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Abstract

A single-elimination (SE) tournament is a popular way to select a winner in both sports
competitions and in elections. A natural and well-studied question is the tournament fixing
problem (TFP): given the set of all pairwise match outcomes, can a tournament organizer rig
an SE tournament by adjusting the initial seeding so that their favorite player wins? We prove
new sufficient conditions on the pairwise match outcome information and the favorite player,
under which there is guaranteed to be a seeding where the player wins the tournament. Our
results greatly generalize previous results. We also investigate the relationship between the
set of players that can win an SE tournament under some seeding (so called SE winners) and
other traditional tournament solutions. In addition, we generalize and strengthen prior work
on probabilistic models for generating tournaments. For instance, we show that every player
in an n player tournament generated by the Condorcet Random Model will be an SE winner
even when the noise is as small as possible, p = Θ(lnn/n); prior work only had such results
for p ≥ Ω(

√

lnn/n). We also establish new results for significantly more general generative
models.

1 Introduction

A single-elimination (SE) tournament, also known as a binary-cup election, is a popular way to
select a winner among multiple candidates/players. In an SE tournament, pairs of players are
matched according to an initial seeding, the winners of these pairs advance to the next round,
and the losers are eliminated after a single loss. Play continues according to the seeding until
a single player, the winner, remains. SE tournaments are popular in sports competitions, both
among fans due to their exciting “do-or-die” nature, and among tournament organizers due to
their efficiency. In contrast with a round-robin tournament, which requires Θ(n2) matches to
be played between n players, the winner of an SE tournament is decided after a total of n− 1
matches. In tournaments like the NCAAMarch Madness or the US Open Tennis Championships,
involving more than 64 teams each, the difference between a linear and quadratic number of
matches is quite pronounced.

While the efficiency of SE tournaments is desirable, the winner of a given SE tournament
can depend significantly on the initial seeding. A series of works [LPR+07,HDW07,HDKW08,
VAS09,Vas10,SV11a,SV11b,MGK12,AGM+14,KV15] have investigated how easily the winner
of SE tournaments can be manipulated simply by adjusting the seeding of the tournament.
Formally, the problem is called the tournament fixing problem (TFP), or the agenda control
problem for balanced knockout tournaments. In TFP, we are given a set of players V , information
for each pair of players (u,w) about whether u or w would win in a head-to-head matchup, and
a player of interest v; then, we are asked the following question: is there a seeding to a balanced
SE tournament where v wins? TFP is known to be NP-Hard [AGM+14] with the best-known
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algorithm running in 2npoly(n) time [KV15]. Thus, unless P = NP, in general, it is intractable
to determine which players can win an SE tournament. Nevertheless, a number of works on
TFP have produced “structural results,” which argue that for certain classes of instances, one
can find a winning seeding for v in polynomial (and often linear) time [Vas10, SV11b,KV15].
These structural results suggest that in many practical settings, the winner of an SE tournament
is susceptible to manipulation, because many players have winning seedings that can be found
efficiently. Furthermore, under reasonable probabilistic models for generating tournaments,
these structural results have been shown to occur with high probability [Vas10,SV11a], further
suggesting that the worst-case hardness results may not apply to real-world instances. In other
words, in many actual tournaments, it is completely feasible for SE tournament organizers to
rig the outcome of the competition.1 Experimental results [Rus10] investigate this finding in
practical settings.

While TFP can be seen as a way to understand manipulation in competition and elections,
studying conditions under which players can and cannot win SE tournaments can also be seen
as part of a larger study of tournament solutions: different ways to define the winners of a
round-robin tournament. The input to TFP can be viewed as a tournament T = (V,E), or
a complete, oriented graph where for all pairs of nodes u,w ∈ V , exactly one of (u,w) and
(w, u) is an element of E; u points to w if u would win in the match between u and w. The
study of tournaments is central to social choice theory; they provide a general framework for
representing the outcomes between players in a round-robin tournament, or more generally,
pairwise preferences between alternatives, often generated from voter information. As such,
an essential question of social choice theory asks: given a tournament, how should we select
a set of winners? SE tournaments provide one way of answering this question; we say that a
player v ∈ V is an SE winner if there is some seeding, under which v wins the resulting SE
tournament. The study of tournament solutions includes many well-studied other concepts (see
e.g. [Las97,BBH15]). One classical example is the Copeland set, consisting of the players with
the maximum number of wins in the tournament. A natural question to investigate is how these
traditional notions of strength in round-robin tournaments relate to the notion of strength in
an SE tournament.

