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Abstract. Standard Krylov subspace solvers for self-adjoint problems have rigorous convergence bounds based solely4
on eigenvalues. However, for non-self-adjoint problems, eigenvalues do not determine behavior even for widely used iterative5
methods. In this paper, we discuss time-dependent PDE problems, which are always non-self-adjoint. We propose a block6
circulant preconditioner for the all-at-once evolutionary PDE system which has block Toeplitz structure. Through reordering of7
variables to obtain a symmetric system, we are able to rigorously establish convergence bounds for MINRES which guarantee8
a number of iterations independent of the number of time-steps for the all-at-once system. If the spatial differential operators9
are simultaneously diagonalizable, we are able to quickly apply the preconditioner through use of a sine transform, and for10
those that are not, we are able to use an algebraic multigrid process to provide a good approximation. Results are presented11
for solution to both the heat and convection diffusion equations.12
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1. Introduction. It is widely appreciated that self-adjoint problems are, in some respects, easier to15

solve than problems without natural symmetry. Not least, theoretical understanding is greater than for non-16

self-adjoint problems, so that, for example, there are linear algebra solution methods—conjugate gradients17

[22] and MINRES [37]—for large scale symmetric problems for which descriptive and guaranteed convergence18

bounds based only on eigenvalues exist. For non-symmetric discretized problems there are no generally19

descriptive convergence bounds, and eigenvalues do not guarantee anything: Greenbaum, Ptàk and Strakoš20

[18] have proved even for the widely used GMRES method that essentially any convergence curve is possible21

for a problem regardless of its eigenvalues.22

This stark difference means, for example, that one has rigorous theory to guide the design of precondi-23

tioners for symmetric problems, but preconditioners for non-symmetric problems must essentially be designed24

based on heuristics (see [47]). Thus the important multigrid and domain decomposition paradigms are rig-25

orously underpinned and guarantee rapid solvers for symmetric problems, by contrast to non-self-adjoint26

problems. Further, parallelization must yield the expected benefits for symmetric problems.27

One important class of non-self-adjoint problems arise from first order time evolution: an initial value
problem for a time-dependent PDE has an adjoint that is a final value problem since

⟨ut, v⟩ = −⟨u, vt⟩.

This is true regardless of whether the spatial operator is self-adjoint. Via time-stepping (the method of lines),28

such problems are generally solved one time-step at a time, i.e. in a fully sequential manner. Effective (often29

parallel) solvers for the spatial partial differential operators at each time step are widely studied and offer30

practical solution approaches. From this perspective, it can be possible to design solvers that have excellent31

scalability with respect to the number of spatial degrees of freedom, n, but computational effort must depend32

on the number of time-steps, `. There has also been significant work on methods that parallelize over time,33

e.g. [7, 11, 19, 29, 42]. For a review of parallel-in-time methods, see [14]. Our method falls into the class34

of space-time, or all-at-once, algorithms that solve for all time-steps simultaneously. Such methods include35

the parareal method [17, 26], space-time multigrid [16, 20, 23] and multigrid-reduction-in-time [12]. Our36

approach is most closely aligned with methods in which the space-time problem is written as a monolithic37

linear system, e.g. [1, 16, 20, 23, 28], but our method differs in the way in which this system is solved. Here,38

we exploit the block Toeplitz structure of the resulting linear system to develop new preconditioners for39

which the number of Krylov iterations is independent of the number of time-steps `. We note that work by40

Gander et al [15] presents a complementary all-at-once approach that requires all time-steps to be distinct41

to ensure diagonalizability. Instead, we consider the case that all time-steps are the same.42
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The approach is based on the block Toeplitz structure of evolutionary problems that allows symmetriza-43

tion, so that the MINRES method of Paige and Saunders [37], which is designed for symmetric problems,44

can be correctly applied—convergence then only depends on eigenvalues. After applying block circulant pre-45

conditioners to the symmetrized system we prove clustering of eigenvalues so that rapid (and `-independent)46

convergence is rigorously guaranteed. The relevant computations with circulants are either trivial or al-47

most optimally effected by a fast Fourier transform (FFT). We provide a brief overview to circulant based48

preconditioning in Section 2.49

Our approach is best introduced in terms of a simple application, hence this is described in Section 3.50

The aspects of symmetrization are covered in Section 4. For non-self adjoint spatial operators, we are still51

able to obtain eigenvalue estimates based on the LSQR algorithm (also due to Paige and Saunders [38]),52

which are described in Section 5. Numerical results are presented for the heat and convection-diffusion53

equations in Section 6 with our conclusions in Section 7.54

2. Circulant preconditioning. In order to motivate our block circulant based preconditioner, we first55

introduce circulant preconditioners for general Toeplitz matrices. Let T ∈ Rn×n be the nonsingular Toeplitz56

matrix and C ∈ Rn×n be the nonsingular circulant preconditioner given by57

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 t−1 ⋯ t−n+2 t−n+1
t1 t0 t−1 t−n+2
⋮ t1 t0 ⋱ ⋮

tn−2 ⋱ ⋱ t−1
tn−1 tn−2 ⋯ t1 t0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 cn−1 ⋯ c2 c1
c1 c0 cn−1 c2
⋮ c1 c0 ⋱ ⋮

cn−2 ⋱ ⋱ cn−1
cn−1 cn−2 ⋯ c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.58

For Toeplitz systems, circulant matrices have been popular preconditioners, not least because they can59

be applied quickly using a fast Fourier transform (FFT). The matrix C has the diagonalization, C = UΛU∗60

where, if we denote the Fourier matrix by F = (fjk), fjk = e2(j−1)(k−1)πi/n, then we have that U = F /√n.61

Also Λ = diag(Fcn), where cn is the first column of C. This relationship to the FFT means that the solution62

of a linear system with a circulant matrix can be performed in O(n logn) operations [45].63

The idea of preconditioning Toeplitz matrices with a circulant was first introduced independently by64

Strang in [44] and Olkin in [35]. The so-called Strang circulant proposed was constructed by taking the65

central band of T of width n/2 and wrapping the entries around to form a circulant. In this paper, we66

use the Strang preconditioner, which we find to be very effective for the evolutionary problems we consider.67

However, many other circulant preconditioners could be applied (see, e.g., the books [5, 32]). One example is68

the optimal circulant [6], which minimizes the Frobenius norm distance to the given Toeplitz matrix over all69

possible circulants. A unifying approach to selecting the best possible circulant preconditioner was proposed70

in [36].71

Theoretical convergence bounds for these types of preconditioners have generally been restricted to72

symmetric (Hermitian) positive definite Toeplitz matrices. For many existing preconditioners—including the73

