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SEMIALGEBRAIC GEOMETRY OF NONNEGATIVE TENSOR

RANK

YANG QI, PIERRE COMON, AND LEK-HENG LIM

Abstract. We study the semialgebraic structure of Dr , the set of nonnega-
tive tensors of nonnegative rank not more than r, and use the results to infer
various properties of nonnegative tensor rank. We determine all nonnegative
typical ranks for cubical nonnegative tensors and show that the direct sum
conjecture is true for nonnegative tensor rank. We show that nonnegative,
real, and complex ranks are all equal for a general nonnegative tensor of non-
negative rank strictly less than the complex generic rank. In addition, such
nonnegative tensors always have unique nonnegative rank-r decompositions if
the real tensor space is r-identifiable. We determine conditions under which a
best nonnegative rank-r approximation has a unique nonnegative rank-r de-
composition: for r ≤ 3, this is always the case; for general r, this is the case
when the best nonnegative rank-r approximation does not lie on the boundary
of Dr. Many of our general identifiability results also apply to real tensors and
real symmetric tensors.

1. Introduction

In many applications, notably algebraic statistics [34, 33, 5, 4, 49, 30, 3], one
frequently needs to find (i) the nonnegative rank, (ii) a nonnegative rank-r decom-
position, or (iii) a best nonnegative rank-r approximation, of a nonnegative third
order tensor. Such problems also arise for instance in chemometrics [45] and hy-
perspectral imaging [58], where quantities like concentration and intensity can only
take on nonnegative values. This article addresses questions pertaining to these
three problems using tools from semialgebraic geometry.

Questions regarding nonnegative decompositions of a nonnegative tensor are
often regarded as being more difficult than the corresponding questions over the
complex numbers. One reason is that the tools of classical algebraic geometry
are often at one’s disposal in the latter case but not the former. In this article we
study nonnegative tensors under the light of semialgebraic geometry. The first main
result of our article (cf. Theorem 5.7) is that for a general nonnegative tensor with
nonnegative rank strictly less than the complex generic rank, its rank over complex
numbers, real numbers, and nonnegative real numbers, are all equal. Furthermore,
for such a nonnegative tensor, its nonnegative rank-r decomposition is unique if the
real tensor space is r-identifiable. We determine the nonnegative typical ranks in

2010 Mathematics Subject Classification. 14P10, 15A69, 41A50, 41A52.
Key words and phrases. nonnegative tensors, nonnegative tensor rank, nonnegative typical

ranks, real tensor rank, symmetric tensor rank, best nonnegative rank-r approximations, semial-
gebraic geometry, uniqueness and identifiability.

YQ and PC are supported by the ERC under the European Community’s Seventh Framework
Program FP7/2007-2013 Grant 320594. LHL is supported by AFOSR FA9550-13-1-0133, DARPA
D15AP00109, NSF IIS 1546413, DMS 1209136, and DMS 1057064.

1

http://arxiv.org/abs/1601.05351v3


2 YANG QI, PIERRE COMON, AND LEK-HENG LIM

Propositions 6.5 and 6.6 and show in Lemma 4.1 that the nonnegative direct sum
conjecture is true, i.e., the nonnegative rank of the direct sum of two nonnegative
tensors equals the sum of the respective nonnegative ranks. In our earlier work [50],
we showed that a general nonnegative tensor has a unique best nonnegative rank-r
approximation. But it remains to be seen whether this approximation itself has a
unique nonnegative rank-r decomposition; we show that this is the case for r ≤ 3 in
Theorem 7.8, and, for general r, we show in Corollary 7.6 that uniqueness holds for
an open subset of nonnegative tensors under some conditions on the tensor space.

The paper is organized as follows. Section 2 lists some preliminary facts in
semialgebraic geometry. The definition of X-rank and its basic properties are in-
troduced in Section 3. Lemma 3.4 is necessary to determine nonnegative typical
ranks in Propositions 6.5 and 6.6. Our main contributions are then presented in
Sections 5, 6, 7. Although we focus on nonnegative tensors, some of our techniques
apply almost verbatim to real tensors and real symmetric tensors, and thus we will
also derive a few identifiability results for such tensors.

We begin with a short list of standard definitions. Let V1, . . . , Vd be vector spaces
over a field K, and denote the dual of Vi by V ∗

i . The tensor space V ∗
1 ⊗ · · · ⊗ V ∗

d

is the space of multilinear K-valued functions on V1 × · · · × Vd. Its elements are
called order-d tensors or d-tensors or just tensors if the order is implicit. We will
write Kn1×···×nd = Kn1 ⊗ · · · ⊗ Knd and regard the elements as d-dimensional
hypermatrices.

A nonzero tensor in V1 ⊗ · · · ⊗ Vd is said to have rank-one if it is of the form
v1 ⊗ · · · ⊗ vd, where vi ∈ Vi and v1 ⊗ · · · ⊗ vd is defined by

v1 ⊗ · · · ⊗ vd(u1, . . . , ud) = v1(u1) · · · vd(ud)

for all ui ∈ V ∗

i . The rank of a nonzero tensor T , denoted by rank(T ), is the
minimum number r such that T is a sum of r rank-one tensors. In addition,
rank(T ) = 0 iff T = 0. An expression of T as a sum of r = rank(T ) rank-one
tensors is called a rank-r decomposition1. A rank-r decomposition

(1.1) T =

r∑

i=1

Ti, Ti = u
(1)
i ⊗ · · · ⊗ u

(d)
i ,

is said to be (essentially) unique if the unordered set {Ti : i = 1, . . . , r} is unique

[22], i.e., each u
(k)
i is unique up to permutation and scaling [40, 36, 41, 27, 44]. The

tensor space V1⊗· · ·⊗Vd is said to be r-identifiable if a general rank-r tensor has a
unique rank-r decomposition [19]. There has been intense research on tensor ranks
and uniqueness of rank-r decompositions. See [22] for a review.

We note that the names parafac, candecomp, canonical polyadic, or cp de-
composition have often been used in the literature for (1.1). However (1.1) and the
corresponding notion of rank were originally proposed by F. L. Hitchcock [39], and
it was followed by many subsequent works in mathematics long before the psycho-
metricians [15, 37] coined the names candecomp and parafac. Hitchcock had
used ‘polyadic’ in a different sense and the terms cp-rank and cp decompositions
are better known as something entirely different [7, 14, 46, 51]. As such we think
it is fair to use a neutral and unambiguous term like ‘rank-r decomposition’ to
describe (1.1).

1An expression of T as a sum of s rank-one tensors where s is not necessarily rank(T ) will just
be called an s-term decomposition.
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In this article, the field K will be either the field of real numbers R or complex
numbers C. We will also extend the above to a semiring, denoted by R. Of
particular interest to us is the semiring of nonnegative real numbers R+ := [0,∞).
It is possible that R = R or C, i.e., a result stated for semiring would also apply
to a field unless stated otherwise. For convenience of notations, all our results are
stated for 3-tensors, i.e., d = 3, although most of them can be generalized to tensors
of arbitrary order without difficulties.

2. Semialgebraic geometry

In this section we briefly review some well-known facts in semialgebraic geometry,
providing in particular a summary of the relevant portions of [13, 24, 48, 31, 25]
for our later use.

A semialgebraic subset of Rn is the union of finitely many subsets of the form

{x ∈ R
n : P (x) = 0, Q1(x) > 0, . . . , Qm(x) > 0},

where P,Q1, . . . , Qm ∈ R[X1, . . . , Xn], are polynomials in n variables with real coef-
ficients. Let S and T be semialgebraic sets. A map f : S → T is called semialgebraic

if its graph G(f) := {(s, t) ∈ S × T : f(s) = t} is semialgebraic. A semialgebraic
set is called nonsingular if it is an open subset of the set of nonsingular points of
some algebraic set. A Nash manifold is a semialgebraic analytic submanifold of
Rn and a Nash mapping between Nash manifolds is an analytic mapping with a
semialgebraic graph.

A point p in a semialgebraic set S is said to be general with respect to some
property P if the points in S that do not have the property P are all contained
in a semialgebraic subset C of S with dimC < dimS and p /∈ C. To aid readers
unacquainted with the notion, we give familiar measure theoretic and topological
interpretations of a general point but note that these cannot replace its formal
definition. Given the Lebesgue measure µ on S, if a point p ∈ S is general with
respect to a property P, then (i) C := {q ∈ S : q does not satisfy P} is a measure-
zero subset of S; and (ii) p /∈ C. Hence in the sense of measure theory, the statement
that a general point satisfies P is equivalent to the statement that almost every
point satisfies P. On the other hand, in the sense of topology, the statement that
a general point satisfies P has a stronger connotation — it implies that the subset
C lies in a hypersurface of S. Take S = R for example, that a general point satisfies
P implies that at most finitely many points in R do not satisfy P. Note that this
is a stronger conclusion than ‘almost every point in S satisfies P’ in the measure
theoretic sense.

Let f : M → N be a Nash mapping between Nash manifoldsM andN . The usual
semialgebraic version of Sard’s theorem [13] says that the set of critical values of f
is a semialgebraic subset of N with smaller dimension. As we focus on polynomial
maps in this article, we have the following stronger version of Sard’s theorem about
critical points of f .

Lemma 2.1. Let f : Rm → Rn be a nonconstant polynomial map. Then the set of

critical points of f is a subvariety of Rm, with dimension strictly less than m.

