
A REDUCED-SPACE ALGORITHM FOR MINIMIZING
`1-REGULARIZED CONVEX FUNCTIONS

TIANYI CHEN‡¶, FRANK E. CURTIS† , AND DANIEL P. ROBINSON§¶

Abstract. We present a new method for minimizing the sum of a differentiable convex function
and an `1-norm regularizer. The main features of the new method include: (i) an evolving set of
indices corresponding to variables that are predicted to be nonzero at a solution (i.e., the support);
(ii) a reduced-space subproblem defined in terms of the predicted support; (iii) conditions that
determine how accurately each subproblem must be solved, which allow for Newton, Newton-CG,
and coordinate-descent techniques to be employed; (iv) a computationally practical condition that
determines when the predicted support should be updated; and (v) a reduced proximal gradient step
that ensures sufficient decrease in the objective function when it is decided that variables should be
added to the predicted support. We prove a convergence guarantee for our method and demonstrate
its efficiency on a large set of model prediction problems.

Key words. nonlinear optimization, convex optimization, sparse optimization, active-set meth-
ods, reduced-space methods, subspace minimization, model prediction

AMS subject classifications. 90C06, 90C25, 90C30, 90C55, 90C90, 49J52, 49M37, 62–07,
62M20, 65K05

1. Introduction. In this paper, we propose, analyze, and provide the results
of numerical experiments for a new method for solving `1-norm regularized convex
optimization problems of the form

minimize
x∈Rn

F (x), where F (x) := f(x) + λ‖x‖1, (1.1)

f : Rn → R is a twice continuously differentiable convex function, and λ > 0 is a
weighting parameter. A necessary and sufficient optimality condition for (1.1) is

0 ∈ ∂F (x) = ∇f(x) + λ∂‖x‖1 (1.2)

with ∂F and ∂‖ · ‖1 denoting the subdifferentials of F and ‖ · ‖1, respectively. Our
method for solving (1.1) generates a sequence of iterates such that any limit point of
the sequence satisfies (1.2). It is applicable when only first-order derivative informa-
tion is computed, but is most effective when one can at least approximate second-order
derivative matrices, e.g., using limited-memory quasi-Newton techniques.

Problems of the form (1.1) routinely arise in statistics, signal processing, and ma-
chine learning applications, and are usually associated with data fitting or maximum
likelihood estimation. A popular setting is binary classification using logistic regres-
sion (where f is a logistic cost function), although instances of such problems also
arise when performing multi-class logistic regression and profit regression. Instances
of (1.1) also surface when using LASSO or elastic-net formulations to perform data

†Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA.
E-mail: frank.e.curtis@gmail.com. This author was supported by the U.S. Department of Energy,
Office of Science, Applied Mathematics, Early Career Research Program under Award Number de–
sc0010615 and by the U.S. National Science Foundation, Division of Mathematical Sciences, Com-
putational Mathematics Program under Award Number DMS–1016291.

‡Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD,
USA. Email: tchen59@jhu.edu.

§Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD,
USA. Email: daniel.p.robinson@gmail.com.

¶This author was supported by IDIES Seed Funding at Johns Hopkins University.

1

ar
X

iv
:1

60
2.

07
01

8v
1

 [
m

at
h.

O
C

]
 2

3
Fe

b
20

16

mailto:frank.e.curtis@gmail.com
http://arxiv.org/abs/de--sc/0010615
http://arxiv.org/abs/de--sc/0010615
mailto:tchen59@jhu.edu
mailto:daniel.p.robinson@gmail.com

analysis and discovery, such as in unsupervised subspace clustering on data drawn
from a union of subspaces.

1.1. Literature review and our key contributions. Popular first-order opti-
mization methods for solving (1.1) include ISTA, FISTA, and SpaRSA [2, 13]. Second-
order methods have also been proposed, which can roughly be split into the classes
of proximal-Newton methods [4, 8, 10, 11, 14] and orthant-based methods [1, 3, 9].
Proximal-Newton methods solve problem (1.1) by minimizing a sequence of subprob-
lems formed as the sum of a quadratic approximation to f and the nonsmooth `1-
norm regularizer. For example, the state-of-the-art software LIBLINEAR, which im-
plements newGLMNET [14], uses a coordinate descent algorithm to approximately
minimize each piecewise quadratic subproblem. Orthant-based methods, on the other
hand, minimize smooth quadratic approximations to (1.1) over a sequence of orthants
in Rn until a solution is found. Of particular interest is the recently proposed orthant-
based method OBA [9] in which every iteration consists of a corrective cycle of orthant
predictions and subspace minimization steps. OBA was shown to be slower than LIB-
LINEAR when the Hessian matrices were diagonally dominant, but faster otherwise,
at least on the collection of test problems considered in [9].

Since LIBLINEAR and OBA are the most relevant to the algorithm described in
this paper, let us discuss their respective advantages and disadvantages in more detail.
The key advantage of LIBLINEAR is its use of a coordinate descent (CD) algorithm to
approximately minimize the piecewise quadratic subproblem. The use of CD means
that one should expect excellent performance on problems whose Hessian matrices
are strongly diagonally dominant. This expectation was confirmed, as mentioned
above, by the OBA paper [9]. For some problems encountered in model prediction,
e.g., when using logistic regression to perform classification, the Hessians are often
strongly diagonally dominant, at least after certain data scaling techniques are used.
However, not all prediction problems have such nice diagonal dominance properties,
and in some instances the user would prefer to avoid discovering a proper scaling for
their data. In these latter cases, the OBA method is typically superior.

Another potential advantage of the OBA method is its use of an active-set strategy
that uses subproblems that are smaller in dimension than the ambient space. For
many `1-norm regularized prediction problems, the number of nonzero components
in a solution is a small percentage of the ambient dimension, and thus OBA spends
most of its time solving small dimensional problems. This is an advantage, at least
when the zero and nonzero structure of the solution is quickly identified.

We have the perspective that both LIBLINEAR and OBA are valuable state-
of-the-art algorithms that complement each other. Our fast reduced space algorithm
(FaRSA) is designed to capitalize on the advantages of both while avoiding their
disadvantages. The following bulleted points summarize our key contributions.

(i) We present a new active-set line search method that utilizes reduced-space
subproblems, approximate solutions of which can be computed efficiently.

(ii) Unlike the active-set OBA method, our method does not require the com-
putation of an ISTA step during each iteration to ensure convergence. We achieve
convergence by combining a new projected backtracking line search procedure, an
approximate subspace minimization scheme, and a mechanism for determining when
the support of the solution estimate should be updated.

(iii) Our framework is flexible. In particular, we introduce a new set of con-
ditions that signal how accurately each subproblem should be solved and allow for
various subproblem solvers to be used. In so doing, our method easily accommodates

2

a Newton-CG subproblem solver as in OBA and a CD solver as in LIBLINEAR. In-
terestingly, this allows for multiple subproblem solvers to be used in parallel, thus
allowing for numerical performance that can be as good as either LIBLINEAR and
OBA regardless of whether the problem Hessians are strongly diagonally dominant.

(iv) As demonstrated in the numerical experiments described in this paper, the
practical performance of our method is state-of-the-art.

We end this review by remarking that our proposed algorithm has similarities
with the iterative method that one would obtain using the following procedure: (i)
at a given iterate xk, construct a quadratic model of f and recast the minimization
of this model plus the regularization term λ‖x‖1 into a bound-constrained quadratic
optimization problem (similarly to the procedure in SpaRSA), (ii) approximately
solve this subproblem using the techniques developed in [5, 6, 7] (see also [12]), and
(iii) translate the resulting solution back into the space of x variables to produce
a trial step from xk, call it dk. Indeed, our initial developments of this work was
based on these ideas. However, the algorithm proposed in this paper involves some
deviations and enhancements from this starting point.

1.2. Notation. Let I ⊆ {1, 2, . . . , n} denote an index set of variables. For any
v ∈ Rn, we let [v]I denote the subvector of v consisting of elements of v with indices
in I. Similarly, for any symmetric matrix M ∈ Rn×n, we let [M]I,I denote the
submatrix of M consisting of the rows and columns of M that correspond to the
index set I. For any vector v, we let sgn(v) denote the vector of the same length as v
whose ith component is 0 when [v]i = 0, is 1 when [v]i > 0, and is −1 when [v]i < 0.
For any vector v, we let ‖v‖1 and ‖v‖ denote its `1-norm and `2-norm, respectively.

