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ADAPTED NUMERICAL METHODS FOR THE POISSON
EQUATION WITH L2 BOUNDARY DATA IN NONCONVEX

DOMAINS∗

THOMAS APEL† , SERGE NICAISE‡ , AND JOHANNES PFEFFERER§

Abstract. The very weak solution of the Poisson equation with L2 boundary data is defined by
the method of transposition. The finite element solution with regularized boundary data converges in
the L2(Ω)-norm with order 1/2 in convex domains but has a reduced convergence order in nonconvex
domains although the solution remains to be contained in H1/2(Ω). The reason is a singularity in
the dual problem. In this paper we propose and analyze, as a remedy, both a standard finite element
method with mesh grading and a dual variant of the singular complement method. The error order
1/2 is retained in both cases, also with nonconvex domains. Numerical experiments confirm the
theoretical results.
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1. Introduction. In this paper we consider the boundary value problem

−∆y = f in Ω, y = u on Γ = ∂Ω,(1)

with right-hand side f ∈ H−1(Ω) and boundary data u ∈ L2(Γ). We assume Ω ⊂ R2

to be a bounded polygonal domain with boundary Γ. Such problems arise in optimal
control when the Dirichlet boundary control is considered in L2(Γ); see for example
[22, 24, 28].

For boundary data u ∈ L2(Γ) we cannot expect a weak solution y ∈ H1(Ω).
Therefore we define a very weak solution by the method of transposition which goes
back at least to Lions and Magenes [27, Chapter 2, section 6]: Find

y ∈ L2(Ω) : (y,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ V(2)

with (w, v)G :=
∫
G
wv denoting the L2(G) scalar product or an appropriate duality

product. In our previous paper [4] we showed that the appropriate space V for the
test functions is

V := H1
∆(Ω) ∩H1

0 (Ω) with H1
∆(Ω) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}.(3)

Note that from Theorems 4.4.3.7 and 1.4.5.3 of [25] the embedding V ↪→ H3/2+ε(Ω) for
0 < ε < ε0 follows with ε0 depending on the maximal interior angle of the domain Ω.
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In particular this ensures ∂nv ∈ L2(Γ) for v ∈ V such that the formulation (2) is well
defined. We proved the existence of a unique solution y ∈ L2(Ω) for u ∈ L2(Γ) and
f ∈ H−1(Ω), and that the solution is even in H1/2(Ω). The method of transposition
is used in different variants also in [24, 9, 15, 14, 22, 28].

Consider now the discretization of the boundary value problem. Let Th be a
quasi-uniform family of conforming finite element meshes, and introduce the finite
element spaces

Yh := {vh ∈ H1(Ω) : vh|T ∈ P1 ∀T ∈ Th}, Y0h := Yh ∩H1
0 (Ω), Y ∂h := Yh|∂Ω.

Since the boundary datum u is in general not contained in Y ∂h we have to approximate
it by uh ∈ Y ∂h , e. g., by using L2(Γ)-projection or quasi-interpolation. In this way,
the boundary datum is even regularized since uh ∈ H1/2(Γ). Hence we can consider
a regularized (weak) solution in Y h∗ := {v ∈ H1(Ω) : v|Γ = uh},

yh ∈ Y h∗ : (∇yh,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω).(4)

The finite element solution yh is now searched for in Y∗h := Y h∗ ∩ Yh: Find

yh ∈ Y∗h : (∇yh,∇vh)Ω = (f, vh)Ω ∀vh ∈ Y0h.(5)

The same discretization was derived previously by Berggren [9] from a different point
of view. In [4] we showed that the discretization error estimate

‖y − yh‖L2(Ω) ≤ Chs
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
holds for s = 1/2 if the domain is convex; this is a slight improvement of the result
of Berggren, and the convex case is completely treated. In the case of nonconvex
domains this convergence order is reduced although the very weak solution y is also
in H1/2(Ω); the finite element method does not lead to the best approximation in
L2(Ω). In order to describe the result we assume for simplicity that Ω has only
one corner with interior angle ω ∈ (π, 2π). We proved in [4] the convergence order
s = λ−1/2−ε, where λ := π/ω and ε > 0 arbitrarily small, and showed by numerical
experiments that the order of almost λ− 1/2 is sharp. Note that s→ 0 for ω → 2π.
This is the state of the art for this kind of problem, and our aim is to devise methods
to retain the convergence order s = 1/2 in the nonconvex case.

In order to explain the reduction in the convergence order and our first remedy, let
us first mention that we have to modify the Aubin–Nitsche method to derive L2(Ω)-
error estimates. The first reason is that our problem has no weak solution, only the
dual problem,

vz ∈ V : (ϕ,∆vz)Ω = (z, ϕ)Ω ∀ϕ ∈ L2(Ω),(6)

has. The second reason is that the solution y has inhomogeneous Dirichlet data such
that an estimate of the L2(Γ)-interpolation error of ∂nvz is needed. The H1(Ω)-error
of a standard finite element method is of order one in convex domains but reduces
to s = λ − ε in the case of nonconvex domains; moreover, the order of the L2(Γ)-
interpolation error of ∂nvz reduces from 1/2 to λ− 1/2− ε. It has been known for a
long time that locally refined (graded) meshes and augmenting of the finite element
space by singular functions are appropriate to retain the optimal convergence order
for such problems; see, e. g., [8, 11, 17, 29, 31, 33]. We use these strategies in this
paper.
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The novelty is that the adapted methods act now implicitly and occur essentially
in the analysis for the dual problem. This sounds particularly simple in the case of
mesh grading. However, the convergence proof in [4] contains not only interpolation
error estimates for the dual solution and its normal derivative (which are improved
now) but also the application of an inverse inequality which gives a too pessimistic
result if used unchanged in the case of graded meshes. We prove in section 2 a sharp
result by using a weighted norm in intermediate steps. Note we suggest a strong mesh
grading with grading parameter µ → 0 (the parameter is explained in section 2) for
ω → 2π because of the interpolation error estimate of ∂nvz; the numerical tests show
that weaker grading is not sufficient.

The basic idea of the dual singular function method (see [11]), or the singular
complement method (see [17]), is to augment the approximation space for the solution
by one (or more, if necessary) singular function of type rλ sin(λθ) and the space of
test functions by a dual function of type r−λ sin(λθ), where r, θ are polar coordinates
at the concave corner. In this paper we do it the other way round and compute an
approximate solution

zh ∈ Yh ⊕ Span{r−λ sin(λθ)}

such that the error estimate

‖y − zh‖L2(Ω) ≤ Ch1/2
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
can be shown. Note that the original singular complement method augments the stan-
dard finite element space with a function which is part of the representation of the
solution. Here, we complement the finite element space with r−λ sin(λθ) 6∈ H1/2(Ω),
and, although y ∈ H1/2(Ω), this has an effect on the approximation order in the
L2(Ω)-norm. This makes the method different from the original singular comple-
ment method, [17], and we call it the dual singular complement method. Numerical
experiments in section 4 confirm the theoretical results.