Results In this work, we improve our understanding of conditions on the input tournament
and player of interest that are sufficient for the player to be an SE winner. Many previous
structural results involve the notion of a king, or a player v where for every other player u ∈ V \
{u}, v either beats u directly, or v beats some w who beats u. We present a vast generalization of
many of the known structural results involving kings, showing that essentially any “combination”
of the known sufficient conditions for a king to be an SE winner is also sufficient for the king to
be a winner.

In particular, recall the following structural results from [Vas10], where given a tournament
T and a player v, we can find a winning seeding for v in polynomial time. One class of tractable
instances are those where every player w, who beats v, wins against at most as many players as
v beats. It is also known that if v is a king and wins against more than half the players or is a
“superking” and every w whom v beats indirectly loses to at least logn players whom v beats
directly, then v will be able to win an SE tournament. While these results have been useful
on their own for showing that tournaments generated by certain random models are likely to
have many players who can win [Vas10,SV11a], it is natural to wonder how robust these results
are to changes in the exact sufficient conditions. Recent results of [KV15] seem to suggest that
the parameters for these structural results are brittle; namely, when the exact parameters of
the conditions are relaxed, finding a winning seeding for v (if it exists) becomes NP-Hard. In
Theorem 2.1, we provide a broad generalization of the three structural results stated above. We

1While the set of games to be played in a round-robin tournament are fixed, the organizers can still affect the
fairness of the tournament by adjusting the schedule (see, e.g., [Suk16]).
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Notation

Nout(v) = {u : (v, u) ∈ E},
Nin(v) = {u : (u, v) ∈ E}

out(v) = |Nout(v)| , outS(v) = |Nout(v) ∩ S|

in(v) = |Nin(v)| , inS(v) = |Nin(v) ∩ S|

Table 1: Summary of the notation used in this paper.

show that these conditions are actually flexible in the sense that if the players who beat some
king v, can be partitioned into groups that satisfy these sufficient conditions, then v can win an
SE tournament. Additionally, we extend the work on 3-kings (or players who have win-distance
≤ 3 to every other player), introduced in [KV15], and give a new set of sufficient conditions for
a 3-king win an SE tournament.

In Section 3, we are able to apply these and other known structural results to understand the
relationship between SE winners and the winners according to other tournament solutions. In
particular, Theorem 3.1 shows that the players selected by a number of well-studied tournament
solutions are also SE winners, including the Copeland set described above. Another class of
tournament solutions of interest was introduced in [Las97] as a natural extension of the Copeland
set. In these “iterative matrix solutions,” we consider the tournament matrix A (corresponding
to the adjacency matrix of the underlying tournament graph); a player is included in the kth
iterative matrix solution, if they have the maximum number of “wins” in Ak. We give a new
interpretation of this solution and use it to show that for sufficiently large tournaments, the
players in the iterative matrix solutions will also be SE winners.

Finally, in Section 4, we investigate probabilistic models for generating random tournaments,
and the resulting structure of such tournaments. In particular, we start by giving an improved
result for tournaments generated by the Condorcet Random (CR) Model. The CR Model
assumes an underlying order to players, where stronger players generally win against weaker
players and are only upset with some small probability p. We demonstrate that in tournaments
generated by the CR Model, even when the probability of upsets p is Θ(lnn/n), with high
probability every player in the tournament will have a winning seeding that can be discovered
efficiently. This upset rate p is optimal (up to constant factors) because a player needs to win
logn matches in order to win an SE tournament. Our result greatly improves on the previous
best result from [Vas10], which proves an analogous claim for p ≥ Ω(

√

lnn/n). In light of this
optimal result for the CR Model, we propose a new generative model for tournaments that
aims to remove the structure that arises from assuming an underlying order of players and
a consistent noise parameter. Despite the fact that the model may produce tournaments with
largely arbitrary structure, we are able to prove a nontrivial result similar to the previous results
on the CR Model. The details of the model and our theorem statement are given in Section 4.

All of our results are constructive. In particular, we demonstrate that certain conditions are
sufficient for a player v to be an SE winner by giving algorithms, running in polynomial time,
that outputs a seeding where v will win.

Preliminaries and Notation We will assume throughout that all SE tournaments are
balanced, and played amongst a power of two, n = 2k for some k ≥ 0, players. Table 1
provides a summary of the notation that is used to refer to players and their neighborhood in
the underlying tournament. For subsets A,B ⊆ V , we say that A dominates B, denoted A ≻ B,
if for all a ∈ A and all b ∈ B, (a, b) ∈ E. We will abuse this notation slightly, allowing individual
players, rather than subsets, to be related to other players or subsets.

Recall that we can define the notions of king and 3-king of a tournament in terms of the
underlying tournament graph. A king is a player v who has distance at most 2 to every other
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player u ∈ V \ {v}. A 3-king is the generalization of kings to players who have distance at most
3 to every other player.