Proof. Let d := dim Im f and ∇f be the Jacobian of f (i.e., the matrix of first
order partial derivatives if we choose coordinates). Then every d × d minor of ∇f
must vanish on the points x ∈ Rm where ∇f(x) has rank strictly less than d. At
least one of these minors is not identically zero since there are points x ∈ R

m where
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∇f(x) has rank exactly d . Thus these minors define a subvariety whose dimension
is strictly less than m. �

Aside from Sard’s theorem, we also quote a few selected results and definitions
from [13, 31] for the reader’s easy reference. These results are somewhat technical
and although they logically belong to this section, we will not need them until
Section 7. In particular, Sections 3 through 6 do not require any of the following.

Theorem 2.2 (Nash Tubular Neighborhood). Let N ⊂ Rn be a Nash submanifold.

Then there is an open semialgebraic neighborhood U ⊂ Rn and a Nash retraction

f : U → N such that dist(p,N) = ‖p− f(p)‖ for each p ∈ U . Here ‖ · ‖ denotes the

Euclidean norm in R
n.

Definition 2.3. A Whitney stratification of a semialgebraic set S ⊆ Rn is a finite
partition of S into semialgebraically connected submanifolds S =

⋃
i Si satisfying

the following two conditions, known respectively as the ‘frontier condition’ and
‘Whitney condition (a)’.

(i) For i 6= j, if Si ∩ cl(Sj) 6= ∅, then Si ⊆ cl(Sj) \ Sj .
(ii) For any sequence of points (xk) in a stratum Sj , if xk converges to a point y

in a stratum Si, and the sequence of tangent (dimSj)-planes Txk
Sj converges

to a (dimSj)-plane T , then T contains the tangent (dimSi)-plane TySi.

Given two finite families {Bi} and {Cj} of subsets of Rn, {Bi} is said to be
compatible with {Cj} if Bi ∩ Cj = ∅ or Bi ⊆ Cj for all i and j.

Theorem 2.4. For semialgebraic subsets S,C1, . . . , Cm of Rn, S admits a Whitney

stratification compatible with C1, . . . , Cm.

Proposition 2.5. Let f : S → R
n be a semialgebraic function on a semialgebraic

set. Then S admits a Whitney stratification S =
⋃

i Si such that each graph of
f |Si

is a nonsingular semialgebraic set.

Proposition 2.6. Let S be a nonsingular semialgebraic set, and f : S → Rn be a
function such that G(f) is nonsingular and semialgebraic. Then the set of points
of S where f is not differentiable is contained in a closed lower-dimensional semi-
algebraic subset of S.

3. X-ranks

There has been several attempts to describe tensor ranks in different settings in
a unified and general way, e.g. [10, 57] but they do not usually include nonnegative
rank as a special case. Here we introduce a generalization of X-rank [60] to the
setting of an arbitrary cone X and coefficients in a semiring R in order to treat
nonnegative, real, and complex tensor ranks in a unified setting.

Definition 3.1. Let K be a field, and R ⊆ K be a semiring. Given a vector space
V over K, and a subset X ⊆ V , an R-span of X , denoted by spanR(X), is the set
of all finite R-linear combinations of elements of X , that is,

span
R
(X) :=

{
k∑

i=1

αixi : k > 0, αi ∈ R, xi ∈ X

}
.
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When R = K, an R-span is a subspace. When K = R and R = R+, an R-span
is a convex cone. We will denote the R+-cone of nonnegative vectors in a vector
space V by either2 V + or V+. Note that in order to specify V+, we will need to first
specify a choice of basis on V . See [50] for further discussions. With this notation,
V +
1 ⊗ · · · ⊗ V +

d is the cone of nonnegative tensors as defined in [50, Definition 2].

Definition 3.2. We say X is an R-cone, if for x ∈ X we always have λx ∈ X for
any λ ∈ R. Given an R-cone X , for any p ∈ span

R
(X), the X-rank of p, rankX(p),

is defined to be

rankX(p) := min{r : p = x1 + · · ·+ xr; x1, . . . , xr ∈ X}.

Recall that in algebraic geometry, the affine cone X ⊆ Kn over a projective
variety Y ⊆ KP

n−1 is defined as X := π−1(Y ) ∪ {0} where π : Kn \ {0} → KP
n−1,

(x1, . . . , xn) 7→ [x1 : · · · : xn] is the canonical projection. Note that an affine cone
is a K-cone in the sense of Definition 3.2.

(i) Let R = K = R, V = V1 ⊗ · · · ⊗ Vd, and X be the cone of tensors of rank ≤ 1
(i.e., affine cone over the real projective Segre variety). Then rankX(p) is the
real rank of p, usually denoted rankR(p). Real tensor rank is invariant under
the action of GL(V1)× · · · ×GL(Vd), where GL(V ) denotes the general linear
group of V .

(ii) Let R = R+, K = R, V = V1⊗· · ·⊗Vd, and X be the R+-cone of nonnegative
tensors of rank ≤ 1. Then rankX(p) is the nonnegative rank of p, usually
denoted rank+(p). Nonnegative tensor rank is invariant under the action of

{(g1, . . . , gd) ∈ GL(V1)× · · · ×GL(Vd) : gi(V
+
i ) ⊆ V +

i , i = 1, . . . , d}.

Note that this set is just a monoid — it does not necessarily contain the
inverses of its elements.

(iii) Let R = K be an algebraically closed field and X be the affine cone over an
irreducible nondegenerate projective variety. Then rankX(p) is the X-rank as
defined in [60, 41, 10]. X-rank is invariant under the automorphism group of
X , a subgroup of GL(V ).

The discussions above are purely algebraic but subsequent discussions will require
topological structures on our vector space and field. Recall that a topological
vector space over a topological field is one where the vector addition and scalar
multiplication are continuous. We will not require any results regarding topological
vector space beyond its definition.

Definition 3.3. Let V be a finite-dimensional topological vector space over a
topological field K of characteristic zero, and R ⊆ K be a semiring. Let X ⊆ V
be an R-cone such that spanR(X) contains a nonempty open subset of V . If the
set {p ∈ spanR(X) : rankX(p) = r} contains a nonempty open subset of V , then r
is called a typical X-rank. In particular, when K = C and V is endowed with the
Zariski topology, r is called a complex generic X-rank whenever {p ∈ spanC(X) :
rankX(p) = r} contains a nonempty Zariski open subset of V . The maximum

typical X-rank is

max{r : r is a typical X-rank of span
R
(X)},

2Allowing both superscript and subscript provides notational flexibility when indices or powers
are involved.
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whereas the maximum X-rank is

max{rankX(p) : p ∈ spanR(X)}.

To provide a more familiar perspective, when K = R or C and V is endowed
with the Euclidean topology and the Lebesgue measure, then r is a typical X-rank
whenever {p ∈ spanR(X) : rankX(p) = r} has positive measure.

Recall that a variety is called irreducible if it is not the union of two nonempty
proper subvarieties. If the ideal of an affine variety X ⊆ Cn is generated by polyno-
mials with real coefficients f1, . . . , fk, we will denote by X(R) the set of real points
of X , i.e., X(R) = X ∩ Rn. In fact X(R) equals the zero locus of f1, . . . , fk in
Rn. On the other hand, if Y ⊆ Rn is a real variety defined by real polynomials
f1, . . . , fk, we will denote by Y (C) the complexification of Y , the complex variety
defined by f1, . . . , fk in Cn. For an irreducible real affine variety Y ⊆ Rn, its com-
plexification Y (C) is also irreducible [10]. Furthermore Y is Zariski dense in Y (C)
if and only if Y (C) has a nonsingular real point [10, 53].

A (projective) variety X ⊆ V (X ⊆ PV ) is said to be nondegenerate if X is not
contained in any hyperplane. It is shown in [10, Theorem 2] that when X is an
irreducible nondegenerate real projective variety whose complexification X(C) has
a real smooth point, there is a unique complex generic X-rank, and it is equal to
the minimum real typical X-rank. For example, the space of 2× 2× 2 tensors has
the complex generic rank 2 and the real typical ranks 2 and 3 [26].

We deduce the following lemma using an argument in [32], where it is proved for
the case K = R, V = V1 ⊗ V2 ⊗ V3, and X = {A ∈ V : rankR(A) ≤ 1}. See also [8,
Theorem 1.1] for the case where X is the affine cone of a nondegenerate irreducible
real projective variety.

Lemma 3.4. Let K = R and X be a nonempty semialgebraic R-cone whose Zariski

closure X is a nondegenerate irreducible real variety that is Zariski dense in X(C).
If m and M are two typical X-ranks, then any integer between m and M is also a

typical X-rank.

Proof. Let dim V = n. For each k ∈ N, define the polynomial map ϕk by

ϕk : X × · · · ×X → spanR(X), (x1, . . . , xk) 7→ x1 + · · ·+ xk.