Finally in this introduction, we would like to note that higher order finite elements
are not useful here since the solution has low regularity. The extension of our methods
to three-dimensional domains should be possible in the case of mesh grading (at
considerable technical expenses in the analysis) but is not straightforward in the case
of the dual singular complement method since the space V \ H2(Ω) is in general
not finite dimensional; see [18] for the Fourier singular complement method to treat
special domains. Curved boundaries could be treated at the price of using nonaffine
finite elements; see, e. g., [10, 12, 22].

2. Graded meshes. Recall from the introduction that Ω ⊂ R2 is a bounded
polygonal domain with boundary Γ, and we consider here the case that Ω has exactly
one corner (called singular corner) with interior angle ω ∈ (π, 2π). The convex case
was already treated in [4] and the case of more than one nonconvex corner can be
treated similarly since corner singularities are local phenomena.

Without loss of generality we can assume that the singular corner is located at
the origin of the coordinate system, and that one boundary edge is contained in the
positive x1-axis. We recall from [25, Theorem 4.4.3.7] or [26, sections 1.5, 2.3, and
2.4] that the weak solution of the boundary value problem (1) with f ∈ L2(Ω) and
u = 0 is not contained in H2(Ω) but in

H1
∆(Ω) ∩H1

0 (Ω) =
(
H2(Ω) ∩H1

0 (Ω)
)
⊕ Span{ξ(r) rλ sin(λθ)},(7)
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ξ being a cutoff function, while r and θ denote polar coordinates at the singular corner.
Let the finite element mesh Th = {T} be graded with the mesh grading parameter

µ ∈ (0, 1], i. e., the element size hT = diamT and the distance rT of the element T to
the singular corner are related by

c1h
1/µ ≤ hT ≤ c2h1/µ for rT = 0,

c1hr
1−µ
T ≤ hT ≤ c2hr1−µ

T for rT > 0.
(8)

This type of graded mesh was investigated before in [8, 29, 31, 32]; see also the
overview and background information in [5, section 2.3] and [1, section 7]. Define the
finite element spaces

Yh = {vh ∈ H1(Ω) : vh|T ∈ P1 ∀T ∈ Th}, Y0h = Yh ∩H1
0 (Ω), Y ∂h = Yh|∂Ω,(9)

and let the regularized boundary datum uh ∈ Y ∂h ⊂ H1/2(Γ) be defined by the L2(Γ)-
projection Πhu or by the Carstensen interpolant Chu; see [13]. To define the latter
let NΓ be the set of nodes of the triangulation on the boundary, and set

Chu =
∑
x∈NΓ

πx(u)λx with πx(u) =

∫
ωx
uλx∫

ωx
λx

=
(u, λx)ωx
(1, λx)ωx

,

where λx is the standard hat function related to x and ωx = suppλx ⊂ Γ. As already
outlined in [4], the advantages of the interpolant in comparison to the L2-projection
are its local definition and the property

u ∈ [a, b] ⇒ Chu ∈ [a, b];

see [21]; a disadvantage may be that Chuh 6= uh for piecewise linear uh. With these
regularized boundary data we then define the regularized weak solution yh ∈ Y h∗ :=
{v ∈ H1(Ω) : v|Γ = uh} by (4).

Lemma 2.1. If the mesh is graded with parameter µ < 2λ − 1 the effect of the
regularization of the boundary datum can be estimated by

‖y − yh‖L2(Ω) ≤ ch1/2‖u‖L2(Γ).

Proof. In view of

‖y − yh‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(y − yh, z)Ω

‖z‖L2(Ω)
(10)

we have to estimate (y − yh, z)Ω. To this end, let z ∈ L2(Ω) be an arbitrary function
and let vz ∈ V be defined by (6). Since the weak regularized solution yh ∈ Y h∗ :=
{v ∈ H1(Ω) : v|Γ = uh} defined by (4) is also a very weak solution,

(yh,∆v)Ω = (uh, ∂nv)Γ − (f, v)Ω ∀v ∈ V,(11)

we get with (2) and (6)

(y − yh, z)Ω = (u− uh, ∂nvz)Γ.(12)
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If uh is the L2(Γ)-projection Πhu of u we can continue with

(u− uh, ∂nvz)Γ = (u− uh, ∂nvz −Πh(∂nvz))Γ = (u, ∂nvz −Πh(∂nvz))Γ

≤ ‖u‖L2(Γ) ‖∂nvz −Πh(∂nvz)‖L2(Γ)

≤ ‖u‖L2(Γ) ‖∂nvz − Ch(∂nvz)‖L2(Γ)

= ‖u‖L2(Γ)

∥∥∥ ∑
x∈NΓ

(
∂nvz − πx(∂nvz)

)
λx

∥∥∥
L2(Γ)

≤ c‖u‖L2(Γ)

∑
x∈NΓ

‖∂nvz − πx(∂nvz)‖2L2(ωx)

1/2

.

If uh is the Carstensen interpolant of u, there holds

(u− Chu, ∂nvz)Γ =

∑
x∈NΓ

(u− πxu)λx, ∂nvz


Γ

=
∑
x∈NΓ

(u− πx(u), (∂nvz)λx)Γ

=
∑
x∈NΓ

(u− πx(u), (∂nvz − πx(∂nvz))λx)Γ

≤
∑
x∈NΓ

‖u‖L2(ωx)‖∂nvz − πx(∂nvz)‖L2(ωx)

≤ c‖u‖L2(Γ)

∑
x∈NΓ

‖∂nvz − πx(∂nvz)‖2L2(ωx)

1/2

,

i. e., in both cases we have to estimate
∑
x∈NΓ

‖∂nvz − πx(∂nvz)‖2L2(ωx).
To this end we notice that

vz ∈ V =
(
H2(Ω) ∩H1

0 (Ω)
)
⊕ Span{ξ(r) rλ sin(λθ)}

and, consequently,

∂nvz ∈ VΓ =

 N∏
j=1

H
1/2
00 (Γj)

⊕ Span{ξ(r) rλ−1};

see [4, Remark 2.2] or [25, Theorem 1.5.2.8]. This means that we can split ∂nvz =
αξ(r) rλ−1 +

∑N
j=1 wj with wj ∈ H1/2

00 (Γj) and

|α|+
N∑
j=1

‖wj‖H1/2
00 (Γj)

=: ‖∂nvz‖VΓ ≤ c‖vz‖V := ‖∆vz‖L2(Ω) = ‖z‖L2(Ω).