In Section 3, a number of tournament solutions are referenced. Here, we provide brief de-
scriptions of these solutions; for complete definitions, we refer the interested reader to [BBH15].
The uncovered set refers to the set of kings in the tournament. The Copeland set is the set of
players of maximum out-degree in the tournament.

We say that a tournament is transitive if we can label the players with labels from {1, . . . , n}
such that ∀i, j i < j implies i ≻ j. Given a tournament T , consider flipping edges in T to
produce a transitive tournament T ′, while minimizing the number of edges flipped. The Slater
set of T is the set of players who can be labeled 1 (i.e., the Condorcet winner) in such a T ′.

The Markov set can be thought of as the set of players who win the most matches, in expec-
tation, in a “winner-stays” tournament, where play proceeds by repeatedly selecting a random
player to play the previous winner. This is equivalent to finding the players of maximum prob-
ability on a random walk on the tournament, where the graph Laplacian defines the transition
matrix.

The bipartisan set is the support of the maximal lottery for the tournament, i.e., the support
of the Nash equilibrium of the symmetric zero-sum game formed by the tournament matrix.

2 Structural Results

Various results are known about conditions under which a player is guaranteed to be an SE
winner [Vas10,SV11b,KV15]. Many of these results concern players who are kings. In particular,
[Vas10] showed that a “superking” – a king v where every player in Nin(v) loses to at least logn
players from Nout(v) – is always an SE winner. [SV11a] showed a generalization they call a “king
of high out-degree” – that is, a king with out-degree k, who loses to fewer than k players that
have out-degree greater than k – is always an SE winner. This result was the first to generalize
the conditions on players who can win SE tournaments. In this section, we further generalize
these results by combining their respective conditions. Moreover, we further explore the notion
of 3-kings that was considered by [KV15] and present an alternative condition under which a
3-king can win an SE tournament.

Theorem 2.1. Consider a tournament T = (V,E) where K ∈ V is a king. Let A = Nout(K)
and B = V \(A ∪ {K}) = Nin(K). Suppose that B is a disjoint union of three (possibly empty)
sets H, I, J such that

1. |H | < |A|

2. inA(i) ≥ log |V | for all i ∈ I (i.e., outA(i) ≤ |A| − log |V | for all i ∈ I)

3. out(j) ≤ |A| for all j ∈ J .

Then K is an SE winner, and we can compute a winning seeding for K in polynomial time.

Note that the superking result [Vas10] corresponds to the special case where H = J = ∅,
while the “king of high out-degree” result [SV11a] corresponds to the special case where I = ∅.

Proof. We proceed by induction, arguing that we can construct a seeding where, in each round,
the three properties listed above and the fact that K is a king are maintained as invariants. We
will first take care of the cases where the tournament is small. If |V | = 1 or 2, B is empty and
the result is clear.

Suppose that |V | = 4. If |A| ≥ 2, the result follows from [SV11a]. Otherwise |A| = 1, and
H = I = ∅ and |J | ≤ 1, which contradicts |V | = 4.

Suppose now that |V | ≥ 8. If |A| ≤ 2, then |H | ≤ 1, I = ∅, and |J | ≤ 3, which contradicts
|V | ≥ 8. If I = ∅, H ∪ J = ∅, or |A| ≥ |V |/2, the result follows from [SV11a] and [Vas10].
Hence we may assume from now on that |V | ≥ 8, 3 ≤ |A| < |V |/2, I 6= ∅, and H ∪ J 6= ∅.
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We will present an algorithm to compute a winning seeding for K. The algorithm will match
the players for the first round of the tournament in such a way that the leftover tournament after
the first round also satisfies the conditions of the theorem. The description of the algorithm is
as follows.

1. Perform a maximal matching M1 from A to H .

2. Since |H | < |A|, we have A\M1 6= ∅. Perform a maximal matching M2 (which might be
an empty matching) from A\M1 onto I ∪ J .

3. If A was not fully used in the two matchings, match an arbitrary unused player in A with
K. Else, choose an arbitrary player a ∈ A ∩M2 and rematch it to K.

4. Perform arbitrary matchings within A,H , and I ∪ J .

5. If there are leftover players, there must be exactly two of them; match them to each other.

We prove the correctness of the algorithm by showing that the four invariants are maintained
by the algorithm. Let V ′, A′, B′, H ′, I ′, J ′ denote the subsets of V,A,B,H, I, J that remain after
the iteration.