Assume wlog that m ≤ M and suppose that r ∈ {m, . . . ,M} is the minimum
integer which is not a typical X-rank. For any fixed k ∈ N and for any open subset
W ⊆ V , ϕ−1

k (W) is open in X × · · · × X ; thus it is a union of open subsets of

the form U1 × · · · × Uk where each Ui is open in X . Since X is irreducible, the
dimension of each Ui equals dimX . By [38, Exercise II.3.22], the dimension of each
ϕr(U1×· · ·×Ur) equals n. So every nonempty open subset of Imϕr has dimension n.
Since r is not a typical rank, Imϕr \Imϕr−1 does not contain a subset of dimension
n, and thus Imϕr \Imϕr−1 does not contain an open subset of Imϕr, which implies
that a general p = x1+ · · ·+xr ∈ Imϕr is within Imϕr−1, i.e., p = x̃1+ · · ·+ x̃r−1.
Hence a general q = x1 + · · ·+ xr+1 ∈ Imϕr+1 can be written with r summands as
q = x̃1+· · ·+x̃r−1+xr+1, which is in Imϕr. But we may repeat the same argument
to conclude that q is in Imϕr−1. So by induction, a general point in ImϕM is in
Imϕr−1, i.e., dim ImϕM \ Imϕr−1 < dimV , contradicting our assumption that M
is a typical X-rank. �

We will require the use of Lemma 3.4 in Propositions 6.5 and 6.6. This simple
lemma is surprisingly potent. As an illustration we provide a short proof for the
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main result in [9] (see also [8]), that every integer between ⌊(d + 2)/2⌋ and d is a
typical rank of Sd(R2), originally conjectured in [23].

Corollary 3.5 (Blekherman). Every m with ⌊(d+2)/2⌋ ≤ m ≤ d is a typical rank
of Sd(R2).

Proof. The complex generic rank ⌊(d + 2)/2⌋ is necessarily the minimum typical
rank by [10]. It has been shown in [16] that f ∈ Sd(R2) has real rank d if and only
if f has d distinct real roots when regarded as a degree-d homogeneous polynomial
in two variables. Since d is the maximum real rank [23], and having d distinct real
roots imposes an open condition on Sd(R2), d is therefore the maximum typical
rank. The required result then follows from Lemma 3.4. �

We now introduce a ‘semialgebraic version’ of Terracini’s lemma. First observe
that for semialgebraic sets X,Y ⊆ V , if we define the semialgebraic map ϕ by

ϕ : X × Y → V, (x, y) 7→ x+ y,

then Im(ϕ) is semialgebraic by the Tarski–Seidenberg Theorem.

Lemma 3.6 (Semialgebraic Terracini’s lemma). Let X and Y be nonempty semi-

algebraic subsets. Suppose their Zariski closures X, Y are irreducible real varieties

and that X(C), Y (C) have real smooth points. Then for general points x ∈ X and

y ∈ Y , the tangent space of ϕ(X × Y ) at x + y is the span of the tangent spaces

TxX and TyY , i.e.,

Tx+yϕ(X × Y ) = span{TxX,TyY }.

Proof. Since X and Y are irreducible and have real smooth points, ϕ(X × Y ) is

irreducible and its complexification ϕ(X × Y )(C) has real smooth points. Thus the
set of smooth points of ϕ(X × Y ) is open dense in ϕ(X × Y ). Then for a general
(x, y) ∈ X × Y , ϕ(x, y) = x+ y is smooth in ϕ(X × Y ). Hence

Tx+yϕ(X × Y ) = ϕ∗(T(x,y)X × Y ) = ϕ∗(TxX ⊕ TyY )

= TxX + TyY = span{TxX,TyY }.

�

The following is also immediate from Tarski–Seidenberg Theorem and our earlier
work.

Proposition 3.7. Dr := {A ∈ R
n1×···×nd

+ : rank+(A) ≤ r} is a closed semialgebraic
set, i.e., there exists a finite number of polynomials P1, . . . , Pm with real coefficients
that cuts out Dr as a set, i.e.,

Dr = {A ∈ R
n1×···×nd : P1(A) ≥ 0, . . . , Pm(A) ≥ 0}.

Furthermore, Cr := {A ∈ R
n1×···×nd

+ : rank+(A) = r} is also a semialgebraic set
but not closed in general.

Proof. By the Tarski–Seidenberg Theorem [13], Dr is a semialgebraic set and thus
so is Cr = Dr \Dr−1. By [45, Proposition 6.2], Dr is closed. �
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4. Direct sum conjecture for nonnegative rank

We now show that the direct sum conjecture is true for nonnegative rank. Given
vector spaces V1, . . . , Vd, and W1, . . . ,Wd over K, for any A ∈ V1 ⊗ · · · ⊗ Vd and
B ∈ W1 ⊗ · · · ⊗Wd, we have the direct sum A⊕B ∈ (V1 ⊕W1)⊗ · · · ⊗ (Vd ⊕Wd).
For d = 2, it is obvious that the rank of a block diagonal matrix is the sum of the
ranks of the diagonal blocks, i.e., if A and B are matrices, then

rank(A⊕B) = rank

([
A 0
0 B

])
= rank(A) + rank(B).

It has been conjectured by Strassen [55] that the same is true for d > 2, i.e.,
rank(A⊕B) = rank(A)+rank(B) for any d-tensors. This has been a long-standing
open problem in algebraic computational complexity. We show here that the anal-
ogous statement for nonnegative rank is true. The next two results are true for
nonnegative tensors of arbitrary order d but we will state and prove them for d = 3
for notational simplicity.

In the following, let U1, V1, W1, U2, V2,W2 be real vector spaces of dimensions
m1, n1, p1, m2, n2, p2 respectively. Fix a basis for each vector space and choose
the bases for U1 ⊕ U2, V1 ⊕ V2, and W1 ⊕ W2 so that for a = (a1, . . . , am1

) ∈ U1

and b = (b1, . . . , bm2
) ∈ U2, a⊕ b has coordinates a⊕ b = (a1, . . . , am1

, b1, . . . , bm2
)

in U1 ⊕ U2; likewise for V1 ⊕ V2 and W1 ⊕W2.

Lemma 4.1 (Nonnegative direct sum conjecture). For A ∈ U+
1 ⊗ V +

1 ⊗W+
1 and

B ∈ U+
2 ⊗ V +

2 ⊗W+
2 ,

rank+(A⊕B) = rank+(A) + rank+(B).

Proof. Fix a basis for each vector space and let aijk and bi′j′k′ denote the coordi-
nates of A and B. Note that (A ⊕ B)ijk = aijk, (A ⊕ B)i′j′k′ = bi′j′k′ and other
terms are zero. Suppose that r := rank+(A ⊕ B) < rank+(A) + rank+(B). Let
A ⊕ B =

∑r
i=1 ui ⊗ vi ⊗ wi. Then at least one of the summands ui ⊗ vi ⊗ wi is

neither in U+
1 ⊗V +

1 ⊗W+
1 nor in U+

2 ⊗V +
2 ⊗W+

2 . So without loss of generality we
may assume that u1 ∈ (U1 ⊕ U2)

+ \ (U+
1 ⊕ {0} ∪ {0} ⊕ U+

2 ). Thus at least one of
the following indices

(i, j′, k), (i, j, k′), (i, j′, k′), (i′, j, k′), (i′, j′, k), (i′, j, k),

which we denote by (α, β, γ), will be such that (A⊕B)αβγ is positive, a contradic-
tion. �

We may also deduce the following, clearly also true for d > 3, from the above
proof.

Corollary 4.2. If A and B have unique nonnegative rank decompositions in U+
1 ⊗

V +
1 ⊗W+

1 and U+
2 ⊗V +

2 ⊗W+
2 respectively, then A⊕B also has a unique nonnegative

rank decomposition.

For a real tensor A ∈ Rm1×···×md ⊆ Rn1×···×nd , the real rank of A regarded as a
tensor in Rm1×···×md equals the real rank of A regarded as a tensor in Rn1×···×nd

[26, Proposition 3.1]. As a corollary of Lemma 4.1, we see that this also holds for
nonnegative rank.

In the following, let U1 ⊆ U2, V1 ⊆ V2, and W1 ⊆ W2 be inclusions of real
vector spaces. Choose bases for U2, V2, and W2 such that u ∈ U1 has coordinates
u = (u1, . . . , um1

, 0, . . . , 0) as a vector in U2; likewise for V2 and W2. Then we have
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the following corollary, which is stated for d = 3, but can be easily generalized to
arbitrary d > 3.

Corollary 4.3. Let A ∈ U+
1 ⊗V +

1 ⊗W+
1 ⊆ U+

2 ⊗V +
2 ⊗W+

2 . Then the nonnegative
rank of A regarded as a nonnegative tensor in U+

1 ⊗ V +
1 ⊗W+

1 is the same as the
nonnegative rank of A regarded as a nonnegative tensor in U+

2 ⊗ V +
2 ⊗W+

2 .

Proof. Let U ′
1 ⊆ U2 be a complementary subspace of U1, i.e., U2 = U1⊕U ′

1. So u′ ∈
U ′
1 has coordinates u′ = (0, . . . , 0, u′

m1+1, . . . , u
′
m2

) as a vector in U2. Likewise, we
let V ′

1 ⊆ V2 and W ′
1 ⊆ W2 be complementary subspaces of V1 and W1. The required

statement then follows from applying Lemma 4.1 to the case A ∈ U+
1 ⊗ V +

1 ⊗W+
1

and B := 0 ∈ U ′+
1 ⊗ V ′+

1 ⊗W ′+
1 . �

The following simple observation is a nonnegative analogue of [26, Corollary 3.3].
We assume that we fix a basis for each Vi so that V +

i is defined, i = 1, . . . , d.

