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Abstract. A method is presented for deriving reduced models for fluid flows over highly curved
substrates with wider applicability and accuracy than existing models in the literature. This is done
by reducing the Navier-Stokes equations to a novel system of boundary layer like equations in a
general geometric setting. This is accomplished using a new, relaxed set of scalings that assert only
that streamwise variations are ‘slow’. These equations are then solved using the method of weighted
residuals, which is demonstrated to be applicable regardless of the geometry selected. A large number
of results in the literature can be derived as special cases of our general formulation. A few of the
more interesting cases are demonstrated. Finally, the formulation is applied to two thick annular
flow systems as well as a conical system in both linear and nonlinear regimes, which traditionally has
been considered inaccessible to such reduced models. Comparisons are made with direct numerical
simulations of the Stokes equations. The results indicate that reduced models can now be used to
model systems involving thick liquid layers.
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1. Introduction. Film flows have been the subject of multiple major reviews
[31, 11, 8] due to their fundamental significance in a wide variety of contexts. For
example, they are critical to our understanding of many physical processes, such as
avalanches [2], ice sheet models [3], in underwater and lava flows [19, 20], tear films
on the surface of an eye [44, 51, 6] and the well-known ‘coffee-stain’ effect [12]. They
are also of central importance in many industrial applications such as heat and mass
transfer as well as in a wealth of micro-[48, 47] and nanotechnological settings [13].

As a result, it is unsurprising that considerable attention and study has been
given to reduced models, which greatly simplify the governing equations yet retain an
accurate description of the physics of the system. The idea is to reduce the dimen-
sionality of the problem by one through weighted integration over the thickness. It is
not possible to do this for the general form of the Navier-Stokes equations, and thus
a common (although not universal) approach is to exploit some disparity in length
scales in the problem in order to reduce the Navier-Stokes equations to some simpler,
solvable system. In general, we define some ‘small’ parameter ϵ sometimes known
as an aspect ratio, slenderness parameter or lubrication parameter depending on the
context. In the case of planar flows, this is typically defined as ϵ = H/L where H is
some characteristic length scale in the cross-stream direction (often the thickness) and
L is a characteristic length scale in the streamwise direction (often a characteristic
wavelength). This is therefore often known as a long-wave or thin-film expansion.

In a planar geometry the terms “long-wave” and “thin-film” are used essentially
interchangeably as the only length scales in the problem are the thickness of the liquid
layer and the length of the waves. Considering the former to be small is equivalent
to assuming the latter to be large. However, working on a curved substrate intro-
duces two additional length scales, namely the two principal radii of curvature of the
substrate. We therefore use the following two conventions rigorously throughout:

1. In a thin-film approximation, wavelengths are assumed to be O (1), as are
radii of curvature (or infinite and thus irrelevant), while the film thickness is
assumed to be ‘small’ (typically of O (ϵ)).

2. In a long-wave approximation, wavelengths are assumed to be ‘long’ (typically
O
(
ϵ−1
)
), while the radii of curvature and the film thickness are assumed to

be O (1).
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Over time, successively more sophisticated methods have been applied to the
development of reduced models in order to improve their accuracy and breadth of
applicability. This began with the investigations of Benjamin [4] and Yih [54] who
applied a thin-film approximation followed by a linearisation procedure in order to
investigate the linear behaviour of falling films on inclined planes. This thin-film
procedure has also famously been applied in a nonlinear context by Benney [5] to
planar flows, and by Hammond [15] to core-annular flows to derive nonlinear evolu-
tion equations for the interface. Benney’s equation retains the effects of inertia but,
unfortunately, is known to suffer from unphysical blowup [33, 22] when the Reynolds
number is sufficiently large. The exact value depends on the Kapitza number and the
inclination angle, but is typically of order unity [41].

Weakly nonlinear theory has also been applied to derive an interfacial evolution
equation that is valid even in the presence of inertia [46]. However, this relies on the
assumption that the magnitude of the deviation of the interface from the basic state
is small relative to the thickness of the layer, and as a result is only applicable close
to threshold.

Attempts to allow for the incorporation of inertia have been made by Kaptiza &
Kapitza [23] and Shkadov [45] using a Kármán-Pohlhausen technique. Unfortunately
however, while this cures the unphysical blowup of Benney’s equation, the resultant
evolution equations do not correctly predict the onset of linear instability, and as a
result may not be acceptable as model equations. This was resolved by the weighted
residual integral boundary layer (WRIBL) method described by Ruyer-Quil et al.
[38]. The method is essentially a separation of variables, Galerkin-type approach
which results in coupled equations for the interfacial position and the local flux and
allows for moderate levels of inertia whilst correctly predicting the linear onset of
instabilities and not exhibiting finite time blowup.

Many of these approaches have been applied to flows down wavy inclines. Ak-
sel and collaborators have subjected such flows to extensive analysis via experiments
[49], direct numerical simulations [42] and order reducing modelling using both typi-
cal asymptotic expansions [50], and a Kármán-Pohlhausen method [16]. Incidentally,
while the substrate is no longer flat, the underlying geometry is still typically carte-
sian. Instead, all conditions at the wall are simply applied at some spatially varying
normal co-ordinate corresponding to the wall position. The experiments and numeri-
cal simulations revealed vortex structures in deep undulations which have since been
recovered qualitatively using a weighted residual formulation [32].

In addition to the canonical geometries such as the cartesian and core-annular
situations described above, lubrication theory has also been applied to systems of
arbitrary curved surfaces. Such analyses typically proceed by using curvilinear co-
ordinates relative to the underlying substrate. The fundamental geometry and equa-
tions were originally introduced by Howell [17] in the context of three-dimensional
thin viscous sheets. The same methodology was used by Roy et al. [37] for thin-film
flow over fixed substrates. At leading order this gives rise to capillarity driven flow,
while at higher orders centre manifold theory was used to derive more complicated
equations incorporating the effect of inertia. The resultant model was then applied to
a variety of geometries including flow over the outside of a corner, and on the surface
of a torus. This model was subsequently extended, for example by Roberts & Li
[35] to incorporate higher levels of inertia, and by Howell [18] to incorporate moving
surfaces.

Geometrically speaking, however, almost all studies in non-planar geometries have
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confined themselves to the thin-film approximation, so that locally the system looks
quasi-planar [35, 37, 15, 32, 27, 28, 34]. The only exceptions require some other re-
strictive assumption in order to make analytical progress, such as the imposition of
axisymmetry in a fibre context [10, 39]. However, this means that a wealth of inter-
esting phenomena are challenging to access with such reduced models. For example,
Kalliadasis & Chang [21] point out that fibre flows will exhibit non-axisymmetric insta-
bilities at appropriate Reynolds numbers when the film is sufficiently thick. However,
at the moment this has only been accessible in a weakly-nonlinear regime [46] that
does not correspond to experimental observations. In order to perform fully nonlin-
ear calculations the only option appears to be direct numerical simulations. Indeed,
even in the simpler two-dimensional case of a liquid layer hanging from a horizontal
cylinder, modellers have previously been confined to using a thin-film approximation
outside its range of validity [7]. This can push the asymptotic approximation too far.
In Section 5 we give an example of an annular ring of fluid decaying under the effect of
surface tension. When the thickness is equal to half the radius of the cylinder and for
an azimuthal disturbance of wavenumber 6, linearised lubrication theory is in error
by over 1400%, as opposed to less than 6% for the new theory presented.

Most models have not been designed to be applicable to the situation where the
radius of curvature of the substrate and the thickness of the film are comparable.
We give a formulation that attempts to resolve this problem. The key points of the
method that we use are as follows:

1. We use the geometry described by Roberts & Li [35] as detailed in Section
2.2.

2. In order to overcome some of the limitations inherent in the geometry de-
scribed by Roberts & Li we allow the substrate to be located at y = ζ where
ζ is a function of space.

