.984 15.070
1.080 1.043 7.963 15.006
1.075 1.042 7.942 14.940
1.070 1.041 7.915 14.859

σmax α C0 C1

1.100 1.044 8.013 15.161
1.095 1.044 7.994 15.103
1.090 1.043 7.972 15.039
1.085 1.042 7.945 14.957
1.080 1.041 7.922 14.887
1.075 1.040 7.891 14.790
1.070 1.039 7.854 14.677

�
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σ − 1
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.2

0.25

0.3

0.35

0.4

0.45 √
ǫ

(C0 + C1(σ − 1) log(σ − 1)) (σ − 1)α

Figure 14. Numerical verification of model (5.19) using a
least square computation to find the parameters C0, C1, and
α. We find that C0 ≈ 7.915, C1 ≈ 14.859 and α ≈ 1.041.

Remark: It is possible to prove Proposition 5.1 by considering the condi-
tion H(Q) = 0 (see (2.5a) in place of P (Q) = 0. Using the same analysis and
separation of the domain, we obtain H1 ∼ 2π(σ− 1), H2 ∼ 3π(σ− 1)− 2

√
ǫ

and H3 ∼ 3π(σ − 1) − µ
√
ǫ. We omit the details of this calculation as the

Hamiltonian density is a more complicated object while the final result (5.1)
is unchanged.

6. Discussion and further remarks

Combining Proposition 5.1 and the numerical fit (4.34) gives us the central
result of this study: that in the limit σ → 1, a(σ) behaves as a power law
with respect to the distance to criticality (σ − 1) (that is a ∼ (σ − 1)α with
α ≈ 3.2), while the amplitude of the blow-up profile tends to the lump soliton
of DNLS. In the course of the analysis, we have made several assumptions
on the relative behaviours of a and ǫ that we now check a posteriori. We
have assumed that a2/3 ≪ ǫ, a

ǫ ≪ σ− 1 and ǫ≪ (σ− 1), all consistent with
our final result.

In some cases, we did not check the asymptotic relations directly against
our numerical simulation because although we reach values of σ as low as σ =
1.044, we cannot ignore some of the higher order corrections. For example,
in Propositions 4.1, 4.2 and 4.3, we derived the form of the parameters
A+, ψ(0) and A− (through equations (4.1), (4.25) and (4.32)) that have
more than leading order precision and we find excellent agreement with the
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numerical simulations. In Section 4.2.2 however, we were restricted to a
heuristic discussion in a neighborhood of the turning point ξ− = − ǫ

a . The
behaviour of the profile here is a result of a delicate balance of linear and non-
linear terms in (4.33) and its precise analytic description remains an open
problem. Finally, in Proposition 5.1, we estimated the integral constraint
P =

∫
θξA

2 = 0 using the approximations of the preceding sections. We use
the DNLS solitons (2.4) and (2.3) to bound explicitly above and below the
integral over the neighborhood of ξ− where nonlinear effects are important.
We obtain relation (5.1); however, the constant of proportionality is not
known precisely.

Appendix A. Details of the Asymptotic Expansion

This Appendix contains the proof of Proposition 2.3 which is a slight
extension of Proposition 4.1 in [12]. We decompose the blowup profile as
Q = XZ, where X is a phase term chosen to remove linear terms in Zξ. Let

(A.1) X(ξ) = exp

{

−i
(
aξ2

4
− bξ

2
+

1

2

∫ ξ

0
|Z(ξ′)|2σdξ′

)}

,

Z satisfies
(A.2)

Zξξ+

(
1

4
(aξ − b)2 +

1

2
(aξ − b)|Z|2σ +

|Z|4σ
4

− 1− i
a(σ − 1)

2σ
− i

2

(
|Z|2σ

)

ξ

)

Z = 0.

Decomposing Z into phase and amplitude, Z = Aeiφ, gives

Aξξ

A
− φ2ξ − 1 +

1

4
(aξ − b)2 +

1

2
(aξ − b)A2σ +

A4σ

4
= 0(A.3)

φξξ + 2
Aξ

A
φξ −

a(σ − 1)

2σ
A− 1

2

(
A2σ

)

ξ
= 0.(A.4)

Let θ ≡ φξ. Following [12], we now assume that, as ξ → ±∞,

θ(ξ) =
aξ − b

2
− 1

aξ
− b2

a2ξ2
+

1

2
A2σ + γ(ξ), γ(ξ) = O(ξ−3),(A.5)

A(ξ) = A± |ξ|−
1

2σ

(

1 +
b

2aσξ
+ ν(ξ)

)

, ν(ξ) = O(ξ−2).(A.6)

γ(ξ) and ν(ξ) are corrections to the terms explicitly written. While we have
made an assumption as to their order as ξ → ±∞, they remain undetermined
at this point. We will also assume that they are smooth, and their derivatives
obey

γ(n)(ξ) = O(ξ−3−n), ν(n)(ξ) = O(ξ−2−n).

