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The effective Vlasov-Poisson system for the finite Larmor

radius regime

Mihai BOSTAN *, Aurélie FINOT |

(May 25, 2016)

Abstract

The subject matter of this paper concerns the finite Larmor radius regime of the
Vlasov-Poisson system for strongly magnetized plasmas. We appeal to gyro-average
methods, and determine the explicit expressions for the velocity and acceleration fields in
the limit Vlasov equation. We investigate the Hamiltonian structure of the limit model
(trajectories), analyse its properties (conservations of the mass, kinetic energy, electric
energy) and justify rigorously the asymptotic behavior, following the formal arguments

developed in 1.
Keywords: Vlasov-Poisson system, Averaging, Finite Larmor radius approximation.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

One of the main application of the tokamak plasmas relies on the energy production through
the magnetic confinement. We study the dynamics of a population of charged particles under
the action of a strong magnetic field, whose role is to ensure the confinement around the
magnetic lines. An interesting model is the so called finite Larmor radius regime, that is, we

assume that the particle distribution fluctuates at the Larmor circle length scale | = 2mpr,

*Institut de Mathématiques de Marseille, Centre de Mathématiques et Informatique, UMR 7373, 39 rue

Frédéric Joliot Curie, 13453 Marseille Cedex 13 France. E-mail : mihai.bostan@univ-amu.fr
fInstitut de Mathématiques de Marseille, Centre de Mathématiques et Informatique, UMR 7373, 39 rue

Frédéric Joliot Curie, 13453 Marseille Cedex 13 France. E-mail : aurelie.finot@univ-amu.fr.
M. Bostan, A. Finot, M. Hauray, The effective Vlasov-Poisson system for strongly magnetized plasmas,

C. R. Acad. Sci. Paris, Ser. I(2016), http://dx.doi.org/10.1016/j.crma.2016.04.014



along the orthogonal directions, but at a much larger scale in the parallel direction with
respect to the magnetic field [10, 11, 13]. For simplicity we consider a strong uniform magnetic

field B® = (0,0, B®), perpendicular to x;0z3. We use the notations
T = (z1,22), U= (v1,v2), "0 = (vg,—v1), (w1,22),(v1,v2) € R,
The assumptions of our regime are

1. The reference time 7' is much larger than the cyclotronic period (strong magnetic field)

i.e.,
B¢ 1
Tl 1 o <e <<t
2mm €
TV
27mpr,

Notice that the above hypothesis writes also = %, where V is the reference velocity,

and pr, is the typical Larmor radius.

2. The kinetic energy is much larger than the potential energy

mV? 1

¢ ¢

where m is the particle mass, ¢ is the particle charge, and ¢ is the reference electric

potential.

3. The typical length of the electric phenomena coincides with the Larmor circle length

i.€e.,
E0 _
nq

Here ¢¢ is the electric permittivity of the vacuum and n is the average charge concen-

12, (1)

tration.

Notice that the scaling in (1) is not so relevant for tokamak plasmas. Indeed, a much inter-
esting assumption would be to consider that the Debye length is much smaller with respect
to the Larmor radius, leading to quasi-neutral regimes. We expect that the method employed
here will apply to other (more complex) regimes, including quasi-neutrality. This will be the
topic of future works.

The presence density f¢ = f°(¢,z,v) and the electric potential ¢° satisfy the following

Vlasov-Poisson system, up to a multiplicative constant w,, of order one

1
atfg—Fg(@'ijE—f—wc LE-ngE)—&—1)38953fE—quﬁg-ngE—aamqu&}?,fg = 0, (t, x, U) S R+ XR3XR3
(2)
—Ag® — 202,¢F = p° = / fe(t,x,v) do, (t,x) € Ry xR3 (3)
R3
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FE(0,2,0) = f(z,0), (z,0) €R® xR, (4)

We introduce the notations T, = 27 /w,, wi = w./e, T = i—g = 52—: = eT..

We investigate the asymptotic behavior of (f¢, $°)e~o when € becomes small. Clearly we
are faced to a two time scale problem : some quantities change every cyclotronic period, some
other are left invariant during a cyclotronic period. For example, the Larmor center T + i—f

is an invariant of the fast cyclotronic motion. Indeed, the characteristic system of the Vlasov

equation (2) writes

dxX° V@) dv° V() A
= = c —_ T t7 € t
¥ S Y Vz® (t, X°(t))
dX5 ey dVE c
=Vt = —£0,,¢°(t, X°(t
g =W, 5 €0z5¢° (8, X°(1))

X(0;z,v) =z, V(0;2,v) =v

and therefore, the time derivative of the Larmor center is given by

d (XE : LV&) L (S - v ) - - X))

dt We € We We

The variation of the Larmor center over one cyclotronic period TZ = €T is of order ¢, and thus
negligible. The Larmor center is left invariant with respect to the fast dynamics. Similarly

we obtain

% {R(wet/) VI (0} = =R (wet/e) V(1) + R (wetfe) | = V(1) = Voo™ (1, X7(1))

= —R (wet/e) Vo (t, X°(1)) (6)

saying that R (w.t/e) V" (t) remains almost unchanged over a cyclotronic period, together with
X5(t) and Vi (t). Here R stands for the rotation of angle § € R. Motivated by the previous
computations, at any time ¢ € R, we introduce the change of coordinates (z,v) — (Z,0)
given by .

= v

T=7+—, T3=2x3, 0="R(wt/e)V, U3=uvs. (7)
We

Notice that the Jacobian determinant of this transformation equals 1, and thus the Lebesgue
measure is preserved dvdZ = dvdz. The idea is to get stability by filtering out the fast
oscillations with respect to the cyclotronic motion [5, 6, 7]. Let us denote by fe (t,-,-) the

presence density in the coordinates (Z,v), that is

Y = - Ct = ~ — = ~
feit,z,v) = fo(t,z,v), T=2 — M 1D, 23=73, 1= R (—wct/e)v, v3 = vs.
We



Performing the above change of coordinates we deduce that the density f ¢ satisfies the Vlasov
equation

J‘Vj(ﬁe

Cc

0 V0305 [ = R (wet[2) Voo - V57 — 00, °05, f* =0 (8)

and the initial condition

=l

F2(0,2,0) = f* (5— w,i;},ﬂ) :

e
Notice that, in the above Vlasov equation, the electric field (—Vz¢®, —£0,,¢%) is to be com-
puted at the point x = (Z — w; 'R (~wet/e) +v,7T3). Observe that in this coordinates, the
Vlasov equation contains no singular advection fields (the velocity and acceleration fields of
(8) are exactly the time derivatives in (5), (6) and thus of order 1, and not of order 1/¢).
Therefore we expect a stability result for the family ( fe )e, that is, there is a presence density
profile f such that
- 1o
fet,x,v) — f (t,x—l— w—,:rg,R(wct/s)@, v3> =o0(1), € \,0.

C

The well posedness of the Vlasov-Poisson system follows by standard arguments, based on
uniform mass and energy estimates, with respect to € > 0, see [2, 4]. The asymptotic behavior
comes by performing a two scale analysis. The key point is to pick new coordinates which
are left invariant with respect to the fast dynamics. This leads naturally to average transport
operators whose study was detailed in previous works [5, 6, 7]. The novelty with respect to the
previous approaches [10, 11] consists in averaging directly the non linear equation, satisfied by
the presence density f¢, resulting when replacing the self-consistent electric potential through
the Poisson equation. In other words, instead of coupling two averaged equations (Vlasov and
Poisson), we average the fully non linear coupling between the Vlasov and Poisson equations.
This allows us to emphasize the Hamiltonian structure of the effective Vlasov-Poisson model,
and new conservations which characterize the finite Larmor radius regime. A very intuitive
analysis is presented in Section 2, where the effective trajectories are computed by averaging
formally with respect to the fast cyclotronic motion, leading to gyro-average effects. The
point is that the electric field is treated as self-consistent, and thus we also need to average
the fundamental solution of the Laplace operator. As the cyclotronic trajectories are circles,
for averaging the fundamental solution of the Laplace operator we can appeal to the mean
property of the harmonic functions.

We mention that the asymptotic regime considered in (2), (3), (4) is the same as that in

[13]. Nevertheless, the coordinate changes, leading to the new presence densities are different:



in [13] a non linear change of frame is used, depending on the self-consistent electric field,
which is very different with respect to the linear change (7). Accordingly, the limit models
obtained in the new coordinates are different. More exactly, in the two dimensional setting

i.e., v = (x1,22),v = (v1,v2), *v = (v2,—v1), T =2 + :—:,5: R (wct/e) v, we prove cf. [8]
Theorem 1.1 Let f® = fi(x,v) be a non negative presence density satisfying

H1 fRQfRQ (z,v) dvdz < 400

H2  [pofpe @fin(x,v) dvdz < 400

H3 there is a bounded, non increasing function F'™ = F™(r) € L>® N LY(Ry;rdr), such
that fio(z,v) < F(|v|), (z,v) € R? x R2.