3. We use a novel set of ‘long-wave’ scalings in Section 3.1 to reduce the gov-
erning equations to a general set of boundary layer equations.

4. We retain the full form of the curvature term as suggested by Rosenau et
al. [36]; a commonly used approach when fluid layers are thick [24]. This
retains terms of higher order than the rest of the derivation. If so desired
for consistency, this can be remedied by selecting an appropriately truncated
expression for the curvature.

5. We then apply a separation of variables approach, using the method of
weighted residuals but projecting only onto the leading order polynomial as
suggested by Scheid et al. [40], in order to derive a reduced model.

We demonstrate the general nature of our formulation in Section 4 by recovering
a number of existing models in the literature. We then demonstrate the high degree
of accuracy of our formulation even in thick liquid layers on highly curved substrates
with three case studies: in Section 5 we compare the linearisation of thin-film and
long-wave models for thick annular flow around a disc to the results of exact linear
theory; in Section 6 we give a nonlinear comparison for thin-film and long-wave models
against direct numerical simulations for a thick film hanging from a spinning horizontal
cylinder; in Section 7 we compare nonlinear calculations for flow over the surface of
a cone to the predictions of direct numerical simulations. In all cases the long-wave
model performs well. However, with the exception of §4.3 at Re = 1 the model has
only been tested in the absence of inertia. Finally, in Section 8 we give our conclusions.

2. Problem formulation. We describe the flow of a layer of liquid over an
arbitrary surface, incorporating the effects of viscosity, capillarity, gravity and inertia.
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Fig. 1. A schematic of the situation being considered: relative to an reference surface P, a
liquid rests on a curved surface y = ζ with the interface lying at y = η.

We give a schematic of the geometry in Figure 1. We begin by giving the equations
governing the system in co-ordinate free form in Section 2.1. We then describe the
body-mapped geometry system we are using in Section 2.2 and give the Navier-Stokes
equations in this co-ordinate system.

2.1. Governing equations. The fluid is taken to have constant density ρ, ve-
locity u, pressure p, dynamic viscosity µ with the gravity denoted by g. We non-
dimensionalise lengths using the typical film thickness H, and introduce

(2.1) u = U ũ, p =
Uµ

H
p̃, t =

H

U
t̃,

where U = ρgH2

µ is a characteristic velocity. In the absence of gravity (see Section

5) or when the substrate is flat and the gravity is normal to it, we use U = γ/µ.
Dropping tilde decorations, the dimensionless momentum and continuity equations
are respectively

(2.2) Re
Du

Dt
= ∇ ·T+ g, ∇ · u = 0,

where Re = ρUH
µ is the Reynolds number, T = −pI+ τ is the total stress tensor and

τ is the usual Cauchy stress tensor. This is to be solved subject to no-slip on the
substrate, and the appropriate stress conditions at the interface:

(2.3) [n ·T · n] = κ

Ca
, [n ·T · ti] = 0,
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where n is the normal vector to the surface, ti, i = 1, 2 are two tangential vectors
to the surface, given explicitly shortly, Ca = Uµ

γ is the Capillary number, which
determines the relative significance of viscous effects compared to surface tension,
and [·] represents the jump in the value of a quantity across the interface.

2.2. Geometry and transformed equations. We give a brief outline of the
orthogonal co-ordinate system shown schematically in Figure 1; for more details see
Roy et al., [37], Roberts & Li [35] and Miksis & Ida [27]. Consider the reference
surface P parametrized by the two co-ordinates x1 and x2, with unit vectors e1
and e2 corresponding to x2 = constant and x1 = constant respectively. While this
prescribes the geometry in which our system resides, this need not be the surface of
the substrate itself: for example imagine describing a golf ball with dimples. P would
most easily be given as the surface of a sphere, with the dimples being prescribed by
locating the substrate at a spatially varying value of y as described shortly. The unit
normal to the reference surface is denoted by e3, with y measuring the distance in
this direction such that e1, e2 and e3 form a right-handed set of locally orthogonal co-
ordinate vectors. The interface is located at y = η. In this co-ordinate system the x1,
x2 and y components of velocity and gravity are u = (u1, u2, v) and g = (g1, g2, g3).
Due to the curvature of the substrate, gravity generally depends on x1 and x2. The
reference surface P is given in space as x = P (x1, x2), relative to which any point in
the fluid can be expressed as

(2.4) X (x1, x2, y) = P (x1, x2) + ye3 (x1, x2) ,

so long as η(x1, x2) is less than the principal curvature in each direction, when that
curvature is positive so that the surface is concave; otherwise the geometry is ill-
defined [37]. This excludes the potential to examine certain regimes, such as flow over
a step. In order to circumvent this issue and access a wider array of flow scenarios
the substrate is located at y = ζ (x1, x2), which must obey the same constraints as η.
This is in contrast to Roy et al. [37] and Roberts & Li [35] who effectively enforced
ζ = 0. The no-slip and impermeability conditions are then expressed on y = ζ as

(2.5) u1 = u2 = v = 0.

On the substrate ei = 1
mi

∂P
∂xi

for i = 1, 2, where mi =
∣∣∣ ∂P∂xi

∣∣∣ are the metric

scale factors. In addition ∂e3

∂xi
= −mikiei, where ki are the corresponding principal

curvatures of the substrate. At any point X in the fluid, the scale factors of the spatial
coordinate system are

(2.6) hi =

∣∣∣∣∂X∂xi
∣∣∣∣ = mi (1− kiy) , h3 =

∣∣∣∣∂X∂y
∣∣∣∣ = 1.

We need the appropriate derivatives of the unit vectors. As given by Roberts & Li
[35],

∂ei
∂xi

= − 1

h′i

∂hi
∂xi′

ei′ +mikie3,
∂ei
∂y

=
∂e3
∂y

= 0,(2.7)

∂e3
∂xi

= −mikiei,
∂ei
∂xi′

=
1

hi

∂hi′

∂xi
ei′ ,(2.8)
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where i = 1, 2 and i′ = 3−i. We also require an expression for the interfacial curvature
to determine the effects of capillarity. In this geometry it is [35]
(2.9)

κ =
1

h̃1h̃2

[
∂

∂x1

(
h̃22ηx1

A

)
+

∂

∂x2

(
h̃21ηx2

A

)]
+

1

A

[(
h̃21 + η2x1

) m2k2

h̃1
+
(
h̃22 + η2x2

) m1k1

h̃2

]
,

where h̃i = hi|y=η = mi (1− kiη) are the metric coefficients evaluated at the interface,
and

(2.10) A =
√
h̃21h̃

2
2 + h̃22η

2
x1

+ h̃21η
2
x2
.