We substitute (A.5) and (A.6) into (A.3) and (A.4). We must show that
the corrections, with the assumed orders, are consistent; there must be other
terms in the equations which can balance them. Then, in principle, we could
successively solve for the next correction. One subtlety is that in (A.5) and
in the terms A2σ and A4σ in (A.3), we will not immediately make use of
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(A.6). The reason for this is that a number of the terms cancel exactly,
leading to simpler equations. For the amplitude equation, (A.3), we obtain

(A.7)
A′′

A
− b2

a2ξ2
− 1

a2ξ2
+

1

aξ
A2σ

︸ ︷︷ ︸

O(ξ−2)

−aξγ(ξ) = O(ξ−3).

One can check that the indicated terms are of order ξ−2. Since we have
assumed that γ(ξ) = O(ξ−3), aξγ(ξ) will be O(ξ−2), and thus it is consistent.
We could obtain the leading order ξ−3 term in γ, but we do not pursue this.
The right-hand-side of (A.7) contains a number of terms that can be checked
to be of order at least ξ−3.

Turning to (A.4), we will explicitly retain all terms of order ξ−2, and
verify that ν(ξ) appears at the correct order. We first expand Aξ/A using
(A.6), to obtain

Aξ

A
= − 1

2σξ
− b

2aσξ2
+

b2

4a2σ2ξ3
+ νξ(ξ) + O(ξ−4).

Under our assumption on ν, νξ is of order ξ−3. Then, substituting in the
above expression into (A.4)

(A.8)
1

aξ2
+

b2

4aσ2ξ2
+

1

aσξ2
+

b2

2aσξ2
− 1

2σξ
A2σ

︸ ︷︷ ︸

O(ξ−2)

+aξνξ(ξ) = O(ξ−3).

The indicated terms on the left-hand-side of (A.8) are all of order ξ−2. Under
the assumption on ν and its derivatives, aξνξ(ξ) is also O(ξ−2). Thus, we
have a consistent expansion, and the leading order ξ−2 term in ν(ξ) could
be obtained if needed. Again, one can check that the omitted terms in the
expansion are all O(ξ−3), and have been put on the right-hand-side of this
last equation. Returning to the Q variable, we have (2.6):

Q ≈ A±|ξ|
−1

2σ

(

1 +
b

2σaξ

)

exp

{−i
a

ln |ξ|+ ib

a2ξ

}

,

and the corrections in the phase and amplitude are at O(ξ−2).

Appendix B. Details of the Numerical Methods

Here, we report details of our numerical scheme for solving (1.10).

B.1. Far Field Boundary Conditions. To numerically solve (1.10), we
restrict to the domain [−ξmax, ξmax], and impose approximate boundary con-
ditions at ±ξmax. For ξmax large enough, Q is approximated by (2.6) (see
Proposition 2.3). This allows us to write linear Robin conditions. Writing
Q in terms of its amplitude and phase, Q = Aeiφ, and also in terms of its
real and imaginary parts Q = u+ iv. Then

(B.1) φξ =
−vuξ + uvξ
u2 + v2

, Aξ =
uuξ + vvξ√
u2 + v2

.
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Using (2.6), we have that, as ξ → ±∞,

(B.2) φξ ≈ − 1

aξ
− b

a2ξ2
,
Aξ

A
≈ − 1

2σξ
− b

2aσξ2
.

Defining α(ξ) ≡ 1
2σξ +

b
2aσξ2 , β(ξ) ≡ 1

aξ +
b

a2ξ2 and substituting in (B.1) we

obtain for large |ξ|,
(B.3) uξ + α(ξ)u− β(ξ)v ≈ 0, vξ + β(ξ)u+ α(ξ)v ≈ 0,

and thus the boundary conditions at ±ξmax.

B.2. Rescaling of the domain. As seen in Section 3.3, the turning points
of (1.10) are located at ξ− = −ǫ/a and ξ+ = (4 − ǫ)/a. In order to be
in the asymptotically linear regime where (B.3) is valid, we need ξmax to
exceed |ξ±|. This presents a problem numerically, since ξ± → ±∞, as
σ → 1. We thus rescale the domain, so that the turning points, in the
rescaled coordinate system remain in a fixed domain. Setting x = aξ, (1.10)
becomes

(B.4) a2Qxx −Q+ ia
(

1
2σQ+ xQx

)
− iabQx + ia |Q|2σ Qx = 0

and boundary conditions (B.3), evaluated at xmax, are

(B.5) 0 = ux + α(x)u − β(x)v, 0 = vx + β(x)u + α(x)v,

with α(x) ≡ 1
2σx + b

2σx2 , β(x) ≡ 1
ax + b

ax2 . In these coordinates, the turning
points are at x− = −ǫ and x+ = 4 − ǫ. Eq. (B.4) is singular as σ → 1
since a → 0. However, we find this to be more effective, as it allows us to
compute on a domain of fixed size for all values of σ.