Proposition 4.4. For any k ∈ {2, . . . , d− 1}, let A ∈ V +
1 ⊗ · · · ⊗ V +

k be arbitrary

and let uk+1 ∈ V +
k+1, . . . , ud ∈ V +

d be nonzero. Then

rank+(A) = rank+(A⊗ uk+1 ⊗ · · · ⊗ ud).

Proof. The isomorphism of R+-cones,

V +
1 ⊗ · · · ⊗ V +

k
∼= V +

1 ⊗ · · · ⊗ V +
k ⊗ spanR+

(uk+1)⊗ · · · ⊗ spanR+
(ud),

given by A 7→ A⊗ uk+1 ⊗ · · · ⊗ ud implies the required equality. �

5. General equivalence of complex, real, and nonnegative ranks

It is well-known that a real tensor may have different real and complex ranks.
Likewise a nonnegative tensor may also have different nonnegative and real ranks.
In fact, strict inequality can also occur for the nonnegative and real ranks of a
nonnegative matrix, a well-known example was provided by H. Robbins [22].

For the case of 3-tensors, two explicit examples are as follows. Let e1, e2 ∈ R2

be the standard basis vectors, i.e., e1 = [1, 0]T, e2 = [0, 1]T. Let

A = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2,(5.1)

B = e1 ⊗ e1 ⊗ e1 − e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1.

Then A ∈ R
2×2×2
+ ⊆ R2×2×2 and B ∈ R2×2×2 ⊆ C2×2×2. We have

rankC(A) = rankR(A) = 2 < 4 = rank+(A),

rankC(B) = 2 < 3 = rankR(B).

See Section 6 for the nonnegative, real, and complex ranks of A and [26] for the real
and complex ranks of B. We will show in this section that this does not happen
for a general nonnegative tensor of nonnegative rank strictly less than the complex
generic rank — its nonnegative, real, and complex ranks will all be equal.

For notational simplicity we focus on 3-tensors, although many of the statements
and proofs in this section can be generalized without difficulty to d-tensors for any
d > 3. Let U , V and W be real vector spaces of dimensions nU , nV and nW

respectively. Denote by VC the complexification of V , i.e., VC = V ⊗R C.
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We define the polynomial map

(5.2)

ΣC

r : (UC × VC ×WC)
r → UC ⊗ VC ⊗WC,

(u1, v1, w1, . . . , ur, vr, wr) 7→
r∑

i=1

ui ⊗ vi ⊗ wi,

and denote the restriction of ΣC
r to (U × V × W )r by ΣR

r , and the restriction to

(U+ × V+ ×W+)
r by Σ

R+

r . We have the following commutative diagram:

(5.3)

(U+ × V+ ×W+)
r U+ ⊗ V+ ⊗W+

(U × V ×W )r U ⊗ V ⊗W

(UC × VC ×WC)
r UC ⊗ VC ⊗WC.

Σ
R+
r

ΣR

r

ΣC

r

Henceforth, we will use the following abbreviated notation when specifying an
element of (U × V ×W )r,

(5.4) (u1, . . . , wr) := (u1, v1, w1, . . . , ur, vr, wr).

Then we have

ImΣR+

r = Dr := {A ∈ U+ ⊗ V+ ⊗W+ : rank+(A) ≤ r}.

The notation is consistent with Proposition 3.7, which also implies that ImΣ
R+

r is
closed. Note that ImΣR

r and ImΣC
r are usually not closed.

As in Definition 3.3, if rg is the complex generic rank of UC ⊗ VC ⊗ WC, then
the set of rank-rg tensors contains a Zariski open subset. Put in another way, the
complex generic rank is the minimum r such that the morphism ΣC

r is dominant.
As we mentioned earlier, the result [10, Theorem 2] shows that the complex generic
rank equals the minimum real typical rank.

The expected dimension of ImΣR
r is min{r(nU + nV + nW − 2), nUnV nW } and

thus the expected complex generic rank is
⌈

nUnV nW

nU + nV + nW − 2

⌉
,

which is at least rg.

Definition 5.1. If dim(ImΣR
r ) < min{r(nU + nV + nW − 2), nUnV nW }, then

U ⊗ V ⊗W is called r-defective over R.

The definition of defectivity over C, i.e., identical to Definition 5.1 but with
U, V,W being complex vector spaces, is classical in algebraic geometry [59]. More
generally, a complex projective variety X is called r-defective [17] if the rth secant
variety of X does not have the expected dimension. In our context this is equivalent
to dimC(ImΣC

r ) < min{r(nU + nV + nW − 2), nUnV nW }. Note that if U ⊗ V ⊗W
is r-identifiable, then U ⊗ V ⊗W is not r-defective.

Lemma 5.2. Let r < rg. Then a general A ∈ Dr has real rank r.
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Proof. Let the Jacobian of ΣR
r be ∇ΣR

r . If rank(∇ΣR
r−1) = rank(∇ΣR

r ) at general
points, then inductively,

rank(∇ΣR

r−1) = rank(∇ΣR

r ) = rank(∇ΣR

r+1) = · · ·

at general points, which implies that

dim(ImΣR

r−1) = dim(ImΣR

r ) = · · · = nUnV nW .

Hence if r < rg, rank(∇ΣR
r−1) < rank(∇ΣR

r ) at general points, implying that

dim(ImΣR

r−1) < dim(ImΣR

r ).

On the other hand, since (U+×V+×W+)
r contains an open subset of (U×V ×W )r,

by Lemma 2.1, ∇Σ
R+

r = ∇ΣR
r at a general point, ImΣ

R+

r contains an open subset
of ImΣR

r , i.e.,

dim(Dr−1) = dim(ImΣ
R+

r−1) = dim(ImΣR

r−1)

< dim(ImΣR

r ) = dim(ImΣR+

r ) = dim(Dr).

Thus a general A ∈ Dr has nonnegative rank r, and the real rank of A is also r. �

We now relate real rank to complex rank (and later to nonnegative rank) via
general relations between real algebraic varieties and their complexifications. For a
field of characteristic zero K, we write KP

n for the projective space of dimension n
over K. As we briefly mentioned after Definition 3.2, the affine cone of a projective
variety X ⊆ KP

n is the affine variety

X̂ := {x ∈ K
n+1 : π(x) ∈ X} ∪ {0} = π−1(X) ∪ {0},

where π : Kn+1 → KP
n is the natural projection that takes a point x ∈ Kn+1 to

the equivalence class π(x) = {λx ∈ Kn+1 : λ ∈ K×} ∈ KP
n.

Definition 5.3. Let X,Y ⊆ KP
n be projective varieties. Let ϕ : X̂ × Ŷ → Kn+1,

(x, y) 7→ x + y. The join of X and Y is the projective variety J(X,Y ) ⊆ KP
n

whose affine cone is the Zariski closure of the image ϕ(X̂ × Ŷ ) ⊆ Kn. The kth
secant variety of X is the projective variety defined by

σK

k (X) :=

{
J(X,X) if k = 2,

J
(
X, σK

k−1(X)
)

if k > 2.

We define

Var(RPn) := {X ⊆ RP
n : X a real projective variety that is

(i) irreducible, (ii) nondegenerate, (iii) Zariski dense in X(C)}

Let I(X) ⊆ R[x0, . . . , xn] be the homogeneous ideal of X and rg(X) be the com-
plex generic X-rank. Standard elimination theory (see [52, Section 2.1] and [10,
Section 2.2]) yields the following relation between a real secant variety and its
complexification.

Lemma 5.4. Let X ∈ Var(RPn) and r < rg(X). Then there exists a set of

homogeneous generators f1, . . . , fm of the ideal I
(
σR
r (X)

)
that also generates the

ideal I
(
σC
r (X(C))

)
. In particular, σC

r (X(C)) is the complexification of σR
r (X).

It is also not difficult to see the following relation between smooth points on a
real secant variety and general points on its complexification.
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Lemma 5.5. Let X ∈ Var(RPn) and r < rg(X). Then σR
r (X) ∈ Var(RPn).

Proof. It suffices to show that at least one point in σR
r (X) is a smooth point in

σC
r (X(C)). Suppose not. Then σR

r (X) is in the singular locus of σC
r (X(C)). Let

k = dimσC
r (X(C)). Then σR

r (X) satisfies the equations given by the vanishing of
the (n− k)× (n− k) minors of



∂f1/∂x0 · · · ∂f1/∂xn

...
. . .

...
∂fm/∂x0 · · · ∂fm/∂xn


 ,

which are defined over R. On the other hand, these minors are not all in I
(
σR
r (X)

)

as σR
r (X) itself has at least one real smooth point — a contradiction. Hence at

least one point in σR
r (X) is a smooth point of σC

r (X(C)). �

By [2, Corollary 1.8], σC
r−1(X(C)) is in the singular locus of σC

r (X(C)). Applying
this to X = Seg(PU × PV × PW ), the Segre variety of rank-one tensors, we obtain
the following from Lemma 5.5.

Lemma 5.6. Let r < rg. Then a general real tensor A of real rank r has complex

rank r.

Theorem 5.7. Let r < rg. Then a general A ∈ Dr has both real rank and complex

rank equal to r. If U ⊗ V ⊗W is r-identifiable, then A has a unique nonnegative

rank-r decomposition.