We consider the family (f€, ¢%)e>0 of weak solutions for the Vlasov-Poisson system
1
O fe + (v Vafe 4+ we tv-Voff) = Vo - Vof =0, (t,z,0) e Ry x RZxR?  (9)

—A " = p°(t, ) = fe(t,x,v) dv, (t,x) € Ry x R? (10)
R2

fE(0, z,v) = f(z,v), (x,v) € R x R? (11)
and we denote by (f€)eso the densities

—w,t _ - ~ ~
WLU’R(—wct/E)U>, (t’x,v)€R+XR2XR2, e>0.

fE(t,7,0) = f° <t,%— -

Therefore there is a sequence ()i converging to 0 such that (fak)k converges strongly in

L2([0,T); L*(R? x R2)), for any T € Ry, toward a solution f of the problem

Of +V[FOZE,D)-Vif + A[f(D](F,D) - Vsf =0, (t,7,0) e Ry x RZxR?  (12)

with the initial condition

Lo

,v) , (Z,7) € R? x R? (13)

£(0,7,0) = fi (5—

C

where the velocity and acceleration vector fields V, A are given by

VIFOI@0) = —w ' TVl ()], AIfB](E0) = we “Vao[f(1)] (14)

v —w| w|
/RQ/RQ{ |Wc| {\i ~|<\v wl} +In|z — 9| 1{‘~ ~|>‘T“Ju|}| } f(t,y,w) dwdg.
(15)



The asymptotic behavior of (9), (10), (11) has already been studied before. In [10, 11, 13]
the authors appeal to the two scale convergence method. Nevertheless, the fast time variable
persists in the limit model, and the computation of the velocity and acceleration vector fields
of the limit Vlasov equation requires the resolution of a Poisson equation for every couple
of slow/fast time variables, and some averaging procedure. In [5] the author obtained a
convergence result towards a simpler model, which is valid only for well-prepared initial data.
Our result applies to general initial data, and the limit model is a rather simple equation. It
is a fully explicit non linear transport equation, whose characteristic system is Hamiltonian
(with respect to the appropriate variables cf. Proposition 2.1) and which can be studied in a
much simpler way. Roughly speaking, the fast time variable appearing in the previous works
is averaged in a fully explicit way. Notice that the velocity and acceleration fields V, A are
divergence free. Therefore (12) writes into conservative form, which guarantees the mass

conservation. More generally we prove.
Proposition 1.1

1. Let f = f(t,%,0) be a solution of the problem (12), (14), (15) such that 1,%,7,|%|?, |7]?
are integrable functions with respect to f(0,%,0)dvdz = fi™(F — w4, v)dodz. For

any t € Ry we have
[ [ w s mR mPy w0 dods = [ [ (0,55 50 G G 5.9) dids
R2/R2 R2/R?
2. Let f = f(t,Z,0) be a solution of the problem (12), (14), (15) such that
1 ~ z oy Bf oy 1t
/ o[f(0)](z,v)f(0,z,v) dodz < +oc.
2 R2JR2

The electric energy is preserved in time

d1 U

[ [ 1079 doaz =0, teR..

dt 2 R2JR2

The two dimensional analysis extends easily to the three dimensional setting, at least formally.

Following the same arguments one gets the result.

Theorem 1.2 Let f™ = f%(z,v) be a non negative presence density with finite mass and
kinetic energy, and bounded charge density p™(x) = ng f™(z,v)dv. We consider the family
(f¢,0%)e of weak solutions for the Vlasov-Poisson problems (2), (3), (4) and we denote by
(f%)es0 the densities

re ~ = R - t = ~ = ~ ~ o~
fet,z,v) = f° (t,x _ Rzwet/e) 13,73, R (—wet /) v,v3> , (t,7,7) € Ry xR3xR3, £ > 0.
We
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Therefore the limit density of the family (fs)g solves the problem

Ouf + VI (t.73)] - V= + a0, f + Alf(, 7)) - Vaf =0, (7.7) € Ry x B® x RS
Lo

f(0’§’5> :fin (E_waz&fU) ) (5’6) ERB XRS

C

where the velocity and acceleration fields are given by
Vifl = —w: ' V50lf],  Alf) = we ~V50lf]

-1 -3 _
t 7 — ] 1o e 4F—31 - - =
AU E)(@ D) = =5 /Rz /Rs { Pl TE-gsisEy T nlE =9l {zg>“;;“}}

x f(t, 7,73, w) dwdy.

The above considerations extend to more general situations. Periodic spatial domains can
be considered. In this case we need to average the fundamental solution of the Laplace
operator with periodic boundary conditions. Another generalization concerns the magnetic
field geometry. As long as the invariants of the cyclotronic motion are available (which play
a crucial role when defining the new coordinates), the arguments still apply and allow us to
justify the finite Larmor radius regime. It happens that for quite a large class of magnetic
fields, such invarianst are well defined and thus our method adapts in this cases. A complete
study of these aspects will be discussed soon.

Our paper is organized as follows. In Section 2 we investigate the two dimensional case.
We compute the effective trajectories and we establish the main properties of the limit Vlasov-
Poisson system. Section 3 is devoted to convergence results. We proceed by a two scale
analysis. The three dimensional setting is discussed in Section 4. Some technical arguments

are presented in Appendix A.

2 The two dimensional setting

In this section we focus on the bi-dimensional case. We use the notations = = (x1,z2),v =

LC”, U = R(wet/e)v. We investigate the asymptotic

(U17U2)a o = (U27_U1)7 T =ux+ w

behavior of the solutions (f¢, ¢%).>0 of the problems (9), (10), (11). We start our work by
formal computations at the characteristic equation level. Later on we complete our analysis
by rigorous arguments. The trajectories in the phase space (x,v) oscillate at the cyclotronic

frequency wi = we/e

dXs  VE(t) dve

We 1yre 5 £
= — Velt) — Vx(z5 t,X t



but the quantities X¢(t) = X°(t) + LVe(t)/we, VE(t) = R (wet/e) VE(t) are left invariant
with respect to the cyclotronic dynamics

dX°  LV.ef(t X)) dvE

dt w0, o = R(wet /) Vo™ (1, X5(1)- (16)

We expect that the family of trajectories ()Z' c, 175)€>0 is stable as £ becomes small, and we
are looking for the limit trajectory (X, V) = limg\o(j(/ ¢, V*). Once we have determined the
limit characteristic equations, let us say

X sy oy AV 0. 7
5 = VX0 V), = AGX0), V(1)

for some velocity field V and acceleration field A, we solve for

Wf+V-Vif+A-Vif =0, (t,7,0) € Ry x R? x R?
- ) 1z
£(0,2,9) = f» (5— ,a;) , (Z,7) € R* x R%
w

(&
We introduce the presence densities in the phase space (,v) given by

1

fet,z,0) = fo(t,z,v), T=x+

v, U =R (wet/e)v

C
which satisfy the Vlasov equations see (8)

va¢5

C

afe - Vil = R (wet/e) Vad® - Vi f* =0, (t,7,7) € Ry x R? x R?

and the initial condition

]

f5(0,%,0) = fi (E— ,a) ., (Z,7) e R? x R2.

We expect that the family ( f’e )e>0 is stable when € becomes small and we denote by fo the

expected limit density, as € N\, 0. We claim that f = fo, which will imply that

1

v 1

v

R (wet/e) v) .

Cc Cc

fe(t,z,v) = f¢ <t,a:+ , R (wet/e) v) ~f <t,x+

Indeed, we have for any € > 0

=l

FE(t, XE(), VE@) = f2(t, X5 (), VE(E) = £(0,3,0) = f <5 — ,5) . (7,0) e R? x R2.

C

By passing to the limit when £ \, 0, we obtain

~, ~ ~ . l~ ~ ~ o~ ~

P, X (), V() = o (5 - w”,’ﬁ) = f(0,%,0) = f(t, X(1),V(1), (t,,7) € Ry x R® x R?
saying that lim.\ o fs = fo = f . By the previous considerations, in order to determine the
asymptotic behavior of the Vlasov-Poisson problem (9), (10), (11), we need to analyze the

stability of the trajectories (X¢, V)50, when € \, 0.



2.1 The effective trajectories

We compute the velocity and acceleration fields V, A corresponding to the limit trajectories
()Z , XN/) Part of the arguments developed in this section are formal. Nevertheless, a rigorous
proof is presented in Section 3. Let us introduce the fundamental solution of the Laplace

operator in R?

1
e(z) = —=—1Inlz|, z € R*\ {0} (17)
2m
that is —Ae = o in D'(R?). The solution of the Poisson equation (10) writes
sto)= [ co-pitndy= [ [ co-prtpw dod, (6o e R x B
R2 R2JR2

Replacing the expression of the electric potential in (16) leads to

dX i /R 2 /R Ve (XE(1) — ) (b, w) dudy (18)
L (Xf(t) — - R (/) (70 - ) F(15.9) did

and

dVE
d¢

R (wet /2) /R L TeGE® =) £ ) dudy (19)
R /) [ [ Ve (Xf(t)—a—in(—wct/eﬁ(%(t)—w))f (t,7,@) didj.

We intend to average (18), (19) over one cyclotronic period [t,t + T¢], with T¢ = 27,

We

Integrating for 7 € [t,t + 1], and introducing the fast variable s = (7 — t)/e € [0, T,], yield

)}a(tJrT%a; Xe(t L /t+T/RQ/RQ o (XE ~ R<—wj> L(f/e(;)_w)>

f (1,9, w) dwdydr

e A

x f¢ (t+es,y,w) dwdyds

_ _WCch /OTC /RQ/R? Ve ()?(t) ~j-R <—°"€t —wcs> L(‘7(i)c— w)>

f(t y,w) dwdyds + o(1)

// o /J‘V€< g—R(H)W>d9f(t 7,@) diwdj + o(1)
R2JR2 2T We

1 . ~ ~
_ Ve / E(X(t) — 7. V(1) — @) F(t,5,@) didj + o(1), when e\, 0
R2JR?

We




with

1 2 3
e = 5= [ e (6w RO ) @0, (€0 € B xR \(O0) (@0)
Passing to the limit, when € goes to 0, and assuming that )ZS(HT:;Q_)?%) = )?(HT;E)_X“) +o(1)
as € \, 0, lead to
dX ~ ~
Vit
S = VIOIX @), V()
where the velocity field V[f(t)] is given by
- 1y -
VFO)En) = -—= [ [ e@-5.7-0)i(5.0) dods, @0 € B xR
We R2JR2
A similar computation allows us to determine the acceleration field.
Ve(t +T¢) — t+Te wcT ~ _ wer\ L(VE(T) — @)
Xe(1)—y— — _
Te / /IR?/R2 (T) =¥ R( € ) We
x fe (1,9, w )dwdydT

X f(t +es,7,w) dwdjds

< f(t, 7, @

/RQ/RQ;F/O%MWG

(X(t)

w) dwdyds + o(1)

= wchn & - Y,

R2/R2

Vit

Ve (t+T5)

///<>< a(

(fat) —j-R(0)

)

—VE()

t >
9

LV () — @)

We

— @) f(t, 7, @) didg + o(1), when &\, 0.

_ VTV (1)

As before, the assumption

Ie

av
dat

= T + o(1) as € \, 0, implies

ALF@IX (1), V(1))

where the acceleration field A[f(t)] is given by

‘A[.]E(t)](‘%v 5) = We J_vn

R2/R2

) d0 f(t, 7, w) dwdj + o(1)

E(F - 7,0 — ) f(t,7,w) dwdy, (7,7) € R? x R%

Therefore the effective trajectories satisfy the system

dX ~ ~

= VIFOIR ), 7))
with

VIF(D](E,0) = —w. " Vg

dt

FO) AlF0)@,) =

= A[f(t)KX:(t)v V(t)), (}?7 ‘7)(0; z, Fﬁ) - (%7 57)

(21)

)



NG = [ [ 6E-5.7- 0550 dadg, 37 <R xR
R2JR2
and the conclusion of Theorem 1.1 follows formally, once that we justify (15). Before doing

that, let us pay attention to the form of the characteristic system (21).