2. Algorithm FaRSA. Crucial to our algorithm is the manner in which we
handle the zero and nonzero components of a solution estimate. In order to describe
the details of our approach, we first define the index sets

I0(x) := {i : [x]i = 0}, I+(x) := {i : [x]i > 0}, and I−(x) := {i : [x]i < 0}.

We call I0(x) the set of zero variables, I+(x) the set of positive variables, I−(x)
the set of negative variables, and the union of I−(x) and I+(x) the set of nonzero
variables at x. We use these sets to define measures of optimality corresponding to
the zero and nonzero variables at x. Respectively, these measures are as follows:

[β(x)]i :=

[∇f(x)]i + λ if i ∈ I0(x) and [∇f(x)]i + λ < 0,

[∇f(x)]i − λ if i ∈ I0(x) and [∇f(x)]i − λ > 0,

0 otherwise;

[φ(x)]i :=
0 if i ∈ I0(x),

min{[∇f(x)]i + λ,max{[x]i, [∇f(x)]i − λ}} if i ∈ I+(x) and [∇f(x)]i + λ > 0,

max{[∇f(x)]i − λ,min{[x]i, [∇f(x)]i + λ}} if i ∈ I−(x) and [∇f(x)]i − λ < 0,

[∇f(x) + λ · sgn(x)]i otherwise.

The following result shows that the functions β and φ together correspond to a
valid optimality measure for problem (1.1).

Lemma 2.1. Let S be an infinite set of positive integers such that {xk}k∈S → x∗.
Then, x∗ is a solution to (1.1) if and only if {β(xk)}k∈S → 0 and {φ(xk)}k∈S → 0.
Consequently, x∗ is a solution to (1.1) if and only if ‖β(x∗)‖ = ‖φ(x∗)‖ = 0.

3

Proof. Suppose {β(xk)}k∈S → 0 and {φ(xk)}k∈S → 0. Then, first, consider any
i such that [x∗]i > 0, which means that [xk]i > 0 for all sufficiently large k ∈ S. We
now consider two subcases. If [∇f(xk)]i + λ ≤ 0 for infinitely many k ∈ S, then it
follows from the definition of φ(xk) and {φ(xk)}k∈S → 0 that [∇f(x∗)]i + λ = 0. On
the other hand, if [∇f(xk)]i + λ > 0 for infinitely many k ∈ S, then it follows from
the definition of φ(xk), {φ(xk)}k∈S → 0, and [x∗]i > 0 that [∇f(x∗)]i + λ = 0. By
combining both cases, we have established that [∇f(x∗)]i + λ = 0, so that the ith
component satisfies the optimality conditions (1.2). A similar argument may be used
for the case when one considers i such that [x∗]i < 0 to show that [∇f(x∗)]i − λ = 0.

It remains to consider i such that [x∗]i = 0. We have four subcases to consider.
First, if infinitely many k ∈ S satisfy [xk]i = 0 and [∇f(xk)]i + λ < 0, then it follows
from the definition of β(xk) and {β(xk)}k∈S → 0 that [∇f(x∗)]i + λ = 0; a similar
argument shows that if infinitely many k ∈ S satisfy [xk]i = 0 and [∇f(xk)]i − λ > 0,
then [∇f(x∗)]i − λ = 0. Second, if infinitely many k ∈ S satisfy [xk]i = 0 and
|[∇f(xk)]i| < λ, then, trivially, |∇fi(x∗)| ≤ λ. Third, if infinitely many k ∈ S satisfy
[xk]i > 0 and [∇f(xk)]i + λ ≤ 0, then it follows from the definition of φ(xk) and
{φ(xk)}k∈S → 0 that [∇f(x∗)]i + λ = 0; a similar argument shows that if infinitely
many k ∈ S satisfy [xk]i < 0 and [∇f(xk)]i − λ ≥ 0, then [∇f(x∗)]i − λ = 0. Fourth,
if infinitely many k ∈ S satisfy [xk]i > 0 and [∇f(xk)]i + λ > 0, then it follows from
the definition of φ(xk) and {φ(xk)}k∈S → 0 that |[∇f(x∗)]i| ≤ λ; a similar argument
shows that if infinitely many k ∈ S satisfy [xk]i < 0 and [∇f(xk)]i − λ < 0, then
|[∇f(x∗)]i| ≤ λ. By combining these subcases, we conclude that |[∇f(x∗)]i| ≤ λ, so
the ith component satisfies the optimality condition (1.2).

To prove the reverse implication, now suppose that x∗ is a solution to prob-
lem (1.1). If [x∗]i > 0, then [β(xk)]i = 0 for all sufficiently large k ∈ S and
{[φ(xk)]i}k∈S → 0 since [∇f(x∗)]i + λ = 0. If [x∗]i < 0, then [β(xk)]i = 0 for all
sufficiently large k ∈ S and {[φ(xk)]i}k∈S → 0 since [∇f(x∗)]i − λ = 0. Finally, if
[x∗]i = 0, then |[∇f(x∗)]i| ≤ λ, which with the definitions of β(xk) and φ(xk) implies
that {[β(xk)]i}k∈S → 0 and {[φ(xk)]i}k∈S → 0.

We now state our proposed method, FaRSA, as Algorithm 1. When considering
a reduced-space subproblem defined by a chosen index set Ik (see lines 7 and 14), the
algorithm makes use of a quadratic model of the objective of the form (see line 10)

mk(d) := gTkd+ 1
2d
THkd.

FaRSA also makes use of two line search subroutines, stated as Algorithms 2 and 3,
the former of which employs the following projection operator dependent on xk:

[Proj(y ;xk)]i :=

max{0, [y]i} if I+(xk),

min{0, [y]i} if I−(xk),

0 if I0(xk).

FaRSA computes a sequence of iterates {xk}. During each iteration, the sets
I0(xk), I+(xk), and I−(xk) are identified, which are used to define β(xk) and φ(xk).
We can see in line 4 of Algorithm 1 that when both ‖β(xk)‖ and ‖φ(xk)‖ are less
than a prescribed tolerance ε > 0, it returns xk as an approximate solution to (1.1);
this is justified by Lemma 2.1. Otherwise, it proceeds in one of two ways depending
on the relative sizes of ‖β(xk)‖ and ‖φ(xk)‖. We describe these two cases next.

(i) The relationship ‖β(xk)‖ ≤ γ‖φ(xk)‖ indicates that significant progress
toward optimality can still be achieved by reducing F over the current set of nonzero

4

Algorithm 1 FaRSA for solving problem (1.1).

1: Input: x0
2: Constants: {ηφ, ηβ , ξ} ⊂ (0, 1], η ∈ (0, 1/2], and {γ, ε} ⊂ (0,∞)
3: for k = 0, 1, 2, . . . do
4: if max{‖β(xk)‖, ‖φ(xk)‖} ≤ ε then
5: Return the (approximate) solution xk of problem (1.1).

6: if ‖β(xk)‖ ≤ γ‖φ(xk)‖ then [k ∈ Sφ]
7: Choose any Ik ⊆ {i : [φ(xk)]i 6= 0} such that ‖[φ(xk)]Ik‖ ≥ ηφ‖φ(xk)‖.
8: Set Hk ← [∇2F (xk)]IkIk and gk ← [∇F (xk)]Ik .
9: Compute the reference direction

dRk ← −αkgk, where αk ← ‖gk‖2/(gTkHkgk).

10: Compute any direction d̄k that satisfies the inequalities

gTkd̄k ≤ gTkdRk and mk(d̄k) ≤ mk(0).

11: Set [dk]Ik ← d̄k and [dk]i ← 0 for i /∈ Ik.
12: Use Algorithm 2 to compute xk+1 ← linesearch φ(xk, dk, Ik, η, ξ).
13: else [k ∈ Sβ]
14: Choose any Ik ⊆ {i : [β(xk)]i 6= 0} such that ‖[β(xk)]Ik‖ ≥ ηβ‖[β(xk)‖.
15: Set [dk]Ik ← −[β(xk)]Ik and [dk]i ← 0 for i /∈ Ik.
16: Use Algorithm 3 to compute xk+1 ← linesearch β(xk, dk, η, ξ).

Algorithm 2 A line search procedure for computing xk+1 when k ∈ Sφ.

1: procedure xk+1 = linesearch φ(xk, dk, Ik, η, ξ)
2: Set j ← 0 and y0 ← Proj(xk + dk ;xk).
3: while sgn(yj) 6= sgn(xk) do
4: if F (yj) ≤ F (xk) then
5: return xk+1 ← yj . [k ∈ SADD

φ]

6: Set j ← j + 1 and then yj ← Proj(xk + ξjdk ;xk).