In the remaining part of the proof we show for j = 1, . . . , N,∑
x∈NΓ

‖wj − πxwj‖2L2(ωx)

1/2

≤ ch1/2‖wj‖H1/2
00 (Γj)

,(13)

∑
x∈NΓ

‖ξ(r) rλ−1 − πx(ξ(r) rλ−1)‖2L2(ωx)

1/2

≤ ch1/2,(14)
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to conclude
(∑

x∈NΓ
‖∂nvz − πx(∂nvz)‖2L2(ωx)

)1/2
≤ ch1/2‖z‖L2(Ω) and, hence,

(u− uh, ∂nvz)Γ ≤ ch1/2‖u‖L2(Γ)‖z‖L2(Ω)

which, together with (10) and (12), finishes the proof.
We extend wj to the whole boundary Γ by zero on Γ \ Γj and start with the

estimate

‖wj − πswj‖L2(ωx) ≤ chsx‖sj‖Hs(ωx), s = 0, 1, x ∈ NΓ.(15)

This estimate follows for s = 0 from the definition of πx. For s = 1 it follows from a
Bramble–Hilbert-type argument if x is not a corner of Ω. In the case of a corner point x
we use instead the zero boundary condition of wj on one end of ωx. Adding these
estimates and using that H1/2

00 (Γj) is an interpolation space of L2(Γj) and H1
0 (Γj) we

obtain (13). Note that the local element size hx is bounded by h from above.
Denote by NΓ,reg ⊂ NΓ the set of nodes where ωx does not contain the singular

corner. Let rx be the distance of x ∈ NΓ,reg to the set of corners of Ω, and note that
the local mesh size satisfies both hx ≤ chr1−µ

x and hx ≤ crx. One can estimate by
using (15) with s = 1,∑

x∈NΓ,reg

‖ξ(r) rλ−1 − πx(ξ(r) rλ−1)‖2L2(ωx) ≤ c
∑

x∈NΓ,reg

h2
x‖rλ−2‖2L2(ωx)

≤ ch
∑

x∈NΓ,reg

r1−µ
x rx‖rλ−2‖2L2(ωx) ≤ ch

∫ diamΩ

0
r2−µ+2(λ−2)dr = ch

for µ < 2λ−1. For the three nodes x ∈ NΓ\NΓ,reg we cannot use theH1(ωx)-regularity
of rλ−1 but, by using the stability of πx, the properties of ξ(·), and hx ∼ h1/µ there
holds

‖ξ(r) rλ−1 − πx(ξ(r) rλ−1)‖L2(ωx) ≤ c‖rλ−1‖L2(ωx) ∼ hλ−1/2
x ∼ h(λ−1/2)/µ ≤ ch1/2

for µ < 2λ − 1. Note that we computed the norm in the middle step. This finishes
the proof.

We consider now a lifting B̃huh ∈ Y∗h := Y h∗ ∩ Yh defined by the nodal values as
follows:

(B̃huh)(x) =

{
uh(x) for all nodes x ∈ Γ,
0 for all nodes x ∈ Ω.

(16)

The function yh and its finite element approximation yh ∈ Y∗h are now defined by

yh = yf + B̃hu
h + ỹh0 as well as yh = yfh + B̃hu

h + ỹ0h,(17)

where yf , ỹh0 ∈ H1
0 (Ω) and yfh, ỹ0h ∈ Y0h satisfy

(∇yf ,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω),(18)

(∇yfh,∇vh)Ω = (f, vh)Ω ∀vh ∈ Y0h,(19)

(∇ỹh0 ,∇v)Ω = −(∇(B̃huh),∇v)Ω ∀v ∈ H1
0 (Ω),(20)

(∇ỹ0h,∇vh)Ω = −(∇(B̃huh),∇vh)Ω ∀vh ∈ Y0h.(21)

In order to estimate ‖yh− yh‖L2(Ω) we estimate ‖yf − yfh‖L2(Ω) and ‖ỹh0 − ỹ0h‖L2(Ω).
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Lemma 2.2. If the mesh is graded with parameter µ < λ the error in approximat-
ing yf satisfies

‖yf − yfh‖L2(Ω) ≤ ch‖f‖H−1(Ω).

Note that the condition µ < λ is weaker than the condition µ < 2λ−1 from Lemma 2.1
since λ < 1.

Proof. As in the proof of Lemma 2.1, let z ∈ L2(Ω) be an arbitrary function, let
vz ∈ V be defined via (6), and let vzh ∈ Y0h be the Ritz projection of vz. By the
definitions (18) and (19) and using the Galerkin orthogonality we get

(yf − yfh, z)Ω = (∇(yf − yfh),∇vz)Ω = (∇(yf − yfh),∇(vz − vzh))Ω

= (∇yf ,∇(vz − vzh))Ω ≤ ‖∇yf‖L2(Ω) ‖∇(vz − vzh)‖L2(Ω).

By using standard a priori estimates (see, e.g., [7, Theorem 3.2]), we obtain with
grading µ < λ the bounds ‖∇yf‖L2(Ω) ≤ ‖f‖H−1(Ω), ‖∇(vz−vzh)‖L2(Ω) ≤ ch‖z‖L2(Ω),
and, hence, with

‖yf − yfh‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(yf − yfh, z)Ω

‖z‖L2(Ω)
,

the assertion of the lemma.

In the proof of Lemma 2.4 we will employ a regularity result which is proved in
[4, section II.C]. Reducing notation for the price of a slightly weaker statement we
have the folllowing lemma.

Lemma 2.3. If ω > π then the very weak solution y from (2) satisfies

‖r−βy‖L2(Ω) ≤ c
(
‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
for all β ∈

(
1− λ, 1

2

]
.

Proof. The statement is proved in [4, Lemma 2.8]. Concerning the assumptions
on the regularity of the data, note that f and u are from bigger spaces there if β ≤ 1

2 ;
see [4, Remark 2.7]. Concerning the definition of the solution y in [4, (2.15)] note that
the test space there contains V , which is seen by using the splitting (7), and since the
solutions of both formulations are unique they must be equal.

In order to estimate ‖ỹh0 − ỹ0h‖L2(Ω), we divide the domain Ω into subsets ΩJ ,
i.e.,

Ω =
I⋃

J=0

ΩJ ,

where ΩJ := {x ∈ Ω : dJ+1 ≤ |x| ≤ dJ} for J = 1, . . . , I−1, ΩI := {x ∈ Ω : |x| ≤ dI},
and Ω0 := Ω\

⋃I
J=1 ΩJ . The radii dJ are set to 2−J and the index I is chosen such

that

dI = 2−I = cIh
1/µ(22)

with a constant cI > 1 exactly specified later on. In addition we define the extended
domains Ω′J and Ω′′J by

Ω′J := ΩJ−1 ∪ ΩJ ∪ ΩJ+1 and Ω′′J := Ω′J−1 ∪ Ω′J ∪ Ω′J+1,

respectively, with the obvious modifications for J = 0, 1 and J = I − 1, I.
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Lemma 2.4. With σ := r + dI there holds the estimate

‖σ(1−µ)/2∇ỹh0 ‖L2(Ω) + ‖σ(1−µ)/2∇(B̃huh)‖L2(Ω) ≤ ch−1/2‖u‖L2(Γ).