Proposition 2.1 The characteristic system (21) is Hamiltonian, with respect to the conju-

gate variables (Fo,w;'01) and (w.E1,02) and the Hamiltonian function ¢[f].

Proof. It is enough to observe that the equations in (21) write

AXs _ 90 500 Ty V) _OGF)] 5
T~ Do) KOV, TG = TS X0,V 0)
d(w(;;ﬁ) _ _6¢a{git)] (X (1), V(©), % = —m& (1), V(1))

saying that

(%) = Vi iy ST OIE (D), (1)

and

w0, Th) = Vo STONR (0, (1),

[

Let us come back to the computation of the function £(§,n). By the definition in (20), the
function £(&,n) is the average of the fundamental solution e(-) over the circle of center £ and
radius |n|/|w.| and therefore we appeal to the mean property of the harmonic functions. At
least in the case |¢| > |n|/|we|, the function z — e(z) is harmonic in the open set R? \ {0},
which contains the disc {z € R? : |z — | < |n|/|we|} and thus, the mean property applied to

the function e(-) and the circle of center £ and radius |n|/|w.| yields

2m
een =g [ (6= 4y} a0 =et9) = 5 miel, Ie]> 7

2T We |wel

More generally we prove the following proposition, see Appendix A for details.

Proposition 2.2 Let £ : R? x R2\ {(0,0)} be the function defined by

2T c

I R(O
eten =5 [ o(e- 20 2) an emerxr 0,00
where e(z) = —51In|z|, 2 € R?\ {0}.
1. For any (£,1) € R?2 x R2\ {(0,0)} we have
n
EEmn =e <w> Liel<inl/welt T €(€)1{jel>nl/lwel}-
In particular, £ is locally integrable on R? x R2.

11



2. The first order partial derivatives of € write
_ n .
VeE(&m) = Ve Ljeisim/iwcly Va€(&m) = we ' Ve <w) L(jei<pnl/fucly 0 D' (R*XR?).

3. The second order partial derivatives of £ write

£€® f) Ligspn/wordEm) € © & Lyg=pml/jwoydo (€, m)

€17 2m|¢[? €17 2m|€| V1 4 we?

£ @0 1{g)=pnl/jwe)ydo (€, 1)

1€l |nl 2nweln|V 1+ wa 2

Qe — (I VL 77> Liei<int/wep €M) 1@ 1 et/ do(€,m)

" ] 27 |n|? n? - 2wlnly/1+ w2

ags_—<12—2

(Ve @ V)€ =V, V)E =

In particular we have

Yetal/lweyd0(Em) o Lg=t/ieeydo(€,m)

2rlelV1+we? ! 2min|y/1 4+ w?

Remark 2.1 The function € has also the symmetry property £(w:'n,w.l) = E(&,n) for any
(&,m) € (R?2 x R?)\ {(0,0)}. Indeed, we have by the first statement of Proposition 2.2

n n
¢ (m“’c‘f) = <Oy (w> L ey = €&

Cc

Al = —

2.2 The properties of the effective Vlasov-Poisson system

We investigate the main properties of the limit Vlasov-Poisson problem (12), (13). For
simplicity we work with smooth densities f , compactly supported in the phase space R? x
R2. Thanks to Proposition 2.2, we obtain the following expressions for the velocity and

acceleration fields V[f], A[f].

Proposition 2.3 The velocity and acceleration fields associated to any density f = f(f, V)

write
V[f] .Z‘,’U 27rwc /]R?/]R2 ’[IZ— ’2 f Yy, w ) {7— ~‘>\1‘1w:‘1\} d’LT}d:lj (22)
A[f /RQ/RQ |v—w[2 f y, ) {|7— ~|<\Twcu|)|} dwdy. (23)
The Hamiltonian ¢[f] verifies
e wd [0 SR S
R ( /r_m_lw 7@ ) da<y>) div (24)
I 1 1 T~ -
_A'ﬁgi)[f} 27T|WC| R? ”U _ ’LU| </~ ~|:|T|’;ﬁ| f(yuw) dO'(@) dw. (25)
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Proof. By the second statement of Proposition 2.2 we obtain
Vil = [ [ Vee@- 5.5 -)f@.a) dad
R2JR2

:/R2 R2 vel@ A)l{ﬁ gl> = “"}f(?/’ w) dwdy

lwel

and
Vedlfl = [ [ VaEG - 5.5~ 075 @) did

/R2/R2 %Ve< We >1{Iw pl<lo=sd }f(% w) dwdy

which imply (22), (23). For the last two formulae we appeal to the last statement of Propo-

sition 2.2. For any test function ¢ € C?(R? x R?) we deduce

A~ HF(Z. v NN: A~ ~_~~_~~~~ o o
/R2 - 70 olf](z,v) dodz /R?/]R@ ISO/RQ e E(x—y,v —w)f(y,w) dwdy dodz
:/ 1@ @) / Az + €@+ m)E(E.n) d(€,n) didj
R2/R? R2 xR2

N ~ (y +§7w +Tl)
d dwdy
/]R?/]R2 /& ‘\WI 2W|§|m o ‘f 77) way

7, @) (7, 0)
- f(%w / o(z,v) dwdy
/W = 58 2~ PV e

\w\

#7) f (5, )
=— o(z,v / ) dodz
/R?/R? lF-gl= 27T — V1 + we
and therefore ¢[f] satisfies

" (g, w) 7. @
N -
o /|‘” i=ar 2@ - ylm v

_ |wel 1 - B N
B 27 R2 ’5— 7:5‘ <j~_§|_|5@ f(va) d(f(y)) dw.

Jwel

Following the same lines, we obtain
[ awan@n = [ [ awe [ [ o535 0)7G0) dodg dods
R2JR2 R2/R2 R2JR2
— [ @D [ Awpli+ @+ nEEn) A dids
R2/R2 R2 xR2

= — F(T oy +&w+n)
— /R? RQf(%w)/:n 277’77’\/“_72 do(&,n) dwdy

[ jGa 2(7,)

/R/R fore /|mv=w” 27[v — w|\/m o(@,0) dudy

= - T, f(ya ) Sdi
/]RQ/]R? 80( ’ )/5 m_w 27T|U _ w’m )d dz

13



which says

f, o)
Iwc\ F—g==2 2|5 — w|\/1 +w;2

1 1 _ N
27w Jre [0 — @ </x =1 wl 1, w) da@)> dw.

~Ag0[f] = (y, w)

[

Clearly the advection field (V[f],.A[f]) is divergence free. Moreover, other divergence con-
straints hold true. They are direct consequences of Proposition 2.3 and are summarized

below.

Corollary 2.1 The velocity and acceleration fields associated to any density f = f(%, V)

satisfy
divzV[f] =0, divgA[f] =0 (26)
divz “V[f] + divy LA[f] = 0 (27)
divzA[f] — w?divgV[f] = 0 (28)
divy LA[f] + widivy LV[f] = 0. (29)

Proof. The equalities in (26) come immediately by the relations

~ L ~~ f ~ ~ o~
pif - -9zl |

The statement in (27) is a consequence of (24), (25)

We We

divz V[f] + divy LA[f] = divz Aso[f] =0
For the last two statements observe that

divA[f] = we diva(TVid[f]) = —w, divi(* V[ f]) = w? divgV[/f]
and
divz “A[f] = —we diva(Vid[f]) = —we divy(Vzd[f]) = —w? divi( V().
1]

We inquire now about the conservations of the limit model (12), (13). The velocity and

acceleration fields being divergence free, the equation (12) writes also into conservative form
Ocf + diva{ Y1} + divi{ FA[f]} = 0, (t,7,7) € Ry x R? x R?

which implies the mass conservation. We search for other moments of f which are conserved

in time. We establish first the following lemma.

14



Lemma 2.1 Let f = f(t,%,7) be a solution of (12), (14), (15) and ¢ = (Z,v) be a C!

function. For any t € Ry we have

/ ¢§55fta:vdvdx—/// fty, (t:z:v)
R2JR2 R2JR2/R2/R2

X [w (Va7 ®) — Vz(Z,0)) - *Ve(@ = §) 1{z—gi>5-l/wel}

U —w

+ (Vap(Z,7) — Vo (§,w)) - - Ve < > 1{|5—g<|5—w/|wc|}] dwdydvdz

We
where e(z) = —5=In|z|,z € R?\ {0} is the fundamental solution of the Laplace operator in
R2.

Proof. We combine (12) with the representation formulae (22), (23). We obtain

/ W(E DL F T dvdx—// Vot VIF(O)] + Voo - AF )] (1.7, 7) dodi
R2 ]RQ R2JR2
L Ve Ve - 5 s e 6. 8) (8 5. 9) dadgdids
R2J/R2JR2JR2

~ v—w Fi o~ e 1~~~
/RQ/RQ/RQ/RQVm/J(x,U) . J-Ve <wc> 1{|§,m<|g w\/|wc|}f(t Y, w )f(t l’,v) dwdydvdx.

(30)
The key point is to interchange (7, v) against (g, w) and to apply Fubini theorem
/ (Z,0)f txv dvdx—/// fta:v (ty, w) dwdy dodz (31)
R2JR2 rR2/R2 JR2/R2
- -  om oy L v—w o
X |:w y1/1(ya ) Ve(ac m1{|5_§|>|1|1;cu|1|} vw¢<y7w) Ve( We ) 1{|5_g|<|1|1;cw}:| .
Our conclusion follows by taking the sum of (30), (31). O

The conclusions in Proposition 1.1 come easily thanks to Lemma 2.1.

Proof. (of Proposition 1.1)
1. The conservations of the limit Vlasov-Poisson problem follow immediately, taking as test
function 1,7, v, |Z|2, [0]2.

2. The electric energy writes

1 e .