7: if j 6= 0 then
8: Set αB ← argsup {α > 0 : sgn(xk + αdk) = sgn(xk)}.
9: Set yj ← xk + αBdk.

10: if F (yj) ≤ F (xk) + ηαB [∇F (xk)]TIk [dk]Ik then
11: return xk+1 ← yj . [k ∈ SADD

φ]

12: loop
13: if F (yj) ≤ F (xk) + ηξj [∇F (xk)]TIk [dk]Ik then
14: return xk+1 ← yj . [k ∈ SSD

φ]

15: Set j ← j + 1 and then yj ← xk + ξjdk.

variables at xk; lines 7–12 are designed for this purpose. In line 7, a subset Ik of
variables are chosen such that the norm of φ(xk) over that subset of variables is at least
proportional to the norm of φ(xk) over the full set of variables. This allows control
over the size of the subproblem, which may be as small as one-dimensional. Note that
for i ∈ Ik, it must hold that [φ(xk)]i 6= 0, which in turn means that i /∈ I0(xk), i.e., the

5

Algorithm 3 A line search procedure for computing xk+1 when k ∈ Sβ .

1: procedure xk+1 = linesearch β(xk, dk, η, ξ)
2: Set j ← 0 and y0 ← xk + dk.
3: while F

(
yj) > F (xk)− ηξj‖dk‖2 do

4: Set j ← j + 1 and then yj ← xk + ξjdk.

5: return xk+1 ← yj .

ith variable is nonzero. This means that the reduced space subproblem to minimize
mk(d) over d ∈ R|Ik| is aimed at minimizing F over the variables in Ik. Our analysis
does not require an exact minimizer of mk. Rather, we allow for the computation
of any direction d̄k that satisfies the conditions in line 10, namely gTkd̄k ≤ gTkd

R
k and

mk(d̄k) ≤ mk(0), where the reference direction dRk is computed in line 9 by minimizing
mk along the steepest decent direction. The first condition imposes how much descent
is required by the search direction d̄k, while the second condition ensures that the
model is reduced at least as much as a zero step. It will be shown (see Lemma 3.7) that
the second condition ensures that d̄k is bounded by a multiple of ‖gk‖. Such conditions
are satisfied by a Newton step, by any Newton-CG iterate, and asymptotically by CD
iterates. Once d̄k is obtained, the search direction dk in the full space is obtained
by filling its elements that correspond to the index set Ik with the elements from
d̄k, and setting the complementary set of variables to zero (see line 11). With the
search direction dk computed, we call Algorithm 2 in line 12, which performs a (non-
standard) backtracking projected line search. This line search procedure makes use of
the projection operator Proj(· ;xk). This operator projects vectors onto the orthant
inhabited by xk, a feature shared by OBA. The while-loop that starts in line 3 of
Algorithm 2 checks whether the trial point yj decreases the objective function F
relative to its value at xk when sgn(yj) 6= sgn(xk). If the line search terminates
in this while-loop, then this implies that at least one component of xk that was
nonzero has become zero for xk+1 = yj . Since the dimension of the reduced space will
therefore be reduced during the next iteration (provided line 6 of Algorithm 1 tests
true), the procedure only requires F (xk+1) ≤ F (xk) instead of a more traditional
sufficient decrease condition, e.g., one based on the Armijo condition. If line 7 of
Algorithm 2 is reached, then the current trial iterate yj satisfies sgn(yj) = sgn(xk),
i.e., the trial iterate has entered the same orthant as that inhabited by xk. Once this
has occurred, the method could then perform a standard backtracking Armijo line
search as stipulated in the loop starting at line 12. For the purpose of guaranteeing
convergence, however, the method first checks whether the largest step along dk that
stays in the same orthant as xk (see lines 8 and 9) satisfies the Armijo sufficient
decrease condition (see line 10). (This aspect makes our procedure different from a
standard backtracking scheme.) If Algorithm 2 terminates in line 5 or 11, then at
least one nonzero variable at xk will have become zero at xk+1, which we indicate by
saying k ∈ SADD

φ ⊆ Sφ. Otherwise, if Algorithm 2 terminates in line 14, then xk+1 and
xk are housed in the same orthant and sufficient decrease in F was achieved (i.e., the
Armijo condition in line 13 was satisfied). Since sufficient decrease has been achieved
in this case, we say that k ∈ SSD

φ ⊆ Sφ.
(ii) When ‖β(xk)‖ > γ‖φ(xk)‖, progress toward optimality is best achieved by

freeing at least one variable that is currently set to zero; lines 14–16 are designed for
this purpose. Since ‖β(xk)‖ is relatively large, in line 14 of Algorithm 1 a subset Ik
of variables is chosen such that the norm of β(xk) over that subset of variables is at

6

least proportional to the norm of β(xk) over the full set of variables. Similar to the
previous case, this allows control over the size of the subproblem, which in the extreme
case may be one-dimensional. If i ∈ Ik, then [β(xk)]i 6= 0, which in turn means that
i ∈ I0(xk), i.e., the ith variable has the value zero. The components of β(xk) that
correspond to Ik are then used to define the search direction dk in line 15. With
the search direction dk computed, Algorithm 3 is called in line 16, which performs
a standard backtracking Armijo line search to obtain xk+1. If a unit step length is
taken, i.e., if xk+1 = xk + dk, then xk+1 can be interpreted as the iterate that would
be obtained by taking a reduced ISTA step in the space of variables indexed by Ik.
(For additional details, see Lemma A.1 in the appendix.)

3. Convergence Analysis. Our analysis uses the following assumption that is
assumed to hold throughout this section.

Assumption 3.1. The function f : Rn → R is convex, twice continuously dif-
ferentiable, and bounded below on the level set L := {x ∈ Rn : F (x) ≤ F (x0)}. The
gradient function ∇f : Rn → Rn is Lipschitz continuous on L with Lipschitz con-
stant L. The Hessian function ∇2f : Rn → Rn×n is uniformly positive definite and
bounded on L, i.e., there exist positive constants θmin and θmax such that

θmin‖v‖2 ≤ vTH(x)v ≤ θmax‖v‖2 for all {x, v} ⊂ Rn.

Our analysis uses the index sets (already shown in Algorithms 1–2)

Sφ := {k : lines 7–12 in Algorithm 1 are performed during iteration k},
SADD

φ := {k ∈ Sφ : sgn(xk+1) 6= sgn(xk)},
SSD

φ := {k ∈ Sφ : sgn(xk+1) = sgn(xk)}, and

Sβ := {k : lines 14–16 in Algorithm 1 are performed during iteration k}.

We start with a lemma that establishes an important identity for iterations in Sβ .
Lemma 3.2. If k ∈ Sβ, then (Ik, dk) in lines 14 and 15 of Algorithm 1 yield

[dk]Ik = −[∇f(xk) + λ · sgn(xk + ξjdk)]Ik for any integer j. (3.1)

Consequently, the right-hand side of (3.1) has the same value for any integer j.
Proof. We prove that (3.1) holds for an arbitrary element of Ik. To this end, let

j be any integer and i ∈ Ik ⊆ {` : [β(xk)]` 6= 0]}, where Ik is defined in line 14. It
follows from the definition of Ik, the definition of dk in line 15, and i ∈ Ik that

[dk]i =

{
−
(
[∇f(xk)]i + λ

)
if [∇f(xk)]i + λ < 0,

−
(
[∇f(xk)]i − λ

)
if [∇f(xk)]i − λ > 0,

(3.2)

so that [dk]i 6= 0. Also, since [xk]i = 0 for i ∈ Ik, we know that [xk + ξjdk]i 6= 0.
Thus, we need only consider the following two cases.
Case 1: Suppose [xk + ξjdk]i > 0. In this case, the right-hand-side of (3.1) is equal
to −([∇f(xk)]i + λ). As for the left-hand-side, since [xk]i = 0 and [xk + ξjdk]i > 0,
we have 0 < [xk + ξjdk]i = ξj [dk]i, which combined with ξj > 0 means that [dk]i > 0.
This fact and (3.2) gives [dk]i = −([∇f(xk)]i + λ), so (3.1) holds.
Case 2: Suppose [xk + ξjdk]i < 0. In this case, the right-hand-side of (3.1) is equal
to −([∇f(xk)]i − λ). As for the left-hand-side, since [xk]i = 0 and [xk + ξjdk]i < 0

7

we have 0 > [xk + ξjdk]i = ξj [dk]i, which when combined with ξj > 0 means that
[dk]i < 0. This fact and (3.2) gives [dk]i = −([∇f(xk)]i − λ), so (3.1) holds.