Proof. We start by rearranging terms, i.e.,

‖σ(1−µ)/2∇ỹh0 ‖2L2(Ω) =
∫

Ω
σ1−µ∇ỹh0 · ∇ỹh0

=
∫

Ω
∇ỹh0 · ∇(ỹh0σ

1−µ)−
∫

Ω
ỹh0∇ỹh0 · ∇σ1−µ.(23)

For the first term in (23) we conclude according to (20)∫
Ω
∇ỹh0 · ∇(ỹh0σ

1−µ) = −
∫

Ω
∇(B̃huh) · ∇(ỹh0σ

1−µ)

= −
∫

Ω
σ1−µ∇(B̃huh) · ∇ỹh0 −

∫
Ω
ỹh0∇(B̃huh) · ∇σ1−µ

≤ ‖σ(1−µ)/2∇(B̃huh)‖L2(Ω)

(
‖σ(1−µ)/2∇ỹh0 ‖L2(Ω) + ‖σ(−1−µ)/2ỹh0 ‖L2(Ω)

)
,(24)

where we used the Cauchy–Schwarz inequality and

∇σ1−µ = (1− µ)σ−µ(cos θ, sin θ)T .(25)

Having in mind the decomposition of the domain in subdomains ΩJ , an application
of the Poincaré inequality yields for the latter term in (24)

‖σ(−1−µ)/2ỹh0 ‖2L2(Ω) =
I∑

J=0

‖σ(−1−µ)/2ỹh0 ‖L2(ΩJ )‖σ(−1−µ)/2ỹh0 ‖L2(ΩJ )

≤
I∑

J=0

d
(−1−µ)/2
J ‖ỹh0 ‖L2(ΩJ )‖σ(−1−µ)/2ỹh0 ‖L2(ΩJ )

≤ c
I∑

J=0

d
(1−µ)/2
J ‖∇ỹh0 ‖L2(Ω′J )‖σ(−1−µ)/2ỹh0 ‖L2(ΩJ )

≤ c‖σ(1−µ)/2∇ỹh0 ‖L2(Ω)‖σ(−1−µ)/2ỹh0 ‖L2(Ω),

where we used dJ ∼ σ for x ∈ Ω′J twice and the discrete Cauchy–Schwarz inequality.
Consequently, we get from (24)∫

Ω
∇ỹh0 · ∇(ỹh0σ

1−µ) ≤ c‖σ(1−µ)/2∇(B̃huh)‖L2(Ω)‖σ(1−µ)/2∇ỹh0 ‖L2(Ω).(26)

Similarly to the above steps, we get for the second term in (23) by means of (25)

∫
Ω
ỹh0∇ỹh0 · ∇σ1−µ ≤ ‖σ(1−µ)/2∇ỹh0 ‖L2(Ω)‖σ(−1−µ)/2ỹh0 ‖L2(Ω)

(27)

≤ ‖σ(1−µ)/2∇ỹh0 ‖L2(Ω)

(
‖σ(−1−µ)/2(ỹh0 + B̃hu

h)‖L2(Ω) + ‖σ(−1−µ)/2B̃hu
h‖L2(Ω)

)
,

such that we infer from (23), (26), and (27) that

‖σ(1−µ)/2∇ỹh0 ‖L2(Ω) ≤ c
(
‖σ(−1−µ)/2B̃hu

h‖L2(Ω) + ‖σ(1−µ)/2∇(B̃huh)‖L2(Ω)

+ ‖σ(−1−µ)/2(ỹh0 + B̃hu
h)‖L2(Ω)

)
.(28)
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Due to the definition of B̃h and the definition of the element size hT in the case of
graded meshes we easily obtain by means of the norm equivalence in finite dimensional
spaces that

‖σ(−1−µ)/2B̃hu
h‖L2(Ω) + ‖σ(1−µ)/2∇(B̃huh)‖L2(Ω) ≤ ch−1/2‖uh‖L2(Γ)

≤ ch−1/2‖u‖L2(Γ),(29)

where we employed the stability of uh in L2(Γ) in the last step. Having in mind the
definition (22) of dI and applying Lemma 2.3 with β = 1

2 for the solution ỹh0 + B̃hu
h

of the homogeneous equation with boundary datum uh we conclude that

‖σ(−1−µ)/2(ỹh0 + B̃hu
h)‖L2(Ω) ≤ d

−µ/2
I ‖σ−1/2(ỹh0 + B̃hu

h)‖L2(Ω)

≤ ch−1/2‖r−1/2(ỹh0 + B̃hu
h)‖L2(Ω) ≤ ch−1/2‖uh‖L2(Γ) ≤ ch−1/2‖u‖L2(Γ),(30)

where we used again the stability of uh. The estimates (28), (29), and (30) end the
proof.

Lemma 2.5. Let σ := r + dI and µ ∈ (0, 2λ− 1). Then there is the estimate

‖σ−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω) ≤ ch1/2‖u‖L2(Γ).

Proof. Let v ∈ H1
0 (Ω) be the weak solution of

−∆v = σ−(1−µ)(ỹh0 − ỹ0h) in Ω, v = 0 on Γ,

which, according to Theorem 2.15 of [20], has the regularity v ∈ V 2,2
(1−µ)/2(Ω) (as

µ < 2λ− 1) and hence 1
2 (1− µ) > 1− λ) and satisfies the a priori estimate

|v|V 2,2
(1−µ)/2(Ω) ≤ c‖σ

−(1−µ)(ỹh0 − ỹ0h)‖V 0,2
(1−µ)/2(Ω) ≤ c‖σ

−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω),

(31)

where we use the weighted Sobolev space V k,2β (Ω) := {v ∈ D′ : ‖v‖V k,2β (Ω) <∞} with

‖v‖2
V k,2β (Ω)

:=
k∑
j=1

|v|2
V j,2β−k+j(Ω), |v|V j,2β (Ω) := ‖rβ∇jv‖L2(Ω).

Then we obtain by using integration by parts and the Galerkin orthogonality

‖σ−(1−µ)/2(ỹh0 − ỹ0h)‖2L2(Ω) = (ỹh0 − ỹ0h,−∆v)Ω

= (∇(ỹh0 − ỹ0h),∇(v − Ihv))Ω ≤
I∑

J=0

‖∇(ỹh0 − ỹ0h)‖L2(ΩJ )‖∇(v − Ihv)‖L2(ΩJ ),(32)

where Ih is the Lagrange interpolant.
By employing standard interpolation error estimates on graded meshes we obtain

for any µ ∈ (0, 1]

‖∇(v − Ihv)‖L2(ΩJ ) ≤ chd
(1−µ)/2
J |v|V 2,2

(1−µ)/2(Ω′J ),(33)

where the constant c is independent of cI ; see, e.g., [6, Lemma 3.7] or [30, Lemma
3.58]. In fact, the constant is essentially the one appearing in the local, elementwise
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interpolation error estimate. Note that this kind of independence will be crucial when
applying a kickback argument further below.

Local finite element error estimates from [23, Theorem 3.4] yield

‖∇(ỹh0 − ỹ0h)‖L2(ΩJ ) ≤ c min
vh∈Y0h

(
‖∇(ỹh0 − vh)‖L2(Ω′J ) +

1
dJ
‖ỹh0 − vh‖L2(Ω′J )

)
+ c

1
dJ
‖ỹh0 − ỹ0h‖L2(Ω′J ).