Proof. The claims about ranks are just Lemmas 5.2 and 5.6. Since Dr contains an
open subset of ImΣR

r , a general point in Dr has a unique rank-r decomposition. �

There has been a significant amount of work on both defectivity [56, 43, 1] and
identifiability [40, 54, 19, 27, 28, 12, 21, 29]. While these focus mainly on complex
tensors, some of these methods can be also adapted to real tensors. Two notable
examples are [19, Theorem 1.1] and [29, Proposition 1.6], stated below for real
tensors.

Theorem 5.8 (Chiantini–Ottaviani). Let U, V , and W be real vector spaces with

dimensions dimU ≤ dimV ≤ dimW . Let α, β be minimum integers such that

2α ≤ dimU and 2β ≤ dimV . Then U ⊗ V ⊗W is r-identifiable if r ≤ 2α+β−2.

Theorem 5.9 (Domanov–De Lathauwer). Let U, V , and W be real vector spaces

with dimensions dimU = m, dim V = n, and dimW = p. If

2 ≤ m ≤ n ≤ p ≤ r and 2r ≤ m+ n+ 2p− 2−
√

(m− n)2 + 4p,

then U ⊗ V ⊗W is r-identifiable.

Applying Theorem 5.8 to Theorem 5.7, we obtain explicit examples.

Corollary 5.10. Let n ≥ 4 and r ≤ ⌊n2/16⌋. A general A ∈ R
n×n×n
+ with

rank+(A) = r has complex rank r (and therefore real rank r) and a unique non-
negative rank-r decomposition.

In fact we may also derive identifiability results for real tensors from the identi-
fiability results for complex tensors.



SEMIALGEBRAIC GEOMETRY OF NONNEGATIVE TENSOR RANK 13

Lemma 5.11. Let X ∈ Var(RPn) and r < rg(X). If a general point in σC
r (X(C))

has a unique rank-r decomposition, then a general point in σR
r (X) has a unique

complex rank-r decomposition.

Proof. Suppose not, then there is some nonempty Euclidean open subset U of σR
r (X)

such that any point in U does not have a unique complex rank-r decomposition.
By assumption, the set of points in σC

r (X(C)) that do not have unique rank-r
decompositions is contained in a subvariety Y ⊆ σC

r (X(C)). Then U ⊂ Y , and so
the Zariski closure of U , i.e., σR

r (X), is contained in Y . But by Lemma 5.5, σR
r (X)

is Zariski dense in σC
r (X(C)), a contradiction. �

Lemma 5.11 does not guarantee that a general point in σR
r (X) has a unique real

rank-r decomposition as there may be a Euclidean open subset in σR
r (X) where

every point has real rank greater than r. We now apply Lemma 5.11 to the case
X = Seg(PU × PV × PW ).

Theorem 5.12. Let U, V , and W be real vector spaces and let r < rg . If UC ⊗
VC ⊗WC is r-identifiable, then U ⊗ V ⊗W is r-identifiable.

Proof. If UC⊗VC⊗WC is r-identifiable, then a general point in σC
r (Seg(PUC×PVC×

PWC)) has a unique complex rank-r decomposition. By Lemma 5.11, a general point
in σR

r (Seg(PU × PV × PW )) has a unique complex rank-r decomposition. Since
ImΣR

r contains a Euclidean open subset of σR
r (Seg(PU × PV × PW )), a general

point A ∈ ImΣR
r has real rank r and a unique complex rank-r decomposition. By

Lemma 5.6, A has complex rank r; and so the unique complex rank-r decomposition
of A is in fact its unique real rank-r decomposition. Therefore U ⊗ V ⊗ W is r-
identifiable. �

A consequence of Theorem 5.12 is the following corollary of [21, Theorem 1.1].

Corollary 5.13. Let n1 ≥ · · · ≥ nd and

r0 =

⌈ ∏d
i=1 ni

1 +
∑d

i=1(ni − 1)

⌉
.

Then R
n1×···×nd is r-identifiable for r < r0 if

∏d
i=1 ni ≤ 15000 and (n1, . . . , nd, r)

is not one of the following cases:

(n1, . . . , nd) r

(4, 4, 3) 5
(4, 4, 4) 6
(6, 6, 3) 8

(n, n, 2, 2) 2n− 1
(2, 2, 2, 2, 2) 5

n1 >
∏d

i=2 ni −
∑d

i=2(ni − 1) r ≥
∏d

i=2 ni −
∑d

i=2(ni − 1)

By Lemma 5.5, we may also apply the algorithm proposed in [21] for complex
tensors to directly test if a general real tensor of real rank-r or a general nonnegative
tensor of nonnegative rank-r has a unique complex rank-r decomposition. The
sufficient condition to ensure the smoothness of a specific complex tensor in [21,
Lemma 5.1] may also be adapted to real tensors.

This discussion would not be complete without examples of non-identifiability
cases. As most of the non-identifiability cases in the literature are for the complex
case, we provide a result that allows us to translate them to the real case.
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Lemma 5.14. Let V1, . . . , Vd be real vector spaces of dimensions n1, . . . , nd respec-

tively. Let U1, . . . , Ud be their complexifications, i.e., Ui = Vi ⊗R C, i = 1, . . . , d. If

U1 ⊗ · · · ⊗ Ud is r-defective and r < rg, then V1 ⊗ · · · ⊗ Vd is also r-defective.

Proof. Let A =
∑r

i=1 v
(1)
i ⊗· · ·⊗v

(d)
i ∈ V1⊗· · ·⊗Vd be a general real rank-r tensor.

Let

X := Seg(PV1 × · · · × PVd) and X(C) := Seg(PU1 × · · · × PUd).

By our semialgebraic Terracini’s lemma, i.e., Lemma 3.6,

TAσ̂
R

r (X) = spanR{V1 ⊗ v
(2)
1 ⊗ · · · ⊗ v

(d)
1 , . . . , v(1)r ⊗ · · · ⊗ v(d−1)

r ⊗ Vd}.

By Lemma 5.5, A is a smooth point of σC
r (X(C)), and thus by the usual complex

Terracini’s lemma,

TAσ̂
C

r (X(C)) = spanC{U1 ⊗ v
(2)
1 ⊗ · · · ⊗ v

(d)
1 , . . . , v(1)r ⊗ · · · ⊗ v(d−1)

r ⊗ Ud}.

By assumption,

dimC TAσ̂
C

r (X(C)) < r(n1 + · · ·+ nd − d+ 1),

i.e., there exist u
(k)
1 , . . . , u

(k)
r ∈ Ui with [u

(k)
i ] 6= [v

(k)
i ] ∈ PUi for k = 1, . . . , d,

i = 1, . . . , r, and

u
(1)
1 ⊗ v

(2)
1 ⊗ · · · ⊗ v

(d)
1 + · · ·+ v(1)r ⊗ · · · ⊗ v(d−1)

r ⊗ u(d)
r = 0.

By taking the real part or the imaginary part of each u
(k)
i , we have dimR TAσ̂

R
r (X) <

r(n1 + · · ·+ nd − d+ 1), i.e., V1 ⊗ · · · ⊗ Vd is r-defective. �

Using the corresponding results for complex tensors in [1, 12] and Lemma 5.14,
we deduce the following nonuniqueness result for real tensors.

Theorem 5.15. (i) R4×4×3 is 5-defective. So a general 4 × 4× 3 real tensor of

real rank 5 does not have a unique rank-5 decomposition over R.

(ii) For any n ≥ 2, Rn×n×2×2 is (2n−1)-defective. So a general n×n×n×2 real

tensor of real rank 2n− 1 does not have a unique rank-(2n− 1) decomposition

over R.

(iii) For n1 ≥ · · · ≥ nd ≥ 2, Rn1×···×nd is r-defective if

n1 >
∏d

i=2
ni −

∑d

i=2
(ni − 1) and r ≥

∏d

i=2
ni −

∑d

i=2
(ni − 1).

So a general (n1 × · · · × nd)-real tensor of real rank r < rg does not have a

unique rank-r decomposition over R.

A complex analogue of Theorem 5.15 may be found in [21, Theorem 1.1].
We may also apply the techniques in this section to obtain analogous results

for real symmetric tensors. We will denote the set of real or complex symmetric d-
tensors by Sd(Rn) or Sd(Cn) respectively. We say Sd(Cn) is r-identifiable if a general
symmetric rank-r tensor in S

d(Cn) has a unique symmetric rank decomposition
(also known asWaring decomposition). Applying Lemma 5.11 to X = νd(RP

n), the
Veronese variety of symmetric rank-one symmetric tensors, we deduce the following.

Theorem 5.16. Let r < rg(νd(RP
n)). If Sd(Cn+1) is r-identifiable, then Sd(Rn+1)

is r-identifiable.
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When r < rg(νd(RP
n)), the r-identifiability of Sd(Cn+1) has been completely

determined for all values of r, d, n [20, Theorem 1.1]; this together with Lemma 5.11
gives us the following.

Corollary 5.17. S
d(Rn+1) is r-identifiable when

r <

⌈(n+d
d

)

n+ 1

⌉

and if (d, n, r) /∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)}.

Proof. This follows from [18], [6, Theorem 1.1], [47, Theorem 4.1], and [20, Theo-
rem 1.1]. �

6. Typical and maximum nonnegative ranks

In this section, we investigate typical, maximum, and maximum nonnegative
typical ranks, as defined in Definition 3.3. The following rephrases [45, Proposi-
tion 6.2] in the context of this article and may be viewed as a generalization of [11,
Theorem 3.1].