We can now establish a bound for a decrease in the objective when k ∈ Sβ .
Lemma 3.3. If k ∈ Sβ, then dk in line 15 of Algorithm 1 yields

F (xk + ξjdk) ≤ F (xk)− ξj

2
‖dk‖2 for any integer j with 0 ≤ ξj ≤ 1

L
.

Proof. Let j be any integer with 0 ≤ ξj ≤ 1
L and let yj := xk+ξjdk. By Lipschitz

continuity of the gradient function ∇f , we have

f(yj) ≤ f(xk) + ξj∇f(xk)Tdk +
L

2
‖ξjdk‖2

≤ f(xk) + ξj∇f(xk)Tdk +
ξj

2
‖dk‖2. (3.3)

It then follows from (3.3), convexity of both f and λ‖ · ‖1, the fact that sgn(yj) ∈
∂‖yj‖1, the definition of dk (in particular that [dk]i = 0 for i /∈ Ik), and Lemma 3.2
that the following holds for all z ∈ Rn:

F (yj)

= f(yj) + λ‖yj‖1

≤ f(xk) + ξj∇f(xk)Tdk +
ξj

2
‖dk‖2 + λ‖yj‖1

≤ f(z) +∇f(xk)T(xk − z) + ξj∇f(xk)Tdk +
ξj

2
‖dk‖2 + λ‖z‖1 + λ · sgn(yj)

T(yj − z)

≤ F (z) + [∇f(xk) + λ · sgn(yj)]
T (xk − z) + ξj [∇f(xk) + λ · sgn(yj)]

T dk +
ξj

2
‖dk‖2

= F (z) + [∇f(xk) + λ · sgn(yj)]
T (xk − z)− ξj‖dk‖2 +

ξj

2
‖dk‖2

= F (z) + [∇f(xk) + λ · sgn(yj)]
T (xk − z)−

ξj

2
‖dk‖2. (3.4)

The desired result follows by considering z = xk in (3.4).
We now show that Algorithm 3 called in line 16 of Algorithm 1 is well defined,

and that it returns xk+1 yielding sufficient decrease in the objective function.
Lemma 3.4. If k ∈ Sβ, then xk+1 satisfies

F (xk+1) ≤ F (xk)− κβ max{‖β(xk)‖2, γ2‖φ(xk)‖2}, (3.5)

where κβ := ηηβ min{1, ξ/L}.
Proof. Let j be any integer with 0 ≤ ξj ≤ 1

L and let yj := xk + ξjdk. It follows
from Lemma 3.3 and the fact that η ∈ (0, 1/2] in Algorithm 1 that

F
(
yj
)
≤ F (xk)− ξj

2
‖dk‖2 ≤ F (xk)− ηξj‖dk‖2,

It follows from this inequality that Algorithm 3 will return the vector xk+1 = xk+ξj∗dk
with ξj∗ ≥ min{1, ξ/L} when called in line 16 of Algorithm 1. Using this bound, line 3
of Algorithm 3, and lines 15 and 14 of Algorithm 1, we have

F (xk+1) ≤ F (xk)− ηξj∗‖dk‖2 ≤ F (xk)− ηmin{1, ξ/L}‖dk‖2

= F (xk)− ηmin{1, ξ/L}‖[β(xk)]Ik‖2 ≤ F (xk)− ηηβ min{1, ξ/L}‖β(xk)‖2.

8

The inequality (3.5) follows from the definition of κβ , the previous inequality, and the
fact that the inequality in line 6 of Algorithm 1 must not hold since line 16 is assumed
to be reached.

We now show that the index set Sβ must be finite.
Lemma 3.5. The index set Sβ must be finite, i.e., |Sβ | <∞.
Proof. To derive a contradiction, suppose that |Sβ | = ∞, which also means that

Algorithm 1 does not terminate finitely. Since Algorithm 1 does not terminate finitely,
we know from line 4 of Algorithm 1 that max{‖β(xk)‖, ‖φ(xk)‖} > ε for all k ≥ 0.
Combining this inequality with Lemma 3.4 and the fact that F (xk+1) ≤ F (xk) for all
k /∈ Sβ (as a result of Algorithm 2 called in line 12 of Algorithm 1), we may conclude
for any nonnegative integer ` and κβ > 0 defined in Lemma 3.4 that

F (x0)− F (x`+1) =
∑̀
k=0

[
F (xk)− F (xk+1)

]
≥

∑
k∈Sβ ,k≤`

[
F (xk)− F (xk+1)

]
≥

∑
k∈Sβ ,k≤`

κβ max{‖β(xk)‖2, γ2‖φ(xk)‖2}

≥
∑

k∈Sβ ,k≤`

κβ min{1, γ2}ε2.

Rearranging the previous inequality shows that

lim
l→∞

F (x`+1) ≤ lim
`→∞

F (x0)−
∑

k∈Sβ ,k≤`

κβ min{1, γ2}ε2

= F (x0)−
∑
k∈Sβ

κβ min{1, γ2}ε2 = −∞,

which contradicts Assumption 3.1. Thus, we conclude that |Sβ | <∞.
To prove that Algorithm 1 terminates finitely with an approximate solution to

problem (1.1), all that remains is to prove that the set Sφ is finite. To establish that
Sφ ≡ SADD

φ ∪ SSD

φ is finite, we proceed by showing individually that both SADD

φ and
SSD

φ are finite. We begin with the set SADD

φ .
Lemma 3.6. The set SADD

φ is finite, i.e., |SADD

φ | <∞.
Proof. To derive a contradiction, suppose that |SADD

φ | = ∞, which in particular
means that Algorithm 1 does not terminate finitely. Since Lemma 3.5 shows that Sβ
is finite, we may also conclude that there exists an iteration k1 such that k ∈ Sφ =
SADD

φ ∪ SSD

φ for all k ≥ k1.
We proceed by making two observations. First, if the ith component of xk be-

comes zero for some iteration k ≥ k1, it will remain zero for the remainder of the
iterations. This can be seen by using lines 11 and 7 of Algorithm 1 and the definition
of φ(xk) to deduce that if [dk]i 6= 0, then i ∈ Ik ⊆ {` : [φ(xk)]` 6= 0} ⊆ I+(xk)∪I−(xk)
for all k ≥ k1; equivalently, if i ∈ I0(xk), then [dk]i = 0. The second observation is
that at least one nonzero component of xk becomes zero at xk+1 for each k ∈ SADD

φ .
This can be seen by construction of Algorithm 2 when it is called in line 12 of Al-
gorithm 1. Together, these observations contradict |SADD

φ | = ∞, since at most n
variables may become zero. Thus, we must conclude that |SADD

φ | <∞.

9

To establish that SSD

φ is finite, we require the following two lemmas. The first

lemma gives a bound on the size of d̄k that holds whenever k ∈ Sφ.
Lemma 3.7. If k ∈ Sφ, then ‖d̄k‖ ≤ (2/θmin)‖gk‖ where θmin > 0 is defined in

Assumption 3.1.
Proof. Let k ∈ Sφ so that d̄k is computed in line 10 of Algorithm 1, and let

dN

k be the Newton step satisfying Hkd
N

k = −gk with Hk and gk defined in line 8 of
Algorithm 1. It follows that

‖dN

k‖ ≤ ‖H−1k ‖‖gk‖. (3.6)

Let us also define the quadratic function m̄k(d) := mk(dN

k + d) and the associated
level set Lk := {d : m̄k(d) ≤ 0}. We then see that

(d̄k − dN

k) ∈ Lk (3.7)

since m̄k(d̄k−dN

k) = mk(d̄k) ≤ mk(0) = 0, where we have used the condition mk(d̄k) ≤
mk(0) that is required to hold in line 10 of Algorithm 1.