Strang and optimal preconditioners—and for wide classes of Toeplitz matrices, the preconditioned system is74

given by C−1T = I+R+E, where R has small rank and E small norm. For non-symmetric systems this is not75

sufficient to provide descriptive convergence estimates for standard non-symmetric solvers such as GMRES76

or BiCGSTAB. However [40] provides rigorous convergence bounds for non-symmetric Toeplitz matrices.77

This is done by reordering the rows or columns of T by pre- or post-multiplying by the Hankel matrix,78

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1

⋰
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.79

This results in a symmetric system for any Toeplitz matrix. We extend this method to our block matrix80

setting in Section 4. We note that other preconditioning methods have been developed for non-symmetric81

block Toeplitz structures such as those discussed in [24]. That work, however, focusses on small sized blocks82

and is not motivated by time-dependent problems as is the case here. Furthermore, this method does not83

include symmetrization techniques that we employ. We note that it is possible to use LSQR or LSMR [13] to84
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obtain rigorous convergence bounds for non-symmetric Toeplitz matrices, but for scalar Toeplitz problems85

these methods are typically slower than using symmetrization and MINRES.86

3. Motivation and model problem. In order to describe our method, we will begin by considering87

the solution of the linear diffusion (or heat) equation initial-boundary value problem,88

(1)

ut = ∆u + f in Ω × (0, T ], Ω ⊂ R2 or R3,

u = g on ∂Ω,

u(x,0) = u0(x) at t = 0.

89

To solve this system, we discretize in both space and time. For simplicity, we will describe our approach90

using a finite element discretization in space and a Backward Euler discretization in time. In practice other91

implicit time stepping schemes and spatial discretization schemes can be used, and this will be discussed in92

more detail later.93

We discretize the spatial domain with a representative mesh size h and take ` time steps of size τ such94

that `τ = T . This discretization of (1) gives that95

M
uk − uk−1

τ
+Kuk = fk, k = 1, . . . , `,96

where M ∈ Rn×n is the standard finite element mass matrix, K ∈ Rn×n is the stiffness matrix (the discrete97

Laplacian) and n is the number of spatial degrees of freedom. We assume that M and K are symmetric98

positive definite matrices. The initial vector u0 should be obtained from the initial data by a convenient99

projection. Rearranging, we have that100

(2) (M + τK)uk =Muk−1 + τ fk, k = 1, . . . , `.101

We can solve for all time steps of such a system simultaneously using an ‘all-at-once’ approach. Con-102

ceptually, we construct the following linear system, which defines the solution at all time steps:103

ABEx ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A0

A1 A0

⋱ ⋱
A1 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

⋮
u`

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Mu0 + τ f1
τ f2
⋮
τ f`

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∶= b,(3)104

105

where A0 = M + τK is symmetric positive definite and A1 = −M is symmetric negative definite. We note106

that ABE is now an immense n`×n` matrix; the construction of ABE only requires copies of A0 and A1 and107

is never done explicitly.108

The matrix ABE is clearly block Toeplitz and we wish to precondition it with the associated block109

Strang circulant matrix. As ABE is already lower triangular with just one subdiagonal, the Strang circulant110

simply consists of wrapping the subdiagonal entry A1 around to create a circulant. Thus our proposed111

preconditioner is given by112

PBE ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A0 A1

A1 A0

⋱ ⋱
A1 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.113

In order to describe the preconditioned system, we make the observation that PBE is a rank n pertur-114

bation of ABE , since PBE = ABE +E1A1E
T
` , where Ei = ei ⊗ In with ei denoting the i-th column of I` and115

⊗ denoting the Kronecker product. We can now examine the eigenvalues of the preconditioned system.116

Theorem 1. The preconditioned system is equal to P−1BEABE = In` − A−1BEE1Z
−1ET` , which is a rank117

n perturbation of the identity matrix In` ∈ Rn`×n`, where Z = A−1
1 + (A−1BE)`−1 and (A−1BE)`−1 = ET` A−1BEE1.118

Furthermore, P−1BEABE has (` − 1)n eigenvalues equal to 1 and n eigenvalues equal to the eigenvalues of119

In − (A−1BE)`−1Z−1.120
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Proof. Writing PBE = ABE +E1A1E
T
` , then by the Sherman-Morrison-Woodbury formula we have that121

P−1BE = (ABE +E1A1E
T
` )−1 = A−1BE −A−1BEE1(A−1

1 +ET` A−1BEE1)−1ET` A−1BE ,122

and thus,123

P−1BEABE = In` −A−1BEE1(A−1
1 +ET` A−1BEE1)−1ET` .124

Since A−1BEE1(A−1
1 + ET` A−1BEE1)−1ET` is of rank n, this shows that the preconditioned system is a rank n125

perturbation of the identity. Noting that the inverse of ABE will also be block lower triangular and block126

Toeplitz, and letting Z = A−1
1 +ET` A−1BEE1, then we have that127

P−1BEABE = In` −A−1BEE1Z
−1ET`128

=In` −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(A−1BE)0
(A−1BE)1 (A−1BE)0

⋱ ⋱
(A−1BE)`−1 (A−1BE)1 (A−1BE)0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z−1⎤⎥⎥⎥⎥⎥⎥⎥⎦

129

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

In −(A−1BE)0Z−1

In −(A−1BE)1Z−1

⋱ ⋮
In − (A−1BE)`−1Z−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,130

131

from which we can easily see that the eigenvalues of P−1BEABE are (` − 1)n copies of 1 as well as the n132

eigenvalues of In − (A−1BE)`−1Z−1.133

In fact, we can further describe the eigenvalues of In − (A−1BE)`−1Z−1 in terms of the matrices A0 and134

A1.135

Theorem 2. If µ is an eigenvalue of A−1
1 A0 then µ ≠ ±1 and µ`

µ`+(−1)`−1
is an eigenvalue of In −136

(A−1BE)`−1Z−1.137

Proof. Firstly, a simple inductive argument can be used to show that (A−1BE)k−1 = (−1)k−1(A−1
0 A1)k−1A−1

0138

for all k = 1, . . . , `. Thus we have that139

In − (A−1BE)`−1Z−1 = In − (A−1BE)`−1(A−1
1 + (A−1BE)`−1)−1140

= In − [A−1
1 (A−1BE)−1`−1 + In]

−1
141

= In − [(−1)`−1(A−1
1 A0)` + In]

−1
.142143

Now, A−1
1 A0 = −(In + τM−1K) with M and K both symmetric positive definite. Thus, if µ is an144

eigenvalue of A−1
1 A0 then µ ≠ ±1, and there exists a nonzero vector x ∈ Rn such that145

A−1
1 A0x = µx146

[In + (−1)`−1(A−1
1 A0)`]

