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Abstract. Let f(n) be the smallest number such that every collection of n matchings, each of size at least

f(n), in a bipartite graph, has a full rainbow matching. Generalizing famous conjectures of Ryser, Brualdi

and Stein, Aharoni and Berger [1] conjectured that f(n) = n + 1 for every n > 1. Clemens and Ehrenmüller

[4] proved that f(n) ≤ 3
2
n + o(n). We show that the o(n) term can be reduced to a constant, namely

f(n) ≤ d 3
2
ne+ 1.

1. Introduction

Given sets F1, F2, . . . , Fn of edges in a graph, a (partial) rainbow matching is a choice of disjoint edges
from some of the Fis. In other words, it is a partial choice function whose range is a matching. If the rainbow
matching represents all Fis then we say that it is full. For a comprehensive survey on rainbow matchings and
the related subject of transversals in Latin squares see [7].

As in the abstract, we assume the graph is bipartite and define f(n) to be the least number such that if
|Fi| ≥ f(n) for all i = 1, . . . , n, then there exists a full rainbow matching. A greedy choice of representatives
shows that if |Fi| ≥ 2n − 1 for all i = 1, . . . , n then there is a rainbow matching. Thus, f(n) ≤ 2n − 1. On
the other hand, for every n > 1 there exits a family F1, . . . , Fn of matchings of size n with no full rainbow
matching: for an arbitrary 1 ≤ k ≤ n let F1, . . . , Fk be all equal to the perfect matching in the cycle C2n

consisting of the odd edges, and let Fk+1, . . . , Fn be all equal to the perfect matching in C2n consisting of
the even edges. This shows that f(n) ≥ n+ 1 for all n > 1 (in fact, this example can be modified to produce
2n− 2 matchings of size n with no rainbow matching of size n). In [1] it was conjectured that this bound is
sharp:

Conjecture 1.1. [1] f(n) = n + 1 for all n > 1.

If true, this would easily imply:

Conjecture 1.2. A family of n matchings in a bipartite graph, each of size n, has a rainbow matching of
size n− 1.

This strengthens a famous conjecture of Ryser-Brualdi-Stein.

Conjecture 1.3. [3, 9, 10] A partition of the edges of the complete bipartite graph Kn,n into n matchings,
each of size n, has a rainbow matching of size n− 1.

Another strengthening of the last conjecture is due to Stein:

Conjecture 1.4. [10] A partition of the edges of the complete bipartite graph Kn,n into n subsets, each of
size n, has a rainbow matching of size n− 1.

In our terminology, the weaker condition that Stein demands on sets Fi is not that they are matchings,
but that each has degree at most 1 in one side of the graph, and that jointly their degree at each vertex in
the other side is at most n. Possibly the ‘right’ requirement is even more general: that the degree at each
vertex is at most n, and that each Fi is a set, and not a multiset, namely it does not contain repeating edges.

Successive improvements on the trivial bound f(n) ≤ 2n − 1 were f(n) ≤ b 74nc [2], f(n) ≤ b 53nc [6] and

f(n) ≤ b 32nc + o(n) [4]. The latter was extended in [5] to general graphs, and to the more general case in
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which the sets Fi are not assumed to be matchings, but disjoint unions of cliques, each containing 3n + o(n)
vertices. Pokrovskiy [8] showed that if we add the requirement that the n matchings are edge disjoint, then
|Fi| ≥ n + o(n) suffices. In this note we prove:

Theorem 1.5. f(n) ≤ d 32ne+ 1.

2. Proof of Theorem 1.5

The following was shown in [6]:

Proposition 2.1. A family F = {F1, . . . , Fn} of n matchings in a bipartite graph, each of size at least b 32nc,
has a rainbow matching of size n− 1.

Proof of Theorem 1.5. Let G be the given bipartite graph and let U,W ⊂ V (G) be the two sides of G. Let
F = {F1, . . . , Fn} be a family of matchings in G, each of size at least d 32ne + 1, and let R be a rainbow
matching of maximal size. By Proposition 2.1, |R| ≥ n− 1. We assume, for contradiction, that |R| = n− 1
and without loss of generality we may assume that R ∩ Fn = ∅. For each i = 1, . . . , n − 1 let Fi ∩ R = {ri}
and let ri = {ui, wi}, where ui ∈ U and wi ∈ W . Let X ⊂ U and Y ⊂ W be the sets of vertices of G not
matched by R. We shall use the following notation:

Notation 2.2. For any two sets of vertices A ⊆ U and B ⊆ W we denote by E(A,B) or E(B,A) the set of
edges in E(G) with one endpoint in A and the other endpoint in B.