/ olf()](z,v)f(t,z,v) dodx = // / 8 (z—y,v—w)f(t,z,v)f(t,y, w) dody dodz.
2 RQ RQ RQ RQ R2

This quantity is non negative, cf. Proposition 3.4. Taking into account that £ is even with

respect to both variables (actually £(&,n) depends only on [£[,|n|), we obtain by Fubini

Theorem
43 /R? R2¢> z,0)f(t,z,v) dodz = /R? s o[f(t)](z,0)0Lf dodx
://’Wﬁ&wLWﬂm+vﬁvamﬂmMHMf:o
R2JR2
and therefore the electric energy is conserved. O

15



3 Convergence results

This section is devoted to the rigorous justification of the asymptotic behavior as € \, 0 for
the family (f¢, ¢%)e>0 formally derived in Section 2. We make the following hypotheses on
the initial density f"(z,v)

H1 fRQfRQ (z,v) dvdr < 400
H2  fosfre 24 Fi0(2,v) dvdz < +00

H3 there is a bounded, non increasing function F'* = F'*(r) € L N LY(R,;rdr), such

that fi"(x,v) < F'(|v]), (x,v) € R? x R2,

Under the above assumptions, it is well known that for any € > 0, there is a weak solution
for the Vlasov-Poisson problem (9), (10), (11) cf. [2, 14, 4]. Following the arguments in [4],
leads to a L™ estimate for the electric field, and therefore, if the initial density f™ is smooth,
with compact support, then so is the restriction of f¢ on [0,7] x R? x R? for any T € R,
see [12]. We recall briefly the a priori estimates for the solutions (f¢, ¢°).~o. The continuity

equation

1
o + Ldivg =0, g = [ fan = [ ot
£ R2

R2

implies the total mass conservation

/ fe(t,z,v) dvd:v—/ n(z,v) dvdz, t€R,.
R2/R2 R2/R2

By standard computations we obtain the conservation of the total energy

2
4 // Mfe(t,:c,v)dvdx+6/ IVa¢5(t,2)|2dz ) =0, teR,. (32)
dt \ Jr2Jrz 2 2 Jp2

Usual interpolation inequalities provide an estimate for the L? norm of the charge densities

(p8)5>0

1/2
105 ()| 2y < 2V S 12 ( /R 2 /R ol F ) dvdx) |

In particular, thanks to H2, H3, we have

) ) ) 1/2
Iz < 22 (] 1B o0) duds )

' ' 1/2
< 27| F™| Lo </ / o2 f(z, v) dvdx) < 400
R2/R2

16



implying that E¢(0) = —V,¢(0) belongs to H'(R?). Therefore, by the energy conservation
(32) we deduce

2
sup </ / Mfe(t,l',’l)) dvdz —I—/ (p°(t,x))? d:n> < 400
0<e<lteR; \JR2/r2 2 R2

and

sup  [|Vad® () | g1 (r2) < +o0.
O<e<1teRy

Moreover, uniform L bounds are available for the charge densities p* and the electric fields

Ef := —V,¢°. For any (t,r) € Ry x R? and R > 0 we write

1 P (t,y) 1 P (t,y)
wm%ww{/vm»w<wm4_ / ay+ L a
R2 2m lz—y|<R |'T - y| 2m lz—y|>R |l‘ - y|
< RBllp Ol o2y + 51 ||P ()l L1 (r2)-

Therefore, minimizing with respect to R > 0, we obtain the inequality

2 m
uvm%mwmas¢wwww£@ﬂunfwwg (33)

For estimating the charge density p°, observe that f&(t, z,v) = fi*(X%(0;t,z,v), VE(0;t, x,v))

where (X¢, V¥) solve the characteristic system

dxs  VeE(t) dve
dt e 7 dt

= BX(t, X°(0) + Ve
with the condition (X, V¢)(t;t,x,v) = (z,v). It is easily seen that
VO] < X O) < 1Ol
implying that
[VEO; 7, z,0)|] > Jv] — R°(t), T€0,t], R(¢ / |1 E°(T) || e dT.
The hypothesis H3 yields for any ¢t € Ry
fE(t,x,0) = fHXE(05t,2,0), VE(03 8,2, 0)) < FU(IVE(05t,2,0)])

and therefore

(z) < FWW@me®§/ zm®®+/ F™(jo] — B*(1)) dv
R2 [u|<2R= (t) [u|>2Re (1)
< 4m(RE(0)? | F™ | + 47l ™| 13 v (34)

17



Combining (33) and (34) leads to

2 in in in 1/2
1E=(t)][ < \[r L7 ey 2V (BEODHUF™ e + 1 F™ | s rar))

t
in1/2 in(1/2 innl1/2 €
< 2V (IF™ 5y + IFPIE2 [ 157 )

and by Gronwall lemma we deduce that

sup || E{| Loo (jo,qx®2) +SUP [|0°|| oo (0, xr2) < +00, t € Ry, (35)
e>0 e>0
These conclusions are summarized up in the following proposition.

Proposition 3.1 Assume that f satisfies the hypotheses H1, H2, H3. Let (f¢,¢%)e>0 be
the solutions for the Viasov-Poisson problems (9), (10), (11). Then the densities f¢ are non

negative and we have
/ (ﬂomm:/ ﬂmm;//ﬂf@ﬁ&m://ﬁﬁfwm,mR+
R2JR2 R2JR2 R2JR2 R2JR2

2 . E(t 2
sup {/ / ﬂf‘e(t,ac,v) dvdz +/ M dx} < 400
0<e<1,teR4 R2JR2 2 R2 2

sup [|0%[| oo (0,4 xR2) < 400, Sup [[Vad®|| oo (o gwrm@2)) < 400, t € Ry, 1<p < oo
e>0 O<e<1

Remark 3.1 We consider the function F : Ry x Ry — R defined for any (a,r) € Ry x Ry

by
Fn(0), 0<r<a
F(a,r) = .
F™(r—a), r>a.
The function F belongs to C(Ry; LY(Ry;rdr)), is non increasing with respect to r, and non

decreasing with respect to a. Thanks to the inequality
t
Vet 0] = ol = [ 1) dr
it is easily seen that for any 0 < e < 1 and (t,z,v) € Ry x R? x R? we have
fe(t, x,v) = f(XE(0;5t, 2,0), VE(0;t, 2, v)) < F(|VE(0;t, z,v)|)

t
<F </0 [ E°(7) | oo (r2y dT, |v|> <F (t sup_ 122 || Loo (0.4 xR2) |u|> ,

0<e'<
In order to get stability, when € \ 0, we need to filter out the fast time oscillations, due to
the magnetic acceleration “¢ Ly, At any time ¢t € R, we introduce the densities fe(t) in the
new coordinates
Ly
, V=T (wct/e)v

c

T=x+

18



that is

L

fe(t, xv) = f° (t,x + R (wct/e) v) , (t,z,v) €ERy x RZx R? ¢ > 0.

C
A straightforward application of the chain rule and standard manipulations with smooth test

functions allow us to transform the problem (9), (10), (11) into the problem

1 €
0FF— 2 (1,2) Vo R (wet2) Voo (1,2) Vol = 0, @ = F—w; 'R (~wit/2) ¥ (36)
~ J"U
A = / Fe (t,a: + — R (wet/e) v) dv, (t,z) € Ry x R? (37)
R2 c
L~
74(0,7,7) = i <5— ”,5) , (7,7) € R2 x R2, (38)

Observe that for any s € R, the transformation (z,v) — <f =z + :—Cv,'ﬁ: R(wcs)v> has
Jacobian determinant equal to 1 and thus it preserves the Lebesgue measure dzdv = dxdw.

Therefore the LP norms of the new densities fa (t) are still conserved in time, for example

/ fE(t,%,0) dodi = / fe(t, z,v) dvde = / / f(z,v) dvdz, t€R,y
R2JR2 R2JR2 R2JR2

/ fatacv dvdx—/ (fe(t,z,v)) dvdx—// (fn(z,v))? dvdz, t€Ry.
R2/R2 R2/R2 R2JR2

It is easily seen that f¢ (t), f¢(t) have the same kinetic energy and satisfy the same L>° bound
(4,7, 9) ~\2 - c o]
fe(t —— dodz fe(t,x,v)— dvdzx, t € R4
R2JR2 R2JR2 2

Hfa”LOO(RerR%dRQ) - HfEHLOO(RJrXRZXRE) < HFinHLOQ(]R+)-

Remark 3.2 With the notations of Remark 3.1, we have for any 0 <e <1

Fo(t,7,7) = f° (t, F— wIIR (—wet/e) 1T, R (—wet/e) 5)

< F(t sup ||E¥|lp=(ogxr2): [0]), (4,7,7) € Ry x R? x R?
O<e’<1

and thus any weak x limit density f in L will satisfy
F(t,5,5) < F(T sup B = qorperny, [0, (£7,5) € [0,7) x R? x B2,
0<e’<1
Actually the equation (36) may be written in conservative form. Indeed, let us consider the

functions
& (,7,7) = ¢° (t, 7 — wIlR (—wet/e) %7)
and notice that

1o _Je(+ & o 1 €
Vg% (t,2,0) _ Vi@ (t7$)7 SRRV ¢e = —R (wet/e) Voo (t, ).

We We
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Therefore the equation (36) writes
LVE(ZE

We

at]?a_ 'foa‘FWchiga'vﬂfg:O: (t,f7ﬁ)€R+XR2XR2

or equivalently

L e — divs (fowy 70 v (ffwe TV507) =0, (4.7, + :
o, f° — di (fawcuv(f)eri (faw LVqﬁE) 0, (t,7,7) € R, x R? x R?

Remark 3.3 The solutions (f€)o<c<1 propagate with finite speed on any interval [0,T], uni-
formly with respect to the parameter € €]0,1[. This is a consequence of the L™ bound (35)
for the electric fields. For any T € Ry,t €[0,7],0 < e <1 we prove that

]

fE(t & oy ~ 5 in{~_ Y ~ ~ 1~
/R2 - f (t,x,v)l{ FPIRESR) dodz < /]1&2/11&2 f (:L‘ wc,v) 1{ BT ES RtEr) dodz
and

~ 2
J‘U

Fe(r = A2 g in (~_ "V ~ -0
/R2/Rz(f (t,z,v)) 1{ FEIRESR) dodz §/R2/R2 <f (az wc,v))l{ TR Rty dodz

with
Er=1/1+w;? sup. IE= || oo (0, 1)xR2) < +00.
e<

0<
As the density (Z,7) — fi (5 — i—f, 5) belongs to L'(R2 x R2)N L2(R2 x R?), we deduce that
lim sup JFEt L + f~€t , _0, TER
RH+OO0<5<1,te[0,T]{H @)l (CBRr) 1@l (CBR)} +

where CBr = {(Z,7) : |7)? + [v|* > R?}.