By choosing vh ≡ 0 and by applying the Poincaré inequality, we conclude

‖∇(ỹh0 − ỹ0h)‖L2(ΩJ ) ≤ c
(
‖∇ỹh0 ‖L2(Ω′J ) +

1
dJ
‖ỹh0 − ỹ0h‖L2(Ω′J )

)
≤ c

(
‖∇ỹh0 ‖L2(Ω′′J ) + d

(−1−µ)/2
J ‖σ−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω′J )

)
,(34)

where we used dJ ∼ σ for x ∈ Ω′J . Consequently, we get from (32)–(34)

‖σ−(1−µ)/2(ỹh0 − ỹ0h)‖2L2(Ω)

≤ c
I∑

J=0

(
h‖σ(1−µ)/2∇ỹh0 ‖L2(Ω′′J ) + hd−µJ ‖σ

−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω′J )

)
|v|V 2,2

(1−µ)/2(Ω′J )

≤ c
(
h‖σ(1−µ)/2∇ỹh0 ‖L2(Ω) + c−µI ‖σ

−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω)

)
|v|V 2,2

(1−µ)/2(Ω),

where we again employed dJ ∼ σ for x ∈ Ω′′J , hd−µJ ≤ c−µI , which holds due to the
definition (22) of dI , and the discrete Cauchy–Schwarz inequality. For µ ∈ (0, 2λ− 1)
we infer by the a priori estimate (31) that

‖σ−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω) ≤

c
(
h‖σ(1−µ)/2∇ỹh0 ‖L2(Ω) + c−µI ‖σ

−(1−µ)/2(ỹh0 − ỹ0h)‖L2(Ω)

)
.

By choosing cI large enough we can kick back the second term in the above inequality
such that Lemma 2.4 yields the desired result.

Theorem 2.6. For µ ∈ (0, 2λ− 1) we get

‖y − yh‖L2(Ω) ≤ ch1/2
(
‖u‖L2(Ω) + h1/2‖f‖H−1(Ω)

)
.(35)

Proof. Due to the boundedness of σ(1−µ)/2 independent of h for all µ ∈ (0, 1] we
obtain from Lemma 2.5

‖ỹh0−ỹ0h‖L2(Ω) ≤ ‖σ(1−µ)/2‖L∞(Ω)‖σ−(1−µ)/2(ỹh0−ỹ0h)‖L2(Ω) ≤ ch1/2‖u‖L2(Γ).(36)

In view of (17) we get by using the triangle inequality

‖y − yh‖L2(Ω) ≤ ‖y − yh‖L2(Ω) + ‖yf − yfh‖L2(Ω) + ‖ỹh0 − ỹ0h‖L2(Ω).

Using Lemmas 2.1 and 2.2 as well as (36) we get (35).
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3. The dual singular complement method.

3.1. Analytical background and regularization. Using the notation of the
previous section, we recall that the splitting (7) implies that

R := {∆v : v ∈ H2(Ω) ∩H1
0 (Ω)}(37)

is a closed subspace of L2(Ω). It is shown in [26, sect. 2.3] that

L2(Ω) = R
⊥
⊕ Span{ps}(38)

with the dual singular function

ps = r−λ sin(λθ) + p̃s,(39)

where p̃s ∈ H1(Ω) is chosen such that the decomposition (38) is orthogonal for the
L2(Ω) inner product. Therefore, the dual singular function ps is a solution of

w ∈ L2(Ω) : (∆v, w) = 0 ∀v ∈ H2(Ω) ∩H1
0 (Ω),(40)

which proves the nonuniqueness of the solution of (40).
Due to (38) we can split any L2(Ω)-function into L2(Ω)-orthogonal parts. To

this end denote by ΠR and Πps the orthogonal projections on R and on Span{ps},
respectively, i.e., for g ∈ L2(Ω), it is g = ΠRg + Πpsg, where

Πpsg = α(g) ps with α(g) =
(g, ps)Ω

‖ps‖2L2(Ω)
, and ΠRg = g −Πpsg.

Since ps ∈ L2(Ω) there exists

φs ∈ H1
∆(Ω) ∩H1

0 (Ω) : −∆φs = ps;(41)

see also section 3.3 for more details on φs. For the moment we assume that ps and
φs are explicitly known; the decomposition g = ΠRg+ α(g) ps can be computed once
g is given. Computable approximations of ps and φs are discussed in section 3.3.

Now we come back to problem (2) and decompose its solution y in the form

y = ΠRy + α(y) ps.(42)

From the decomposition (38) we see that problem (2) is equivalent to

(y, ps)Ω = −(u, ∂nφs)Γ + (f, φs)Ω,

(y,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ H2(Ω) ∩H1
0 (Ω),

and with the orthogonal splitting (42) to

α(y) (ps, ps)Ω = −(u, ∂nφs)Γ + (f, φs)Ω,

(ΠRy,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ H2(Ω) ∩H1
0 (Ω).

The first equation directly yields α(y), namely,

α(y) =
−(u, ∂nφs)Γ + (f, φs)Ω

(ps, ps)Ω
,(43)

hence the projection of y on ps is known. It remains to find an approximation of ΠRy.
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At this point we recall the regularization approach from [4] which we summarized
already in the introduction. Let uh ∈ H1/2(Γ) be a regularized boundary datum
(this can be any, for example, Πhu or Chu from section 2, but we do not assume
graded meshes here) such that we can define the regularized (weak) solution in Y h∗ :=
{v ∈ H1(Ω) : v|Γ = uh},

yh ∈ Y h∗ : (∇yh,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω).(44)

In [4, Remark 2.13] we showed that the regularization error can be estimated by

‖y − yh‖L2(Ω) ≤ c‖u− uh‖H−s(Γ),

where 0 < s < λ− 1
2 (if Ω was convex we would get s = 1

2 , that means the regulariza-
tion error is in general bigger in the nonconvex case). With the next lemma we show
that ΠR(y − yh) is not affected by nonconvex corners.

Lemma 3.1. There holds the estimate

‖ΠR(y − yh)‖L2(Ω) ≤ C‖u− uh‖H−1/2(Γ).

Proof. Recall V = H1
∆(Ω) ∩H1

0 (Ω) from (3). From (44) and the Green formula,
we have for any v ∈ V

(f, v)Ω = (∇yh,∇v)Ω = −(yh,∆v)Ω + (yh, ∂nv)Γ.

Note that v ∈ V is sufficient for the Green formula, and v ∈ H2(Ω) is not required;
see [19, Lemma 3.4]. Subtracting this expression from the very weak formulation (2),
we get

(y − yh,∆v)Ω = (u− uh, ∂nv)Γ ∀v ∈ V.