1. |H ′| < |A′|. We will show that |H ′| ≤ |H |/2 and |A′| ≥ |A|/2. The claim follows since
|H | < |A|. If H = ∅, then |H ′| < |A′| holds trivially, so we may assume that H is
nonempty. At least one player in H is used in the matching M1, so we have |H ′| ≤ |H |/2.
We will show that the matching M1 ∪M2 consists of at least two pairs. Since there can
be at most two pairs in the matching provided by the algorithm in which a player in A is
beaten by a player outside of A (i.e., the pair in which a player in A is matched to K and
the pair in which a player in A is matched in the final step of the algorithm for leftover
nodes), it will follow that |A′| ≥ |A|/2.

If M1 consists of at least two pairs, we are done. Suppose that M1 consists of exactly one
pair. Since |V | ≥ 8, each player in I is beaten by at least three players in A. (Recall that
I is nonempty.) One of these players is possibly used in M1, and one is possibly used to
match with K, but that still leaves at least one player in A that beats a player in I. Hence
M1 ∪M2 consists of at least two pairs, as desired.

2. inA′(i) ≥ log |V ′| for all i ∈ I. Let i ∈ I ′. Since M2 is a maximal matching, every player
that contributes to the in-degree of i in A survives the iteration, except possibly the player
that is rematched to K. Hence the in-degree of i in A′ is at least log |V | − 1 = log(|V | /2).

3. out(j) ≤ |A′| for all j ∈ J ′. The condition is equivalent to outB′(j) < inA′(j). Let
j ∈ J ′. We have either inA′(j) = inA(j) or inA′(j) = inA(j) − 1, where the latter case
occurs exactly when a player in A that beats j is rematched to K. In the former case we
immediately obtain outB′(j) < inA′(j). In the latter case, A has been fully used in the
two matchings before one player is rematched to K. This means that j eliminates another
player in B, and it follows that outB′(j) ≤ outB(j)− 1 < inA(j)− 1 = inA′(j).

4. K is a king. Let b ∈ B′. If b ∈ H ′, then since M1 is a maximal matching, b is beaten by
some player in A′. If b ∈ I ′, then since the second invariant is maintained, b is beaten by
some player in A′. Otherwise b ∈ J ′. Since the third invariant is maintained, b beats at
most |A′| − 1 players in A′, and hence b is also beaten by some player in A′ in this case.

Hence the four invariants are maintained, and the algorithm correctly computes a winning
seeding for K.

Thus, we’ve shown a significantly general result about kings, that holds in tournaments on n
players, for any power of two, answering an open research problem posed in [SV11b] to provide
more general structural results that hold independent of the size of the tournament. (Some
earlier results only hold for large n.)
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Next, we consider the weaker notion of a 3-king. [KV15] presented a set of conditions under
which a 3-king is an SE winner. One of their conditions is that there exists a perfect matching
from the set of nodes that are reachable in exactly two steps from the 3-king K onto the set
of nodes that are reachable in exactly three steps from K. Here, we present a different set of
conditions that does not include the requirement of a perfect matching.

Theorem 2.2. Consider a tournament T = (V,E) where K ∈ V is a 3-king. Let A =
Nout(K), B = Nout(A) ∩ Nin(K), and C = Nin(K)\B. Suppose that the following three con-
ditions hold:

1. |A| ≥ |V |
2

2. A ≻ B

3. |B| ≥ |C|.

Then K is an SE winner, and we can compute a winning seeding for K in polynomial time.

Proof. If |V | = 1, 2, or 4, the result is clear. For |V | ≥ 8, first perform a maximal matching
from B to C and match K to an arbitrary player in A, and then pair off players within A. If
|A| is odd, then A ∪ {K} matches evenly. Else, match the remaining a ∈ A to some b ∈ B. We
pair off players within each of B,C arbitrarily, and match the remaining pair between B and

C if needed. After the round, |A| ≥ |V |
4 . Since the matching from B to C is nonempty, we still

have that |B| ≥ |C| after the iteration. Moreover, since we applied a maximal matching, each
player in C is still beaten by some player in B. Thus, the required conditions are maintained
as invariant, and we can efficiently compute a winning seeding for K.

It would be interesting to investigate the extent to which we can weaken the (very strong)
second condition that all players in A beat all players in B. It should be noted that if any
of the three conditions is removed, the theorem no longer holds. In particular, if the second
condition is dropped, a counterexample from [KV15] shows that for any constant ε > 0, there
is a tournament on n players where K is a 3-king, who win against (1− ε)n players, but cannot
win an SE tournament. Given that the notion of a 3-king is significantly weaker than that of a
king (recall, kings who beat ≥ |V | /2 players are SE winners), it seems reasonable to conjecture
that a strong assumption such as the second condition (or the conditions seen in [KV15]) may
be required to prove structural results for 3-kings.