The normal and tangent vectors to the interface X̃ = X|y=η are given by Roberts &
Li [35] (18)-(19)

t̃i =
∂X̃

∂xi

/∣∣∣∣∣∂X̃∂xi
∣∣∣∣∣ = (h̃iei + ηxi

e3

)
/
√
h̃2i + η2xi

,(2.11)

ñ =
t̃1 × t̃2∣∣t̃1 × t̃2

∣∣ = (−h̃2ηx1
e1 − h̃1ηx2

e2 + h̃1h̃2e3

)
/A .(2.12)

The Navier-Stokes equations (2.2) become [35] (25)

Re

{
∂u

∂t
+ e1

[
u · ∇u1 +

u2
h1h2

(
u1
∂h1
∂x2

− u2
∂h2
∂x1

)
−m1k1

vu1
h1

]
+ e2

[
u · ∇u2 +

u1
h1h2

(
u2
∂h2
∂x1

− u1
∂h1
∂x2

)
−m2k2

vu2
h2

]
+e3

[
u · ∇v +m1k1

u21
h1

+m2k2
u22
h2

]}
= −∇p−∇× ω + g,(2.13)

where u · ∇ = u1

h1

∂
∂x1

+ u2

h2

∂
∂x2

+ v ∂
∂y , and ω is the vorticity of the fluid, defined by

ω = ∇× u =
e1
h2

[
∂v

∂v2
− ∂ (h2u2)

∂y

]
+

e2
h1

[
∂ (h2u1)

∂y
− ∂v

∂x1

]
(2.14)

+
e2
h1h2

[
∂ (h2u2)

∂x1
− ∂ (h1u1)

∂x2

]
.(2.15)

We have also used ∇ · u = 0 (2.2), which in this co-ordinate system is

(2.16)
∂

∂x1
(h2u1) +

∂

∂x2
(h1u2) +

∂

∂y
(h1h2v) = 0.

The kinematic condition D
Dt (y − η) = 0 expands as [35] (27)

(2.17)
∂η

∂t
= v − u1

h̃1

∂η

∂x1
− u2

h̃2

∂η

∂x2

at y = η. Finally, the components of the Cauchy stress tensor become [35] (30)

τii = 2

(
1

hi

∂ui
∂xi

+
ui′

hihi′

∂hi
∂xi′

− miki
hi

v

)
, τ33 = 2

∂v

∂y
,(2.18)

τ12 =
1

h2

∂u1
∂x2

+
1

h1

∂u2
∂x1

− u1
h1h2

∂h1
∂x2

− u2
h1h2

∂h2
∂x1

,(2.19)

τi3 =
1

hi

∂v

∂xi
+
∂ui
∂y

+
miki
hi

ui.(2.20)
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3. Reduced models. In order to make analytical progress we begin by applying
a long-wave approximation in Section 3.1 to derive a boundary layer type set of
equations. We solve these to first order in absence of inertia in Section 3.2, and then
use a variation of the method of weighted residuals to give an integral formulation for
such models at higher orders in Section 3.3.

3.1. Boundary layer equations. We invoke a novel long-wave assumption in
order to derive a reduced set of boundary layer equations in this generalised geometry
setting. Assume that the characteristic length of structures in the streamwise direction
is ‘long’ relative to the thickness of the film, i.e. ∂xi

7→ ϵ ∂xi
(including film structures

as well as the gradients of the curvatures and the substrate position ζ).

ϵ is to be treated as an “ordering parameter” [40]: that is, it serves only to assert
the anticipated relative magnitudes of terms during calculation and is taken to be
unity in the final model. Secondly, unlike Roy et al. [37] and Roberts & Li [35], we
do not make any scaling assumptions on the magnitude of the curvatures ki (though
their derivatives must still be of order ϵ). At the cost of slightly complicating the
analysis, this retains some greater generality than either of those papers; as a result
we recover models that they cannot, such as that of Craster & Matar [10] (§4.1). We
also show (§5) that it aids in the accuracy of modelling thick films.

We are assuming that our substrates have O (1) curvatures. It might reasonably
be expected that this could induce flow structures with characteristic wavelength of
O (1); this stands to violate the assumption that waves are ‘long’. As a result compar-
ison and validation must be performed a posteriori; in practice we show via validation
against full linear theory and direct numerical simulations that the long-wave as-
sumption provides good results outside its strict realms of anticipated applicability.
Roberts & Li [35] showed that in their context the long-wave expansion was valid
provided that the relative gradients for any quantity w satisfy

∣∣∇w
w

∣∣ < 1.9
η .

We make the long-wave substitutions xi = x̂i/ϵ, where all quantities with hats are
of order unity. A scaling argument using the continuity equation (2.16) shows that
v = O (ϵ), so we assert this by incorporating an appropriate instance of the ordering
parameter by making the substitution v = ϵv̂. Similarly, the kinematic condition
(2.17) suggests taking t = t̂/ϵ. The hat decoration is then dropped. Integrating
(2.16) from the substrate to the interface and substituting into (2.17) gives

(3.1) h̃1h̃2
∂η

∂t
+

(
∂x1

∂x2

)
·
∫ η

ζ

(
h2u1
h1u2

)
dy = 0.

To derive the boundary layer equations, we first calculate an expression for the
pressure by applying the long-wave scalings to the e3 component of (2.13) to find

∂p

∂y
= g3 −Re

(
m1k1

u21
h1

+m2k2
u22
h2

)
(3.2)

− ϵ

h1h2

[
∂

∂x1

(
h2
h1

∂ (h1u1)

∂y

)
+

∂

∂x2

(
h1
h2

∂ (h2u2)

∂y

)]
+O

(
ϵ2
)
.

As p only appears at first order in the x1 and x2 components of the momentum
equation, this first order expression is sufficient for a second order expression for the
velocities ui. Expanding ti · T · n = 0 explicitly tells us that τi3 = O (ϵ). Therefore
we discard the second order terms of the form ηxi

τi3 in the long-wave expansion of
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the normal stress condition (2.3) so that

(3.3) p|y=η =
κ

Ca
+ ϵ 2

∂v

∂y

∣∣∣∣
y=η

+O
(
ϵ2
)
.

Integrating (3.2) from y to η using this stress condition, and where κ/Ca is assumed
order unity, yields

p = g3 (y − η) +
κ

Ca
+ReKI (x1, x2, y)(3.4)

+ ϵ

{[
1

h1h2

∂ (h1h2v)

∂y

]y
η

+ 2
∂v

∂y

∣∣∣∣
y=η

+KV (x1, x2, y)

}
+O

(
ϵ2
)
,

where KI,V are

KI =

∫ η

y

(
m1k1

u21
h1

+m2k2
u22
h2

)
dy,(3.5)

KV =

∫ η

y

1

h1h2

[
∂

∂x1

(
u1h1

∂

∂y

(
h2
h1

))
+

∂

∂x2

(
u2h2

∂

∂y

(
h1
h2

))]
(3.6)

− ∂

∂y

(
1

h1h2

)
∂(h1h2v)

∂y
dy.

Expansion of (2.13) yields the desired boundary layer equations. The resultant equa-
tion for u1 is

ϵRe

{
∂u1
∂t

+
u1
h1

∂u1
∂x1

+
u2
h2

∂u1
∂x2

+ v
∂u1
∂y

+
u2
h1h2

(
u1
∂h1
∂x2

− u2
∂h2
∂x1

)
−m1k1

vu1
h1

}
+

ϵ

h1

∂p

∂x1
− g1 (x1, x2) =

1

h2

∂

∂y

(
h2
h1

∂

∂y
(h1u1)

)
+ ϵ2

1

h1

∂

∂x1

(
1

h1h2

∂

∂x1
(h2u1)

)
+ ϵ2

1

h2

∂

∂x2

(
1

h1h2

∂

∂x2
(h1u1)

)
+ ϵ2

[
1

h1

∂

∂x1

(
1

h1h2

∂ (h1u2)

∂x2

)
− 1

h2

∂

∂x2

(
1

h1h2

∂ (h2u2)

∂x1

)]

+ ϵ2
[
1

h1

∂

∂x1

(
v

h1h2

∂ (h1h2)

∂y

)
− 1

h2

∂v

∂x1

∂

∂y

(
h2
h1

)]
+O

(
ϵ3
)
,

(3.7)

where p is given by (3.4). The corresponding equation for u2 is obtained similarly but
is omitted here for brevity.