Proposition 6.1. Let A ∈ U+ ⊗ V+ ⊗W+ with rank+(A) = r. Then there is an
open ball B(A, ε) ⊆ U ⊗ V ⊗W such that

rank+(A
′) ≥ r

for all A′ ∈ B(A, ε) ∩ U+ ⊗ V+ ⊗W+.

It follows immediately that the maximum nonnegative typical rank and the max-
imum nonnegative rank always coincide.

Lemma 6.2. If r is the maximum nonnegative rank of U+ ⊗ V+ ⊗W+, then r is

the maximum nonnegative typical rank.

What about the minimum nonnegative typical rank then? It turns out that it
is always equal to the (complex) generic rank.

Lemma 6.3. The minimum nonnegative typical rank of U+ ⊗ V+ ⊗ W+ is the

complex generic rank rg of UC ⊗ VC ⊗WC.

Proof. Since (U+ × V+ × W+)
r contains an open subset of (U × V × W )r, by

Lemma 2.1, rank(∇Σ
R+

r ) = rank(∇ΣR
r ) at general points. Hence dim Im(Σ

R+

r ) =
dim Im(ΣR

r ), which implies that rg is the minimum nonnegative typical rank. �

We will illustrate these with a 2 × 2 × 2 example. In this case, the complex
generic rank of C2×2×2 is 2 and the real typical ranks of R2×2×2 are 2 and 3 [26].
By Lemmas 3.4, 6.2, and 6.3, to completely determine the nonnegative typical ranks
of R2×2×2

+ , it remains to find the maximum nonnegative rank. We will construct a
nonnegative tensor with maximum nonnegative rank explicitly. Consider the tensor

(6.1) A = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2

that we saw earlier in (5.1). A may be represented by a nonnegative hypermatrix

A =

[
1 0 0 1
0 1 1 0

]
∈ R

2×2×2
+ .

Now let A =
∑r

k=1 xk ⊗ yk ⊗ zk be a nonnegative rank-r decomposition. Then we

must be able to write A =
∑r′

k=1 Xk ⊗ zk where each Xk is a nonnegative matrix.
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Observe that zk cannot be of the form αe1 + βe2 where α, β > 0. Otherwise by
the nonnegativity of each zk and Xk, there is some i, j ∈ {1, 2} such that the
(i, j, 1)th coordinate and the (i, j, 2)th coordinate of A are both positive, which
contradicts the construction of A. Hence we must have zk = e1 or e2 for all
k = 1, . . . , r′. So without loss of generality we may assume that z1 = e1 and
z2 = e2. Then X1 = e1 ⊗ e1 + e2 ⊗ e2 and X2 = e1 ⊗ e2 + e2 ⊗ e1. By the
uniqueness of the nonnegative decompositions ofX1 andX2, the nonnegative rank-r
decomposition of A in (6.1) is unique. Hence rank+(A) = 4. Since any T ∈ R

2×2×2
+

has the form T = Y1 ⊗ e1 + Y2 ⊗ e2 where Y1, Y2 are nonnegative matrices, and
the nonnegative rank of a nonnegative 2× 2 matrix is at most 2, we may conclude
that the nonnegative rank of T is at most 4. Thus the nonnegative typical ranks of
R

2×2×2
+ are 2, 3, and 4.
Both the real and complex ranks of A are 2 [26]. In fact for any A′ in a sufficiently

small open ball B(A, ε), both the real and complex ranks of A′ are also 2. If in
addition, A′ ∈ B(A, ε) ∩ (R2×2×2

+ ), then the nonnegative rank of A′ is 4. This
example can be generalized as follows.

Lemma 6.4. Let P1, . . . , Pn ∈ R
n×n
+

∼= Rn
+ ⊗ Rn

+ be n permutation matrices such

that for each (i, j) ∈ {1, . . . , n} × {1, . . . , n}, there is one and only one Pk whose

(i, j)th entry is one. Let e1, . . . , en ∈ Rn
+ be the standard basis of Rn. Define

A = P1 ⊗ e1 + · · ·+ Pn ⊗ en ∈ R
n×n×n
+ .

Then rank+(A) = n2 and A has a unique nonnegative rank-n2 decomposition.

Proof. It suffices to show that A has a unique nonnegative rank-n2 decomposition.
Suppose

A =

n2∑

i=1

[
n∑

j=1

αj
i ej

]
⊗

[
n∑

j=1

βj
i ej

]
⊗

[
n∑

j=1

γj
i ej

]

for nonnegative αj
i , β

j
i , γ

j
i . Without loss of generality, we may assume α1

1, β
1
1 , γ

1
1 6= 0.

Since there is only one Pk whose (1, 1)th entry is nonzero, this Pk must be P1 and

γj
1 = 0 for all j > 1. Repeating this procedure we may show that when we regard

A as a nonnegative matrix in R
n2

×n
+

∼= R
n×n
+ ⊗ Rn

+, it has a unique nonnegative
matrix factorization given by A = P1 ⊗ e1 + · · · + Pn ⊗ en. Since each Pk has a
unique nonnegative matrix factorization [42], A has a unique nonnegative rank-n2

decomposition. �

A d-tensor in V1 ⊗ · · · ⊗ Vd is said to be cubical if dimV1 = · · · = dim Vd. By
[43, Theorem 4.4], [56, Theorem 4.6], Lemmas 3.4, 6.3, 6.2, and 6.4, we completely
determine the nonnegative typical ranks of cubical nonnegative tensors.

Proposition 6.5. For n = 2, the nonnegative typical ranks of R2×2×2
+ are given

by all integers m where
2 ≤ m ≤ 4.

For n = 3, the nonnegative typical ranks of R3×3×3
+ are given by all integers m

where
5 ≤ m ≤ 9.

For n ≥ 4, the nonnegative typical ranks of Rn×n×n
+ are given by all integers m

where ⌈
n3

3n− 2

⌉
≤ m ≤ n2.
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For nonnegative tensors that are not cubical, we may determine the maximum
nonnegative typical ranks but since the complex generic ranks for 3-tensors are still
not known in some instances, we do not have a complete list of nonnegative typical
ranks.

Proposition 6.6. Write maxrank+(m,n, p) for the maximum nonnegative typical

rank of Rm×n×p
+ and suppose without loss of generality that m ≥ n ≥ p. Then

maxrank+(m,n, p) =





np if m = n ≥ p,

n2 if m ≥ n = p,

np if m > n > p.

Proof. The required arguments are as in the proof of Lemma 6.4 but ‘padded with
the appropriate number of zeros,’ i.e., applied to matrices of the form

[
Pk

0

]
or

[
Pk 0

]

where Pk is a permutation matrix. �

7. General uniqueness of decompositions of approximations

In our previous work [50], we established that a general nonnegative tensor has
a unique best nonnegative rank-r approximation. Here we investigate whether this
best nonnegative rank-r approximation has a unique nonnegative rank-r decompo-
sition.

Let U, V,W be real vector spaces of dimensions nU , nV , nW respectively. We
will assume a choice of basis on these vector spaces, so that U ∼= RnU , V ∼= RnV ,
and W ∼= RnW . For a vector ui ∈ U , we let ui,j denote the jth coordinate of ui.
Likewise for V and W . For any smooth curve γ(t), t ∈ [0, 1], the right derivative
at 0 is denoted by

γ′(0) := lim
t→0+

γ(t)− γ(0)

t− 0
.

Recall the map Σ
R+

r : (U+×V+×W+)
r → U+⊗V+⊗W+ defined in (5.2) and (5.3).

The pushforward of Σ
R+

r at γ′(0) is denoted

Σ
R+

r∗

(
γ′(0)

)
:= lim

t→0+

Σ
R+

r

(
γ(t)

)
− Σ

R+

r

(
γ(0)

)

t− 0
.

Let Sr ⊆ U+ ⊗ V+ ⊗ W+ denote the set of nonnegative tensors on which the
distance function dist(·, Dr) is not smooth. Then Sr contains the nonnegative
tensors with non-unique best nonnegative rank-r approximations and is a nowhere
dense semialgebraic subset [35]. Let πr : U+ ⊗ V+ ⊗ W+ \ Sr → Dr be the map
sending a nonnegative tensor to its unique best nonnegative rank-r approximation.
Since the distance function dist(·, Dr) is semialgebraic [24, 35], the graph of πr,

G(πr) = {(p, q) ∈ (U+ ⊗ V+ ⊗W+ \ Sr)×Dr : dist(p,Dr) = ‖p− q‖},

is also semialgebraic. By Proposition 2.6, the subset of points in U+⊗V+⊗W+ \Sr

where πr is not smooth is contained in a hypersurface Hr. Henceforth we will focus
on the restriction of πr (also denoted πr with a slight abuse of notation) to a subset
of smooth points in U+ ⊗ V+ ⊗W+,

πr : U+ ⊗ V+ ⊗W+ \ (Sr ∪Hr) → Dr.
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In the following the support of a vector u ∈ U is defined to be

supp(u) := {i ∈ {1, . . . , nU} : ui 6= 0}.

The next lemma is a slight rephrase of [50, Lemma 13]. We will use it to partition
Dr into a union of semialgebraic sets later.

Lemma 7.1. Let p ∈ U+ ⊗ V+ ⊗ W+ \ (Sr ∪ Hr) where πr(p) has a nonnegative

rank-r decomposition

(7.1) πr(p) =

r∑

i=1

ui ⊗ vi ⊗ wi.