Remark 3.4 Notice that if the initial density f™ = f™(x,v) is compactly supported in
R? x R?, then the density (z,v) — f™(Z — 10 /w., V) remains compactly supported in R? x R2.
By the finite speed propagation property (cf. Remark 3.3), we deduce that for any T € Ry, the
densities fNE‘[O,T]xRQXRQ; and therefore f€][07T}XszR2, remain compactly supported, uniformly
with respect to e €]0,1[. In particular the charge densities ,0‘5|[0,T]XR2 remain compactly sup-
ported, uniformly with respect to € €]0, 1], and therefore the electric potentials ¢°(t) = e*p®(t)

remain locally bounded on [0,T] x R?, uniformly with respect to £ €]0,1[.

For any test function v € C}(]0, T[xR? x R?), we can write thanks to the uniform estimates
of (f)es0 in L®(Ry; L2(R2 x R?)) and of (Ef).so in L®([0,T] x R?)
T 5 T _ LV (z)s
/ / For dididt — / / / e [””(t, 2) - Vath + R (ot /2) Voo™ (£, 1) - vgw] dididt
0 JR2/R2 0 JR2/R2 w

Ao i
R 920l + 1907 Ol 1 T 02|

T ~
< /O TOIr—- [

< Crl|¥ll Lo,y 1 (R2 xR2))-
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We deduce that {d;f° : 0 < ¢ < 1} is bounded in L°°([0,T]; H~'(Bg)) for any ball B =
{(@,0) : [Z]* + |7)> < R?}. As the set {f*,0 < & < 1} is bounded in L>([0,T]; L*(Bg)), we
obtain by standard compactness results [3, 16] that {f5,0 < & < 1} is relatively compact
in L°°([0,T); H~Y(Bg)) for any ball B C R? x R? and any T € R,. Based on the above
compactness property of the family (f5)0<5<1 we can pass to the limit, when ¢ \, 0, in
the problems (36), (37), (38). Let (ex)ren CJ0,1[ be a sequence converging to 0 and f €
L®(Ry; L*(R? x R?)) such that (fe*); converges to f weakly + in L®(R; L?(R? x R?)) and
L®(Ry x R? x R?), and (f¢*); converges to f strongly in L°°([0,T]; H~'(Bg)) for any ball
Br C R? x R? and any T € R,. By weak % convergence we obtain immediately that f >0
and

£l < hmmf\|f€k||Loo = 1iminf||f€kHLoo < || F™| oo

[ Ry ®2xR2)) < [0 m2xr2), [ Ry ;r2®2xR2)) < ™| z2 e xm2)

712
/ f(,z,0) —| dodz < lim inf / / f’f’C z,0 —‘ dodz
R2JR2 Loo(Ry) k—+o0 R2JR2 Lo (Ry)
2
= lim inf / / f‘s’“(-,av,v)u dvdx < +o0.
k—+oo || Jr2/R2 2 Lo (Ry)

Moreover, thanks to the finite speed propagation property, we check that
/ f(t,7,0) dods = / f(z,v) dvdz, t€R,.
R2J/R2 R2JR2
The weak formulation of (36), (37) written for smooth test functions 1 € C?(R; x R? x R?)

yields

/R+/RQR2f’“8twdvdxdt—/R2R2f (0xvdvd:z+//R2/RZfsktxv (39)

1 Ek
y [ Va0

c

(t,x) - Vb + R (wet/e) V¢ (t, ) - Vg@!)} dodzdt = 0.
Clearly, the weak * convergence of (f+); in L°(R,; L?(R? x R?)) implies

lim / / / fe* 8,0 dodzdt = / / foy dodizdt.
k—+o00 R, R2JR2 R, R2JR2

We are done if we handle the bilinear terms entering the last integral in (39). We claim that
(V% (t,2) - Vb)) and (R (wet/er) V¢ (t,2) - Vip)r are bounded in LY(Ry; HY(R? x
R?)). Indeed, taking 7, R > 0 such that supp ¢ C [0,T[xBg, we obtain, thanks to the
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uniform estimates in Proposition 3.1

Sup I V2™ - Vel i, 12 mexr2))

= sup / ( / / (vaqﬁek(t,?ﬁfw;lR(—wct/sk) 17) - vi¢)2 d@d:z)l/2 dt
Ry \JR2/R2

T 1/2
< sup/ V31| oo (/ V20 (t, T — w, 'R (—wet/e) La)\2d5d5> dt
k 0

1/2
< |[IVzy[ L= sup/ (/ / V0% (1, & — w "R (—wet/ep) L5)|2dgzda> dt
k [v|I<R J|Z|<R

<T|Vz|lpeVTR2 sup ||[Vi¢%* )l L2mey < +o0.
teRy )k
Similarly one gets

SUP [[R (wet/ek) Voo™ - Vel asr2@exeey) < TIVatllieVAR2 sup [[Ved™ (0)l|r2(ee)

teR .k

saying that the sequence ()i given by

1 £k 1 ~~Ek
Vad Vzh+R (wet/er) Ved™ -V = ( Va0

c We

Ek(ti:aij): , —We Lv ¢6k) zoW¥,s keN

remains in a bounded set of L'(Ry; L?(R? x R?)). We claim that (Vzz &) is also bounded
in L'(R; L?(R? x R?)). For that it is enough to check that all second derivatives of ¢+ are
uniformly bounded in L>([0, T); L*(Br))

sup ||857§V575¢5’“(t)‘|L2(BR) < +o00.
teRy )k

It is easily seen that
V0™ = 0:Vad™, 05Ved™ = W R(wet ek + 7/2)0: Voo™ R(~wet/ex —/2)
Vot = —w; 10,V R (~wet /ey — 7/2), 0:Vd™ = —w; 'R(wet/ex + 1/2)0, V™
and therefore, by Proposition 3.1, we obtain as before

sup [0, Vo™ (1,7 — w, 'R (—wet/ex) “0)||2pp) < sup VAR2(0: V0™ (1) 12 @2)-
teRy k teRy k

We split the last integral of (39) in two terms

/ / / fergy, dodadt = / / / (f* — )&, dodzdt + / / f&, dodadt = T} + T2.
R4JR2/R2 R4JR2/R2 R2JR2

The compactness of (f+); in L>([0,T]; H~'(Bg)) and the uniform bound of the sequence
(&)r in LY (Ry; HY(R? x R?)) allow us to get rid of T}!, as k — +00

dt

Ty | = ‘/ (fE(t) = F (1), &) g L(BR),H} (Br)

< ||fr - f||Loo([o,T];H—1(BR))||§k||L1([o,T];H3(BR)) — 0, as k — +o0.
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We investigate now the convergence of the sequence (T7);. Using the fundamental solution

(17) of the Laplace operator, we represent the sequence (&) as

6(t,3,7) = Vs / / e(F — wi R (~wetfex) LT — ) f* (b, w) duwdy
RQ RQ
: (—Wc_l LV + R (—wet/ek) VW)
- / Ve(@ — - wi 'R (—wet/er) (@ — @) (¢, 5, @) divd
R2JR2
(Va4 R (~wet/er) Vi)

Plugging the above formula for & in the expression of T,?, yields

RyJR2/R2
with

(L7, ) = /R ST -G R (/) L@ - @) (~wt “ a0 + R (et /) Vo)

x f(t,7,0) dodi.

Having in mind the compactness of (f+); in L>°([0,T]; H~(Bg)) we write

T? = / / / (f%* — f)xr dwdgdt + / / Fxe dwdgdt = T2 + T
R4/ R2/R2 R1J/R2/R?

In order to pass to the limit, when k& — 400, in 77, we need to estimate (x3)z uniformly in

LY([0,T); HE(Br)). Taking into account that Ve(—z) = —Ve(z), we obtain

xk(t, 7, W) = / Ve — 7 — w, 'R (—wet/ep) L@ —7)) - (wgl LVz1h — R (—wet/er) vw)

R2JR2
x f(t,%,0) dodi

= (divym) (t, 7 — w, 'R (—wet/er) L)

where

r(t,y) = /]12{2 e(y — x)ri(t,z) de, ri(t,x) = /R2 gk (t,x,v) do (40)

nlti0) = F (1t R /o))

€1

x (Wt H() — R (~wet /ox) V(1)) <"’“° t

Cc

R (wet /ex) v> .

Clearly, the functions

1

an(t,z,v) = (wc_l LVa(t) — R (—wet/er) vw(t)) (x + “773(%75/5,9)@)

c
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are uniformly bounded and supported in t € [0,T, |v| < R, |x| < (1+|w.|"*)R. The densities
FE(t,z,v) = f (t,ac + :—f,R(wct/ek) v) satisfy

¥l = [1Fll e, / 2 / (1, 2,0) dude = /R L 7.9 dii - / 2 / 7" () dvda.

The sequence (7)r remains in a bounded set of L>®°(Ry x R?) and L*(R; L'(R?)), and
therefore in a bounded set of L>°(R,; LP(R?)) for any 1 < p < +o0o. Thanks to (40), we
deduce that

sup  ||divymi () [lpre@e) < +00, 1 <p < +oo.
keN,teR ¢

In particular the sequence (divy ) is bounded in L®(R4 x R?) and in L (Ry; H(R?)). We
claim that limg_ 400 T,S’ = 0. Appealing to the finite speed propagation property for ( ff’c)k

and to the uniform L*° bound for (xx)k, it is enough to prove that

k—4o00

lim / + / 2 / (= PO Bt 5 @) didgde = 0

for any 6 € C}(R? x R?). Let us consider a C! function , such that supp § C Bg,0 < 6 < 1.
We are done if we check that the sequence (6xj) is bounded in L([0,7]; H}(Bs)). This

comes immediately by the estimate of (div,my)x in L>°(Ry; H(R?))

sup  [|0xk () z2@exrzy < sup Xk 22y < sup  VAS?|divyme ()| 2@ey < +00
EENteR EENteR EENteR

and similarly

sup || Vg.a(0xk (1))l 2@exr2y < sup {IVgabllze Ixe ()l 2(8s) + 101 Viaxe®)ll 2 ss) }
keNteR keNteR ]

SCOVAS sup {divym®ll + [ Vydivyme(t) e} < +oc.
eNteR

It remains to determine the limit of the sequence (Tl?) &, given by

T} = / / fxw dodgdt = / / / / / U(Z,0,7,W,t,t/e) dodz dwdgdt
R.JR2Z/R2 R JR2JR2/R2/R?

where
U(Z,0,7,w,t,s) = f(t,Z,0)f(t,7,0)Ve(@ — § — w, 'R(—wes) (T — @)
X (—wc_l Lvsy + R(—wcs)Vw,b) )