The first term of (3.7) in curly braces corresponds to the inertial terms, while the
remaining terms on the left hand side correspond to the pressure and streamwise grav-
itational terms. The leading order term on the right hand side represents cross-stream
friction, while the remaining terms correspond to additional viscous dissipation.

The final constraints are the tangential stress conditions (2.3) at the interface.
Substitution of the Cauchy stress components (2.18)-(2.20) and the appropriate tan-
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gent vectors (2.11) into (2.3) gives

0 = h̃2

(
h̃21 − ϵ2η2x1

)(
h̃1

∂

∂y

(
u1
h1

)∣∣∣∣
η

+
ϵ2

h̃1

∂v

∂x1

)(3.8)

+ ϵ2
[
2h̃1h̃2ηx1

(
∂v

∂y
− 1

h̃1

∂u1
∂x1

− u2

h̃1h̃2

∂h1
∂x2

− v

h̃1

∂h1
∂y

)
−h̃21ηx2

(
h̃1

h̃2

∂

∂x2

(
u1
h1

)
+
h̃2

h̃1

∂

∂x1

(
u2

h̃2

))
− h̃1h̃2ηx1

ηx2

∂

∂y

(
u2
h2

)]∣∣∣∣∣
η

+O
(
ϵ3
)
,

for the x1 direction; the x2 direction is again obtained similarly. (3.7) and (3.8) are
original, and constitute the basis for many of the results in this paper.

3.2. Inertialess solution at O (ϵ). First we consider the simplest case, which
corresponds to many of the leading order solutions in the existing literature [15, 10,
32, 11]: we set Re = 0, and truncate the boundary layer equation (3.7) at O (ϵ),
giving

(3.9)
ϵ

h1

(
1

Ca

∂κ

∂x1
− g3

∂η

∂x1

)
+ g1 =

1

h2

∂

∂y

(
h2
h1

∂

∂y
(h1u1)

)
+O

(
ϵ2
)
.

This is to be solved subject to the no-slip and tangential stress conditions (3.8)

(3.10) u1|y=ζ = 0,

(
h̃1
∂u1
∂y

− u1
∂h1
∂y

)∣∣∣∣
y=η

= 0 +O
(
ϵ2
)
.

This gives

(3.11) u1 = f
(0)
1 g1 + ϵ

(
1

Ca

∂κ

∂x1
− g3

∂η

∂x1

)
f
(1)
1 +O

(
ϵ2
)
,

where

h1f
(0)
1 =− 1

2k2

(
1

2
y

(
h1 +

m1

m2
h2

)
+

1

3
m1k1k2y

3

)
(3.12)

+ c
(0)
1

(
k1k2y + (k1 − k2) log h2

k22

)
+ c

(0)
2 ,

h1f
(1)
1 =− y

k1
+
y2

2
+
k1 − k2
k1k2

[
y

(
1− log

(
k2

k2 − k1

))
+
1− k1y

k1
log (1− k1y) +

(k1 − k2)

k1k2
Li2

(
k1 (1− k2y)

k1 − k2

)]
(3.13)

+ c
(1)
1

k1k2y + (k1 − k2) log h2
k22

+ c
(1)
2

where Li2(z) = −
∫ z

0
log(1−t)

t dt is Jonquière’s function of order 2 [25], and c
(0,1)
1,2 are

constants of integration fixed by imposing (3.10); their evaluation is straightforward
but cumbersome and so their general forms are omitted here.
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3.3. Solution at higher orders. We now demonstrate how to extend the model
to higher orders via a generalisation of the method of weighted residuals [40, 38]. We
begin by considering (3.7) at leading order,

(3.14)
1

h2

∂

∂y

(
h2
h1

∂

∂y
(h1u1)

)
= g1 +O (ϵ) ,

whose solution is u1 = g1f
(0)
1 . We therefore consider a expansion of the form

(3.15) u1 = a0(x1, x2, t)f
(0)
1 (x1, x2, y) + ϵ

N∑
i=1

ai(x1, x2, t)bi(y) +O
(
ϵ2
)
,

onto which we project. The procedure [38] is to then substitute this candidate velocity
into (3.7), truncate at second order and integrate it together with an appropriate
weight function w (x1, x2, y) to determine evolution equations for the ai. In order to
facilitate this procedure, we first define the flux

(3.16) q1(x1, x2, t) =

∫ η

ζ

h2u1dy.

Integrating (3.15) across the liquid layer and eliminating a0 in favour of q1 gives

(3.17) u1 =

q1 − ϵ
N∑
i=1

ai
∫ η

ζ
h2bidy +O

(
ϵ2
)

∫ η

ζ
h2f

(0)
1 dy

f
(0)
1 + ϵ

N∑
i=1

aibi +O
(
ϵ2
)
.

As suggested by the kinematic condition, we use the inner product

(3.18) ⟨w, ·⟩ =
∫ η

ζ

h1h2w · dy.

In general, taking the inner product of w with the boundary layer equation (3.7)
would require determination of bi for i ≥ 1. However, we show that careful selection
of the weight w can avoid this cumbersome procedure [38].

Consider where terms involving ai, i ≥ 1 enter into the calculation. By (3.15)
these are already of first order in ϵ. If they are substituted into second order viscous

terms such as ϵ2 ∂2u1

∂x2
i

(3.7) their contribution is of third order and thus negligible. In

line with the simplified model [40], we also neglect their contributions to inertia where
they would enter at second order. Thus the ai, i ≥ 1 enter only via the leading order
cross-stream viscous term.

For the leading order cross-stream viscous term, we calculate directly by taking
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the inner product of the weight w with the appropriate term in (3.7):⟨
w,

1

h2

∂

∂y

(
h2
h1

∂

∂y
(h1u1)

)⟩
=

∫ η

ζ

wh1h2

[
1

h2

∂

∂y

(
h2
h1

∂

∂y
(h1u1)

)]
dy

=

[
wh2

∂

∂y
(h1u1)

]η
ζ

−
[
∂

∂y
(wh1)h2u1

]η
ζ

+

∫ η

ζ

h1u1
∂

∂y

(
h2
h1

∂

∂y
(wh1)

)
dy

= −

=I1︷ ︸︸ ︷(
wh2

∂

∂y
(h1u1)

)∣∣∣∣
y=ζ

+h1h2

=I2︷ ︸︸ ︷(
w
∂u1
∂y

− u1
∂w

∂y

)∣∣∣∣
y=η

+

∫ η

ζ

h2u1

=I3︷ ︸︸ ︷
h1
h2

∂

∂y

(
h2
h1

∂

∂y
(wh1)

)
dy.(3.19)

where in deriving (3.19) we have made use of the no-slip condition (2.5) and integration
by parts. Dependence on the ai for i ≥ 1 can be removed entirely, and the system
made as simple as possible, as follows:

1. I1 is best simplified by taking w|y=ζ = 0 in order to remove this term.
2. By comparison with the leading order contribution in (3.8), we wish I2 to take

the form h1
∂u1

∂y − u1
∂h1

∂y so that this term introduces the relevant tangential

stress term. I2 is of this form if we take w
h1

= ∂w/∂y
∂h1/∂y

, or equivalently, h1
∂w
∂y −

w ∂h1

∂y = 0.

3. I3 is best simplified by taking h1

h2

∂
∂y

(
h2

h1

∂
∂y (wh1)

)
= 1, so that the remaining

integral is exactly q1 =
∫ η

ζ
h2u1dy.

Imposing these three constraints gives exactly

(3.20) w = f
(1)
1 ,

which is the function corresponding to the pressure term in (3.11). The constraints 1-3
above prescribing the weight w constitute the adjoint problem to that satisfied by the
leading order velocity, as one would expect [39, 9, 30]. However, the viscous operator
is not self-adjoint in the general case, and so the formulation is not Galerkin as seen
in other applications of the method of weighted residuals [39, 38]. This calculation
shows that nonetheless the weighted residual formulation can be extended into our
general setting, regardless of the exact form of the substrate.