Then for any xi ∈ U+, i = 1, . . . , r, we have

(7.2) 〈p, xi ⊗ vi ⊗ wi〉 ≤ 〈πr(p), xi ⊗ vi ⊗ wi〉 ,

where 〈·, ·〉 denotes the Euclidean inner product. With respect to the nonnegative

vectors u1, . . . , ur in (7.1), define the subspaces

(7.3) Ũi := {u ∈ U : supp(u) ⊆ supp(ui)}

for i = 1, . . . , r, and define Ṽi and W̃i similarly. Then for xi ∈ Ũi, i = 1, . . . , r, we
have

(7.4) 〈p, xi ⊗ vi ⊗ wi〉 = 〈πr(p), xi ⊗ vi ⊗ wi〉 .

The analogous statement for Ṽi or W̃i in place of Ũi holds true as well.

We first remind the reader of our abbreviated notation in (5.4). Let

Tπr(p)(u1, . . . , wr) := spanR

(⋃r

i=1
Ũi ⊗ vi ⊗ wi ∪ ui ⊗ Ṽi ⊗ wi ∪ ui ⊗ vi ⊗ W̃i

)
.

By Lemma 3.6, this is the tangent space of Dr at πr(p) when πr(p) is a smooth
point of Dr. Then (7.4) implies that3

(7.5) 〈Tπr(p)(u1, . . . , wr), p− πr(p)〉 = 0,

i.e., p− πr(p) is orthogonal to the subspace Tπr(p)(u1, . . . , wr).

Let σr denote the Euclidean closure of ImΣR
r . Then Dr ⊆ σr. By the Tarski–

Seidenberg Theorem, σr is semialgebraic. By [35, Theorem 3.7], a general A ∈
U ⊗ V ⊗ W \ σr has a unique best approximation π̃r(A) in σr . Note that for a
nonnegative A, π̃r(A) ∈ σr may be different from πr(A) ∈ Dr.

In order to study best nonnegative rank approximations, i.e., the image of πr,
we first partition Dr into a union of special semialgebraic subsets. For any index
set Ii ⊆ {1, . . . , nU}, let

U+(Ii) := {u ∈ U+ : supp(u) = Ici }

and likewise for V+(Ji) and W+(Ki) with index sets Ji ⊆ {1, . . . , nV } and Ki ⊆
{1, . . . , nW }. Here Ici := {1, . . . , nU} \ Ii denotes set-theoretic complement. Given
tuples of index sets

I = (I1, . . . , Ir), J = (J1, . . . , Jr), K = (K1, . . . ,Kr)

3Our convention: 〈S, u〉 = 〈u, S〉 = 0 for S ⊆ U means that every vector in S is orthogonal to
u; 〈S, T 〉 = 0 for S, T ⊆ U means that any vector in S is orthogonal to any vector in T .
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with Ii ⊆ {1, . . . , nU}, Ji ⊆ {1, . . . , nV }, Ki ⊆ {1, . . . , nW }, i = 1, . . . , r, we define
a cell of Dr corresponding to these index sets by

Dr(I, J,K) :=

{
A ∈ Dr : A =

∑r

i=1
ui ⊗ vi ⊗ wi,

ui ∈ U+(Ii), vi ∈ V+(Ji), wi ∈ W+(Ki), i = 1, . . . , r

}
.

The notion of a cell is important for our study of uniqueness because of the following
easy observation.

Lemma 7.2. Let A ∈ Dr. If A belongs to distinct cells, then the nonnegative

r-term decomposition of A is not unique.

Clearly, if Ii = Ji = Ki = ∅ for all i = 1, . . . , r, then dimDr(I, J,K) = dimDr

and we call this the trivial cell. The union of all nontrivial cells is called the
boundary of Dr, and denoted by ∂Dr.

Lemma 7.3. If r < rg and U ⊗V ⊗W is not r-defective, then dim ∂Dr < dimDr.

Proof. We first describe ∂Dr explicitly. Let α ∈ {1, . . . , nU} and i ∈ {1, . . . , r}.

Let Ũ+(α) = {u ∈ U+ : α /∈ supp(u)}. Define

∂D
(i,α)
r,U

:= ΣR+

r

(
(U+ × V+ ×W+)

i−1 × (Ũ+(α)× V+ ×W+)× (U+ × V+ ×W+)
r−i

)
.

We write

∂Dr,U :=

r⋃

i=1

nU⋃

α=1

∂D
(i,α)
r,U

and likewise define ∂Dr,V and ∂Dr,W . The boundary is then the union of these
three semialgebraic subsets,

∂Dr = ∂Dr,U ∪ ∂Dr,V ∪ ∂Dr,W .

From this description of ∂Dr, the required result is evident. �

We caution our reader that our notion of boundary of Dr differs from both its
topological boundary and its algebraic boundary as defined in [3].

Let A ∈ U+ ⊗ V+ ⊗ W+ where πr(A) has a nonnegative rank-r decomposition
πr(A) =

∑r
i=1 ui⊗vi⊗wi. If there is some i ∈ {1, . . . , r} such that strict inequality

holds in (7.2), i.e., there is some xi ∈ U+ with

〈A, xi ⊗ vi ⊗ wi〉 < 〈πr(A), xi ⊗ vi ⊗ wi〉 ,(7.6)

then π̃r(A) 6= πr(A) and πr(A) ∈ ∂Dr by Lemma 7.1. Similarly, if

〈A, ui ⊗ yi ⊗ wi〉 < 〈πr(A), ui ⊗ yi ⊗ wi〉(7.7)

or 〈A, ui ⊗ vi ⊗ zi〉 < 〈πr(A), ui ⊗ vi ⊗ zi〉(7.8)

for some yi ∈ V+ or zi ∈ W+, then π̃r(A) 6= πr(A) and πr(A) ∈ ∂Dr. We define
the following sets:

L = {πr(A) ∈ ∂Dr : πr(A) satisfies (7.6), (7.7), or (7.8)},(7.9)

N = {A ∈ U+ ⊗ V+ ⊗W+ \ (Sr ∪Hr) : πr(A) ∈ L}.(7.10)

We will next show that every positive tensor (i.e., a tensor whose coordinates are
positive) in N is an interior point.
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Proposition 7.4. If A ∈ N is positive, then A has an open neighborhood V such
that V ⊆ N .

Proof. We first describe the structure of an open neighborhood B(A, η) of a positive
A ∈ U+⊗V+⊗W+ and its image πr(B(A, η)). By [50, Proposition 15], πr(A) always
has nonnegative rank-r. Since πr is smooth, for any δ > 0, there is some η > 0 such

that πr(B(A, η)) ⊆ B(πr(A), δ) ∩Dr. Observe that
(
Σ

R+

r

)−1
(B(πr(A), δ) ∩Dr) is

a union of at most a countable number of products of open balls, say,
⋃s

j=1

(
B(u

(j)
1 , δ

(j)
1 ) ∩ U+

)
× · · · ×

(
B(w(j)

r , δ(j)r ) ∩W+

)
⊆ (U+ × V+ ×W+)

r,

where s ∈ N ∪ {∞}, u
(j)
i ∈ U+, v

(j)
i ∈ V+, w

(j)
i ∈ W+, and δ

(j)
i > 0 for i = 1, . . . , r,

and j = 1, . . . , s. By dimension count, there exists some j such that the image of

U := (B(u
(j)
1 , δ

(j)
1 ) ∩ U+)× · · · × (B(w(j)

r , δ(j)r ) ∩W+)

under Σ
R+

r contains an open subset of B(πr(A), δ)∩Dr . For notational convenience,

we drop the superscript on u
(j)
i , v

(j)
i , w

(j)
i and write ui, vi, wi below. By decreasing δ

we may choose δ
(j)
1 = · · · = δ

(j)
r = ε for some ε > 0 small enough. Furthermore, we

may assume that πr(A) =
∑r

i=1 ui⊗vi⊗wi is a nonnegative rank-r decomposition.
So for any p ∈ B(A, η), πr(p) has a nonnegative rank-r decomposition πr(p) =∑r

i=1 ui(p)⊗ vi(p)⊗ wi(p) where

‖ui − ui(p)‖ ≤ ε, ‖vi − vi(p)‖ ≤ ε, ‖wi − wi(p)‖ ≤ ε,

for i = 1, . . . , r. Thus
(7.11)

supp(ui) ⊆ supp(ui(p)), supp(vi) ⊆ supp(vi(p)), supp(wi) ⊆ supp(wi(p)),

for i = 1, . . . , r, and all ui(p), vi(p) and wi(p) depend continuously on p. The
function defined by

g(p) := 〈p− πr(p), xi ⊗ vi(p)⊗ wi(p)〉

is therefore continuous on B(A, η) for any fixed xi ∈ U+. If there is some xi ∈ U+

such that 〈A − πr(A), xi ⊗ vi ⊗ wi〉 < 0, then by the continuity of g, there is an
open neighborhood V ⊆ B(A, η) such g(p) < 0 for all p ∈ V . Therefore V ⊆ N . �

The following theorem is the main result of this section. It characterizes the
relation between the image of πr and the cells of Dr. Its implication on nonnegative
tensor decomposition and approximation will be given in Corollary 7.6.