−1
x = 1

1 + (−1)`−1µ`x147

[In − [In + (−1)`−1(A−1
1 A0)`]−1]x = µ`

µ` + (−1)`−1x,148

which completes the proof.149

This shows that although P−1BEABE has n eigenvalues not equal to one, if µ is large then these eigenvalues150

can cluster very close to one. In the case of the heat equation, we see that the largest eigenvalues of A−1
1 A0151

grow with h−2, where h is the grid size, and therefore we see extremely clustered eigenvalues in practice.152

Figure 1 shows the eigenvalues of P−1BEABE for a small system.153

We will now show that P−1BEABE is diagonalizable.154
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Fig. 1: The eigenvalues of P−1BEABE with n = 81, ` = 10 and τ = 0.1. There are 32 eigenvalues approximately
equal to 1.6275.
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Theorem 3. The matrix P−1BEABE is diagonalizable.155

Proof. Recall that A−1
1 A0 = −(In + τM−1K), with M , K symmetric positive definite. From the proof of156

Theorem 2 we have that157

(A−1BE)`−1Z−1 = [In − (In + τM−1K)`]−1,158

which is diagonalizable and has real, negative eigenvalues. Thus, In − (A−1BE)`−1Z−1 is diagonalizable, and159

has eigenvalues that are real and larger than 1.160

Let In − (A−1BE)`−1Z−1 have diagonalization V DV −1. Then P−1BEABE has the diagonalization VDV−1,161

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I V0
I V1

⋱ ⋮
I V`−2

V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I

I
⋱

D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

162

where Vi = (A−1BE)iZ−1V (D − In)−1.163

Theorem 1 shows that GMRES will terminate within n+1 iterations, while diagonalizability of P−1BEABE164

may help us to estimate the rate of convergence. Analogous results to Theorem 1 exist for more complex165

time-stepping schemes, as we discuss in Section 3.2. However, in these cases it is not obvious whether166

the preconditioned matrix is diagonalizable, nor when we can expect convergence in fewer steps because of167

eigenvalue clustering. Furthermore, Theorem 3 will not necessarily be applicable if the preconditioner is168

applied approximately, such as with a multigrid method.169

Although we have now demonstrated that the preconditioned system has a number of non-unit eigenval-170

ues independent of the number of time-steps `, the circulant preconditioner we have proposed is, in principle,171

just as difficult to invert as the original matrix A. In order to demonstrate an easy, and indeed parallelizable,172

method of inverting P we will now consider the matrices in Kronecker product notation.173

3.1. Kronecker product form. The block structure of the matrices allows us to describe them in174

Kronecker product form as175

ABE = I` ⊗A0 +Σ⊗A1,176

PBE = I` ⊗A0 +C1 ⊗A1,177178

where179

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

⋱ ⋱
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0

⋱ ⋱
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,180
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and I` is the identity matrix of dimension ` × `. As described in Section 2 we can apply C1 = UΛU∗ or its181

inverse to a vector using the FFT. We define the diagonal entries of Λ to be λk, k = 1, . . . , `, and note that182

in general they are complex. Furthermore, for this very specific circulant, the eigenvalues are in fact the `183

roots of unity, so that λk = e2πik/`.184

The Kronecker product has the property that (W ⊗X)(Y ⊗Z) = (WY ⊗XZ). Using this, and the fact185

that U is unitary, allows us to rewrite the preconditioner PBE as186

PBE = I` ⊗A0 +C1 ⊗A1 = (U ⊗ In)[I` ⊗A0 +Λ⊗A1](U∗ ⊗ In)187

and therefore,188

P−1BE = (U ⊗ In)[I` ⊗A0 +Λ⊗A1]−1(U∗ ⊗ In).189

A similar formulation was used in [21] to write a semi-circulant preconditioner.190

Applying the inverse of PBE to a vector requires us to multiply by U ⊗ In or U∗ ⊗ In and invert the191

block diagonal matrix I` ⊗A0 +Λ⊗A1. To apply U ⊗ In we can first apply a column and row permutation192

that allows us to instead multiply by the block diagonal matrix In ⊗ U , which has n blocks of size ` × `.193

Finally, we must reverse the row and column permutation. Since the required permutation, which is a simple194

reordering of the spatial and temporal degrees of freedom, is known in advance, multiplication by U ⊗ In195

or U∗ ⊗ In could be parallelizable over n processors although communication between processors would be196

required because of the permutations.197

The matrix I`⊗A0+Λ⊗A1 is block diagonal and therefore could be inverted in parallel over ` processors.198

This matrix is complex symmetric and therefore a method such as a complex algebraic multigrid, e.g. [25,199

27, 33, 41], could be used to approximately perform this step.200

3.1.1. Simultaneous diagonalization. For our formulation of the heat equation, the blocks A0 and201

A1 in (3) are symmetric. As we show below, the mass and stiffness matrices M and K also commute. As a202

result, A0 and A1 commute, and so can be simultaneously diagonalized. The property allows us to further203

simplify the manner in which we apply PBE .204

If we let A0 =XΦXT and A1 =XΨXT then we have205

(4) P−1BE = (U ⊗ In)(I` ⊗X)[I` ⊗Φ +Λ⊗Ψ]−1(I` ⊗XT )(U∗ ⊗ In).206

Now to apply the inverse of I` ⊗ A0 + Λ ⊗ A1, we first need to apply (I` ⊗X), which is a block diagonal207

matrix and could be applied over ` separate processors. We then invert I`⊗Φ+Λ⊗Ψ, which is diagonal and208

therefore trivial, before applying (I`⊗XT ), which is again block diagonal. Thus when we have this property,209

the application of a circulant preconditioner becomes much cheaper.210

If we use a finite element formulation to discretize (1) then M and K are simultaneously diagonalizable211

if we use a uniform square grid. For finite difference methods, the finite element mass matrix is replaced by212

the identity matrix and therefore will always commute with the diffusion operator K. We note that for the213

Dirichlet problem discretized by finite elements with uniform grids we are able to compute the diagonalization214

using sine transforms as we now describe.215

For the x and y directions respectively, the i-th element of the j-th normalized eigenvector is given by216

Vx(i, j) =
√

2
nx+1

sin ( ijπ
nx+1

), Vy(i, j) =
√

2
ny+1

sin ( ijπ
ny+1

) , where nx is the number of interior nodes in the217

x-direction and ny is the number of interior nodes in the y-direction. We construct Xx ∈ R(nx+2)×(nx+2) and218

Xy ∈ R(ny+2)×(ny+2) by embedding each matrix within an identity matrix such that:219