Ultimately we are projecting onto the single function f
(0)
1 (3.15) as the contribu-

tions of the additional terms bi have been neglected. We have had success in gaining
increased accuracy by extending our analyses by including higher order terms (up to
fourth order) in the boundary layer equations, but still only projecting onto a single
function, although these results are not presented here.

4. Recovery of existing models. The procedure outlined above recovers and
indeed improves the majority of models in the literature. The exceptions largely
consist of models that are inconsistent due to some ad hoc assumption, and the models
of Ruyer-Quil & Manneville [38] that incorporate second order inertial effects. We
give several examples here, although only §4.3 includes inertial effects.

4.1. Axisymmetric long-wave flow on a fibre. For flow down a vertical fibre
we identify the co-ordinate x1 with the axial direction z, and x2 with the azimuthal
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direction θ. Then for a cylinder of radius α the curvatures are k1 = 0 and k2 = −1/α
while the substrate scale factors are m1 = 1 and m2 = α. Then, taking Ca = 1 and
taking gravity to be in the x1 direction, (3.11) gives

(4.1) u1 =
1

4

(
y(2α+ y)− 2(α+ η)2 log

[
1 +

y

α

])
(1− κz) ,

where suffices define appropriate partial derivatives. Substitution of this into (3.1) and
redefining η = S − α (so that S is the radial position of the interface) to correspond
with Craster & Matar [10] yields

(4.2) 8
(
S2
)
t
=

∂

∂z

(
[κz − 1]

[
2S2

(
α2 − S2 + 2S2 log

S

α

)
−
(
α2 − S2

)2])
,

exactly as given by equation (2.17) in Craster & Matar [10]. Their choice of curvature
κ is indeed an appropriate special case of (2.9). When the film is thin relative to the
radius of curvature, (4.2) recovers the cylindrical model (2) of Roy et al., as detailed
by Craster & Matar.

4.2. Nonaxisymmetric thin-film flow on a fibre. We now consider thin-
film flow on a cylinder. In our system, that is equivalent to having a weak azimuthal
curvature. Therefore we take the co-ordinate x1 to be the axial direction z and the
co-ordinate x2 to be the azimuthal direction θ. Then the curvatures are k1 = 0
and k2 = −ϵ while the substrate scale factors are m1 = m2 = 1/ϵ, and we obtain
h1 = ϵ−1, h2 = ϵ−1 + y. As gravity is acting in the z direction, the expressions for
the velocity (3.11) become

(4.3) u1 = ϵ

(
y2

2
− ηy

)
(κz − 1) , u2 = ϵ

(
y2

2
− ηy

)
κθ,

where κ = −η − ∇2η is the appropriate expansion of (2.9). In this quasi-planar

context, we have ∇ =

(
∂θ
∂z

)
, so that ∇2 = ∂2θ + ∂2z . Substitution into (3.1) and

replacing η by h for comparison yields (2.15) in Wray et al. [53] for δ = 0,

(4.4) ht + h2hz +
1

3
∇ ·
(
h3∇

(
h+∇2h

))
= 0.

The second, third and fourth terms represent convective flow due to gravity, sur-
face tension due to azimuthal curvature and surface tension due to axial curvature
respectively.

4.3. Flow down a wavy inclined plane. We recover the model of Oron and
Heining [32]: we consider flow down an undulating, inclined plane. So we are working
in a planar situation, but with the substrate located at y = ζ(x1). As the reference
surface in this case is planar and one dimensional we ignore all contributions and
derivatives in the x2 direction, and take m1 = 1, k1 = 0. We also drop the suffix 1.

We let χ = η − ζ be the thickness of the flow at a given position. In order to
match with [32] we take g3 = −B, g = 1 and Re = 1 so that by (3.17) and (3.20),

(4.5) u =
qf

(0)
1∫ η

ζ
f
(0)
1 dy

= − 3q

2χ3

(
(y − η)

2 − χ2
)
, w =

1

2

(
(y − η)

2 − χ2
)
.
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Fig. 2. Schematics of example situations. Left: annular flow around a disc used in Sections
5 and 6. Right: conical substrate used in Section 7. Cone has apex angle 2ϕ. The co-ordinate s is
the distance from the apex, and θ is the azimuthal angle. The substrate is at y = 0, and the normal
is defined so that the fluid lies in the region y > 0 on the outside of the cone.

We now substitute u into (3.7), multiply by w, integrating from ζ to η, set ϵ to unity
and replace η with h to yield

(4.6) ht + qx = 0, qt −
9

7

q2χx

χ2
+

17

7

qqx
χ

+
5

2

q

χ2
=

(
1−Bhx +

hxxx
Ca

)
5

6
χ,

exactly as given in Oron & Heining [32].
This system does indeed preserve mass, and has the correct quasi-equilibrium

solution q ≈ χ3/3. However, it does omit Trouton viscosity terms that are found in
other models [35] (58).

5. Example case 1: Thick annular flow at Re = 0. As a prototypical thick-
film problem, we consider annular flow around a cylinder of radius α as shown on the
left hand side of Figure 2, where we are neglecting variation in the axial direction so
that ∂

∂z ≡ 0. We assume that there is no gravity and that the flow is purely capillarity-
driven; it is thus expected to be linearly stable. While simple, this demonstrates an
important point: even in such an example, classical thin-film models exhibit margins
of error in excess of 100% in certain parameter ranges. The model described in this
paper is shown to perform better, opening up the opportunity for modelling thick
liquid layers.

In the absence of gravity, the characteristic velocity must be re-defined as U = γ/µ
as described in Section 2.1, so that Ca = 1. The leading order driving force is now
the capillarity due to curvature gradients ϵ∂xi

κ rather than the gravity, and so we
work relative to this as now being the leading order. For a cylinder of radius α

(5.1) m1 = α; k1 = −1/α; m2 = 1; k2 = 0,

and we assume u2 = 0. We redefine our variables as

(5.2) α+ y 7→ r; α+ η 7→ h; x1 7→ θ; u1 7→ u,
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so that r is the radial spatial variable, and h(θ, t) is the radial location of the interface.

We calculate the exact linear stability in §5.1, the classical thin-film solution in
§5.2, the leading order thick-film long-wave solution in §5.3.1 and the full second order
thick-film long-wave solution in §5.3.2. The respective linear stabilities are compared
in Section 5.4.

5.1. Exact linear stability. We introduce the stream function ξ so that u =
1
r
∂ξ
∂θ , v = −∂ξ

∂r . The system admits a basic solution u = v = 0, so that ξ = 0,
with h = h̄ being arbitrary. The basic value of the pressure p is then p = p̄ =
1/h̄. We expand about this state using Fourier modes, so that (ξ, p, h) = (0, p̄, h̄) +
δeσt+inθ(ψ(r), p̃(r), h̃(r)), where δ ≪ 1, σ is the growth rate and n is the azimuthal
wavenumber. Then elimination of pressure from the Navier-Stokes equations via cross
differentiation gives ψ as satisfying the biharmonic equation in Fourier space

(5.3)
1

r

d

dr

(
r
d

dr

(
1

r

d

dr

(
r
dψ

dr

)))
− 2

n2

r2
ψ′′ +

n4

r4
ψ + 2

n2

r3
ψ′ − 4

n2

r4
ψ = 0.

This has general solution

(5.4) ψ = Arn+2 +Brn + Cr2−n +Dr−n, n ∈ Z \ {−1, 0, 1} .