3 SE Winners and Tournament Solutions

Tournament solutions are functions that map each tournament graph to a subset of players,
usually called the choice set. The choice set is often thought of as containing the stronger
players, or “winners,” within the tournament. Many tournament solutions have been considered,
including the Copeland set, the Slater set, the Markov set, and the bipartisan set [Las97,BBH15].
The ability to win an SE tournament provides us with another criterion with which we can
distinguish between stronger and weaker players in a tournament. In this section, we investigate
the relationship between the set of SE winners and some traditional tournament solutions.

Theorem 3.1. A player chosen by the Copeland set, the Slater set, or the Markov set is an SE
winner. A player in the bipartisan set with the highest Copeland score is also an SE winner.

Proof. All four tournament solutions are contained in the uncovered set. Thus, a player from
these sets will be a king, so as a special case of Theorem 2.1 (or an earlier result of [Vas10]),
it suffices to show that the relevant players win against at least half of the remaining players.
For the Copeland set, this is trivial [Las97] and [LLL93] show that players from the Slater set
and the player in the bipartisan set with the highest Copeland score, respectively, beat at least
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half the players. Next, we show that players from the Markov set win against at least half the
players.

Recall that the Markov set is defined to be the set of players of maximum probability in
the stationary distribution of the Markov chain defined by the normalized Laplacian matrix
Q = (qij)n×n of the Markov chain of the tournament, where qij = 1/n if vi beats vj (0 otherwise)
and qii = out(vi)/n. Assume that the first player is in the Markov set. It follows that the
probability associated with the first player in the eigenvector p = (pi)n×1 corresponding to the
eigenvalue 1 is maximal. Assume for contradiction that q11 < 1

2 . We then have

p1 = q11p1 + q12p2 + . . .+ q1npn

≤ q11p1 + q12p1 + . . .+ q1np1

= 2q11p1

< p1,

a contradiction.

It is not true that any player in bipartisan set is always an SE winner. Indeed, consider a
transitive tournament with the slight modification that the weakest player beats the strongest
player. Then the weaker player is included in the bipartisan set even though it only beats one
player and cannot be an SE winner.

Another family of tournament solutions is introduced in [Las97] as “iterative matrix solu-
tions”. Consider the tournament adjacency matrix A = (aij), in which aij = 1 if i beats j, and
0 otherwise. The Copeland score is given by A1. For any positive integer k, we consider Ak1

and include the player(s) with the maximum resulting score in our kth iterative tournament
solution.

There is a natural interpretation of iterative matrix solutions as the number of paths of
length k starting from each player. Any player in an iterative matrix solution belongs to the
uncovered set. If the player v is covered by some w (i.e., w ≻ {v} ∪Nout(v)), then v cannot be
in the iterative matrix solution. Indeed, if v is covered by w, then the first steps of the paths
starting from w form a superset of the first steps of the paths starting from v. On the other
hand, it is not the case that any player in an iterative matrix solution always beats at least half
of the remaining players, as shown by the following example.

Consider k = 2 and the tournament with player set V = A ∪ B ∪ {x}, where A ≈ rn and
B ≈ (1−r)n with 1

2 < r < 1√
3
. Suppose that A ≻ x ≻ B ≻ A, and A and B are close to regular.

The Copeland scores of a ∈ A, b ∈ B, x are rn
2 , (1+r)n

2 , (1 − r)n, respectively. It follows that

the iterative matrix scores of a, b, x are r2n2

4 , (1+r2)n2

4 , (1−r2)n2

2 , respectively. This implies that
x has the maximum iterative matrix score but beats fewer than half of the remaining players.

Nevertheless, we will show that for large enough tournaments, players in an iterative matrix
solution are always SE winners. First we need the following lemma and the subsequent corollary.

Lemma 3.1. In a tournament with n players, the minimum possible number of k-paths is
(

n
k+1

)

.

Proof. In a transitive tournament, each subset of size k+1 gives rise to exactly one k-path. On
the other hand, by a simple inductive argument, each subset of size k + 1 gives rise to at least
one k-path that goes through all k + 1 players. The result follows immediately.

Corollary 3.1. In a tournament with n players, a player with the maximum number of k-paths
originating from it is the origin of at least 1

n

(

n
k+1

)

k-paths.

We are now ready to prove the theorem.

Theorem 3.2. For any fixed k, there exists a constant Nk such that for any tournament of size
at least Nk, a player with the maximum number of k-paths originating from it is an SE winner.
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Proof. Let v be a player with the maximum number of k-paths originating from it, and let A
and B be the sets of players who lose to v and who beat v, respectively. From Corollary 3.1,

v is the origin of at least 1
n

(

n
k+1

)

≥ nk

2(k+1)! k-paths for large enough n. Hence it must have

out-degree at least n
2(k+1)! . In other words, |A| ≥ n

2(k+1)! .