We are now interested in finding a point in Lk with largest norm. To characterize
such a point, we consider the optimization problem

maximize
d∈Rn

1
2‖d‖

2 subject to d ∈ Lk. (3.8)

It is not difficult to prove that a global maximizer of problem (3.8) is d∗ := α∗v with
α2
∗ := (−gTkdN

k)/θ, where (v, θ) with ‖v‖ = 1 is an eigenpair corresponding to the
left-most eigenvalue θ ≥ θmin of Hk. Thus, it follows that ‖d‖2 ≤ ‖d∗‖2 for all d ∈ Lk.
Combining this with (3.7), the definition of d∗, and (3.6) shows that

‖d̄k − dN

k‖2 ≤ ‖d∗‖2 = α2
∗‖v‖2 =

−gTkdN

k

θ
≤ ‖gk‖‖d

N

k‖
θ

≤
‖H−1k ‖‖gk‖2

θ
=

(
‖gk‖
θ

)2

.

By combining the previous inequality with the triangle inequality and (3.6), we obtain

‖d̄k‖ ≤ ‖d̄k − dN

k‖+ ‖dN

k‖ ≤
‖gk‖
θ

+
‖gk‖
θ

=
2‖gk‖
θ
≤ 2‖gk‖

θmin
,

which complete the proof.
The next result establishes a bound on the decrease in F when k ∈ SSD

φ .
Lemma 3.8. If k ∈ SSD

φ , then xk+1 satisfies

F (xk+1) ≤ F (xk)− κφ max{γ−2‖β(xk)‖2, ‖φ(xk)‖2}, (3.9)

where κφ := η2φ min
{

η
θmax

,
ηξ(1−η)θ2min

2θ3max

}
> 0.

Proof. Let k ∈ SSD

φ . We consider two cases. First, suppose that j = 0 when line 7
in Algorithm 2 is reached. In this case, it follows by construction of Algorithm 2
that sgn(y0) = sgn(xk + dk) = sgn(xk), i.e., the full step dk and the vector xk are
contained in the same orthant. Consequently, the loop that starts in line 12 is simply
a backtracking Armijo line search. Thus, if

ξj ∈

(
0,

2(η − 1)[∇F (xk)]TIk[dk]Ik
θmax‖[dk]Ik‖2

]
≡
(

0,
2(η − 1)gTkd̄k
θmax‖d̄k‖2

]
, (3.10)

10

then, by well known properties of twice continuously differentiable functions with
Lipschitz continuous gradients, we have that

F (xk + ξjdk) ≤ F (xk) + ξj [∇F (xk)]TIk [dk]Ik + 1
2ξ

2jθmax‖[dk]Ik‖2

≤ F (xk) + ξj [∇F (xk)]TIk [dk]Ik + ξj(η − 1)[∇F (xk)]TIk [dk]Ik

= F (xk) + ηξj [∇F (xk)]TIk [dk]Ik ,

i.e., the inequality in line 13 will hold whenever (3.10) holds. On the other hand,
suppose that j > 0 when line 7 in Algorithm 2 is reached. Then, since k ∈ SSD

φ , we
may conclude that

F (xk + αBdk) > F (xk) + ηαB [∇F (xk)]TIk [dk]Ik = F (xk) + ηαBg
T
k d̄k (3.11)

in line 10, because otherwise we would have k ∈ SADD

φ = Sφ \ SSD

φ . Since no points
of non-differentiability of ‖ · ‖1 exist on the line segment connecting xk to xk + αBdk
(which follows by the definition of αB in line 8 of Algorithm 2), we can conclude for
the same reason that we acquired (3.10) that (3.11) implies

αB >
2(1− η)|gTkd̄k|
θmax‖d̄k‖2

.

Combining these two cases, we have that the line search procedure in Algorithm 2
will terminate with xk+1 = xk + ξjdk where

ξj ≥ min

{
1,

2ξ(1− η)|gTkd̄k|
θmax‖d̄k‖2

}
and F (xk+1) ≤ F (xk) + ηξjgTk d̄k. (3.12)

Let us now consider two cases. First, suppose that ξj = 1 is returned from the line
search, i.e., j = 0. Then, it follows from (3.12), lines 10 and 9 of Algorithm 1, the
Cauchy-Schwarz inequality, and Assumption 3.1 that

F (xk)− F (xk+1) ≥ −ηξjgTk d̄k = η|gTkd̄k| ≥ η|gTkdRk |

= ηαk‖gk‖2 = η
‖gk‖4

gTkHkgk
≥ η

θmax
‖gk‖2. (3.13)

Now suppose that ξj < 1. Then, it follows from (3.12), the inequality |gTkd̄k| ≥
‖gk‖2/θmax established while deriving (3.13), and Lemma 3.7 that

F (xk)− F (xk+1) ≥ −ηξjgTk d̄k = ηξj |gTkd̄k| ≥
2ηξ(1− η)|gTkd̄k|2

θmax‖d̄k‖2

≥ 2ηξ(1− η)θ2min‖gk‖4

4θ3max‖gk‖2
=

(
ηξ(1− η)θ2min

2θ3max

)
‖gk‖2. (3.14)

Combining (3.13) and (3.14) for the two cases establishes that

F (xk)− F (xk+1) ≥ min

{
η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖gk‖2

= min

{
η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖[∇F (xk)]Ik‖2

≥ min

{
η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖[φ(xk)]Ik‖2

≥ η2φ min

{
η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖φ(xk)‖2 for k ∈ SSD

φ ,

11

where we have also used the condition in lines 7 of Algorithm 1 and the definition
of φ(xk). The inequality (3.9) follows from the previous inequality and the fact that
‖β(xk)‖ ≤ γ‖φ(xk)‖ for all k ∈ Sφ ⊆ SSD

φ as can be seen by line 6 of Algorithm 1.
We may now establish finiteness of the index set SSD

φ .
Lemma 3.9. The index set SSD

φ is finite, i.e., |SSD

φ | <∞.
Proof. To derive a contradiction, suppose that |SSD

φ | = ∞, which means that
Algorithm 1 does not terminate finitely. Thus, it follows from line 4 of Algorithm 1
that max{‖β(xk)‖, ‖φ(xk)‖} > ε for all k ≥ 0. Also, it follows from Lemmas 3.5 and
3.6 that there exists an iteration number k1 such that k ∈ SSD

φ for all k ≥ k1. Thus,
with Lemma 3.8, we have for all ` ≥ k1 that

F (xk1)− F (x`+1) =
∑̀
k=k1

[
F (xk)− F (xk+1)

]
=

∑
k∈SSD

φ ,k1≤k≤`

[
F (xk)− F (xk+1)

]
≥

∑
k∈SSD

φ ,k1≤k≤`

κφ max{γ−2‖β(xk)‖2, ‖φ(xk)‖2}

≥
∑

k∈SSD
φ ,k1≤k≤`

κφ min{γ−2, 1}ε2.

Rearranging the previous inequality shows that

lim
l→∞

F (x`+1) ≤ lim
`→∞

[
F (xk1)−

∑
k∈SSD

φ ,k1≤k≤`

κφ min{γ−2, 1}ε2
]

= F (xk1)−
∑

k∈SSD
φ ,k1≤k

κφ min{γ−2, 1}ε2 = −∞,

which contradicts Assumption 3.1. Thus, we conclude that |SSD

φ | <∞.
We now prove our first main convergence result.
Theorem 3.10. Algorithm 1 terminates finitely.
Proof. Since each iteration number k generated in the algorithm is an element of

Sβ ∪ SADD

φ ∪ SSD

φ , the result follows by Lemmas 3.5, 3.6, and 3.9.
Our final convergence result states what happens when the finite termination

criterion is removed from Algorithm 1.
Theorem 3.11. Let x∗ be the unique solution to problem (1.1). If ε in the finite

termination condition in line 4 of Algorithm 1 is replaced by zero, then either:
(i) there exists an iteration k such that xk = x∗; or

(ii) infinitely many iterations {xk} are computed and they satisfy

lim
k→∞

xk = x∗, lim
k→∞

ϕ(xk) = 0, and lim
k→∞

β(xk) = 0.

Proof. If case (i) occurs, then there is nothing left to prove. Thus, for the remain-
der of the proof, we assume that case (i) does not occur. Since case (i) does not occur,
we know that Algorithm 1 performs an infinite sequence of iterations. Let us then de-
fine the set S := Sβ ∪SSD

φ , which must be infinite (since any consecutive subsequence
of iterations in SADD

φ must be finite by the finiteness of n). It follows from (3.5) for

12

k ∈ Sβ , (3.9) for k ∈ SSD

φ , and Assumption 3.1 (specifically, the assumption that f is
bounded below over L) that

lim
k∈S

max{‖β(xk)‖, ‖ϕ(xk)‖} = 0.