Thus there are 5 unknowns: {A,B,C,D, h̃} that are determined using 5 constraints:
no-slip and impermeability at the inner cylinder,

(5.5) ψr|r=α = 0, ψθ|r=α = 0,

and the normal and tangential stress and kinematic conditions evaluated at the in-
terface r = h, respectively,

(5.6) h̄3ψ′′′ + h̄2ψ′′ −
(
1 + 3n2

)
h̄ψ′ + 4n2ψ = in

(
1− n2

)
h̃,

(5.7) h̄2ψ′′ − h̄ψ′ + n2ψ − h̄h̃ξ̄rr = 0, h̃s =
in

h̄

(
ψ̃ + ξ̄rh̃

)
.

Now, by substituting (5.4) into (5.5), (5.6) and (5.7), we eliminate A,B,C,D and h̃
in order to derive an equation for the growth rate σ:

(5.8) σ =
n
(
−α2h̄4n+2 + h̄2α4n+2 + n

(
h̄4 − α4

)
h̄2nα2n

)
2h̄
(
α2h̄4n+2 + h̄2α4n+2 + h̄2nα2n

(
h̄4n2 − 2α2h̄2 (n2 − 1) + α4n2

)) .
5.2. Classical thin-film solution. Classical thin-film theory makes the substi-

tution ∂r 7→ ϵ−1∂r. As shown by Wray et al. [52] the appropriate asymptotic scalings
are v = ϵ3v0, u = ϵ2u0, p = p0, ∂t 7→ ϵ2∂t. Then the leading order governing equations
are

p0r = 0,
1

α
p0θ = u0rr, 0 = v0r +

1

α
u0θ, κtf =

1

h
− hθθ, p0|r=h = κtf,(5.9)

(u0r)|r=h = 0, u0|r=α = 0, v0|r=α = 0, αht +
∂

∂θ

∫ h

α

u dr = 0.(5.10)



15

where κtf is the appropriate expansion of (2.9), including the regularising hθθ term.

This gives v0 =
[
r2−α2

2α + h
(
1− r

α

)]
κtfθ , and insertion into the kinematic condition

provides

(5.11) ht =

[
(h− α)

3

3α2
κtfθ

]
θ

.

This thin-film equation linearises as

(5.12) σ =
n2
(
n2 − 1

)
(α− h̄)3

3α2h̄2
.

5.3. Long-wave solution. We now compute the long-wave solutions according
to the method outlined in Section 3.3. In this geometry the curvature (2.9) becomes

(5.13) κ =
2h2θ + h (h− hθθ)

(h2 + h2θ)
3/2

5.3.1. At first order. By (3.1) and (3.11)

(5.14)
(
h2
)
t
+
[ κθ
4α2

(
α4 − h4 + 4α2h2 log (h/α)

)]
θ
= 0 +O

(
ϵ2
)
.

h2 is a conserved quantity due to conservation of mass. Linearizing about h =
h̄ =const. and looking for solutions proportional to eσt+inθ gives

(5.15) σ =
n2
(
n2 − 1

) (
α4 − h̄4 + 4α2h̄2 log

(
h̄
α

))
8α2h̄3

.

As validated in Section 5.4 this already outperforms classical thin-film theory as re-
gards accuracy. However, the accuracy can again be improved significantly by ex-
tending it to an additional order as shown next.

5.3.2. At second order. As detailed in Section 3.3, we now proceed using
the inner product and weight (3.18) and (3.20) respectively, which in this geometry
become

(5.16) ⟨w, ·⟩ =
∫ η

0

rw · dy, w =
r

2
log

r

α
+ h2

1

4rα2

(
α2 − r2

)
.

As this flow is driven by a pressure gradient rather than gravity, per (3.11),

(5.17) u =
κθ

4rα2

((
α2 − r2

)
h2 + 2r2α2 log (r/α)

)
∝ w.

Therefore we set

u =
q(t, θ)w(r, θ) +O (ϵ)

ϕ
, ϕ =

∫ h

α

r w dr =
1

8α2

(
α2 − h4 + 4α2h2 log

h

α

)
.

Now we compute the relevant inner product for each term in (3.7). The resultant
expression is rather complex. But with ϵ set to unity, it is readily linearised as before
to give

(5.18)

σ =
3n2(n2 − 1)(α4 − h̄4 + 4α2h̄2 log h̄

α )
2

2h̄
{
3(α4 − h̄4)(4α2h̄2 + n2(α4 + h̄4 − 6α2h̄2)) + 4α2h̄2 log h̄

α×[
12α2h̄2 + 3n2(α4 + h̄4 − 6α2h̄2) + n2 log h̄

α (3α
4 − 3h̄4 + 4α2h̄2 log h̄

α )
]} .



16

Fig. 3. Plot of growth rate σ as a function of interfacial position h̄ with α = 1. Left: n = 2,
middle: n = 4, right: n = 6. Solid red line: Exact Stokes solution, dashed green line: second order
long-wave theory, dash-dotted blue line: first order long-wave theory, dotted black line: thin-film
theory

5.4. Comparison of linear theories. We have the linear stability as predicted
by exact Stokes theory (5.8), thin-film theory (5.12) and long-wave theory at both first
order (5.15) and second order (5.18). We have evaluated how well the theories perform
for relatively thick films by examining the predictions of linear stability parametrically
for α = 1, 1 < h̄ < 2 for wavenumbers n = 2, 4 and 6 in Figure 3. Even at leading
order, long-wave theory (dash-dotted lines) gives somewhat better agreement than
thin-film theory (dashed lines). We therefore recommend using this in circumstances
where a simple first-order model is desired. More significantly, the second-order long-
wave theory gives good results for thicker films than were previously accessible. For
example for n = 6 and h̄ = 1.5 we find that thin-film theory predicts a growth rate of
σ = −23.3, which is an error of over 1400% relative to the exact value of σ = −1.517.
For comparison, the second-order model gives σ = −1.607, an error of less than 6%.
When h̄ = 2, the thickness of the fluid is equal to the radius of the cylinder. We thus
have a reduced model that performs well in analysing the behaviour of a thick liquid
layer, at least in the stable, linear regime considered here.

6. Example case 2: Thick film hanging from a rotating cylinder at
Re = 0. We now present a non-linear computation for the flow of a thick liquid layer
hanging from a horizontal cylinder. The intention of this is three-fold: firstly to show
that the accuracy of the formulation persists into the non-linear regime, secondly
to demonstrate a situation which contains a natural instability unlike the previous
example, and finally to show how we can extend beyond the formulation given in
Section 3 (in particular, we choose to have a flow driven at leading order by a moving
substrate rather than gravity). We therefore take

(6.1) g3 = −G sin θ, g1 = −G cos θ, m1 = α, k1 = −1/α, ζ = 0,

and drop the suffix 1. The no-slip condition becomes

(6.2) u|y=0 = cV .

We have conducted the following non-linear computations for comparison:
1. We have performed a direct numerical simulation of the two-dimensional

Stokes equations.
2. In section 6.1 we perform a classical leading order thin-film calculation, to

produce a governing evolution equation which we have solved numerically.
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3. In section 6.2 we use the second order long-wave formulation presented in
Section 3.3. The resultant evolution equations have been solved numerically.