Let FY
n be the subset of Fn consisting of edges matching vertices in Y . Since R has maximal size,

FY
n ⊂ E(Y, U \X). Let U ′ be the set of vertices in U \X that are endpoints of the edges in FY

n . Let R′ be
the subset of R that matches the vertices in U ′, and let W ′ be the set of vertices in W that are endpoints
of edges in R′ (the set U ′ is matched by R′ to W ′). The main idea of the proof is to replace some edges in
R′ by edges in E(X,W \ Y ), thus freeing vertices in U ′. This will allow us to add an edge from FY

n to the
rainbow matching.

Let ` = |FY
n |. Since |W \ Y | = n− 1 and |Fn| ≥ d3n/2e+ 1 we have ` ≥ dn/2e+ 2. By possibly ignoring

some edges of Fn we shall assume that

(1) ` = dn/2e+ 2.

So,

(2) |U ′| = |W ′| = |R′| = dn/2e+ 2.

Define,

F ′ = {Fi ∈ F|Fi ∩R′ 6= ∅}.

That is, F ′ consists of the matchings that are represented in the partial rainbow matching R′.

Notation 2.3. For each Fi ∈ F ′ let ei be the edge of FY
n such that ei ∩ ri 6= ∅. Let yi be the endpoint of ei

in Y (Figure 1).

Figure 1

Claim 1. For each Fi ∈ F ′, we have |Fi ∩ E(X,W \ Y )| ≥ dn/2e+ 1 and |Fi ∩ E(Y,U \X)| ≥ dn/2e+ 1.
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Proof. We show that each Fi ∈ F ′ has at most one edge between X and Y . Suppose Fi has two edges e and
f between X and Y . The edge ei is disjoint from one of them, say e. Thus, (R \ {ri}) ∪ {ei, e} is a rainbow
matching of size n, contradicting the maximality of R (Figure 2). �

Figure 2

Remark 2.4. In all the figures, dashed lines represent edges that are candidates to be removed from the
rainbow matching, and solid and dotted lines represent edges that are candidates for being added in.

Notation 2.5. For each Fi ∈ F ′ we denote FY
i = Fi ∩ E(Y \ {yi}, U \ X). Let U∗ be the union of U ′ and

the set of vertices in U \X that are endpoints of edges in
⋃
{FY

i | Fi ∈ F ′}. Let R∗ be the subset of R that
matches the elements in U∗ and let W ∗ be the set of vertices in W that are matched by R∗. We define

F∗ = {Fj ∈ F|Fj ∩R∗ 6= ∅}.

(Note that U ′ ⊂ U∗ ⊂ U \X, W ′ ⊂ W ∗ ⊂ W \ Y , R′ ⊂ R∗ ⊂ R and F ′ ⊂ F∗ ⊂ F .) Let F ′′ = F∗ \ F ′
and let d = |F ′′| (it is possible that d = 0).

Claim 2. For each Fj ∈ F ′′, |Fj ∩ E(X,W \ Y )| ≥ dn/2e and |Fj ∩ E(Y,U \X)| ≥ dn/2e.

Proof. Let Fj ∈ F ′′. We show that Fj has at most two edges between X and Y . By the definition of F∗,
there exists Fi ∈ F ′ and an edge f ∈ Fi such that f ∩ rj = {uj} ⊂ U \ X and the other endpoint y of
f is in Y \ {yi}. Now suppose Fj has three edges between X and Y . Then one of them, say e, has an
endpoint in Y \ {yi, y}. Now, R \ {ri, rj} ∪ {f, ei, e} is a rainbow matching, contradicting the maximality of
R (Figure 3). �

Figure 3

Claim 3. For each Fi ∈ F∗, |Fi ∩ E(X,W ∗)| ≥ d + 3.

Proof. Since |R∗| = |R′|+ d, it follows by (2), that |R \R∗| = n− 1− (dn/2e+ 2 + d) = bn/2c − d− 3. Let
Fi ∈ F∗ = F ′ ∪ F ′′ (disjoint union). Since Fi ∩ E(X,W ∗) = Fi ∩ E(X,W \ Y ) ∩ R∗, we have by Claims 1
and 2, that Fi ∩ E(X,W ∗) ≥ dn/2e − (bn/2c − d− 3) ≥ d + 3. �
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We shall inductively choose edges f1, f2, . . . , fi ∈ E(X,W ∗) from distinct Fjs and r1, r2, . . . , ri, ri+1 ∈ R∗