Combining this with Assumption 3.1 and Lemma 2.1 gives

lim
k∈S

xk = x∗. (3.15)

Now, we claim that the previous limit holds over all iterations. To prove this by
contradiction, suppose that there exists an infinite K ⊆ SADD

ϕ and a scalar ε > 0 with

‖xk − x∗‖ ≥ ε for all k ∈ K. (3.16)

From Assumption 3.1, we conclude that there exists δ > 0 such that

if F (x) ≤ F (x∗) + δ, then ‖x− x∗‖ < ε. (3.17)

Moreover, from (3.15) and Assumption 3.1, there exists a smallest kS ∈ S such that

F (xkS) ≤ F (x∗) + δ. (3.18)

There then exists a smallest kK ∈ K such that kK > kS . Since, by construction,
{F (xk)}k≥0 is monotonically decreasing , we may conclude with (3.18) that

F (xkK) ≤ F (xkS) ≤ F (x∗) + δ. (3.19)

Combining (3.19) and (3.17), we deduce that ‖xkK−x∗‖ < ε, which contradicts (3.16)
since kK ∈ K. This completes the proof.

4. Numerical Results. In this section, we present results when employing an
implementation of FaRSA to solve a collection of `1-norm regularized logistic regres-
sion problems. Such problems routinely arise in the context of model prediction,
making the design of advanced optimization algorithms that efficiently and reliably
solve them paramount in big data applications. We first describe the datasets consid-
ered in our experiments, then describe some details of our implementation (henceforth
simply referred to as FaRSA), and then present the results of our experiments.

4.1. Datasets. We tested FaRSA on `1-norm regularized logistic regression
problems using 31 datasets (see Table 4.1), 19 of which are available only after stan-
dard scaling practices have been applied. For the remaining 12 datasets, we considered
both unscaled and scaled versions, where, for each, the scaling technique employed is
described in the last column of Table 4.1. A checkmark in the “Unscaled” column
indicates that we were able to obtain an unscaled version of that dataset.

Most of the datasets in Table 4.1 can be obtained from the LIBSVM repository.1

From this repository, we excluded all regression and multiple-class (greater than two)
instances, except for mnist since it is such a commonly used dataset. Since mnist
is for digit classification, we transformed it for binary classification by assigning the
digits 0–4 to the label −1, and the digits 5–9 to the label 1. The remaining datasets
were binary classification examples from which we removed HIGGS, kdd2010(algebra),

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

13

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

kdd2010(bridge to algebra), epsilon, url, and webspam since insufficient computer
memory was available. (All experiments were conducted on a 64-bit machine with
an Intel I7 4.0GHz CPU and 16GB of main memory.) Finally, for the adult data
(a1a–a9a) and webpage data (w1a–w8a) we only used the largest instances, namely
problems a9a and w8a. This left us with our final subset of datasets from LIBSVM.

In addition, we also tested FaRSA on three other datasets: synthetic, gene-ad,
and pathway-ad. The synthetic set is a randomly generated non-diagonally domi-
nant dataset created by the authors of OBA. The sets gene-ad and pathway-ad are
datasets related to Alzheimer’s Disease. They were obtained by preprocessing the
sets GSE4226 2 and GSE4227 3 using the method presented in [15], and merging the
results into the single dataset: gene-ad. The gene data (gene-ad) was converted to
pathway data (pathway-ad) using the ideas described in [15]. The union of these three
datasets and those from the LIBSVM repository comprised our complete test set.

For the unscaled datasets (see column 4 in Table 4.1), we adopted standard scaling
techniques. For problems scaled into [−1, 1] a simple linear scaling transformation was
used. For problem mnist, which was scaled into [0, 1), we used a common converting
method in image processing. Specifically, we defined

I(i, j) =
P (i, j)

2b
, (4.1)

where P (i, j) is the given unscaled integer pixel value satisfying

P (i, j) ∈ {0, 1, 2, · · · , 2b − 1},

b is the intensity resolution (b = 8 for the mnist dataset), and (i, j) range over the
size of the image. The scaled pixel values are then given by the values I(i, j) ∈ [0, 1).

4.2. Implementation details. We developed a preliminary Matlab imple-
mentation of FaRSA that we are happy to provide upon request. In this section, we
describe the algorithm-specific choices made to obtain the results that we present.

First, the weighting parameter in (1.1) was defined as

λ =
1

of Samples
.

For determining the iteration type, we chose γ = 1 in line 6 of Algorithm 1 so that
no preference was given to iterations being in either Sφ or Sβ .

For any k ∈ Sφ, we made the simple choice of Ik = {i : [φ(xk)]i 6= 0}. This made
the inequality in line 7 satisfied for any ηφ ∈ (0, 1], making the choice of this parameter
irrelevant. (In a more sophisticated implementation, one might consider other choices
of Ik, say to adaptively control |Ik|, to improve efficiency.) With this choice for Ik
made, Algorithm 1 allows for great flexibility in obtaining a search direction that
satisfies the conditions in line 10 (see (iii) in Section 1.1 for additional comments).
For our tests, we applied the linear-CG method to the system Hkd = −gk defined by
the terms constructed in line 8, except that we added a diagonal matrix with entires
10−8 to Hk (an approach also adopted by OBA and LIBLINEAR). As discussed in
Section 2, the conditions that are required to be satisfied by the trial step will hold
if CG is terminated during any iteration. To help limit the number of backtracking

2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4226
3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4227

14

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4226
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4227

Table 4.1: Data sets.

Dataset # of Samples # of Features Unscaled Scaling Used
fourclass 862 2 X into [-1,1]

svmguide1 3089 4 X into [-1,1]
cod-rna 59535 8

breast-cancer 683 10
australian 690 14

SUSY 5000000 18 X into [-1,1]
splice 1000 60
heart 270 13

german.numer 1000 24 X into [-1,1]
diabetes 768 8 X into [-1,1]

liver-disorders 345 6 X into [-1,1]
w8a 49749 300

madelon 2000 500 X into [-1,1]
a9a 32561 123

mnist 30001 784 X into [0,1)
skin-nonskin 245057 3 X into [-1,1]

sonar 208 60
ijcnn1 49990 22

svmguide3 1243 22
synthetic 5000 5000
gisette 6000 5000

pathway-ad 278 71
real-sim 72309 20958

covtype.binary 581012 8
mushrooms 8124 112
rcv1.binary 20242 47236

leukemia 34 7129
duke-breast-cancer 38 7129 X into [-1,1]

gene-ad 71 17375 X into [-1,1]
colon-cancer 62 2000 X into [-1,1]

news20 19996 1355191

steps required by the subsequent backtracking line search, we terminated CG as soon
as one of three conditions was satisfied. To describe these conditions, we let dj denote
the jth CG iteration, rj = ‖Hkdj + gk‖ denote the jth CG residual, and vj denote
the number of components in xk + dj that fall into a different orthant than xk. With
these definitions, we terminated CG as soon as one of the following was satisfied:

rj ≤ max{10−1r0, 10−12},
vj ≥ max{103, 10−1|Ik|}, or

‖dj‖ ≥ δk,φ := max{10−3,min{103, 10‖xkφ(k)+1 − xkφ(k)‖}},

where kφ(k) := max{k̄ : k̄ ∈ Sφ and k̄ < k}. This first condition is a standard
requirement of asking the residual to be reduced by a fraction of the initial residual.
We used the second condition to trigger termination when a CG iterate predicted that

15

“too many” of the variables at xk + dj are in the “wrong” orthant. Finally, the third
condition ensured that the size of the trial step was moderate, thus functioning as an
implicit trust-region constraint; this condition was motivated by the well-known fact
that CG iterations {dj} are monotonically increasing in norm.

When k ∈ Sβ , we again made the simples choice of Ik = {i : [β(xk)]i 6= 0}, making
the choice of ηβ ∈ (0, 1] irrelevant in our tests (though adaptive choices of Ik might be
worthwhile in a more sophisticated implementation). Since there is no natural scaling
for the direction β(xk) because it is based on first derivative information only, it is
important from a practical perspective to adaptively scale the direction. Therefore,
in line 15, we used the alternative safeguarded direction defined by

[dk]Ik = −δk,β
[β(xk)]Ik
‖[β(xk)]Ik‖

, (4.2)

where

δk,β := max{10−5,min{1, ‖xkβ(k)+1 − xkβ(k)‖}}

with kβ(k) := max{k̄ : k̄ ∈ Sβ and k̄ < k}. Since this is a safeguarded scaling of the
dk defined in line 15, it is fully covered by the theory that we developed in Section 3.