Clearly, the function ¥ varies at two time scales. It depends on a slow time variable { € R
and also on a fast time variable s = t/¢ € R,. In order to handle the convergence of the

sequence (T})g, we appeal to a standard result in homogenization theory.
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Proposition 3.2 Let U = U(z,t,s) : OxRy xRy — R be a function in L' (O xR4; Cy(Ry)),
where O is an open set of RN and Cy(Ry) stands for the set of continuous periodic functions

of (fized) period L > 0. Then we have the convergence

1 L
lim// ]U(z,t,t/e)\dtdz:/// U (=1, )| dsdtdz,
N0 JoJr, L JoJr. Jo

Proof. We know that the function (z,t) — [|U(2,t,")[|c,(r,) belongs to L'(O x Ry) and
thus, for almost all z € O the function t — [|U(z,t,)[|c,(r,) belongs to LY(R4). Therefore,
for almost all z € O we have U(z,-,-) € L' (Ry; C4(R;)), and by a classical result (see [1, 15])

we have

1 L
lim |U(z,t,t/e)| dt = / / |U(z,t,s)| dsdt, for a.a. z € O.
e\0 R L R.J0

Observe that the family (fR+ |U(-,t, t/€)|dt> is dominated by a L!(O) function, that is
3

/ U (2 t,t/2)| dt </ 10 (1t Yyt for aa. 2 € O.
Ry Ry

Therefore, by the dominated convergence theorem, we deduce that

1 L
lim// |U(z,t,t/e)]| dtdz:// / |U(z,t,s)| dsdtdz.
N0 JoJr, L JoJr. Jo

[

We intend to apply Proposition 3.2 with the function ¥ = ¥(z,t,s) where z = (z,v,y,w) €
O = R8. Notice that ¥ is T.-periodic with respect to the fast time variable s, where T, =
27 Jw, is the rescaled cyclotronic period. Since the fundamental solution of the Laplace

operator has a singularity at z = 0, we proceed by approximation. Let us consider

1
es(z) = ~5- In+/[2]2 + 62, z€ R*\ {0}, 6§ >0
and

Us(Z,0,7, W, t,8) = f(t,,0) f(t,7,0)Ves(T — §J — w, "R(—wes) (¥ — 0))

. <_wc—1 LV + R(—wCS)VW) -

Proposition 3.3 For any function ¢ € C}(Ry x R? x R?) and any 6 > 0 we have

lim ///// Us(F, 5,7, @, t,t/e,) dodF dadgdt (41)
k——+o0 R JR2/R2/R2/R2

1 T. -
T / / / / / U5(2,0,7,w,t,s) ds dodE dwdgdt.
TC R4 R2JR2JR2JR2/0
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Proof. Apply Proposition 3.2 with the function Ws(z,t,s), where z = (7,0, 7, w) € O = RS.

For any (z,t) € O x Ry, the function s — Ws(z,t, s) belongs to Cx(Ry) and if T is such that

supp ¥ C [0, T[xR? x R?, one gets

// 1Ps(2 ) oy (re dtdz<45|v 5|l pee\/ 1 + we? //fta:v (t,y,w) dzdt

<1 5||V§5¢||Loo 1+ we 2 f™ 171 2 gz < +o0-
The conclusion follows by Proposition 3.2.

We need to pass to the limit, when § \ 0, in (41). We introduce the notations

1 Te
Tl?6 = // \115(Z7t7t/€k) dtdZ, Tgl = // / \IJJ(Z,t, S) dsdtdz
’ 0JRr, T JoJr.,Jo
1 Te
Tt = // / U(z,t,s) dsdtdz.
T JoJr, Jo

lim Tk5—T5, for any 6 > 0
k—+o00

and
We already know that

and we claim that

lim Tp =T*

k—+o0

We are done if we prove that lims\ o T5 =T% and

lim sup [T} s — T3] = 0.
lim sup T} — 7|

(42)

(43)

Observe that |Vs(z,t,s)| < [¥(z,t,5)| and lims\ o ¥s(2,t,5) = ¥(2,1,5), (2,t,5) € O x Ry x

R, > 0. Therefore the convergence of (T54)5 toward T comes by the dominated convergence

theorem, provided that ¥ € L'(O x R, x [0,T.]). Indeed, after change of variable one gets

Te ¢T
///|\Ilzts]dsdtdz<///f<,
R4J0 Te)o Jo Jo We
IVllze [ 2
—/1 B .
X 2z — 3 + we © dzdtds

We are done if we show that the application

1 - Lw
(x,v,t,8) — // —f (t,y—i— ,R(wcs)w> dwdy
r2JR2 [T — Y| We

R ) 1+ 2

)

is bounded on R? x R? x [0,7] x [0,7.]. By Remark 3.2 we know that for any (y,w,t,s) €

R? x R? x [0,T] x [0,T,.] we have

J_w
,Rms)w) < F(Cr ), Cr = Towp B i oisee

c

f<t,y+
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and therefore

1 - 1 1
/ / T <tay+ waR(wcs)w> dwdy S/ — F(Cr,|w|) dwdy
r2JR2 |2 — Y We lz—y|<1 |z —y| Jre

€

1 ~
+/ I f (t,y—l—w,R(wcs)w> dUde
|z—y|>1 |$ - y| R2 We

+o00 .
< 4r? ; F(Crp,r)rdr+ /R?/R? " (y,w) dwdy < 4o0.

We concentrate now to the uniform convergence (43). Assume that suppy C [0,T[xBg.
Observe that

52

1
Ves — Ve| = <
Ves = Vel 2|2 [(|2]2 + 02) = 27|z|’

zeR*\ {0}, 6>0

which implies (here R’ = R(1 + 1/|w,|) )

s [ f /WR [ 7 (b R atj o) £ (4 2Rt )

[V Lo /
1 c 2 dwdydvdadt
X27T|x—y||x y|2+52 + w¢ © dwdydvdzx

/ / / / / (Cr, [v))F(Cr, |wl)
|z| <R/ |v|<R R2JR2
V[ zoe
1 C
. 2m|e — y |z — y|2 T 52 \/7 dwdydvdzdt.

It is enough to check that I := flm|<R’ ng 27r|;_y| |x7y5‘22+52 dydxr — 0 as 6 N\ 0. Indeed we

have

I / / L& =™ (R")25 — 0, asd\,0
= _ = — , as
*7 Jioi<r Jre 272 |22 + 62 2
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and thus the convergence in (42) holds true. Finally we determined the limit of the non linear

term in the weak formulation (39)

lim / /R 2 /R ) [wc_l LVIQSEk(t,x)-V;¢+R(wct/sk)vx¢5k(t,x)-ng)} dodzdt

k—+oc0 R

= Jim (Tk+Tk)— lim (T} + T2 + 1) =1°
+

// ft, 7, 0wV - 1V5 ft,g,w
R+R2R2 R2JR2

X — / W IR (~wes) T (0 — @) ds dwdy dodadt
- [ [ ] feE ey tvs [ [ e
R+ R2JR2 R2JR2
T
X — / W IR (~wes) T (¥ — w)) ds dwdy dodadt

/ / Ft, 70w Ve - Vs ft,7,®EE - 7,0 —w) dwdy dodidt
R,JR2/R2 R2/R?2
— / / f(t, 7, 0wV - V5 ft,7,0)E@ — 7,0 —w) dwdy dodzdt
RJR2/R? R2JR2
— [ [ [ 7655 Pi0IED) - Vev + AFOIE.D) - Vo] dodict,
R,JR2/R2
The limit formulation (39), as & — +00, becomes
o = TN
—/R+/RZ s foup dvdxdt—/RZ/R2f (3: wc,v) ¥(0,z,v) dodz
= [ [ FPF0IGD - Vv + AlF0)@.5) - Vio| didar, v e CH(R, x B? x B,
R, JR2/R2

Actually, the velocity and acceleration fields V[f], A[f] belong to L=([0,T] x R? x R?), for
any T € Ry (cf. (46), (47)) and we deduce, by density arguments, that the above formulation
holds true for any 1 € C}(R; x R? x R?), saying that the density f is a weak solution for

the problem
Oif +VIf )] - Vaf + AF()] - Vaf =0, (t,7,7) € Ry x R* x R? (44)

£(0,%,7) = fin <g?— w,v), (#,7) € R? x R

where

and
o@D = [ [ e@-5.5- 050 dadg.
R2/R?
It remains to establish the strong convergence of (f¢¢); in L2([0,T]; L?(R? x R?)) for any

T € R,. We already know that (f*); converges weakly * in L (R, ; L2(R? x R?)) toward f
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and therefore (f5k|[0,T])k converges weakly in L2([0, T]; L?(R? x R?)) toward f|[0,T]. We are

done if we prove that

// f(t,z,v)) dvdx—// £(0,7,v))* dodz, t € [0,T]
R2/R2 R2/R2

since in that case we have

[ v [ (o 22 = [] [ 7

saying that the weak convergence in L?([0, T]; L?(R? xR?)) becomes strong. The conservation

of the L? norm of ( f (t))ter, is a consequence of the equality

—_— - ~ 2
375(];) +VIF@)]- Vg(";) + A[f(t)] - A 2)

=0 in D'(R; x R? x R?) (45)

which holds true provided that V[f], A[f] are smooth, for example if V[f], A[f] belongs to
L>([0,T); HY(BR)), T, R € Ry cf. [9]. Indeed, we have by Proposition 2.2

Vsl (01 9) =Vale » F) =Vee « F) == [ [ N Fe g an e, dadg
and
VadlF(015) = Vsl « F0) =V ) == [ [ s Fen e, dids

Thanks to the inequality f(t,7, @) < F(Cr, \w[) (t,7,w) € [0,T] x R? x R?, we obtain

WV ()] = [Va[F0)] < /R J5.0) 4545 (46)

2 g2 27|Z — 7]

1 T— T—
/ / {lz y|<1}f ¢ y, dwdy+/ / {| y‘>1}f ¢ y7 ) dwdj
R2JR2 271".’13 — R2JR2 27'[".’17 —

r— t ) ~ ~
/ / (= y|<1}F (Cr, |w|) dwdy —i—/ fiy) dwdy
R2JR2 271"1' R2JR2 2T

1 ~
= IF(Cr. | Dlipree) + 51l geosme) < +o0, (¢,F,9) € [0,T] x R* x R®

and similarly

e AFOD = V8170 < /R L HE e e, ) o (47)

27|v — w

= _ J(ty,w) dgdw
~/|5w|<1 27’["1) — U)| |57~‘§\7‘J;CU‘J\

1 S e e g1~
+/ Py} __fty,w) dydw
o—w|>1 27 [0 — w| Jjz_g< 50

wel

1 - - _ 1
< — 7| F™|| oo ——=—d || f
—/Mgl o e g 1 s e
Tl F e 1 - o
-~ 302 Tor < , (t,7,0) € [0,T] x R* x R
3w2 +27er |21 (R2xm2) < +00, (¢,7,0) € [0,T]
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The previous computations say that the velocity and acceleration fields V[f], A[f] in (45)
belong to L*([0,T] x R? x R?), for any T' € Ry, and thus @7)2 will propagate with finite
speed (once that we have established (45)). Let us estimate now the velocity and acceleration
fields in L ([0, T]; H'(Bg)). Clearly V|[f], A[f] € L>([0,T]; L?>(Bgr)) and we need to estimate
the second derivatives of ¢[f] in L>([0,T]; L?(Bg)). Thanks to Proposition 2.2 we obtain

O3PLf (1)) = O3(E  f(t)) = OFE « f(t)
3 G- E- ST O g il -
/Rz/Rz <IQ 2 — por ) d dy

|z — 7|2 27|z — y)?