Restricting this identity to v ∈ H2(Ω) ∩H1
0 (Ω), we have

(ΠR(y − yh),∆v)Ω = (u− uh, ∂nv)Γ ∀v ∈ H2(Ω) ∩H1
0 (Ω).(45)

Now for any z ∈ R, we let vz ∈ H2(Ω) ∩H1
0 (Ω) be the unique solution of

∆vz = z,(46)

which satisfies

‖∂nvz‖H1/2(Γ) ≤ c‖vz‖H2(Ω) ≤ c‖z‖L2(Ω).(47)

Since for any g ∈ L2(Ω) the equality

(ΠR(y − yh), g)Ω = (ΠR(y − yh),ΠRg)Ω = (y − yh,ΠRg)Ω

holds, we get with (45)–(47)

‖ΠR(y − yh)‖L2(Ω) = sup
z∈R,z 6=0

(y − yh, z)Ω

‖z‖L2(Ω)
= sup
z∈R,z 6=0

(u− uh, ∂nvz)Γ

‖z‖L2(Ω)

≤ ‖u− uh‖H−1/2(Γ) sup
z∈R,z 6=0

‖∂nvz‖H1/2(Γ)

‖z‖L2(Ω)
≤ c‖u− uh‖H−1/2(Γ)

which is the estimate to be proved.
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3.2. Motivation for the dual singular complement method. As already
discussed in the introduction, the adapted methods are motivated by the suboptimal
convergence rate of the finite element solution on a family of quasi-uniform meshes. In
this subsection, we recall these results and extend them by proving an estimate for the
projection of the error into the space R from (37) which yields a better convergence
rate. The insight into this structure of the discretization error motivates the new
method which we call the dual singular complement method.

Recall from (9) the finite element spaces

Yh = {vh ∈ H1(Ω) : vh|T ∈ P1 ∀T ∈ Th}, Y0h = Yh ∩H1
0 (Ω), Y ∂h = Yh|∂Ω,

defined now on a quasi-uniform family Th of conforming finite element meshes. Assume
that the regularized boundary datum uh is contained in Y ∂h such that the estimates

‖uh‖L2(Γ) ≤ c‖u‖L2(Γ),(48)

‖u− uh‖H−1/2(Γ) ≤ Ch1/2‖u‖L2(Γ),(49)

hold. It can be derived from [4, Lemma 2.14] that this can be accomplished by using
the L2(Γ)-projection or by quasi-interpolation: The stability (48) is explicitly stated
there, and the error estimate (49) follows from the definition of the H−1/2(Γ)-norm
and the third estimate in [4, Lemma 2.14]. A consequence of Lemma 3.1 and (49) is
the estimate

‖ΠR(y − yh)‖L2(Ω) ≤ Ch1/2‖u‖L2(Γ).(50)

(In the case of a convex domain the operator ΠR is the identity, and the corresponding
error estimates were already proven in [4].)

As already done in the introduction, define further the finite element solution
yh ∈ Y∗h := Y h∗ ∩ Yh via

yh ∈ Y∗h : (∇yh,∇vh)Ω = (f, vh)Ω ∀vh ∈ Y0h.(51)

We proved in [4] that in the case of a quasi-uniform family of meshes Th

‖y − yh‖L2(Ω) ≤ Chs
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
(52)

holds for s ∈ (0, λ − 1
2 ) (again s = 1

2 for convex domains). As before, in the next
lemma we show that ΠR(y − yh) is not affected by the nonconvex corners.

Lemma 3.2. The following discretization error estimate holds:

‖ΠR(y − yh)‖L2(Ω) ≤ Ch1/2
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
.

Proof. By the triangle inequality we have

‖ΠR(y − yh)‖L2(Ω) ≤ ‖ΠR(y − yh)‖L2(Ω) + ‖ΠR(yh − yh)‖L2(Ω).(53)

The first term is estimated in (50). For the second term we first notice that yh−yh ∈
H1

0 (Ω) satisfies the Galerkin orthogonality

(∇(yh − yh),∇vh)Ω = 0 ∀vh ∈ Y0h;(54)
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see (4) and (5). With that, we estimate ‖ΠR(yh − yh)‖L2(Ω) by similar arguments
as ‖ΠR(y − yh)‖L2(Ω) in the proof of Lemma 3.1. Recall from (46) and (47) that
vz ∈ H2(Ω) ∩H1

0 (Ω) is the weak solution of ∆vz = z ∈ R. It can be approximated
by the Lagrange interpolant Ihvz satisfying

‖∇(vz − Ihvz)‖L2(Ω) ≤ ch‖vz‖H2(Ω) ≤ ch‖z‖L2(Ω).

We get

‖ΠR(yh − yh)‖L2(Ω) = sup
z∈R,z 6=0

(yh − yh, z)Ω

‖z‖L2(Ω)
= sup
z∈R,z 6=0

(∇(yh − yh),∇vz)Ω

‖z‖L2(Ω)

= sup
z∈R,z 6=0

(∇(yh − yh),∇(vz − Ihvz))Ω

‖z‖L2(Ω)

≤ ch‖∇(yh − yh)‖L2(Ω).(55)

In order to bound ‖∇(yh − yh)‖L2(Ω) by the data we consider the lifting B̃huh ∈
Y∗h defined by (16). The next steps are simpler than in section 2 since we have a
quasi-uniform family of meshes and obtain a sharp estimate also by using an inverse
inequality below. The homogenized solution yh0 = yh − B̃huh ∈ H1

0 (Ω) satisfies

(∇yh0 ,∇v)Ω = (f, v)Ω − (∇(B̃huh),∇v)Ω ∀v ∈ H1
0 (Ω).

By taking v = yh0 we see that

‖∇yh0 ‖2L2(Ω) ≤ ‖f‖H−1(Ω)‖yh0 ‖H1(Ω) + ‖∇(B̃huh)‖L2(Ω)‖∇yh0 ‖L2(Ω).

Using the Poincaré inequality we obtain

‖∇yh0 ‖L2(Ω) ≤ c‖f‖H−1(Ω) + ‖∇(B̃huh)‖L2(Ω),(56)

and with the Céa lemma

‖∇(yh − yh)‖L2(Ω) ≤ ‖∇yh0 ‖L2(Ω) ≤ c‖f‖H−1(Ω) + ‖∇(B̃huh)‖L2(Ω).

The remaining term ‖∇(B̃huh)‖L2(Ω) is estimated by using the inverse inequality

‖∇(B̃huh)‖L2(T ) ≤ ch−1/2‖uh‖L2(E)

for E ⊂ T ∩ Γ, T ∈ Th, which can be proved by standard scaling arguments, to get

‖∇(B̃huh)‖L2(Ω) ≤ ch−1/2‖uh‖L2(Γ).(57)

Hence we proved

‖∇(yh − yh)‖L2(Ω) ≤ c‖f‖H−1(Ω) + ch−1/2‖uh‖L2(Γ).

With (53), (50), (55), the previous inequality, and (48) we finish the proof.

With (42) we can immediately conclude the following result.

Corollary 3.3. Let yh ∈ Y∗h be the solution of (51), then the discretization
error estimate

‖y − (ΠRyh + α(y)ps)‖L2(Ω) ≤ Ch1/2
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
holds, noting that ps and α(y) are given by (39) and (43), respectively.