Xx =
⎡⎢⎢⎢⎢⎢⎣

1
Vx

1

⎤⎥⎥⎥⎥⎥⎦
, Xy =

⎡⎢⎢⎢⎢⎢⎣

1
Vy

1

⎤⎥⎥⎥⎥⎥⎦
.220

We then form the two-dimensional eigenvectors X by the simple relation X =Xx ⊗Xy. As a result, we can221

apply X to a vector using discrete sine transforms.222

We will now examine the effect that more complex time-stepping schemes have on the system.223
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3.2. Multi step methods. For simplicity, we discretized (1) using a Backward Euler time stepping224

scheme. However other implicit time stepping schemes could also be used. In this section we describe how the225

ideas in the previous sections can be extended to a p-step scheme, which means that A has p subdiagonals.226

Define A to be the following `n × `n block lower triangular Toeplitz matrix formed of ` blocks of n × n227

matrices with p ≤ ` − 1 subdiagonals, and define P to be corresponding Strang circulant:228

(5) A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0

A1 A0

⋮ ⋱ ⋱
Ap ⋱ ⋱

⋱ A1 A0

Ap ⋯ A1 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 Ap ⋯ A2 A1

A1 A0 A2

⋮ ⋱ ⋱ ⋱ ⋮
Ap ⋱ ⋱ Ap

⋱ A1 A0

Ap ⋯ A1 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.229

Define Σi ∈ R`×` to be the Toeplitz matrix of zeros except for 1s on the i-th subdiagonal and Ci to be230

the corresponding Strang circulant with 1s on the i-th subdiagonal and the (` − i)-th superdiagonal.231

By simple computation we can observe that Ci = (C1)i, and therefore if we diagonalize C1 = UΛU∗ then232

Ci = (C1)i = (UΛU∗)i = UΛiU∗.233

We can write A and P in Kronecker form, which gives234

A =I` ⊗A0 +
p

∑
i=1

Σi ⊗Ai,235

P =I` ⊗A0 +
p

∑
i=1

Ci ⊗Ai =
p

∑
i=0

UΛiU∗ ⊗Ai.236

237

We make the additional assumption that all Ai commute with each other and are therefore simultaneously238

diagonalizable. This will occur for any time stepping method if the spatial operators K and M commute.239

We thus assume that we have the diagonalizations Ai =X∆iX
T , X orthogonal. We can now write that240

(6) P =
p

∑
i=0

UΛiU∗ ⊗Ai = (U ⊗ In)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

G1

G2

⋱
G`

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(U∗ ⊗ In) = (U ⊗ In)G(U∗ ⊗ In),241

where G = diag(G1, . . . ,G`) and Gj = ∑pi=0 λijAi =X (∑pi=0 λij∆i)XT ∶=XgjX
T . Furthermore,242

G = (I` ⊗X)diag(g1, . . . ,g`)(I` ⊗XT ),243

where (I` ⊗X) and (I` ⊗XT ) are block diagonal and diag(g1, . . . ,g`) is diagonal. The point here is that244

even for multi-step methods, with simultaneous diagonalization of the spatial operators we can apply the245

inverse of the preconditioner P using only multiplication with block diagonal matrices and the inversion of246

a diagonal matrix, which are all extremely cheap to apply.247

We also note that, using a similar approach to that in the proof of Theorem 1, we can write the248

preconditioned system P−1A as a rank-np perturbation of the identity. Thus, GMRES converges in at most249

np + 1 steps for this problem.250

4. Symmetrized system. Although we have been able to describe the eigenvalues of the precondi-251

tioned system and have shown that the number of non-unit eigenvalues is independent of the number of252

time-steps, this is not generally sufficient to ascertain the convergence rate of non-symmetric solvers such253

as GMRES. However, if our spatial operators are symmetric and using the ideas developed in [40], we are254

able to propose a method to rewrite our system as a symmetric one, so that we are able to use eigenvalue255

analysis to determine convergence estimates.256

As stated earlier, the matrix A in (5) is block Toeplitz with symmetric blocks. We note that we can257

symmetrize any matrix of this type by pre- or post-multiplication with the following block Hankel matrix,258

(7) Y ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

In
⋰

In
In

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= Y ⊗ In, where Y =
⎡⎢⎢⎢⎢⎢⎣

1
⋰

1

⎤⎥⎥⎥⎥⎥⎦
.259
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Pre- or post-multiplication by Y will symmetrize any block Toeplitz matrix with symmetric blocks, however260

in general YA does not equal AY. If we wish to solve the system of equations Ax = f then we can solve the261

equations262

(8) (YA)x = Yf or AYy = f , y = Yx.263

However, unlike for the original system we are able to use iterative methods for symmetric systems for which264

much better convergence estimates exist. We also note that Y and Y are involutory and thus Y−1 = Y.265

In order to use a symmetric matrix solver such as MINRES we require a symmetric positive definite266

preconditioner. One such matrix is the absolute value preconditioner [40, 46] ∣P ∣ defined as,267

∣P ∣ = (PTP)1/2(9)268

= [(U ⊗ In)G∗G(U∗ ⊗ In)]1/2269

= (U ⊗ In)∣G∣(U∗ ⊗ In)270

= (U ⊗X)
⎡⎢⎢⎢⎢⎢⎣

∣g1∣
⋱

∣g`∣

⎤⎥⎥⎥⎥⎥⎦
(U∗ ⊗XT ),(10)271

where gj is the diagonal n×n matrix in (6) and ∣gj ∣ is its elementwise absolute value. We note ∣P ∣ is symmetric272

positive definite and therefore can be used in MINRES with the symmetric form of the equation (8).273

4.1. Eigenvalue analysis. We have now described a symmetric positive definite preconditioner for274

the symmetrized system (8) to be implemented with MINRES. Since eigenvalues provide robust convergence275

bounds for MINRES, unlike for GMRES, we now wish to determine the eigenvalues of the preconditioned276

system ∣P ∣−1YA. That, more generally, matrices of the form of P and ∣P ∣ are block circulant will also prove277

useful later in this section, hence we establish this now.278

Lemma 1. Let R ∈ Rn`×n` be any matrix of the form279

R = (U ⊗X)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2

⋱
d`

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(U∗ ⊗XT ),280

where U and X are as in (4), and di ∈ Cn×n, i = 1, . . . , ` are diagonal matrices. Then R is block circulant281

and RY = YRT , where Y is as in (7).282

Proof. If Rrs denotes the (r, s) block of R of size n × n, then283

(11) Rrs =
`

∑
k=1

urkuskXdkX
T .284

To prove that R is block circulant we need to look at the definition of each urs. Now U has as its285

columns the eigenvectors of a circulant matrix. Thus, urs = frs/
√
` where frs = e2(r−1)(s−1)πi/`.286