If the number of players in B with in-degree from A less than logn is less than |A|, we can
apply Theorem 2.1. Otherwise, there are at least |A| ≥ n

2(k+1)! players in B with in-degree from

A less than logn. Call this set H , and consider a player h ∈ H . Since h beats all but at most
logn players in A, we can compare the number of k-paths originating from v with the number of
k-paths originating from h by removing the common k-paths. The remaining number of k-paths
originating from v is at most logn · nk−1, while by Corollary 3.1 again, a player in H with the
maximum number of k-paths within H is the origin of at least O(nk) k-paths, since |H | is linear
in n. This contradicts the assumption that v has the maximum number of k-paths originating
from it.

3.1 The strength of kings

Since results concerning SE winners often involve the assumption that a player is a king in
the given tournament, one might hope that there is a strong relation between SE winners and
the uncovered set. For example, it could always be that a constant fraction of players in the
uncovered set are SE winners, or vice versa. This is not the case, however, as the following
theorem shows.

Theorem 3.3. Let r ∈ (0, 1). There exists a tournament such that the proportion of players in
the uncovered set that are SE winners is less than r and the proportion of SE winners that are
contained in the uncovered set is also less than r.

Proof. Consider a tournament with player set V = A ∪B ∪ {x, y} such that

• x ≻ y,B

• y ≻ B,A

• B ≻ A

• A ≻ x.

The uncovered set is A ∪ {x, y}.
Let |A| = k and |B| = n. If k < logn, then players in A do not win enough matches to

become an SE winner. Hence the proportion of players in the uncovered set that are SE winners
is at most 2

k+2 .
On the other hand, suppose that B is a regular tournament with all players isomorphic. By

symmetry, if one player in B is an SE winner, then all of them are. In order for a player in B
to be an SE winner, players x and y need to be eliminated. But this can easily be done in two
rounds, with x beating y in the first round and a player in A beating x in the second round.
Hence the proportion of SE winners that are contained in the uncovered set is at most 2

n+2 .
Taking k and n large enough with k < logn, we obtain the desired result.

4 Generative Models for Tournaments

Recall the Condorcet Random (CR) Model, studied in [BM08,Vas10,SV11a]. In the CR Model,
we assume there is an underlying ordering to the players, and that, in general, stronger players
win against weaker players; however, with some small probability p < 1/2, the weaker player
will upset the stronger player. In the corresponding tournament graph, we say that for two
players i, j such that i occurs before j in the ordering, (i, j) ∈ E with probability 1 − p and
(j, i) ∈ E otherwise. A number of results are known about which players are SE winners in
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tournaments drawn from a CR Model. [Vas10] first showed that when p ≥ Ω(
√

lnn/n), then
with high probability, every player in the tournament will be a superking, and therefore an SE
winner. [SV11a] shows that even when p ≥ C lnn/n, roughly the first half of players will be SE
winners, and more generally if p = C · 2i lnn/n, then roughly the first 1 − 1/2i+1 fraction of
players are SE winners. [SV11a,KV15] also study various generalizations of the CR Model.

In this section, we present improved results about tournaments generated by the standard
CR Model, showing that with high probability, every player in a CR tournament will be an SE
winner, even with the noise p = Θ(lnn/n) (with no dependence on the player’s rank).

Theorem 4.1. Let C ≥ 64 be a constant and p ≥ C lnn/n. Let T be a tournament generated
by the CR Model with noise parameter p on n > nC players (for some constant nC). With
probability ≥ 1− 1/Ω(n2), every player has an efficiently-computable winning seeding over T .

Note that this result is asymptotically optimal, as a player must have at least logn wins to
be able to win an SE tournament. If p = o(lnn/n), then with high probability, the weakest
player will not be able to win an SE tournament, regardless of the seeding. The case where
p ≥ C

√

lnn/n is covered in [Vas10], which shows that every player in such a tournament is an
SE winner.

The proof will use the following concentration bound, which can easily be derived from
standard Chernoff-Hoeffding bounds.

Lemma 4.1. Let X1, . . . , Xn be independent random variables with X =
∑

iXi and E[X ] = µ.
Suppose d ≤ µ. Then Pr [X < (1 − δ)d] ≤ exp(−δ2d/2).

We give a sketch of the proof before proceeding to the full proof. First, we argue that the
weakest player w will win against more than k logn players in the first half, for some constant
k. We will think of “swapping” k logn of these losers, which we call S, from the first half with
some arbitrary set of players from the bottom half (so that these losers become some of the
strongest players over the second half). Then, we argue that at least one player v that w beats
will be in the first n/6 players. This player, with high probability, will be a king over the first
half of players, who wins against more than half the players; thus, by [Vas10], this player will
be an SE winner over the first half of players. Next, we argue that for some arbitrary player u
in the weaker half of players, at least logn players from the k logn that were swapped to the
second half will beat u. We then take a union bound over the players in the second half, and
argue that w will be a superking over the second half, and again by [Vas10], an SE winner over
the second half. Thus, w will be an SE winner over the entire tournament by winning over the
weaker half, while v wins against the stronger half, and w wins against v in the final round. We
take a union bound over all players to arrive at the desired result.