Hence the positive result is that ΠRyh + α(y)ps is a better approximation of y
than yh. The problem is that ps and φs are used explicitly, and in practice they are
not known. A remedy of this drawback is the aim of the next section.
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3.3. Approximate singular functions. Following [17], we approximate ps
from (39) by

phs = p∗h − rh + r−λ sin(λθ), rh = B̃h

(
r−λ sin(λθ)

)
,

p∗h ∈ Y0h : (∇p∗h,∇vh)Ω = (∇rh,∇vh)Ω ∀vh ∈ Y0h

(58)

with B̃h from (16). The function φs from (41) admits the splitting

φs = φ̃+ βrλ sin(λθ)(59)

with φ̃ ∈ H2(Ω) and β = π−1‖ps‖2L2(Ω); see again [17]. It is approximated by

φhs = φ∗h − βhsh + βhr
λ sin(λθ), sh = B̃h

(
rλ sin(λθ)

)
, βh =

1
π
‖phs‖2L2(Ω),

φ∗h ∈ Y0h : (∇φ∗h,∇vh)Ω = (phs , vh)Ω + βh(∇sh,∇vh)Ω ∀vh ∈ Y0h,
(60)

that means φ̃ is approximated by φ̃h = φ∗h − βhsh ∈ Yh. The approximation errors
are bounded by

‖ps − phs‖L2(Ω) ≤ ch2λ−ε ≤ ch,(61)

|β − βh| ≤ ch2λ−ε ≤ ch,(62)

‖φs − φhs‖1,Ω ≤ ch;(63)

see [17, Lemmas 3.1–3.3], where (62) and (63) imply

‖φ̃− φ̃h‖1,Ω ≤ ch.(64)

At the end of section 3.2 we saw that ΠRyh + α(y)ps is a better approximation
of y than yh. Since this function is not computable we approximate it by

zh = Πh
R yh + αhp

h
s(65)

with

Πh
R yh = yh − γhphs , γh =

(yh, phs )Ω

‖phs‖2L2(Ω)
,(66)

and a suitable approximation αh of α(y) from (43). To this end we write the prob-
lematic term by using (59) as

(u, ∂nφs)Γ = (u, ∂nφ̃)Γ + β(u, ∂n(rλ sin(λθ)))Γ,

and replace the term (u, ∂nφ̃)Γ by (uh, ∂nφ̃)Γ. Since φ̃ belongs to H2(Ω) and uh is
the trace of B̃huh, we get by using the Green formula

(uh, ∂nφ̃)Γ = (B̃huh,∆φ̃)Ω + (∇B̃huh,∇φ̃)Ω = −(B̃huh, ps)Ω + (∇B̃huh,∇φ̃)Ω(67)

as ∆φ̃ = ∆φs = −ps. With all these notations and results, we define

αh =
(B̃huh, phs )Ω − (∇B̃huh,∇φ̃h)Ω − βh(u, ∂n(rλ sin(λθ)))Γ + (f, φhs )Ω

(phs , phs )2
Ω

.(68)

Note that αh can be computed explicitly and therefore zh as well.
Let us estimate the approximation errors made.
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Lemma 3.4. Let yh ∈ Y∗h be the solution of (51). Then the error estimates

‖ΠRyh −Πh
R yh‖L2(Ω) ≤ ch

(
‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
,(69)

|α(y)− αh| ≤ ch1/2
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
(70)

hold.

Proof. With the definitions of ΠR and Πh
R, with γ := (yh, ps)Ω/‖ps‖2L2(Ω), and by

using the triangle inequality we have

‖ΠRyh −Πh
R yh‖L2(Ω) = ‖γps − γhphs‖L2(Ω) ≤ |γ − γh| ‖phs‖L2(Ω) + |γ| ‖ps − phs‖L2(Ω).

We write

γ − γh =
(yh, ps)Ω

‖ps‖2L2(Ω)
− (yh, phs )Ω

‖phs‖2L2(Ω)

=
(yh, ps − phs )Ω

‖ps‖2L2(Ω)
+ (yh, phs )Ω

(
1

‖ps‖2L2(Ω)
− 1
‖phs‖2L2(Ω)

)

=
(yh, ps − phs )Ω

‖ps‖2L2(Ω)
+ (yh, phs )Ω

(phs + ps, p
h
s − ps)Ω

‖ps‖2L2(Ω)‖phs‖
2
L2(Ω)

,

and by the Cauchy–Schwarz inequality and (61) we get

|γ − γh| ≤ ch‖yh‖L2(Ω).

We have used that ‖ps‖L2(Ω) and ‖phs‖L2(Ω) can be treated as constants due to the
definition of ps and due to (61). We conclude with |γ| ≤ c‖yh‖L2(Ω) and (61) that

‖ΠRyh −Πh
R yh‖L2(Ω) ≤ ch‖yh‖L2(Ω).(71)

In view of the finite element error estimate (52) and the standard a priori estimate
for the very weak solution,

‖y‖L2(Ω) ≤ c
(
‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
(see Lemma 2.3 of [4]), we have

‖yh‖L2(Ω) ≤ ‖y‖L2(Ω) + ‖y − yh‖L2(Ω) ≤ c
(
‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
.

This estimate together with (71) proves (69).
The proof of the estimate (70) is based on writing the problematic term in the

definition of α(y) without approximation as

(u, ∂nφs)Γ = (u, ∂nφ̃)Γ + β(u, ∂n(rλ sin(λθ)))Γ

= (u− uh, ∂nφ̃)Γ + (uh, ∂nφ̃)Γ + β(u, ∂n(rλ sin(λθ)))Γ

= (u− uh, ∂nφ̃)Γ − (B̃huh, ps)Ω + (∇B̃huh,∇φ̃)Ω + β(u, ∂n(rλ sin(λθ)))Γ,
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where we used (67) in the last step. Consequently, we showed that

α(y)− αh =
1

‖ps‖2L2(Ω)

(
−(u−uh, ∂nφ̃)Γ+(B̃huh, ps−phs )Ω−(∇B̃huh,∇(φ̃−φ̃h))Ω

− (β − βh) (u, ∂n(rλ sin(λθ)))Γ + (f, φs − φhs )Ω

)
.

To prove (70), in view of (61), (62), and (63) it remains to show that∣∣∣(u− uh, ∂nφ̃)Γ

∣∣∣ ≤ ch1/2‖u‖L2(Γ),∣∣∣(B̃huh, ps − phs )Ω

∣∣∣ ≤ ch1/2‖u‖L2(Γ),∣∣∣(∇B̃huh,∇(φ̃− φ̃h))Ω

∣∣∣ ≤ ch1/2‖u‖L2(Γ).

The first estimate follows from the estimate (49) and the fact that φ̃ belongs to H2(Ω).
The second one follows from the Cauchy–Schwarz inequality and the estimates (57)
and (61). Similarly, the third estimate follows from the Cauchy–Schwarz inequality
and the estimates (57) and (64).

Corollary 3.5. Let Ω be a nonconvex domain and let yh ∈ Y∗h be the solution
of (51) and let zh be derived by (65), (66), and (68), then there holds

‖y − zh‖L2(Ω) ≤ Ch1/2
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
.

Proof. The main ingredients of the proof were already derived. Indeed, it is

‖y − zh‖L2(Ω) = ‖ΠRy + α(y)ps −Πh
R yh − αhphs‖L2(Ω)

≤ ‖ΠRy −ΠRyh‖L2(Ω) + ‖ΠRyh −Πh
R yh‖L2(Ω)+

|α(y)− αh| ‖ps‖L2(Ω) + |αh| ‖ps − phs‖L2(Ω).