We will first show that R is block Toeplitz, that is, Rrs = R(r+1)(s+1) for all r, s ∈ [1, . . . , ` − 1]. The287

scalars urkusk in (11) satisfy288

urkusk =
1

`
e2(r−s)(k−1)πi/` = u(r+1)ku(s+1)k.289

Since R(r+1)(s+1) = ∑`k=1 u(r+1)ku(s+1)kXdkX
T , it follows that Rrs =R(r+1)(s+1). This proves that all diago-290

nals have constant blocks.291

If R is additionally block circulant, then we also require that Rr` = R(r+1)1 for all r ∈ [1, . . . , ` − 1]. To292

show this, note that Rr` = ∑`k=1 urku`kXdkX
T , with293

urku`k =
1

`
e2(r−`)(k−1)πi/` = 1

`
e2r(k−1)πi/` = 1

`
e2r(k−1)πi/`e−2πi(1−1)(k−1)/` = u(r+1)ku1k.294

295
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Since R(r+1)1 = ∑`k=1 u(r+1)ku1kXdkX
T , it follows that Rr` =R(r+1)1 for all r ∈ [1, . . . , ` − 1], from which we296

see that R is block circulant.297

Finally, we prove the symmetrization property RY = YRT . The (r, s) block of RY is298

(RY)rs =Rr(`−s+1) =
`

∑
k=1

urku(`−s+1)kXdkX
T ,299

while300

(YRT )rs = (RT )(`−r+1)s = (Rs(`−r+1))T =
`

∑
k=1

usku(`−r+1)kXdkX
T .301

Since, for all r, s, k ∈ [1, . . . , `],302

urku(`−s−1)k =
1

`
e2(r+s−`−1)(k−1)πi/` = usku(`−r+1)k,303

we see that (RY)rs = (YRT )rs = (YRT )rs, since Y and R are real.304

In our eigenvalue analysis, it will prove useful to relate P in (5) and ∣P ∣ in (10). To do this we introduce305

the real orthogonal matrix306

P̃ = (U ⊗X)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sgn(g1)
sgn(g2)

⋱
sgn(g`)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(U∗ ⊗XT ),307

where sgn(gj) = gj ∣gj ∣−1. Then,308

(12) ∣P ∣P̃ = P̃ ∣P ∣ = P.309

Since they share the same eigenvector matrix U ⊗X the matrices P, ∣P ∣ and P̃ all commute and are block310

circulant (see Lemma 1).311

Additionally, under conditions that are met for all our numerical experiments, P̃ has a real, orthogonal312

square root, as we now show.313

Lemma 2. Assume that A0, . . . ,Ap have real eigenvalues and that ∑pi=0Ai has positive eigenvalues. When314

` is even, additionally assume that ∑pi=0(−1)iAi has positive eigenvalues. Then P̃ has a real, orthogonal315

matrix square root.316

Proof. The proof proceeds in two parts. We first show that if P̃ has unit determinant then P̃ has a real,317

orthogonal matrix square root. Then, we prove that det(P̃) = 1.318

We begin the proof of the first part by showing that any matrix in SO(n) (the group of real orthogonal319

matrices with unit determinant) has a real orthogonal square root. To do this we use the fact that the320

exponential of a skew-symmetric matrix belongs to SO(n) (the group of orthogonal matrices with unit321

determinant) and every matrix in SO(n) has a skew-symmetric matrix logarithm [4]. Thus, if B ∈ SO(n)322

then B = eF for some skew-symmetric F , and eF /2 is a real orthogonal square root of B.323

We wish to apply this result to P̃. First, note that (12) shows that P̃ is real. Additionally, using324

the definition of the sign function, it is clear that P̃ is orthogonal. Thus, all that remains is to show that325

det(P̃) = 1.326

We treat the more difficult case that ` is even first. The matrix C1 has as its eigenvalues the roots of327

unity λk = e2πki/`, k = 1, . . . , `. If ` is even, λ`/2 = −1, λ` = 1 and λk = λ`−k, k = 1, . . . , `/2 − 1. It follows that328

for j = 1, . . . , `/2 − 1,329

(g`−j)∗ =
p

∑
i=0

(λ`−j)i∆i =
p

∑
i=0

λij∆i = gj .330

Thus,331

(13) det(P̃) =
`

∏
k=1

det(sgn(gk)) = det(sgn(g`/2))det(sgn(g`))
`/2−1

∏
k=1

det(sgn(gk)sgn(g∗k)).332
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Using the assumptions of the lemma, and the definition of the sign function, we find that det(sgn(g`/2)) =333

1, det(sgn(g`)) = 1 and sgn(gk)sgn(g∗k) = sgn(gk)(sgn(gk))∗ = In. Thus, when ` is even, (13) shows that334

det(P̃) = 1, so that P̃ has a real, orthogonal matrix square root.335

If ` is odd then λ` = 1 and λk = λ`−k, k = 1, . . . , (`−1)/2. The proof that det(P̃) = 1 then follows similarly,336

except that C1 does not have an eigenvalue at −1. Thus, when ` is odd, P̃ also has a real, orthogonal matrix337

square root.338

We remark that the conditions of Lemma 2 are generally easy to check. When K and M in (2) are339

positive definite, then all that is required is to compute sums involving the scalar coefficients that define the340

time-stepping scheme. The conditions are met for all numerical experiments involving the heat equation in341

Section 6.342

We want to look at the eigenvalues of the preconditioned system ∣P ∣−1YA and we can easily see that343

these will be the same as the eigenvalues of the matrix ∣P ∣−1/2YA∣P ∣−1/2 by a similarity transform. The344

matrix Y of (7) comprises ` blocks, and we write Yp for the corresponding matrix with p blocks.345

Theorem 4. Let V = [E`−p+1, . . . ,E`] ∈ Rn`×np and346

(14) W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ap . . . A2 A1

Ap A2

⋱ ⋮
Ap

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,347

W ∈ Rnp×np. Then for ∣P ∣ and A as defined as in (10) and (5) respectively,

∣P ∣−1/2YA∣P ∣−1/2 = Q −ZΘZT ,

where Q = YP̃ is orthogonal and symmetric, the symmetric matrix YpW ∈ Rnp×np has the eigenvalue decom-348

position YpW = SΘST and Z = ∣P ∣−1/2V S ∈ Rn`×np has full rank.349

Proof. Firstly we see from (5) that we can write P = A+UWV T , where U = [E1, . . .Ep] ∈ Rn`×np. Thus,350