During each iteration, the values η = 10−2 and ξ = 0.5 were used during the line
search regardless of whether it was the line search performed by Algorithm 2 when
called by Algorithm 1 (line 12) or if it was the line search performed by Algorithm 3
when called by Algorithm 1 (line 16). The starting point x0 was chosen as the zero
vector for all problems, and the termination tolerance, maximum allowed number of
iterations, and maximum allowed time limit values were chosen to be ε = 10−6, 1000,
and 10 minutes, respectively.

4.3. Test results. The output from FaRSA for the problems corresponding to
the scaled and unscaled datasets in our experiments are summarized in Tables 4.2
and 4.3, respectively. These tables focus on the computational time in seconds and
percentage of zeros (sparsity) in the computed solutions. For comparison purposes,
we also provide the output from the OBA solver whose Matlab implementation was
graciously provided by the authors. For a fair comparison, we used the same stopping
tolerance value of ε = 10−6 for OBA and made no modifications to their code. The
numbers reported for each problem (named according to the corresponding dataset)
are the averages from running each problem instance 10 times. We do not provide the
final objective values since they were the same for FaRSA and OBA on all problems
that were successfully solved by both algorithms. We use red numbering to indicate
that an average CPU time was relatively lower for an algorithm, or if the average
percentage of zeros in the solution was relatively larger for an algorithm.

We can observe from Table 4.2 that FaRSA performed better than OBA on 26 of
the 31 (83.87%) scaled test problems. OBA is faster than FaRSA only on problems
cod-rna, SUSY, synthetic, gene-ad, and colon-cancer. However, FaRSA is between 3
and 8 times faster than OBA on problems a9a, mnist, pathway-ad, covtype.binary, and
news20, and between 1 and 3 times faster than OBA on the remaining 21 problems. In
terms of sparsity, the two algorithms are comparable. Although not presented in the
table, we find it interesting to note that FaRSA required an average of 34.12 iterations
to solve the problems, with, on average, 29.93 of them being in Sφ. This indicates
that FaRSA quickly identifies the orthant that contains the optimal solution.

By turning our attention to Table 4.3, we see that the performance of both FaRSA
and OBA deteriorates when the problems are unscaled. Moreover, OBA fails on

16

Table 4.2: CPU time and sparsity for FaRSA and OBA on scaled problem variants.

Time (seconds) % of zeros
Problems FaRSA OBA OBA/FaRSA FaRSA OBA
fourclass 0.00326 0.00705 2.1626 0 0

svmguide1 0.0384 0.06457 1.6815 0 0
cod-rna 0.48762 0.18618 0.3818 0 0

breast-cancer 0.0089 0.03769 1.9674 0 0
australian 0.01443 0.0174 1.2058 0 0

SUSY 241.2437 205.1242 0.8502 0 0
splice 0.0101 0.01982 1.9624 5 5
heart 0.00706 0.01357 1.9221 7.7 7.7

german.numer 0.01159 0.02111 1.8214 8.3 8.3
diabetes 0.00581 0.00979 1.6850 12.5 12.5

liver-disorders 0.01254 max iter Inf 16.7 —
w8a 0.97079 0.99154 1.0214 19.1 18.7

madelon 0.26604 0.37497 1.4094 19.8 19.8
a9a 0.78203 3.26994 4.1813 22.0 20.3

mnist 18.78034 54.432 3.0545 37.7 37.8
skin-nonskin 3.20594 ascent Inf 41.7 —

sonar 0.02012 0.02938 1.4602 41.7 41.7
ijcnn1 0.06153 0.08178 1.3291 45.5 45.5

svmguide3 0.01856 0.03478 1.8739 45.5 45.5
synthetic 45.82688 20.42464 0.4457 57.4 49.5

gisette 13.30533 28.22136 2.1211 84.6 84.6
pathway-ad 0.16054 1.30585 8.1341 87.4 87.4

real-sim 2.3221 2.43764 1.0214 91.9 91.8
covtype.binary 1.49449 5.95536 3.9849 96.3 90.7

mushrooms 0.03089 0.05815 1.8825 97.3 97.3
rcv1.binary 0.39186 0.80563 1.7427 98.8 98.8

leukemia 0.09151 0.12086 1.3207 99.7 99.7
duke-breast-cancer 0.06227 0.10628 1.7068 99.7 99.7

gene-ad 0.21525 0.15943 0.7407 99.8 99.8
colon-cancer 0.04069 0.03905 0.9597 99.9 99.9

news20 6.09086 19.77945 3.2474 99.9 99.9

problems skin-nonskin, gene-ad, and mnist because it generates iterates that increase
the objective function; we denote these failures as “ascent” in the table. In theory,
ascent is only possible for their method when their fixed estimate (108 in their code)
of the Lipschitz constant for the gradient of f is not large enough. Although simple
adaptive strategies could be used to avoid such issues, we made no such attempts
because we did not want to make any edits to their code. Overall, FaRSA was able
to solve 9 of the 12 unscaled problems, and OBA only performed better than FaRSA
on a single test problem (colon-cancer).

The previous tables show that FaRSA efficiently and reliably obtains solutions
that satisfy the stopping tolerance value of ε = 10−6. In practice, one sometimes only
requests a low accuracy solution, often motivated by problems that may arise due to
overfitting. To explore the performance of FaRSA for various stopping tolerance levels,

17

Table 4.3: CPU time and sparsity for FaRSA and OBA on unscaled problem variants.

Time (seconds) % of zeros
Problems FaRSA OBA OBA/FaRSA FaRSA OBA
fourclass 0.00486 0.00775 1.5946 0 0
diabetes 0.01964 0.02159 1.0993 0 0

german.numer 0.03168 0.0564 1.7803 0 0
skin-nonskin 0.11378 ascent Inf 0 —

madelon 6.55674 41.9519 6.3983 8 8
liver-disorders 0.00571 0.03277 5.7391 83.3 83.3
colon-cancer 0.08429 0.05364 0.6364 98.7 98.7

duke-breast-cancer 0.08936 0.12487 1.3973 99.7 99.7
gene-ad 4.62839 ascent Inf 99.8 —

svmguide1 max iter max iter — — —
mnist max time ascent — — —
SUSY max iter max iter — — —

we created the plots in Figures 4.1 and 4.2. Each plot shows the run time (y-axis)
required to achieve the desired optimality accuracy (x-axis) for the stated problem.
These figures show that the superior performance of FaRSA previously displayed for
the stopping tolerance 10−6 also generally holds for larger stopping tolerances.

5. Conclusions. We presented a new reduced-space algorithm, FaRSA, for min-
imizing an `1-norm regularized convex function. The method uses an adaptive condi-
tion to determine when the current reduced-space should be updated, which is itself
based on measures of optimality in the current reduced space and its complement.
Global convergence was established for our method, while numerical experiments on
`1-norm regularized logistic problems exhibited its practical performance. In particu-
lar, the experiments showed that FaRSA was generally superior to a recently proposed
reduced-space orthant-based algorithm called OBA, regardless of the solution accu-
racy requested. Since OBA was shown in [9] to be better than the state-of-the-art
solver used in LIBLINEAR when the second derivative matrices were not diagonally
dominant, we expect that FaRSA will serve as a valuable data analysis tool. OBA
and our preliminary implementation of FaRSA will often be outperformed by LIBLIN-
EAR when the second derivative matrices are diagonally dominant. However, FaRSA
was designed with great flexibility in how the subproblem solutions are obtained. Al-
though our preliminary implementation invoked linear-CG as the subproblem solver,
our framework also allows for coordinate-descent based algorithms to be used, such
as those used in LIBLINEAR. We expect to provide such options as well as include
features that control the subproblem size in a future release of our solver. We believe
that once these enhancements have been made, FaRSA will be competitive with LIB-
LINEAR on all classes of problems, and superior when the second derivative matrices
are not diagonally dominant.

Acknowledgments. We thank Nitish Keskar, Jorge Nocedal, Figen Öztoprak,
and Andreas Wächter for providing the Matlab code of their OBA algorithm, and for
several discussions on their numerical experience with OBA. We also thank Qingsong
Zhu for providing us the datasets gene-ad and pathway-ad used in Section 4.1.

18

REFERENCES

[1] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models. In
Proceedings of the 24th international conference on Machine learning, pages 33–40. ACM,
2007.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[3] Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Figen Oztoprak. A family of second-
order methods for convex l1-regularized optimization. Unpublished: Optimization Center:
Northwestern University, Tech Report, 2012.