Using the same substitutions as before (5.2), the Stokes equations (2.13) become

0 = −∂p
∂r

+
1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2
∂2v

∂θ2
− v

r2
− 2

r2
∂u

∂θ
−G sin θ,(6.3)

0 = −1

r

∂p

∂θ
+

1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2
+

1

r2
∂2u

∂θ2
+

2

r2
∂v

∂θ
−G cos θ,(6.4)

0 =
∂ (rv)

∂r
+
∂u

∂θ
.(6.5)

These are to be solved subject to no-slip and impermeability at the surface of the
cylinder,

(6.6) u|r=α = cV , v|r=α = 0,

the normal stress condition at the interface r = h,

(6.7)
( κ

Ca
− p
) (
h2 + h2θ

)
= −2h2vr − 2hθ (u− vθ − hur)− 2

h2θ
h

(uθ + v) ,

and the tangential stress condition at the interface

(6.8) 2hθ

(
vr −

1

h
(v + uθ)

)
+

(
1− h2θ

h2

)
(hur − u+ vθ) = 0.

Substituting (5.2) into the general kinematic equation (3.1) gives

(6.9) hht +
∂

∂θ

∫ h

α

u dr = 0.

6.1. Classical thin-film calculation. Upon making the same substitutions as
in Section 5.2 the leading order governing equations in the classical thin-film case
become

(6.10) p0r = −G sin θ,
1

α

∂p

∂θ
= u0rr −G cos θ, αv0r + u0θ = 0, κtf =

1

h
− hθθ,

(6.11)

p0|r=h =
κtf

Ca
, u0r|r=α = 0, u0|r=α = cV , v0|r=α = 0, αht +

∂

∂θ

∫ h

α

u dr = 0.

Solving for the velocity u0 and substituting this into the kinematic equation gives

u0 = cV +

[
r2 − α2

2α
+ h

(
1− r

α

)]( κtf
Ca

+G sin θ

)
θ

=⇒(6.12)

ht = −cV
α
hθ +

[
(h− α)

3

3α2

(
κtf

Ca
+G sin θ

)
θ

]
θ

.(6.13)

This is essentially Moffatt’s equation [29].
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6.2. Long-wave calculation. The expression for the curvature κ is the same
as in Section 5 (5.13). At leading order the flow is purely due to rotation induced by
the substrate, rather than gravity or pressure gradients. As a result we need to derive
an expression for u. The system is governed to leading order by

(6.14)
∂

∂r

(
1

r

∂

∂r
(ru)

)
= 0 +O (ϵ) , u|r=α = cV , (hur − u)|r=h = 0 +O

(
ϵ2
)
.

This has solution u = cV
α r, so by (3.17) we use

(6.15) u =
q r∫ h

α
r dr

+O
(
ϵ2
)
=

2q

h2 − α2
r +O

(
ϵ2
)
.

where q =
∫ h

α
u dr is the flux, so that the kinematic condition (6.9) becomes

(6.16) hht +
∂q

∂θ
= 0.

Setting ϵ to unity and taking the inner product of the weight (5.16) with (3.7) yields

∂

∂θ

[
κ

Ca
+Gh sin θ + 2 vr|h +

uθ|h
h

+

∫ h 2

r2
∂u

∂θ
dr

]∫ h

α

w dr +O
(
ϵ3
)

=

∫ h

α

∂

∂r

(
1

r

∂

∂r
(ru)

)
rw dr +

∫ h

α

rw

(
2

r2
∂2u

∂θ2
+

2

r2
∂v

∂θ
+

1

r

∂

∂θ

∫ r 2

r2
∂u

∂θ
dr

)
dr.

(6.17)

Thus the system is closed by the equation

1

8α2

(
α2 − h4 + 4α2h2 log

h

α

)
∂

∂θ

[ κ
Ca

+Gh sin θ
]
=

q +
cV
2α

(
α2 − h2

)
−

((
α2 − h2

)2 (
α2 + h2

)
hθ

2α2h3

)(
q

h2 − α2

)
θ

(6.18)

+
1

4

(
α2 − h2

)(
−2 +

α2

h2
+
h2

α2
+ 2

(
log

h

α

)2
)(

q

h2 − α2

)
θθ

+O
(
ϵ3
)
.

There is no time derivative here: this equation simply provides an additional implicit
relation between the interfacial position h and the flux q. In absence of inertia q is
still effectively slaved to h and thus does not have an independent evolution equation.

6.3. Numerical results. We now compare the nonlinear predictions of classical
thin-film theory (6.13), the new long-wave theory (6.16) and (6.18), and direct numer-
ical computations of (6.3)-(6.5). The direct numerical computations have been per-
formed by rescaling onto a rectangular domain via the substitution Y = (r−α)/(h−α),
and using second-order centred finite differences in space and the second-order implicit
trapezoidal rule in time. Grid size and time steps were both reduced until convergence
was attained.

We find that for moderate values of cV the system settles to a steady state. For
0.2 < cV < 1 we monitor hmax, the maximum value of h at this steady state, and
θmax, the position of this maximum. We plot these as a function of cV for direct
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Fig. 4. In all images the solid blue line corresponds to direct numerical simulation of the
Stokes equations, the dashed red line to the long-wave model (6.16), (6.18) and the dotted green
line to the thin-film model (6.13). Left: comparison of predicted droplet shapes at steady state for
h̄ = 1, cV = 0.8, α = 0.5, Ca = 0.2; right, top and bottom: Plots of maximal film thickness at steady
state hmax and position of this maximum θmax for a variety of values of cV with Ca = 0.2, α = 0.5,
G = 5.

numerical simulations of the Stokes equations, for the thin-film model (6.13) and the
long-wave model (6.16), (6.18) in Figure 4. As seen in the image on the left, thin-film
theory conspicuously fails to preserve mass (as might be expected from the form of the
kinematic equation (6.13) which preserves

∫
hdθ, not

∫
h2dθ; this happens precisely

because the thin-film model neglects the details of geometric effects). The agreement
between the long-wave theory and the Stokes equations is strong: the predicted value
for hmax is in error by at most 5% in the given range, while θmax is never in error by
more than 0.025 radians≈ 1.5o. The thin-film model performs less well: the prediction
for hmax is in error by as much as 18% for cV = 1. In addition, the prediction for
θmax is in error by as much as 0.22 radians ≈ 12.6o.

7. Example case 3: axisymmetric droplets on a cone at Re = 0. We
now examine the case of a axisymmetric droplet ring on the surface of a cone. The
predominant aim of this is to show how easy it is to produce a good model in a novel
geometry. However, it also serves to again show the increased accuracy provided
by this long-wave model. The co-ordinate system used on the underlying conical
substrate is shown on the right hand side of Figure 2. This is essentially working in a
polar co-ordinate system where the polar angle is fixed at ϕ as used in other studies
[1, 14, 43].

The surface of the cone is located at (X1, X2, X3) = (s sinϕ cos θ, s sinϕ sin θ, s cosϕ)
so that

(7.1) mθ = s sinϕ, ms = 1, kθ = − cosϕ, ks = 0,
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and thus

(7.2) hθ = s sinϕ (1 + y cosϕ) , h2 = 1.

Instead of working directly in the normal co-ordinate y, we make the substitution
r = sinϕ (1 + y cosϕ). Now the lower wall is located at r|y=0 = sinϕ = α. These can
be understood physically by considering sr which is the radial distance from the axis
of the cone, and sα which is the radial distance of the substrate from the axis of the
cone. The velocity in the s direction is denoted by u, and that in the wall-normal
direction by v.