B.3. Numerical Implementation of the Boundary Value Problem.

We solve for Q using the default Newton solver in [3,4], along with a sparse
direct linear solver. Due to the condition that the maximum of the profile
occurs at the origin, an interior point of (−xmax, xmax), we introduce the
variable W (x) = Q(−x), and study Q and W on (0, xmax), with Q and W
coupled by a continuity condition at the origin. W then solves the equation

(B.6) a2Wxx −W + ia
(

1
2σW + xWx

)
+ iabWx − ia |W |2σWx = 0.

Setting W = f + ig, the boundary conditions (B.5) are

0 = −fx + α(−xmax)f − β(−xmax)g,

0 = −gx + β(−xmax)f + α(−xmax)g.

We now solve these equations on a uniform mesh of N + 1 mesh points on
[0, xmax] to obtain (uj , vj , fj, gj)

N
j=0 along with a and b. First and second

derivatives are approximated by second order centered finite differences. For
instance, the real part of (B.4) becomes

a2

∆x2 (uj+1 − 2uj + uj−1)− uj

+ a
(

1
2σvj + (xj − b+ (u2j + v2j )

σ) 1
2∆x(vj+1 − vj−1)

)
= 0

(B.7)
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After an analogous discretization, the farfield boundary conditions provide
the needed values of (uN+1, vN+1, fN+1, gN+1) for evaluating equations like
(B.7) at j = N .

In addition to the farfield conditions, we impose symmetry and anti-
symmetry conditions at the origin,

u−1 = u1, v−1 = g1, f−1 = f1, g−1 = v1

the auxiliary continuity conditions at the origin,

u0 = f0, v0 = g0,

and the zero phase condition, v0 = 0.
This system of 4× (N + 1) + 2 unknowns is then solved with xmax = 25.

Solutions with N = 1.28 × 106, 2.56 × 106, 5.12 × 106, were obtained. As
a convergence criterion, we sought to ensure that we had good pointwise
relative error, terminating when

|u0 − f0| ≤ TOL, |v0 − g0| ≤ TOL,
|(B.7)|

|uj + ivj |
≤ TOL,(B.8)

and an analogous equation for the imaginary counterpart to (B.7), along
with the fj and gj equations. We solved with TOL = 10−6. We com-
pared our results against those obtained using BVP SOLVER-2, a successor to
BVP SOLVER, [5,19]. They were found to be in agreement, but we found that
BVP SOLVER-2 was unable to solve for values of σ below 1.07, motivating us
to switch algorithms.

B.4. Continuation method. As is the case for all Newton solvers, it is
essential to provide a good initial guess. We use the solution obtained from
the time integration of gDNLS σ = 2, and perform a continuation in σ, to
solve for Q at smaller values. The initial guess for σ = 2 was constructed
using the dynamic rescaling, [12]. Next, we construct a decreasing sequence
of values of σ, 2 = σ0 > σ1 > . . . > σj > . . ., using the solution at σj−1 as
the starting guess for solving the solution at σj . Starting with ∆σ = 0.2,
we reduce σ by ∆σ, halving the size of ∆σ when the Newton solver fails.
Below σ = 1.1, the largest value of ∆σ = 0.0125, and for values close to the
smallest resported value of σ = 1.044, ∆σ = 0.00078125.

B.5. Richardson Extrapolation. Since this discretization is second or-
der, we contend that quantities such as a and b should be O(∆x2). Thus,
we improve upon our results at different resolutions via Richardson extrap-
olation, i.e., aRich.(σ) = 4

3a
∆x/2(σ) − 1

3a
∆x(σ). This requires having values

of the desired quantities available at the same values of σ. We use cubic
spline interpolation to obtain values on common σ values.

B.6. Limitations. One limitation we found to our numerical calculations
is due to the singular nature of the equation. Recall that we expect a → 0
as σ → 1. Since a corresponds to a length scale in (B.4), we should have
∆x≪ a. Thus, as σ tends to 1 and a tends to zero, a consistent numerical
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discretization requires ever smaller values of ∆x. This limited us to values
of σ near 1.04. Also, as shown in Figure 5, computed values of Q, in the
tail, are reaching the limit of double precision floating point, as the values
are smaller than 10−300.
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