The detailed proof follows.
Proof of Theorem 4.1. Let C ≥ 64 be a constant and C lnn/n ≤ p ≤ C

√

lnn/n. First, note
that we expect w will win against C

2 lnn = C ln 2
2 logn players in the first half. Next, we can

show that with high probability w wins against greater than C ln 2
4 logn players. Let k = C ln 2

4 .

Pr [w wins against > k logn players in the first half ]

≥ 1− exp

(

−
(k logn)2

4k logn

)

= 1− exp

(

−
k log n

4

)

= 1− exp

(

−
C ln 2 logn

16

)

= 1− 1/nC/16
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We can also argue that with probability at least 1− 1/nC/6 w wins against some player v in
the first n/6 players.

Pr [w wins against some v ∈ [1, n/6]]

= 1− (1− p)n/6

= 1− (1− (C lnn/6)/(n/6))n/6

≥ 1− exp(−C lnn/6)

= 1− 1/nC/6

where the inequality follows from the approximation (1− a/x)x ≤ e−a for a > 0.
In what follows, we will imagine swapping a set of k logn players, called S, whom w wins

against from the first half (excluding v) with k logn arbitrary players from the second half. In
this way, we can argue about the “first half” and the “second half” of players independently.
We’ll argue that v is an SE winner over the new “first half” of players, and that the inclusion
of k log n strong players whom w beats, makes w a superking over the new “second half”.

First, we argue that it is likely that v, whose rank is at most n/6, will be an SE winner
over the first half. In particular, with high probability, v will be a king over the first half of
players, who wins against at least n/4 players. Note that we expect v to win against at least
n/3 · (1 − p) + pn/6 − 1 = n/3 − C lnn/6 − 1 players from the first half. The out degree of v
is given by a random variable, which is the sum of independent random variables, so we can
bound the probability that out(v) < n/4 using Lemma 4.1.

Pr [out(v) ≥ n/4] ≥ 1− exp

(

−
(n/12− C

6 lnn− 1)2

2(n/3− C
6 lnn− 1)

)

> 1− 1/n4

where the last inequality is a very loose bound on this probability that takes effect for sufficiently
large n.

Next, we consider the probability that v is a king over the first half, conditioned on its high
out-degree. We take a union bound over all possible players who did not lose against v, and
show that it is unlikely that any of these players beat every single player whom v beat.

Pr
[

v is a king over the first half
∣

∣ out(v) ≥ n/4
]

≥ 1−

n/4−1
∑

i=1

(1− p)out(v)

≥ 1− n/4 · (1− p)n/4

≥ 1− n/4 · exp(−C lnn/4)

≥ 1− 1/4nC/4−1

Finally, we argue that with high probability, w will be a superking over the second half of
players. Consider some other u from the second half of players. Thus, the expected number of

players from S who beat u is ≥ k logn · (1−p) = k logn− kC log2 n
n ≥ (k− 1) logn for sufficiently
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large n. Applying Lemma 4.1 again, we obtain the following bound.

Pr [u loses to fewer than logn players from S]

≤ exp

(

−
((k − 2) logn)2

2(k − 1) logn

)

= exp

(

−
(k2 − 4k + 4)

2(k − 1)
logn

)

= n
−
(

k
2
−4k+4

2 ln 2·(k−1)

)

Then, to guarantee that every u in the second half loses to at least logn players whom w beats,
we take a union bound over the n/2 players. For any k > 11, this probability will be ≤ 1/n3.

The overall probability that w beats a sufficiently strong king over the first half of players is
at least the following product.

(1 − 1/nC/6) · (1− 1/n4) · (1− 1/4nC/4−1)

≥ 1− 1/nC/6 − 1/n4 − 1/4nC/4−1

≥ 1− 2/n4

Thus, the probability that some w ∈ V wins against k logn players from the (true) first half,
and wins against some v strong king over the first half, and is a superking over the second half
is at least the following.