7.1. Stokes equations. In this geometry, the momentum equations in the s
and y directions, and the continuity equation are given respectively by,

∂p

∂s
− cosϕ =

sin2 (2ϕ)

4r

∂

∂r

(
r
∂u

∂r

)
+

1

s

∂2

∂s2
(su) +

1

s

∂v

∂s
,(7.3)

sin (2ϕ)

2

∂p

∂r
+ sinϕ =

sin2 (2ϕ)

4r

∂2

∂r2
(rv) +

1

s

∂

∂s

(
s
∂v

∂s

)
+

sin (2ϕ)

2

∂

∂s
(su) ,(7.4)

0 =
∂

∂s
(sru) +

sin (2ϕ)

2

∂

∂r
(srv) .(7.5)

These are to be solved subject to the no-slip and impenetrability conditions u|r=α =
v|r=α = 0. The system is closed by the normal and tangential stress balances at the
interface r|y=η = sinϕ (1 + η cosϕ) = Γ,

0 =
(
1− η2s

)(∂v
∂s

+
sin (2ϕ)

2

∂u

∂r

)
+ 2ηs

(
sin (2ϕ)

2

∂v

∂r
− ∂u

∂s

)
,(7.6)

p− κ

Ca
=

2

1 + η2s

(
sin (2ϕ)

2

∂u

∂r
− ∂η

∂s

(
∂v

∂s
+

sin (2ϕ)

2

∂u

∂r

)
+ η2s

∂u

∂s

)
,(7.7)

where ηs =
2Γs

sin(2ϕ) , and the kinematic condition at the interface is

(7.8)
∂Γ

∂t
=

sin (2ϕ)

2
v − u

∂Γ

∂s
=⇒ sΓ

∂Γ

∂t
+

∂

∂s

(∫ Γ

α

sr u dr

)
= 0.

7.2. Reduced models. A similar procedure to that followed in Section 6.1 gives
the thin-film equation as being

(7.9) s
∂Γ

∂t
=

∂

∂s

[
4s

sin2 (2ϕ)

(Γ− α)
2

3

(
κs
Ca

+
1

cosϕ
Γs − cosϕ

)]
,

where the appropriate expansion of the curvature term κ is

(7.10) κ =
sin (2ϕ)

2α
−
[
sin (2ϕ)

2α2
Γ +

2

sin (2ϕ)

Γs

s
+

2

sin (2ϕ)
Γss

]
+O

(
ϵ3
)
.

The leading order long-wave solution becomes
(7.11)

sΓ
∂Γ

∂t
+
∂

∂s

(
s

4 sin2 (2ϕ)

[
κs
Ca

+
1

cosϕ
Γs − cosϕ

] [
α4 − 4α2Γ2 + 3Γ4 − 4Γ2 log

Γ

α

])
+O

(
ϵ2
)
,
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while the weight (3.20) is

(7.12) w =
1

4

(
r2 − α2 − 2Γ2 log

r

α

)
.

Taking the inner product of (3.7) with the weight (7.12) and setting ϵ to unity gives

0 =
sin2 (2ϕ)

4

(
qs +

sΓ

4

(
Γ2 − α2 − 2Γ2 log

Γ

α

)
∂u

∂r

∣∣∣∣
Γ

)
(7.13)

+

[
cosϕ− 1

cosϕ
Γs −

κs
Ca

] [
s

16

(
α4 − 4α2Γ2 + 3Γ4 − 4Γ4 log

Γ

α

)]
+

∫ Γ

α

rsw

[
1

s

∂2

∂s2
(su) +

1

s

∂v

∂s

]
dr

−
∫ Γ

α

rsw
∂

∂s

{
sin (2ϕ)

∂v

∂r

∣∣∣∣
Γ

+

[
sin (2ϕ)

2

1

r

∂ (rv)

∂r

]Γ
r

}
dr +O

(
ϵ3
)
,

which is the full expression for the second order long-wave model.

7.3. Results. Similarly to Section 6, the results of the thin-film model (7.9), the
first order long-wave model (7.11) and the full second order long-wave model (7.13)
have been compared to direct numerical simulations of the Stokes equations (7.3) -
(7.5).

We began by considering the flow of a drop deposited on a cone covered with a
thin precursor film over a long period of time. We took ϕ = π/4 and Ca = 1. We used
an initial condition of η = 0.1+ exp

(
−(x− 6)2

)
and let the droplets evolve down the

surface of the cone. In order to compare the accuracy of the results we considered an
integral measure of error over the complete domain eint =

∫
|Γsim − ΓDNS| ds, where

Γsim are the results of the respective simulation and ΓDNS is the result of the DNS
calculation. The result of the DNS simulation is plotted as a surface of revolution
about the axis of the cone at the top of Figure 5. The time evolution of the error
is plotted in the bottom-left of Figure 5. As expected, the full long-wave model
far outperforms both the other models, while the first order long-wave model still
significantly improves on the predictions of the thin-film model.

Finally, we validated the interesting result that, under appropriate conditions, a
droplet can be pulled up the surface of the cone by the effect of surface tension that
has previously been observed experimentally in a similar context [26]. We therefore
neglected the gravitational effects (which act to counter this) and set ϕ = 9π/20 and
Ca = 0.01. We then simulate over time and plot smax, the position of the highest
point of the drop, in the bottom right of Figure 5. The droplet is indeed pulled up
the surface of the cone (i.e. the distance down the cone smax is decreasing), although
the effect is small.

8. Conclusions. A novel formulation has been given for the flow of a thick film
over an arbitrary, potentially highly undulatory surface. The flexibility of the system
has been demonstrated by recovering a number of existing models in the literature,
before being applied to derive and study several new models.

Firstly, this formulation extends previous work in general geometries by combining
both a co-ordinate system body-fitted to a reference surface together with a spatially
varying substrate position to overcome limitations inherent in existing formulations.
As a result we can access a variety of situations that are not accessible by Roberts
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Fig. 5. Top: Example of a flow on the surface of a cone. Bottom left: the error eint as a
function of time for each of the thin film (green, dashed), first order long-wave (blue, dash-dotted)
and full long-wave (red, dotted) equations as a function of time when ϕ = π/4 and Ca = 1. Bottom
right: position of the peak of the droplet as a function of time when ϕ = 9π/20 and Ca = 0.01, and
we ignore gravitational effects. The results of direct numerical simulation are in black.

& Li [35], Roy et al. [37] or Oron et al. [32]. In the future we plan to investigate
whether other situations have been rendered accessible, such as flow on the outside
of a sharply corrugated cylinder.

Secondly, by taking a less restrictive set of asymptotic scalings than those used
by Roy et al. [37] we have broadened the applicability of our equations. This has
resulted in better agreement with certain models in the literature that do consider
highly curved substrates, such as those of Craster & Matar [10] and Ruyer-Quil et al.
[39].

We have demonstrated that in the case of two dimensional annular flow, this sec-
ond order separation of variables approach performs better than the classical leading
order expansion approach that has been used extensively in the literature. We have
shown that in the nonlinear regime the present approach can provide good agreement
with the results of direct numerical computations. We have also shown that this
agreement extends into more complicated geometries such as the motion of droplets
on the surface on a cone. This has allowed for the computation of phenomena such as
the surface tension driven motion of these droplets towards the cone tip as previously
observed experimentally [26].
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Future work will center on the use of models to access complex phenomena in-
cluding additive surfactants and electric fields. Extensive studies are possible because
the models can be solved numerically at speeds that are orders of magnitude faster
than direct numerical simulations.

All three authors acknowledge the support of the EPSRC via grants EP/K041134/1,
EP/L020564/1 and EP/K003976/1.
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[26] É. Lorenceau and D. Quéré, Drops on a conical wire, J. Fluid Mech., 510 (2004), pp. 29–45.



24

[27] M. J. Miksis and M. P. Ida, The dynamics of thin films I: General theory, SIAM J. Appl.
Math., 58 (1998), pp. 456–473.

[28] , The dynamics of thin films II: Applications, SIAM J. Appl. Math., 58 (1998), pp. 474–
500.

[29] H. K. Moffatt, Behaviour of a viscous film on the outer surface of a rotating cylinder, J.
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