A = P −UWV T and we have351

∣P ∣−1/2YA∣P ∣−1/2 = ∣P ∣−1/2YP ∣P ∣−1/2 − ∣P ∣−1/2YUWV T ∣P ∣−1/2.352

Now YU = Y[E1 . . .Ep] = [E` . . .E`−p+1] = V Yp. Thus,353

∣P ∣−1/2YUWV T ∣P ∣−1/2 = ∣P ∣−1/2V YpWV T ∣P ∣−1/2 = (∣P ∣−1/2V S)Θ(∣P ∣−1/2V S)T .354

Since ∣P ∣, V and S have full rank, Z = ∣P ∣−1/2V S has rank np.355

The matrix ∣P ∣−1/2 is symmetric and so, by Lemma 1, ∣P ∣−1/2Y = Y ∣P ∣−1/2. Additionally, P and ∣P ∣1/2356

commute. It follows that357

∣P ∣−1/2YP ∣P ∣−1/2 = YP ∣P ∣−1 = YP̃ = Q.358

Since Y and P̃ are orthogonal, Q is also orthogonal. Additionally, Q = ∣P ∣−1/2YA∣P ∣−1/2 +ZΘZT is the sum359

of symmetric matrices, and so must be symmetric.360

Lemma 3. Assume that the conditions of Lemma 2 hold. Then, the matrix Q has the same eigenvalues361

as Y, which has ⌊`/2⌋n eigenvalues equal to −1 and ⌈`/2⌉n eigenvalues equal to 1.362

Proof. Firstly we want to show that Q and Y are similar, and therefore have the same eigenvalues.363

Lemma 1 shows that P̃1/2 is block circulant and symmetrized by Y. Additionally, since P̃ is orthogonal,364

P̃1/2 is as well. Thus,365

Q = P̃Y = P̃1/2P̃1/2Y = P̃1/2Y(P̃1/2)T = P̃1/2YP̃−1/2.366

Therefore Q and Y will have the same eigenvalues.367

It is left to determine the eigenvalues of Y. Firstly we note that YEj = E`−j+1. Therefore we have368

Y(Ej −E`−j+1) = E`−j+1 −Ej = −(Ej −E`−j+1),369
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Fig. 2: Eigenvalues of the preconditioned system ∣P ∣−1YA for varying grid and time step sizes. In the left
figure, n = 81, and in the right figure ` = 10. In all cases τ = 0.1.
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so −1 will be an eigenvalue associated with an eigenvector equal to one of the columns of (Ej −E`−j+1). This370

gives the required algebraic multiplicity of the eigenvalue −1.371

Similarly, the columns of372

Y(Ej +E`−j+1) = E`−j+1 +Ej373

give the form of the eigenvectors corresponding to unit eigenvalues. If ` is odd then for j = ⌈`/2⌉ we have374

YE⌈`/2⌉ = E⌈`/2⌉,375

so that the remaining n eigenvalues are 1. Thus, we obtain the stated multiplicity of the unit eigenvalue.376

Theorem 5. Assume that the conditions of Lemma 2 hold, and that ⌊`/2⌋ > p. Then, the geometric377

multiplicity of the eigenvalue 1 of ∣P ∣−1/2YA∣P ∣−1/2 is at least (⌈`/2⌉ − p)n, while the geometric multiplicity378

of the eigenvalue −1 is at least (⌊`/2⌋ − p)n. This leaves at most 2np eigenvalues that are not ±1.379

Proof. We know from Theorem 4 and Lemma 3 that Q is symmetric with ⌊`/2⌋n eigenvalues equal to380

−1 and ⌈`/2⌉n eigenvalues equal to 1. Thus, Q has diagonalization Q = VQΛQV
T
Q , where ΛQ has diagonal381

entries 1 or −1.382

Accordingly,383

V TQ ∣P ∣−1/2YA∣P ∣−1/2VQ = ΛQ −H,384

where H = V TQ ZΘZTVQ is a Hermitian matrix of rank np. By Corollary 3 in [2], at most np copies of the385

each distinct eigenvalue of Q can be perturbed by H. It follows that V TQ ∣P ∣−1/2YA∣P ∣−1/2VQ, and hence386

∣P ∣−1/2YA∣P ∣−1/2 have the required eigenvalue multiplicities.387

Having shown that the preconditioned system has at most 2np eigenvalues that are not ±1, we know388

that MINRES will converge in at most 2np + 2 steps, which is independent of the number of time steps. In389

practice, we do not see nearly this many steps, as the eigenvalues that are not ±1 are also closely clustered390

in our numerical experiments for the heat equation, and this eigenvalue clustering can be linked to the391

convergence rate of MINRES. Figure 2 shows the eigenvalues of the preconditioned system ∣P ∣−1YA for the392

same grid sizes with varying numbers of time steps. We can see that the eigenvalues remain extremely well393

clustered as the number of time steps increases.394

In Figure 2 we also show the eigenvalues of the preconditioned system for a fixed number of time-step395

sizes and various spatial grid sizes. It is evident that although the eigenvalues become more spread out as n396

increases, the eigenvalues remain well clustered, with only one cluster of eigenvalues away from ±1.397
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5. Non-symmetric systems. Throughout the previous sections we have assumed that all Ai are398

symmetric, as without this property Y would not symmetrize the system. However, for cases where the Ai399

are not symmetric we can also form the normal equations and solve the system using LSQR. We note that400

we could also use this method when the Ai are symmetric. We now analyse the eigenvalues of the normal401

equations of the preconditioned system.402

Theorem 6. The matrix (P−1A)T (P−1A) has (`−2p)n eigenvalues equal to 1, np eigenvalues less than403

or equal to 1, and np eigenvalues greater than or equal to 1.404

Proof. Let P = A+UWV T where U = [E1, . . .Ep] ∈ Rn`×np, V = [E`−p+1, . . .E`] ∈ Rn`×np and W ∈ Rnp×np405

is as in (14). Using the Sherman-Morrison-Woodbury formula as described in Theorem 1, we find that406

P−1A = In` −A−1UZ−1V T , where Z =W −1 + V TA−1U ∈ Rnp×np. If we partition A−1 as407

A−1 = [A
−1
11 0
A−121 A−122

] then P−1A = In` − [0 A−111Z−1

0 A−121Z−1] ,408

where A−111 ∈ Rnp×np, A−121 ∈ R(`−p)n×np, and A−122 ∈ R(`−p)n×(`−p)n. We can now write that409

(P−1A)T (P−1A) = [ I(`−p)n −A−111Z−1

−Z−TA−T11 Z−TA−T11 A−111Z−1 + (Inp −Z−TA−T21 )(Inp −A−121Z−1)] .410

From here we can see that the upper (`−p)n principle submatrix is the identity and we can use the Cauchy411