_/ -y ® (@ -y f(t,y, o) 7).
|[Z—y|= |v ulll |3‘E_§|2 27T’.’L'—y|m

We are done if we show that

t , 1~
1(t,7,) / / Y )2 dydw
R2/ |- y‘>\v w\ 27r|:c—y\

ft,5,@) ~
2 (t, d
z,9) /R2/|§ gl=L2=ol 27r]a:—y] do(y)dw

belong to L>([0,T]; L?(Bg)). For the first integral I; we write

\ w\ 2 ‘ — ‘2 ~ o~ |U w\ 2 ’ ’2
R2/J|z— y\>max{ 1} T —Y R2J1>|z— y|> T =Y

and

1
< L ey + / F(Cr, @) / T
2 R C 1> 51> =0l 27 [T — g2
= ey + / F(Cr la])In = a@ = 1 + 14
2m [F—|<|wel v — wl

and we observe that

2
/ (I5)? d’ﬁd%g/ P/ / F(Cr,|w|)In ~|‘*’C‘~ dw | dvdz
Bn @<r/pl<r \J[o—@|<|w.| [v— wl
SWRQ/ (/ F(&A@\)d@) (/ F(Cr, |w]) In ~|“C|~ d@) dv
<k \Jj5—d|<|w.] T—|<|we] v — wl

~ UJC ~ o~
< 7TR2||F(CT," |)||L1(]R2) /R2 F(CT,|U)’)/ In2 ~| |~ dod@

=)< el

= nR?||F(Cr,| - |)||%1(R2)w2/ In? 2| dz < +o0.
|z]<1
The second integral I belongs to L>([0,7] x R? x R?), and thus to L>([0,7]; L?(Bg))

L(t,7,7) < /R F(Cr i) /| N o) _ g - /R F(Cr i) di <+

[o—a| 27|z — y|
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Similarly, the second derivatives with respect to v are given by
D20l (1)] = BE* (1) = o€ % f(t)

(T — @)@ @ —@)\ F& 7O ja—gi<p—i|lwel} - - ;-

‘/R/R (12‘2 P ) 2o — a2 dwdy
_/ @-—w)@@-wu)  f(ty0) i, @)

Fp=za [Tl 27r\v—w|\/1+7w2

and we observe that

t ~~
3(t,7,0) / / Y ~)2 dydw
R2 |z— y|<\v “’| 27T|'U — ’

< 2/ F(Cr, |#]) dib < 400, (3,9) € [0,T] x R2 x R?
2wc R2

J(t.g.w) ~
4(t, d
%,9) /Rz/ gl=L2=2l 27| — w| do(f)dw

F(Cr,|w|) dw < +oo, (t,7,0) € [0,T] x R* x R2.

and

<
‘WC| R2

Finally the second derivatives (Vz ® Vg)g?)[ f] are bounded as well. Indeed we have

(Vz ® Va)olf(t)] = (V3 @ Vo) (€ x f(t) = (Ve ® V&) * f(1)

:/ (EE—Z//)@(%—@) f(tagaw) da@,@)
a—g==m [T =gl [ - o] 2mwelv - wf (/142

and

J(t.g.w) ~
5(t, = d
%,9) /Rz/ gl=L2=ol 27| — w| do(y)dw

< F(Cr,|w|) di < +o0, (t,Z,7) € [0,T] x R? x R,

N ‘WC| R2

The previous computations show that V[f], A[f] € L*°([0,T] x R2 x R)NL>([0,T]; H'(Bg))
for any T, R € Ry. Therefore (45) holds true and the finite speed propagation property
allows us to establish the conservation of the L? norm of (f(t))icr,. We deduce that (f°*)y,

converges strongly in L2([0, T]; L?(R? x R?)) toward f, for any T € R.

Remark 3.5 Since V|[f], A[f] belong to L=([0,T] x R? x R?) for any T € Ry, the equation

(44) propagates all moments in (Z,v). Indeed, thanks to the inequalities

d/ f(t,7,0)|7|™ dodz < m VIf®))|f (¢, Z,0)|F™ " dodz, m e N*
R2/R2 RrR2JR2

d/ f(t,7,0) 0" dodz < n/ |ALfO)f (¢, Z,0)|0)" " dodz, n e N*
dt Jp2/Rre

R2J/R2
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it 1s easily seemn, by recurrence, that
[ feaa@r dus e Lxo.1), [ [ Fe.z000 dids e 22(0.7)
R2JR2 R2JR2
provided that
. Lo
/ / <x - — v) |z|™ dodZ < 400, / / M (E— ,5) [0|" dodz < +o0.
R2JR2 R2 We
Remark 3.6 For any s € R we consider the function ps : Ry x R? x R? = R given by
ps(t,Z,0) = [ f(t,T —w ' R(—wes) (¥ — @), @) dw, (t,Z,0) € Ry x R? x R2.
R2
Observe that for any (t,7,9) € [0,T] x R? x R? we have
0< 7630 < [ F(Cr @) di < +oo
R2

saying that ps € L>=([0,T] x R? x R?), uniformly with respect to s € R. Notice also that for

any (t,7) € Ry x R? we have

/ Bu(hF.7) di :/ F(6 T — w0 R (—wes) ~ (7 — @), @) AT = || 7| 11 o).
R2 R2JR2

Therefore the family (ps)s remains into a bounded set of L°°([0,T] x R%; L' N L>=(R2)), for
any T € Ry. We introduce the average charge density
1T
p(t,Z,0) = T/ ps(t, T, 0) ds, (t,7,7) € Ry x R? x R?
cJo
which verifies

0< p(t,7,9) < |F(Cr, |- Dlpi ey, (670) € [0,T] x R x R (48)

and
A5 e = 1 ey, (1) € Ry xR

The definition of the function £ allows us to write for any (t,T,v) € Ry x R? x R?
D= [ [ eG-57-Di50) aidg
R2/R2

T, )
-z / /R /R e(F — T — w; R(—wes) (7 — ) (¢, 7, T) dddgds

- Ti /TC/ / e(T—2)f(t, 7 — w'R(—wes) * (v — ), w)dwdzds
cJO R2JR2

I
/ /e:n—zpstzv)dzds
TC 0 R2

= / e(z — 2)p(t, z,v) dz
R2
— (e 7(t, D))
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Therefore the function ¢[f(t)] satisfies the Poisson equation (see also (24))

s =) = [ A [ F0F e R) - ),0) ds

If the initial density f = f"(x,v) is compactly supported in R? x R?, we know by Remark 3.4
that for any 7' € R4, the densities f5k|[07T]XR2 «Rr2 remain compactly supported, uniformly
with respect to k& € N. By weak * convergence we obtain that f | 0,T]xR2xR2 1S compactly
supported and therefore T — ps(t, ,v) remain compactly supported, uniformly with respect
tos € Rand (t,0) € [0,T]x{v’,|v'| < R}. We deduce that T — p(t, T, v) remains compactly
supported, uniformly with respect to (¢,v) € [0,T] x {v’,[v'| < R}. As p is bounded on
[0,7] x R? x R? (cf. (48)) we establish that ¢[f(¢)](Z,?) = Jge e(@ — 2)p(t, 2,0)dZ is locally
bounded on [0,7] x R? x R2.

We inquire now about the stability of the electric potentials
FH(t,T,7) = ¢ (t,T — w, "R (—wet/ex) " D).

Proposition 3.4 Assume that the hypotheses of Theorem 1.1 hold true. Moreover suppose
that the initial density f™ has compact support in R? x R2. Then we have the following

convergences, as k — +oo, for any ¥ € CO(R; x R? x R?)
lim / / o7+ dodidt = / / o dodidt
k—4o00 R JR2/R2 R,JR2/R2

lim / // T VL6 dodadt = / / / (Z,7)1 dodzdt
k—+o00 R,JR2/R2 R JR2/R2

Jim /RJRZ/RQ we TVo Ry dodidt = /R+/RQ . Alf(D))(F,0)y dodidt.

Moreover, we have for any n € CO(R,)

k—4o00 R

im [ ) /R (V2% (0,2 = /R n(®) /R L FE RG] 5) izt

Proof. As (5%)1@7 ¢ are uniformly locally bounded on [0,7] x R? x R? cf. Remarks 3.4,
3.6, we may assume, without loss of generality, that 1 € C}(R, x R? x R?). Pick a C" test

function ¢ with support contained in [0,7] X Bgr and observe that

/nh/ﬂg/ﬁ o dudrde = /]R+ L o5 =i R (wet/2) 450 dodaa

5// Fo (4,5, @) Bu(t, §, @) divdgat
R,/ R2/R?
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where for any (t,7,w) € Ry x R? x R?

k(t,y,w / Y(t,Z,0)e(T - —w, 'R (—wet/er) ~(T — ) dodz
RQ RQ
:/e@/ BT+ T+ wr R (~wet/ex) (@ — @),7) didz.
R2 R2

Since e = e(z) is locally integrable on R?, it is easily seen that (8)) remains into a bounded
set of L>®([0,T); H}(Bg)), for any T, R € R, and thus thanks to the strong convergence
of (f*);, in L>®([0,T]; H ' (Bg)), combined to Proposition 3.2, we obtain as in the proof of
Theorem 1.1

Jim / / 6 dididt / / (4.5 @) / W(t,7,7)
k——+o0 R,JR2/R2 R,/ R2/R2 R2JR2

1 c
X / e(F — 7§ — w. 'R(~wes) (U — o)) ds dodE dwdgdt

= [ [ ], dlFe)@ w55 didzar.
R JR2/R2
We have to check that the function

I6(Z,0,7,@,t,8) == f(t,7,0) e(Z) (£, 7+ Z + w. ' R(~wes) ~(0 — @), 0)
belongs to L*(R® x Ry ; Cx(Ry)). For doing that, observe that
[T+ Z 4wy R(—wes) (T = @), < [l Lposesry Lmem L s zsur Rwns) L G- m1<h)
< |9l e Lgo<e<ry L{ja1< Ry L{RI< RO+ we | =1)+17]+we | 1@}

and therefore we can write

T
/ / sup|I6(Z,3, 5, @, 1, 5)| dEdodjdadt < / / / (.5, ) [
R&JR, s 0 Jr2/R2

x /~ ez RO+wel ~)+71+ e a1y dZAV dwdgde
7<R JR?