from distinct Fjs, as follows. To start the process, we assume, without loss of generality, that F1 ∈ F ′. By
Claim 3, there exists f1 ∈ F1∩E(X,W ∗). Let w2 be the endpoint of f1 in W ∗, and without loss of generality
we may assume that w2 ∈ r2, where r2 ∈ R∗∩F2. Again, by Claim 3, there exists f2 ∈ F2∩E(X \{x1},W ∗).
We continue in this manner, choosing at each step an edge fi ∈ E(X,W ∗), disjoint from all fj , j < i, and
belonging to the same matching as ri, and the edge ri+1 ∈ R∗, such that fi ∩ ri+1 ∩W ∗ 6= ∅. The process
ends when we have obtain a set of disjoint edges F = {f1, f2, . . . , fm} ⊆ E(X,W ∗) and a set of distinct
edges P = {r1, r2, . . . , rm, rm+1} ⊆ R∗ such that fi ∩ ri+1 ∩W ∗ 6= ∅ for i = 1, . . . ,m, and for each i, fi and
ri belong to the same matching (without loss of generality we assume that fi, ri ∈ Fi for i = 1, . . . ,m, and
rm+1 ∈ Fm+1), so that one of two options holds:

(1) m < d + 3 and the matching Fm+1 has an edge fm+1 ∈ E(X \ (f1 ∪ f2 ∪ . . . ∪ fm),W ∗) such
fm+1 ∩ rt ∩W ∗ 6= ∅ for some t ∈ {1, . . . ,m}, or

(2) m = d + 3.

(Note that by Claim 3 one of these two options must hold.)

In Case (1) the partial rainbow matching R can be augmented as follows: If Fi ∈ F ′ for some i ∈
{t, . . . ,m + 1}, then (R \ {rt, . . . , rm+1}) ∪ {ft, . . . , fm+1, ei} is a full rainbow matching (Figure 4(a)). If
Fi ∈ F ′′ for all i ∈ {t, . . . , i + 1}, then, by the definition of F∗, there exists Fj ∈ F ′ and an edge e ∈ FY

j

so that e ∩ rt ∈ U∗. In this case (R \ {rt, . . . , rm+1, rj}) ∪ {ft, . . . , fm+1, e, ej} is a full rainbow matching
(Figure 4(b)). (Note that e and ej are disjoint by the definition of FY

j .)

(a) (b)

Figure 4

In Case (2) let Q = (R \ P ) ∪ F . Then, Q is a partial rainbow matching of size n − 2, since it excludes
the matchings Fm+1 and Fn. We shall augment Q with edges two edges in E(Y,U∗), from Fm+1 and Fn

respectively.

Claim 4. If Fi ∈ F ′, then the size of the set {e ∈ FY
i : e ∩ (∪mj=1rj) 6= ∅} is at least 2.

Proof. Let U i be the set of endpoints in U \X of the edges in FY
i . Note that |U i| ≥ `− 1 (Claim 1 and (1)),

U i ⊂ U∗ (since Fi ∈ F ′), and |U∗| = ` + d. Recall that for each edge rj ∈ R ∩ Fj its endpoint in U \X was
denoted uj . Since |U∗ \ {u1, . . . , um}| = ` + d−m = ` + d− (d + 3) = `− 3, the claim follows. �

There are two sub-cases to consider: (2a) Fm+1 ∈ F ′, and (2b) Fm+1 ∈ F ′′.

(2a) Assume Fm+1 ∈ F ′. By Claim 4, there exists and edge e ∈ Fm+1 connecting a vertex in Y \ {ym+1}
with some ut, which is the endpoint in U of some rt ∈ P \ {rm+1}. Since m = d+ 3 and |P | = m+ 1 = d+ 4,
at least four of the edges in P are in R′ (actually, three are enough in this case). For at least one of these
four edges, say ri, its corresponding ei (the edge of FY

n meeting ri in U) avoids both endpoints of e. Then,
Q ∪ {e, ei} is a rainbow matching of size n (Figure 5(a)).

(2b) Assume Fm+1 ∈ F ′′ By Claim 2, |FY
m+1| ≥ dn/2e. Since by (2) we have |R \ R′| = n− 1− (dn/2e+

2) = bn/2c − 3, there is an edge e ∈ FY
m+1 sharing an endpoint with an edge rs ∈ R′. Assume first that

s ∈ {1, . . . ,m}. As in the previous paragraph, there exists ei disjoint from rs and e, so that Q ∪ {e, ei} is a
rainbow matching of size n. Now assume that s 6∈ {1, . . . ,m} and let again e be the edge of Fm+1 sharing
an endpoint with rs. Since rs ∈ R′, there exists, by Claim 4, an edge e′ ∈ FY

s , disjoint from e, sharing an
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endpoint with some rt with t ∈ {1, . . . ,m}. Since |P ∩ R′| ≥ 4, there exists an edge ei ∈ FY
n , avoiding both

endpoints of e′ and the endpoint of e in Y , such that ui ∈ {u1, . . . , um+1}. Then, Q \ {rt} ∪ {e, e′, ei} is a
rainbow matching of size n (Figure 5(b)). This completes the proof.

(a) (b)

Figure 5

�
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