Theorem 7.5. Let πr(A) ∈ Dr(I, J,K) for some cell Dr(I, J,K) 6= {0}. Let V be

an open neighborhood of A. Then πr(V) contains an open subset of Dr(I, J,K).

Proof. We consider two cases: If πr(V) is zero-dimensional, then we are led to a
contradiction and so this case cannot occur. If πr(V) is positive-dimensional, then
we show that it must have full dimension in Dr(I, J,K) and therefore the required
result follows.

Case 1. πr(V) = πr(A) is a point.

Let γ(t) be a curve in V with γ(0) = A. Then πr(γ(t)) = πr(A) for any t. By
(7.5) we have

〈Tπr(A)(u1, . . . , wr), γ(t)− πr(A)〉 = 0, 〈Tπr(A)(u1, . . . , wr), A− πr(A)〉 = 0,
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implying that

〈Tπr(A)(u1, . . . , wr), γ(t)−A〉 = 0.

Since the curve γ(t) is arbitrary, we are led to the conclusion that

〈Tπr(A)(u1, . . . , wr), U ⊗ V ⊗W 〉 = 0,

contradicting the definition of Tπr(A)(u1, . . . , wr).

Case 2. πr(V) is of positive dimension.

We will show that dimπr(V) = dimDr(I, J,K). By (7.11), we may assume
that πr(A) is a smooth point of πr(V) without loss of generality. By giving πr(V)
a finer stratification, we may furthermore assume that πr(V) is a Nash manifold.
Suppose that dimπr(V) < dimDr(I, J,K). Then by Theorem 2.2 there is an
open semialgebraic neighborhood R of πr(V) in Dr(I, J,K) and a Nash retraction
f : R → πr(V) such that

dist(p, πr(V)) = ‖p− f(p)‖

for any p ∈ R. So there is a smooth curve γ(t) ⊆ R such that γ(0) = πr(A) and
f(γ(t)) = πr(A). Let A(t) := A−πr(A)+γ(t) and X(t) := πr(A(t)) ⊆ πr(V). Note
that

γ(t), X(t) ⊆ Dr(I, J,K), A′(0), X ′(0) ∈ Tπr(A)(u1, . . . , wr).

By Lemma 7.1,

lim
t→0+

d

dt
〈A(t) −X(t), A(t)−X(t)〉 = 2〈A′(0)−X ′(0), A−X(0)〉 = 0.

In fact, for any s > 0 small enough, we have

d

dt
〈A(t) −X(t), A(t)−X(t)〉

∣∣∣
t=s

= 2〈A′(s)−X ′(s), A(s)−X(s)〉 = 0,

implying that ‖A(t)−X(t)‖ is constant around t = 0. On the other hand,

‖A(t)− γ(t)‖ = ‖A− πr(A)‖.

So by the uniqueness of πr(A(t)), X(t) = γ(t), contradicting γ(t) ⊆ R \ πr(V) for
t > 0. Therefore we must have dim πr(V) = dimDr(I, J,K). �

Corollary 7.6. Let r < rg, U ⊗ V ⊗W be r-identifiable, and A ∈ U+ ⊗ V+ ⊗W+

be general. If the unique best nonnegative rank-r approximation πr(A) of A is not
in the boundary ∂Dr, then πr(A) has a unique nonnegative rank-r decomposition.

Proof. Since r < rg and U ⊗ V ⊗W is not r-defective, by Lemma 7.3,

dim ∂Dr < dimDr < dimU ⊗ V ⊗W.

For any smooth point q ∈ Dr, there is an open neighborhood Q ⊆ Dr of q such
that any point in Q is also smooth. By Theorem 2.2, there is an open semialgebraic
neighborhood R of Q in U+ ⊗ V+ ⊗ W+ and a Nash retraction f : R → Q such
that dist(p,Q) = ‖p− f(p)‖ for every p ∈ R. By shrinking R if necessary, we may
assume that

‖p− f(p)‖ = dist(p,Q) = dist(p,Dr)

for every p ∈ R, i.e., πr(p) = f(p). Thus every smooth point of Dr is contained in
Im (πr), i.e., Im (πr) is a semialgebraic subset of Dr with

(7.12) dim Im (πr) = dimDr > dim ∂Dr.
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The required result then follows from Theorem 5.7 and Theorem 7.5 with the trivial
cell Dr(I, J,K) ⊇ Dr \ ∂Dr. �

A measure theoretic consequence of Corollary 7.6 is that there is a positive
measured subset of nonnegative tensors, such that each nonnegative tensor in this
subset has a unique best nonnegative rank-r approximation, and furthermore this
approximation has a unique nonnegative rank-r decomposition.

In the case of real tensors, it is possible that best rank-r approximations always
lie on the boundary of the set of tensors of rank ≤ r [26, Section 8]. So one might
perhaps wonder whether Corollary 7.6 is vacuous. Fortunately this is not the case
for nonnnegative tensors provided that r < rg and U ⊗ V ⊗W is not r-defective.
In fact, the condition (7.12) implies that πr(A) is not always in ∂Dr.

For the special cases r = 2 and 3, we can say considerably more than Corol-
lary 7.6. We will first make an observation regarding the case when πr(A) ∈ L
where L is as defined in (7.9).

Lemma 7.7. Let πr(A) ∈ L. Then

supp(u1) ∪ · · · ∪ supp(ur) = {1, . . . , nU},

supp(v1) ∪ · · · ∪ supp(vr) = {1, . . . , nV },

supp(w1) ∪ · · · ∪ supp(wr) = {1, . . . , nW }.

Proof. Suppose 1 /∈
⋃r

i=1 supp(ui). Then by definition

〈A− πr(A), e1 ⊗ v1 ⊗ w1〉 ≤ 0

where e1 = (1, 0, . . . , 0). Since the coordinate (πr(A))1jk = 0 for any j = 1, . . . , nV ,
k = 1, . . . , nW , and A is positive, we have that (A − πr(A))1jk > 0. On the other
hand, (e1 ⊗ v1 ⊗ w1)ijk = 0 for i 6= 1, and (e1 ⊗ v1 ⊗ w1)1jk ≥ 0. Hence

〈A− πr(A), e1 ⊗ v1 ⊗ w1〉 > 0,

a contradiction. �

A cell Dr(I, J,K) is called admissible if
⋂r

i=1
Ii =

⋂r

i=1
Ji =

⋂r

i=1
Ki = ∅.

By Proposition 7.4, Theorem 7.5, and Lemma 7.7, if A ∈ N , then there is an open
neighborhood V of A such that πr(V) contains an open subset of some admissible
cell Dr(I, J,K). For small values of r, we may check these admissible cells and
possibly obtain uniqueness for nonnegative rank-r decomposition of πr(A) for a
general A. We will do this explicitly for r = 2 and 3.

Theorem 7.8. Let r = 2 or 3 and let nU , nV , nW ≥ 3. Then for a general

A ∈ U+ ⊗ V+ ⊗W+, its unique best nonnegative rank-r approximation πr(A) has a

unique nonnegative rank-r decomposition.

Proof. By Corollary 7.6, it remains to check the case πr(A) ∈ ∂Dr for a general
A. Theorem 7.5 and Lemma 7.7 further restrict the remaining case to checking
(i) whether πr(A) can be contained in an admissible cell, and (ii) whether πr(A)
contained in an admissible cell (if any) has a unique decomposition.

When r = 2, for a general p in any admissible cell Dr(I, J,K), let p = u1 ⊗
v1 ⊗ w1 + u2 ⊗ v2 ⊗ w2 be its nonnegative rank-2 decomposition. Then each set
{u1, u2}, {v1, v2}, and {w1, w2} consists of a pair of linearly independent vectors.
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By [40], p has a unique real rank-2 decomposition and thus the nonnegative rank-2
decomposition is unique.

When r = 3, we may assume without loss of generality [26, Theorem 5.2] that
nU = nV = nW = 3. The only situation where a general point p of an admissible
cell Dr(I, J,K) does not have a unique nonnegative rank-r decomposition is if

I1 = I2 = {2, 3}, I3 ⊆ {1}, J1 = J3 = {2, 3}, J2 ⊆ {1},

K2 = K3 = {2, 3}, K1 ⊆ {1},

up to a permutation of the index set {1, 2, 3}. We claim that πr(A) cannot be
contained in such a cell Dr(I, J,K). Suppose not and πr(A) ∈ Dr(I, J,K), i.e.,

u1 = u2 = (1, 0, . . . , 0), v1 = v3 = (1, 0, . . . , 0), w2 = w3 = (1, 0, . . . , 0).

Then (πr(A))1jk = 0 for j = 2, 3, k = 2, 3. Let

p = u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ (w2 + z) + u3 ⊗ v3 ⊗ w3

for some z = (0, α, β) with α, β > 0 small enough. Then ‖A−p‖ < ‖A−πr(A)‖ for
a positive A, contradicting the definition of πr(A). Therefore πr(A) /∈ Dr(I, J,K),
a contradiction. �

It is possible that a general point in an admissible cell Dr(I, J,K) may have non-
unique nonnegative rank-r decompositions. To show uniqueness, we need to exclude
such a possibility, i.e., check whether πr(A) is contained in such a cell for a typical A.
For small values of r, we may test all cells case-by-case but evidently this becomes
prohibitive for even moderately large values of r. Further results in this direction
would require more precise descriptions of I1, . . . ,Kr whereDr(I, J,K)∩Imπr 6= ∅.
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