Interlacing theorem (see for example Chapter 10 of [39]) to relate the eigenvalues of (P−1A)T (P−1A) to the412

eigenvalues of the identity. The theorem tell us that if we let λi be the i-th eigenvalue of (P−1A)T (P−1A)413

with λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λ`n, then λi ≤ σi(I) = 1 ≤ λnp+i, which gives that the eigenvalues λ1 to λnp must be less414

than or equal to 1, the eigenvalues λnp+1 to λ(`−p)n must be equal to 1 and eigenvalues λ(`−p)n+1 to λ`n must415

be greater than or equal to 1.416

Now since ∣P ∣2 = PTP = PPT , we have417

(P−1A)T (P−1A) = AT (PPT )−1A = AT (∣P ∣)−2A = (∣P ∣−1A)T (∣P ∣−1A).418

Thus, the eigenvalues of the normal equations when using either P or ∣P ∣ as the preconditioner are the same.419

We also note that AT (∣P ∣)−2A has the same eigenvalues as YA(∣P ∣)−2AY, since this is a similarity transform420

with Y−1 = Y. It follows that the eigenvalues of (∣P ∣−1AY)T (∣P ∣−1AY) are the same as the eigenvalues of421

(P−1A)T (P−1A), and that the singular values of ∣P ∣−1AY are the same as those of P−1A.422

Therefore we have again shown that using a block circulant based preconditioner results in a number423

of non-unit eigenvalues independent of the number of time-steps. However, the values of the non-unit424

eigenvalues can depend on both the number of time-steps ` and the number of spatial degrees of freedom425

n. This means that despite the guarantee of termination, iteration counts can increase as ` increases as426

seen in some of the results in the following section. We find that this is particularly pronounced for the427

convection-diffusion equation, for which this method is unlikely to be practical.428

6. Numerical results. In this section, we present numerical results for an implementation of the429

method described in the previous sections within the IFISS [8, 9, 43] framework. Since GMRES can require430

large amounts of storage due to the orthogonalization process, we have also used the BiCGSTAB method431

as an alternative iterative method for solving non-symmetric systems. We note, however, that none of the432

termination theory applies with this method; it is simply shown as a potentially practical alternative. When433

applying the AMG preconditioner, which is nonlinear, we applied right-preconditioned flexible GMRES434

(FGMRES); neither GMRES nor FGMRES allowed restarting. We also used the standard Matlab imple-435

mentations of MINRES, LSQR and BiCGSTAB. All methods were stopped with a relative residual tolerance436

of 10−6 and used a random initial guess. The finite element discretization used Q1 finite elements over the437

domain Ω = [0,1]× [0,1] for the heat equation and Ω = [−1,1]× [−1,1] for the convection diffusion equation.438

For the algebraic multigrid preconditioner, we used AGMG [30, 31, 33, 34] with default settings, which can439

be applied to complex matrices. This applies a single K-cycle (sometimes referred to as a non-linear AMLI440

cycle); details can be found [33]. Note that adjusting the number of AMG cycles did not affect the iteration441

numbers obtained.442
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Note that for use with GMRES, we employ PMG and not ∣PMG∣ (which would in this case be awkward443

to compute). We have no rate of convergence guarantees for this approximate non-symmetric solver, but444

we observe rapid convergence as seen in Tables 1, 2 and 3. These observations are perhaps not a complete445

surprise given the supporting rigorous theory in the corresponding symmetric case.446

6.1. Heat equation. Our first example is the heat equation as defined in (1) with the initial conditions447

u0 = x(x − 1)y(y − 1)448

with no external forcing (i.e. f = 0). We used both the Backward Euler and the 2-step Backward Differen-449

tiation Formula (BDF2) for the time-stepping method, with time step size equal to τ = 1/`.450

The results presented in Table 1 are for the Backward Euler time-stepping method and show that for451

all methods, iteration numbers are essentially independent of the number of time steps. Mesh independent452

convergence is observed for MINRES and GMRES, but not for LSQR. FGMRES with the AMG precon-453

ditioner PMG performs well for coarse discretisations, but there is some iteration growth as the mesh is454

refined. Although this particular AMG algorithm is not accurately approximating the diagonal blocks in455

I` ⊗ A0 + Λ ⊗ A1 (cf. Section 3.1), we would expect better performance from a tailored AMG algorithm.456

Similar results are observed for the BDF2 method (see Table 2), with iteration counts for GMRES and457

MINRES with ∣P ∣ robust with respect to the number of time steps and mesh width.458

We note that using the symmetrization method within MINRES results in higher iteration numbers459

than seen when applying GMRES to the non-symmetric system. For practical purposes it may, therefore,460

be advantageous to use GMRES even though there is then no theoretical guarantee of fast convergence. We461

include results for both iterative methods for comparison. We also notice that whilst the LSQR method462

has comparable iterations counts to MINRES for small values of `, for larger numbers of time-steps LSQR463

requires a significant increase in iterations.464

Table 1: Iteration numbers for the heat equation using the Backward Euler method. (— indicates iterations
above the maximum of 300 or that GMRES stagnated.)

n ` DoF GMRES P−1A MINRES ∣P ∣−1YA LSQR P−1A FGMRES P−1MGA

81

24 1296 3 12 10 3
26 5184 3 13 16 3
28 20736 3 15 27 3
210 82944 3 15 52 3
212 331776 3 15 90 3
214 1327104 3 14 157 3

289

24 4624 3 11 10 8
26 18496 3 13 14 8
28 73984 3 15 27 8
210 295936 3 19 56 8
212 1183744 3 18 130 7
214 4734976 3 16 — 7

1089

24 17424 3 10 9 8
26 69696 3 13 13 8
28 278784 3 14 24 8
210 1115136 3 18 50 8
212 4460544 3 20 128 7
214 17842176 3 19 — 6

4225

24 67600 3 10 7 15
26 270400 3 11 12 16
28 1081600 3 13 21 16
210 4326400 3 18 44 16
212 17305600 3 20 113 17
214 69222400 2 19 — 16
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Table 2: Iteration numbers for the heat equation using the BDF2 method. (— indicates iterations above
the maximum of 300 or that GMRES stagnated.)

n ` DoF GMRES P−1A MINRES ∣P ∣−1YA LSQR P−1A FGMRES P−1MGA

81

24 1296 3 14 13 3
26 5184 3 17 22 3
28 20736 3 19 44 3
210 82944 3 20 97 3
212 331776 3 20 177 3
214 1327104 3 18 265 3

289

24 4624 3 13 12 7
26 18496 3 16 21 8
28 73984 3 19 43 8
210 295936 3 21 106 7
212 1183744 3 24 — 7
214 4734976 3 22 — 6