[4] Richard H Byrd, Jorge Nocedal, and Figen Oztoprak. An inexact successive quadratic approx-
imation method for convex l-1 regularized optimization. arXiv preprint arXiv:1309.3529,
2013.

[5] Zdenek Dostál. Box constrained quadratic programming with proportioning and projections.
SIAM Journal on Optimization, 7(3):871–887, 1997.

[6] Zdenek Dostál. A proportioning based algorithm with rate of convergence for bound constrained
quadratic programming. Numerical Algorithms, 34(2):293–302, 2003.

[7] Zdenek Dostál and Joachim Schoberl. Minimizing quadratic functions subject to bound con-
straints with the rate of convergence and finite termination. Computational Optimization
and Applications, 30(1):23–43, 2005.

[8] Cho-Jui Hsieh, Inderjit S Dhillon, Pradeep K Ravikumar, and Mátyás A Sustik. Sparse in-
verse covariance matrix estimation using quadratic approximation. In Advances in Neural
Information Processing Systems, pages 2330–2338, 2011.

[9] Nitish Shirish Keskar, Jorge Nocedal, Figen Oztoprak, and Andreas Waechter. A second-order
method for convex `1-regularized optimization with active set prediction. arXiv preprint
arXiv:1505.04315, 2015.

[10] Jason Lee, Yuekai Sun, and Michael Saunders. Proximal newton-type methods for convex
optimization. In Advances in Neural Information Processing Systems, pages 836–844,
2012.

[11] Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-newton method with
global complexity analysis. arXiv preprint arXiv:1311.6547, 2013.

[12] Hassan Mohy ud Din and Daniel P. Robinson. A solver for nonconvex bound-constrained
quadratic optimization. SIAM Journal on Optimization, 25(4):2385–2407, 2015.

[13] Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. Sparse reconstruction by sep-
arable approximation. Signal Processing, IEEE Transactions on, 57(7):2479–2493, 2009.

[14] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved glmnet for l1-regularized logistic
regression. The Journal of Machine Learning Research, 13(1):1999–2030, 2012.

[15] Qingsong Zhu, Evgeny Izumchenko, Alexander M Aliper, Evgeny Makarev, Keren Paz, Anton A
Buzdin, Alex A Zhavoronkov, and David Sidransky. Pathway activation strength is a novel
independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients.
Human Genome Variation, 2, 2015.

Appendix A. A Relationship between FaRSA and ISTA. The step in
Line 16 of Algorithm 1 may be interpreted as a reduced ISTA [2] step. The next
lemma makes this relationship precise.

Lemma A.1. For any k, let sk be the full ISTA step defined by

sk := shrink
(
xk −∇f(xk)

)
− xk, where

[shrink
(
xk −∇f(xk)

)
− xk]i :=

−[∇f(xk)]i + λ if [xk −∇f(xk)]i < −λ,

−[xk]i if [xk −∇f(xk)]i ∈ [−λ, λ],

−[∇f(xk)]i − λ if [xk −∇f(xk)]i > λ.

Then, sk = −(β(xk) + φ(xk)).

19

Proof. Recall the definitions of the components of β(xk) and φ(xk), which may
be rewritten in a slightly more convenient form as follows:

[β(xk)]i :=
[∇f(xk)]i + λ if [xk]i = 0 and [∇f(xk)]i + λ < 0,

[∇f(xk)]i − λ if [xk]i = 0 and [∇f(xk)]i − λ > 0,

0 otherwise,

[φ(xk)]i :=
0 if [xk]i = 0,

min{[∇f(xk)]i + λ,max{[xk]i, [∇f(xk)]i − λ}} if [xk]i > 0 and [∇f(xk)]i + λ > 0,

max{[∇f(xk)]i − λ,min{[xk]i, [∇f(xk)]i + λ}} if [xk]i < 0 and [∇f(xk)]i − λ < 0,

[∇f(xk) + λ · sgn(xk)]i otherwise.

For any component i, we proceed by considering various cases and subcases.
Case 1: Suppose that

[xk −∇f(xk)]i > λ, meaning that [xk]i > [∇f(xk)]i + λ. (A.1)

Subcase 1a: Suppose that [xk]i > 0 and [∇f(xk)]i+λ > 0, so [∇f(xk)]i > −λ. Then,
[β(xk)]i = 0 and

[φ(xk)]i = min{[∇f(xk)]i + λ,max{[xk]i, [∇f(xk)]i − λ}}. (A.2)

By (A.1), it follows that [xk]i > [∇f(xk)]i + λ > [∇f(xk)]i − λ, which along with
[xk]i > 0 means that the max in (A.2) evaluates as [xk]i. Then, again with (A.1), the
min in (A.2) yields

[φ(xk)]i = [∇f(xk)]i + λ = −[sk]i. (A.3)

Subcase 1b: Suppose that [xk]i > 0 and [∇f(xk)]i + λ ≤ 0, so [∇f(xk)]i ≤ −λ.
Then, [β(xk)]i = 0 and

[φ(xk)]i = [∇f(xk)]i + λ = −[sk]i. (A.4)

Subcase 1c: Suppose that [xk]i = 0 and [∇f(xk)]i+λ ≤ 0, so [∇f(xk)]i ≤ −λ. Then,
[φ(xk)]i = 0 and

[β(xk)]i = [∇f(xk)]i + λ = −[sk]i. (A.5)

Subcase 1d: Suppose that [xk]i < 0 and [∇f(xk)]i + λ < 0, so [∇f(xk)]i < −λ.
Then, [β(xk)]i = 0 and

[φ(xk)]i = max{[∇f(xk)]i − λ,min{[xk]i, [∇f(xk)]i + λ}}. (A.6)

By (A.1), it follows that [xk]i > [∇f(xk)]i + λ, which along with [∇f(xk)]i + λ < 0
means that the min in (A.6) evaluates as [∇f(xk)]i + λ. Then, since [∇f(xk)]i + λ >
[∇f(xk)]i − λ, the max in (A.6) yields

[φ(xk)]i = [∇f(xk)]i + λ = −[sk]i. (A.7)

20

Since Subcases 1a–1d exhaust all possibilities under (A.1), we conclude from the
results in (A.3), (A.4), (A.5), and (A.7) that for Case 1 we have [sk]i = −[β(xk) +
φ(xk)]i.
Case 2: Suppose that

[xk −∇f(xk)]i < −λ, meaning that [xk]i < [∇f(xk)]i − λ. (A.8)

We claim that the analysis for this case is symmetric to that in Case 1 above, from
which we may conclude that for this case we again have [sk]i = −[β(xk) + φ(xk)]i.
Case 3: Suppose that

[xk −∇f(xk)]i ∈ [−λ, λ], meaning that [xk]i ∈ [∇f(xk)]i + [−λ, λ]. (A.9)

Subcase 3a: Suppose that [xk]i > 0. Then, [β(xk)]i = 0 and, since [xk]i > 0 and
(A.9) imply [∇f(xk)i] > −λ,

[φ(xk)]i = min{[∇f(xk)]i + λ,max{[xk]i, [∇f(xk)]i − λ}}. (A.10)

Since (A.9) also implies [xk]i > [∇f(xk)]i − λ, it follows along with [xk]i > 0 that the
max in (A.10) evaluates as [xk]i. Then, since (A.9) implies [xk]i < [∇f(xk)]i + λ, the
min in (A.10) yields

[φ(xk)]i = [xk]i = −[sk]i. (A.11)

Subcase 3b: Suppose that [xk]i = 0. Then, [φ(xk)]i = 0 and, along under (A.9),

[β(xk)]i = −[sk]i = 0. (A.12)

Subcase 3c: Suppose that [xk]i < 0. We claim that the analysis for this case is
symmetric to that in Subcase 3.a, from which we may conclude that for this subcase
we again have

[φ(xk)]i = [xk]i = −[sk]i. (A.13)

Since Subcases 1.a–1.d exhaust all possibilities under (A.9), we conclude from the
results in (A.11), (A.12), and (A.13) that for Case 3 we have [sk]i = −[β(xk)+φ(xk)]i.
The result follows as we have proved the desired result under all cases.

21

Fig. 4.1: CPU time comparison between FaRSA and OBA for various stopping toler-
ances on the set of problems with scaled data.

22

Fig. 4.2: CPU time comparison between FaRSA and OBA for various stopping toler-
ances on the set of problems with unscaled data.

23