The first three terms can be estimated by using Lemmas 3.2 and 3.4. So it remains
to treat the fourth term. To bound |αh| we use the triangle inequality

|αh| ≤ |αh − α(y)|+ |α(y)|.

For the first term we use (70), while for the second term we use (43) noting that φs
belongs to H3/2+ε(Ω) with some ε > 0. Altogether we have

|αh| ≤ C
(
‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
and conclude by using (61).

3.4. The method in the form of an algorithm. Before we describe the
numerical experiments, let us summarize the algorithm.

1. Compute the finite element solution yh ∈ Y∗h via (5) with uh ∈ Y ∂h being an
approximation of the boundary datum u satisfying (48) and (49).
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2. Compute the approximate singular functions (compare (58) and (60)):

rh = B̃h

(
r−λ sin(λθ)

)
,

p∗h ∈ Y0h : (∇p∗h,∇vh)Ω = (∇rh,∇vh)Ω ∀vh ∈ Y0h,

p̃h = p∗h − rh,
βh = 1

π‖p̃h + r−λ sin(λθ)‖2L2(Ω),

sh = B̃h

(
rλ sin(λθ)

)
,

φ∗h ∈ Y0h :

(∇φ∗h,∇vh)Ω = (p̃h + r−λ sin(λθ), vh)Ω + βh(∇sh,∇vh)Ω ∀vh ∈ Y0h,

φ̃h = φ∗h − βhsh.

3. Compute

γh =
(yh, phs )Ω

(phs , phs )Ω
with phs = p̃h + r−λ sin(λθ),

αh =
(B̃huh, phs )Ω − (∇B̃huh,∇φ̃h)Ω − βh(u, ∂n(rλ sin(λθ)))Γ + (f, φhs )Ω

(phs , phs )2
Ω

,

δh = αh − γh,
z̃h = yh + δhp̃h

(compare (66) and (68)). According to (65), the numerical solution is

zh = z̃h + δhr
−λ sin(λθ).

Note that all integrals with rλ and r−λ must be computed with care.

4. Numerical experiment. This section is devoted to the numerical verifica-
tion of our theoretical results. For that purpose we present an example with known
solution. Furthermore, to examine the influence of the corner singularities, we con-
sider several polygonal domain Ωω’s depending on an interior angle ω ∈ (0, 2π); we
present here the results for ω = 270◦ and ω = 355◦. The computational domains are
defined by

Ωω := (−1, 1)2 ∩ {x ∈ R2 : (r(x), θ(x)) ∈ (0,
√

2]× [0, ω]},(72)

where r and θ stand for the polar coordinates located at the origin. The boundary
of Ωω is denoted by Γω. We solve the problem −∆y = 0 in Ωω, y = u on Γω,
numerically by using a standard finite element method with graded meshes and the
proposed dual singular function method with a quasi-uniform family of meshes. The
boundary datum u is chosen to be

u := r−0.4999 sin(−0.4999 θ) on Γω.

This function belongs to Lp(Γ) for every p < 2.0004. The exact solution of our
problem is simply y = r−0.4999 sin(−0.4999 θ), since y is harmonic.

The quasi-uniform family of finite element meshes is generated from a coarse
initial mesh by recursively using a newest vertex bisection algorithm; see [16]. Graded
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Fig. 1. Graded mesh with µ = 0.3333, generated by newest vertex bisection; left: whole mesh,
right: zoom.

Table 1
Discretization errors for ω = 270◦; left: eh = y−yh with quasi-uniform meshes (standard) and

eh = y − zh (DSCM); right: eh = y − zh with graded meshes (µ = 0.333).

Unknowns Standard eoc DSCM eoc

113 0.645 0.587
417 0.568 0.193 0.423 0.472

1601 0.503 0.181 0.303 0.482
6273 0.447 0.175 0.216 0.489

24833 0.397 0.171 0.154 0.493
98817 0.353 0.169 0.109 0.496

394241 0.314 0.168 0.077 0.498

Expected 0.167 0.5

Unknowns Error eoc

113 0.645
428 0.445 0.559

1648 0.312 0.524
6463 0.220 0.512

25544 0.155 0.508
101563 0.110 0.504
405014 0.077 0.502

Expected 0.5

meshes are generated by marking and bisecting every element T ∈ Th which satisfies
hT > h or hT > h (rT,C/R)1−µ until the desired global mesh size h is reached, where
rT,C denotes the distance between the origin and the centroid of the triangle T ; cf.
[30, section 3.2.5]. Note that only elements which fulfill rT < R are gradually refined,
where R is a fixed parameter; see Figure 1. As a regularization we have used the
L2(Γ)-projection. The discretization errors are calculated by adaptive quadrature.

The discretization errors for different mesh sizes and the corresponding experi-
mental orders of convergence (eoc) are given in Table 1 for the interior angle ω = 270◦

and in Table 2 for the interior angle ω = 355◦. We see that the numerical results
confirm the expected convergence rate 1/2 for the dual singular complement method
(DSCM) and the finite element method on sufficently graded meshes. Further tests
and illustrations of the numerical solutions can be found in the preprint version [3] of
the paper.

Concerning the DSCM, we emphasize that the quadrature formula for the numer-
ical evaluation of the integral (u, ∂n(rλ sin(λθ)))Γ has to be adapted in order to get
a sufficiently good approximation. Otherwise, the error due to quadrature dominates
the overall error. In our implementation, we chose for the numerical integration a
graded mesh on the boundary (hE ∼ hr1−µ

E if the distance rE of the boundary edge E
satisfies 0 < rE < R with R being the radius of the refinement zone and µ being the
refinement parameter, and hT = h1/µ for rE = 0) combined with a one-point Gauss
quadrature rule on each element. The choice µ ≤ 2π/ω − 1 seems to be the correct
grading to achieve a convergence order of 1/2. For the results presented in Tables 1
and 2 we used R = 0.1 and µ = 2π/ω − 1.
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Table 2
Discretization errors for ω = 355◦; left: eh = y−yh with quasi-uniform meshes (standard) and

eh = y − zh (DSCM); right: eh = y − zh with graded meshes (µ = 0.014085).

Unknowns Standard eoc DSCM eoc

159 1.069 1.021
589 1.049 0.029 0.834 0.291

2265 1.036 0.018 0.590 0.500
8881 1.028 0.012 0.417 0.500

35169 1.021 0.010 0.295 0.499
139969 1.015 0.008 0.209 0.497
558465 1.010 0.008 0.148 0.495

Expected 0.007 0.5

Unknowns Error eoc

159 1.069
970 0.854 0.325

4116 0.600 0.509
16154 0.424 0.502
62949 0.298 0.508

247276 0.210 0.505
979316 0.148 0.505

Expected 0.5
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[7] T. Apel, A.-M. Sändig, and J. R. Whiteman, Graded mesh refinement and error estimates
for finite element solutions of elliptic boundary value problems in non-smooth domains,
Math. Methods Appl. Sci., 19 (1996), pp. 63–85.
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