1089

24 17424 3 13 11 8
26 69696 3 15 20 8
28 278784 3 18 39 8
210 1115136 3 22 98 7
212 4460544 3 24 288 7
214 17842176 3 25 — 6

4225

24 67600 3 11 10 15
26 270400 3 13 17 16
28 1081600 3 18 33 16
210 4326400 3 21 83 17
212 17305600 3 24 245 17
214 69222400 3 25 — 16
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6.2. Convection diffusion equation. The convection diffusion test problem is given by Example 6.1.4465

in [10] and is known as the double glazing problem. The wind is described by w = (2y(1− x2),−2x(1− y2)).466

Dirichlet boundary conditions are imposed everywhere on the boundary, with u = 1 on the boundary where467

x = 1 and zero on all other boundaries. The initial vector u0 was zero everywhere except the boundaries468

where it satisfies the boundary conditions. Streamline-Upwind Petrov Galerkin (SUPG) stabilization [3] was469

used to stabilize the system. For this problem we used Backward Euler time-stepping with time-step size470

τ = 1/`.471

As this is a non-symmetric system and the spatial operators do not commute, we were not able to use472

the simultaneous diagonalization method described in Section 3.1.1. However, we were still able to apply the473

absolute value preconditioner, although this did require computing ` diagonalizations. We therefore also used474

the AGMG preconditioner with both the FGMRES and BiCGSTAB methods. For the exact preconditioner,475

we used the backslash operator in Matlab i.e. an elimination (direct) method was used for the relevant block476

systems.477

We can see iteration numbers for GMRES that are independent of the number of time-steps and essen-478

tially also independent of the grid size. The results for FGMRES and BiCGSTAB with the AMG precon-479

ditioner show similar trends; though the iteration counts increase for the largest spatial grid, this method480

allows solution of these problems for all numbers of time steps. As for the heat equation, we could expect481

more robust performance from an AMG algorithm better suited to our problem. For the LSQR method,482

although we are able to prove that the number of non-unit eigenvalues of the normal equations is indepen-483

dent of ` the values taken by the outlying eigenvalues can become large as ` increases; we therefore see that484

the number of LSQR iterations grows quite rapidly and so this method is unlikely to be practical. There is485

essentially no growth in the number of iterations for the GMRES, FMGRES and BiCGSTAB methods to486

which our analysis does not apply, with the exception of the the finest grid for which the AMG component487

of the preconditioner seems less effective.488

Table 3: Iteration numbers for the convection diffusion equation (- indicates iterations above the maximum
of 300).

n ` DoF GMRES P−1A LSQR P−1A FGMRES P−1MGA BICGSTAB P−1MGA

81

24 1296 12 63 12 21
26 5184 12 137 12 19
28 20736 12 262 12 19
210 82944 12 — 12 20
212 331776 12 — 12 20
214 1327104 12 — 12 19

289

24 4624 13 71 12 17
26 18496 13 206 12 21
28 73984 13 — 12 21
210 295936 13 — 12 21
212 1183744 13 — 12 21
214 4734976 13 — 12 20

1089

24 17424 12 72 12 21
26 69696 13 226 12 21
28 278784 13 — 12 21
210 1115136 13 — 12 21
212 4460544 13 — 12 21
214 17842176 13 — 12 21

4225

24 67600 12 66 22 98
26 270400 12 217 22 83
28 1081600 12 — 23 97
210 4326400 12 — 23 106
212 17305600 12 — 23 168
214 69222400 12 — 23 120
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In order to further investigate the convergence properties of the proposed methods in practice, in Figure 3489

we have plotted the convergence curves for each, with the exception of LSQR for which convergence was490

significantly slower. For the heat equation, we see that GMRES with the exact preconditioner exhibits491

rapid residual norm reduction at the third iteration while the other methods converge at comparable rates.492

For convection-diffusion, we do not see this drop off in the GMRES convergence curve with the exact493

preconditioner. This is likely due to the small number of distinct eigenvalues for the preconditioned system494

for the heat equation as compared with the convection-diffusion equation. We see that BiCGSTAB behaves495

differently to GMRES however there is no associated theory for convergence of the preconditioner with this496

method. Note as well that, since BiCGSTAB requires two matrix-vector products and two preconditioner497

solves at each iteration, its cost per iteration is roughly double that of GMRES and MINRES. All methods498

converge fairly well in these computations, but the theory only guarantees this for MINRES.499

Fig. 3: Convergence of each of the methods (n = 1089, ` = 210).
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When calculating the solution of a time-dependent problem in a sequential manner, an error at a given500

time-step is typically propagated forward at subsequent time-steps. As the all-at-once method computes the501

solution at all time-steps simultaneously, the error in the solution at each individual time-step may have a502

different distribution than when calculated sequentially.503

Figure 4 shows the residual of the linear system at each time-step when calculated by each method. For504

the sequential methods, the LU factorization of the matrix in (2) was calculated and then used to evaluate the505

solution at each step. We also note that this method has essentially solved the problem to machine precision,506

although the error grows slightly at later time-steps. For the heat equation, the all-at-once GMRES methods507

have essentially constant residuals after the first time step. Interestingly, for the heat equation, the residuals508

for the symmetrized MINRES method are symmetric over the time interval i.e. the residual at ti = iτ equals509

the residual at t`−i+1 = (` − i + 1)τ . However, this is not replicated for the convection-diffusion problem.510

Again note that BiCGStab requires roughly twice the work per iteration of GMRES and MINRES.511

7. Conclusions. We have presented a method of preconditioning an all-at-once system of evolutionary512

equations with constant time-steps based on circulant methods for Toeplitz matrices. For symmetric systems,513

such as the heat equation, on a regular grid we can use simultaneous diagonalization to efficiently apply a514

block circulant or its absolute value as a preconditioner. We can also rewrite the system as a symmetric515

one through the use of a block Hankel matrix. This allows us to use MINRES and to provide an eigenvalue516

analysis, which guarantees convergence in a maximum number of iterations independent of the number517

of time-steps. In practice we observe much better convergence even than predicted by this eigenvalue518

analysis. For non-symmetric systems, we can also provide eigenvalue analysis for the preconditioned normal519

equations. For both symmetric and non-symmetric systems an algebraic multigrid process can also be520
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Fig. 4: Residual of the solution at each time-step (n = 1089, ` = 210).
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employed to approximate the preconditioner; this provides an inexpensive alternative. Although we cannot521

prove convergence bounds when AMG is used in this way, we nevertheless see promising results for both522

symmetric and non-symmetric spatial operators with our approach. Due to the block diagonal structures523

present in the application of the preconditioners, we believe that parallel-in-time implementations may be524

possible however investigation of this would require further research.525
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