<CH¢HL°°/// ft, 7, @)1+ g+ |@®) dwdjdt < +oc.

The second and third convergences are consequences of the first one (establish them for test
functions 1 € C2(R; x R? x R?) and then proceed by density arguments, using the uniform
bounds (46), (47), (35)).

For the last convergence, we combine one more time the strong convergence of (f¢*); in
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L>([0,T); H Y(BR)), for any T, R € R and Proposition 3.2. For any € C?(R,) we obtain

/ / |V (t, ) |* dadt = / / / foE(t, z,v)¢%k (¢, x) dvdadt
/R /ﬂj\a/wfa’“tmv//fakty, e(r —y) dwdy dvdzdt
- [ L LLorezniasn

X e — 7 —w. 'R (—wet/ep) T (T —w)) dwdg dodzdt

s

T
« / T R(—wes) L — @) divdy dididt

/IR+/IR2/]1§2 (6)f(t,7,0)6[f ())(Z,7) dodzdt.

In particular we deduce that ¢ = [po[ps f( f(t,Z,0)¢[f(1)](F,7) dédi is non negative on Ry. —

Remark 3.7 Clearly, the hypothesis on the support compactness for the initial density f™
can be relaxed. For example, the first convergence in Proposition 3.4 holds true provided that

the initial density has finite moments of order three, that is

/ / iz, 0)(|z]? + [v]?) dodE < +oo.
R2/R2

4 The three dimensional setting

We concentrate now on the three dimensional finite Larmor radius regime (2), (3), (4). We
perform a formal analysis, by indicating the expected results. The fast dynamics appears
only in the orthogonal directions, and we will see that the homogenization procedure can be
reduced essentially to that of the two dimensional case. Filtering out the fast cyclotronic
motion leads to the new densities f%(¢,%,0) = f(t, x,v) where
=
T = (az—}— wc,x3> , U= (R (wct/e)v,vs).

Written in the new phase space coordinates, the Vlasov problem becomes
0 f — wi !t TVE0% (1 @) - VT + 0305, 7 — R (wet/2) Vag® (t,2) - V5[ — 00,0705, [ = 0

with x = (5 — W 'R (—wet/e) 17, x;;), together with the initial condition

C

_ ) ( 15 )
f&(o}ij’ﬁ):fln 5—f,a~63,5 .
w
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Solving the Poisson equation (3), one gets

pe(t,y 1 Py, x3+eu) _
st(t’l’) = — — ( 72) 3 dy = — (7 =5 2) dydu
dme RB\/|x—y| +e72(z3 — y3) AT Jrs \/|Z — 5|2 + u
implying that
1 c(t,y
Ve (L, 7) = — P Ts e (o ) dgdu

in Jes (|7 — 3P + u2)72

Neglecting the variations of the charge density p° along the z3 axis, we obtain when ¢ becomes

small
1 du
5 cry — — _
T s =~ s Yy - I 1

1 e/ — T -y _

= —— - 1
o7 P (ta Y, :L‘3) |f — y|2 dy + O( )

= R? Ve(j - g)ps(tg) $3) dg + 0(1)

since, by direct computation we check that fR (dﬁ = a%,a > (0. Notice that, at least

formally, we have

€ 0 -
o7t a) = = / (1) g | B +¢\x—y\2+a—2<x3—yg>2} ay

3

// Oys f*(t, y,w) In [ B VE-gte 2(ﬂfs—yg)] dwdy
]R3 ]R3

/RS/RSaySf (t,5.9)

[ S \/‘ —y—we R (—wet/e) L0 — )2 +e2(T3 — g3)2:| dady

— 0
e\0

as suggested by the pointwise convergence

: y3 —1 — _ 9/~ ~
1 1 — - . 2 2(Fa — 72)2] =
61{%6 n[ —i—\/]:): U —we R (~wet/e) LB —w)|2 +e2(F3 — 33) ] 0

at any point such that |z — 3| # [0 — @|/|we|. Neglecting also the parallel electric field we

obtain the problem
O fe —wit PVt (t, ) - V=f* + 0305, fF — R (wet/e) Vzo© (t, z) - V= = o(1)
with
Vet (o) = [ Velw =gy (t5ms) dy
s [ [ eF T R (o) F - D) T, @)

Based on the two dimensional analysis, we expect that the limit density f = limg\ o fE solves

the problem announced in Theorem 1.2.
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A Average fundamental solution of the Laplace operator

Proof. (of Proposition 2.2)

1. If £ =0 and 1 # 0 we are done since we have

s(o,n):;T/OZZ(—? > de_% 22(;1) d9:e<;7c>.

Assume now that £ # 0 and let us observe that £(&,n) = F(&,|n|/|w.|), where

f(f,?") == 21? |Z—§|:T 6(2,’) dO'(Z)’ lf r>0
6(5)7 ifr=0.

For any r €]0, |¢|[ we have

d d 1
—F(,r)= ar o Vit e(§ +ry) do(y)
1
=5 - Vel +ry) -y do(y)
— 1 z _5
== s Ve(z) - " do(z)
_ b Ae(z) dz = 0.

27r |[z—&|<r

Therefore the function » — F(&,r) is constant on |0, |£]]
F(&,r) = 1}2})1’(5,7“') =e(§) = F(£,0), 0<r<[g. (49)

The value of F(&,|¢]) follows by direct computation

Pl =5 [ " e(€](1 - cos, —sin6)) df

™

L (Eu(emm)
= e(€) - / <2st> do = e(¢)

where we have used the Fuler integral fow/ Insing do = —Z 5 In2. Therefore the function
r — F(&,r) is constant on [0, |£]]. If r > [€|, the function e(-) has a singularity inside the disk

of center £ and radius r and therefore, we have for any § small enough

d 1 z—&
—F(r) = — Ve(z) - do(z
ar (&) /|Z£| (2) (2)

2mr T
1 Z 1
= — \% -=d = ——.
21 J)z1=s e(z) o(2) 27r
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Therefore, for any r > |¢| we obtain
F(f,’/‘) = F(§7 |€’) - " —=—5-Inr (50)
Combining (49), (50) yields

1
F(&r) = —g nr 1ggen +e(€)1qg-r

saying that

E&,m) = (5, U ) =e ( ! > Lijg<inl/lwel} T €E)L{1g1> [l /wel}-

|wel

2. Notice that the functions 5(§,n),Ve(§)1{|§‘>|m/|wc‘},w(lee (&) L{j¢|<|nl/|we|} are locally

integrable on R? x R?, and therefore our statement makes sense. Pick a function ¢ € C}(R? x

R?) and observe that
— £ - _ —
/me (& mVep d(€,n) /ngCl e(w) Vep d(€,m) /|>|'J’c e(€)Vep d(€,m)
U
= - — Ve dédn — Ve déd
Af<%>4§£ep£n Aﬁ@ﬁbdﬁewin
n £ §
- o e do(§)d = do(&)d
Le(2 >/|gm% o(€) n+/ﬂ£2/|§£e(£)<pm o(€)dn
ded
/}R2 /£> (& m) dédn

- /RQX]Rz Ve(§)1{‘£|>%}¢(£’ 1) d(&; ).

Therefore we have V¢E(E, 1) = ve(§)1{|§\>ﬂ} in D'(R? x R?). Similarly we obtain
Jwe

_/RQXRQE(&??)VnsO d(§,n) = _/|§<nle (l) ne d(&,m) — /f|>|w"c'| (&) Ve d(£,m)
/RQ/ ( ) np dnd§ — - e(§) /€|> " Ve dndé

Toel
N /RQX]RZ vae ( ) Lijer oy (&) (€, m)

saying that V,£(&,n) = 1Ve< ) (lej< lny I D' (R? x R?).
lwe
3. Pick a function ¢ € C?(R? x R?) and observe that for any i, € {1,2} we have

(%¢,E0)pr D = —(05,€, 0, 0) D,

/R2 /£|> 7,| (£)0g, ¢ d&dn
/Rg /5|> L Oije(€)p dedn + /R /ﬂ_ " dje \5| (&,m) do(€)dn.
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Therefore we obtain

2 _ (IQ 58 5) Lje>lnl/lweyAE ) € ® € Liigimiul/lweydo (€ )
g HE o€ |2 € onle| /1 + wi?

and in particular

L{jg=lnl/lwey o (€, 1)

27T|§\\/1+wg2

Al = —

Similarly we have

<a§2mjg’ 90)77'777 = _<6Wj87 6&90)1?’ D

1
= 06(")/ De,p dedn
We JR?2 we/ Jiel< iy

= Rﬁje(”)/lg e 0 dote)an

_ i mfm(é’ n) o)

lel=1c 2mn]? Iflm

implying that

® Loe1=1m1/|we
(Ve ® V,)E = t(Vn®V5)5: §@n {1€1=Inl/|we|} do(€,n).

&1 [nl 27rwc|77|\/m

Finally we write

<8727mjg’90>9’,D = *<anjg On;P) D7,

/R2 /§|< lal <wc> Opisp dndg
/R2 /§< nl Fije dnd€+/Rz /El

528 — <12 YL n) Lje<pn/we} 406 M) 1 @ 1 Ljg—tnl/wely (€, 1)

In|? 2m(n|? n|? 27|n|y/1 + w?

In‘l ¢ do(n)dé

|WC|

and thus

In particular we obtain
_ Lgeitnl/welydo (&, m)

A€ =
! 27n|/1 + w?
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