(1− 1/nC/16) · (1− 2/n4) · (1 − 1/n3) ≥ 1− 2/n3

Taking a union bound over all players, we conclude that with probability at least 1− 1/Ω(n2),
every player in the tournament will be an SE winner. �

4.1 Generalizing the CR Model for Tournaments

As the prior claims demonstrate, in the standard CR Model, every player is an SE winner with
high probability, even when upsets occur at an asymptotically minimal rate. While this result
indicates the depth of our understanding of conditions under which a player is an SE winner, it
also suggests that the assumption that tournaments are drawn from a CR Model – where the
noise parameter p is fixed for all matchups – may be too rigid, incidentally providing structure
that may not exist in practical settings. Prior work of [SV11a] proposes a Generalized CR
Model, where for two players i < j, j upsets i with probability p ≤ p(i, j) ≤ 1/2, for some
globally specified p. But even this model asserts that the probability of upsets for every edge
must occur within the range of [p, 1/2]. We aim to relax our restrictions even further in order
to disrupt this structure inherent in the CR Model.

Consider the following generative model, which is parameterized by a noise factor p < 1/2
and a participation factor ∆ ≤ 1/2. The tournament on n players is generated as follows:
pick any set of pairs of players E′ satisfying the condition that each player appears in at least
(1/2+∆)n such pairs; then, for every pair {u, v} ∈ E′, pick (u, v) with probability pu,v ∈ [p, 1−p],
and (v, u) otherwise. The probabilities pu,v can be arbitrary as long as they are in [p, 1 − p].
The remaining edges between players may be set arbitrarily. In this new model, many typical
arguments used in analyzing CR tournaments, including those used in the proof of Theorem 4.1,
which hinge on the precise definition of the CR Model, break down.

Note that unlike the CR Model, the new model does not start with an underlying ordering
of players; however, such an ordering can easily be emulated. For instance, to emulate the CR
Model, simply choose an ordering σ, set ∆ = 1/2, and for all u, v such that σ(u) < σ(v), sample
(u, v) with probability 1 − p. That said, because the model does not start with an explicit

11



ordering, it is much more versatile. Moreover, because only a (1/2 + ∆) fraction of the edges
are determined randomly, known structures can be (adversarially) hard-coded into the resulting
graphs. In this sense, any results that we can say about tournaments generated from this model
are extremely general and will apply broadly. Despite this generality, we are able to give a
statement for our model mirroring that of [Vas10] for the CR Model.

Theorem 4.2. Let p > c
√

logn
2∆n for some c > 5. Then with probability > 1 − Ω(n(c−5)/2 ln 2),

every player in a tournament T sampled from the aforementioned model has an efficiently-
computable winning seeding over T .

The proof of Theorem 4.2 is similar to the proof of the analogous statement about the CR
Model found in [Vas10]. It argues that with high probability every player in the tournament
will be a superking.

Proof of Theorem 4.2. Let p = c
√

logn
2∆n . We will argue that with high probability all nodes

in a randomly sampled tournament are superkings, so by [Vas10] they will be SE winners. Let
T = (V,E) be a randomly sampled tournament. We will bound the probability that v ∈ V is
not a superking, namely, the probability that there exists some u ∈ V \ {v} such that u loses to
fewer than logn players whom v beats.

Let u ∈ V \ {v}. Let Av be the set of players w, for which the edge between v and w was
sampled randomly with probability in the range [p, 1−p]. Let Au be defined analogously. We let
W = Av∩Au be the players whose relation is sampled randomly for both v and u. Note that we
can lower bound the size of this intersection as |W | ≥ (1/2+∆)n−1+(1/2+∆)n−1−(n−2) =
2∆n. Now, note that the expected number of edges from v into W is the sum of the probabilities
that (v, w) is an edge for each w ∈ W , and thus is at least 2∆np. Applying Lemma 4.1, we can
bound the probability that this set of edges into W is smaller than c logn/p = 2∆np/c.

Pr

[

number of edges from v into W ≤
2∆np

c

]

≤ exp
(

−(1− 1/c)2∆np
)

= exp
(

−(1− 1/c)2c
√

∆n logn/2
)

= 2−Ω(
√
n logn)

Now, we’ll condition on the fact that v beats at least c logn/p players from W . Note that
each of these players beat u with probability ≥ p, so we expect ≥ c logn of these players to beat
u. Thus, using Lemma 4.1 again, we can bound the probability that u does not lose to at least
logn of these players.

Pr [number of edges from W into U ≤ log n]

≤ exp
(

−(1− 1/c)2c logn/2
)

= n−(1−1/c)2c/2 ln 2

Letting C = (1 − 1/c)2c/2 ln2 − 2, by a union bound over v’s opponents, the probability

that v is not a superking is at most 2−Ω(
√
n logn) + n−C−1. Applying another union bound

over all players, the probability that there is any player who is not a superking is at most
2Ω(

√
n logn) + n−C ≤ O(n−C). Hence with probability 1 − 1/Ω(nC), all nodes are superkings.

The result follows from the fact that C ≥ (c− 5)/2 ln 2.
�
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