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Abstract

In this paper, we present new a posteriori and a priori error bounds for the Krylov
subspace methods for computing e−τAv for a given τ > 0 and v ∈ Cn, where A is a
large sparse non-Hermitian matrix. The a priori error bounds relate the convergence
to λmin

(
A+A∗

2

)
, λmax

(
A+A∗

2

)
(the smallest and the largest eigenvalue of the Hermitian

part of A) and |λmax

(
A−A∗

2

)
| (the largest eigenvalue in absolute value of the skew-

Hermitian part of A), which define a rectangular region enclosing the field of values
of A. In particular, our bounds explain an observed superlinear convergence behavior
where the error may first stagnate for certain iterations before it starts to converge.
The special case that A is skew-Hermitian is also considered. Numerical examples are
given to demonstrate the theoretical bounds.

1 Introduction

The problem of computing matrix exponentials arises in many theoretical and practical
problems. Numerous methods have been developed to efficiently compute e−A or its product
with a vector e−Av, where A is an n×n complex matrix and v ∈ Cn. We refer to the classical
paper [22] of Moler and Van Loan for a survey of a general theory and numerical methods for
matrix exponentials. For matrix exponential problems involving a large and sparse matrix
A, it is usually the product of the exponential with a vector that is of interest. This arises,
for example, in solving the initial value problem ([14, 27])

ẋ(t) = −Ax(t) + b(t), x(0) = x0. (1.1)

See [12, 16, 24] for some other applications.
A large number of matrix exponential problems concern a positive definite A (i.e. A+A∗

is Hermitian positive definite), which defines a stable dynamical system (1.1) with a solution
converging to a steady state. Another important class of problems involve a skew-Hermitian
matrix A (i.e. A = iH with H being Hermitian), for which (1.1) has a norm-conserving
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solution. Such systems can be used to model a variety of physical problems where certain
quantities such as energy are conserved. For example, a spectral method for solving the time-
dependent Schrödinger equation modeling N electrons leads to (1.1) with a skew-Hermitian
matrix; see [15, 25, 26]. While we will study a general non-Hermitian A, we are particularly
interested in these two important classes of problems, where stronger theoretical results can
be derived.

The Krylov subspace methods are a powerful class of iterative algorithms for solving
many large scale linear algebra problems. Initially introduced by Gallopoulos and Saad
[14, 27], they have also become a popular method for approximating

w(τ) := e−τAv, (1.2)

where τ ∈ R is a fixed parameter typically representing a time step. For the ease of notation,
we will assume throughout that ‖v‖2 = 1. A comprehensive theory has been developed in
the literature with error bounds demonstrating convergence of the Krylov subspace methods
and its relation to certain properties of the matrix. For example, earlier results in [14, 27]
relate convergence of the Krylov subspace methods to the norm of the matrix τA. More
refined error bounds have later been derived, that provide sharper estimates of the errors by
considering additional spectral information such as enclosing regions of the field of values of
A or positive definiteness of A; see [2, 11, 12, 17, 18, 23, 27] and the references contained
therein. For a real symmetric positive definite matrix A, it has been shown in a recent work
[30] that the speed of convergence is also determined by the condition number of A as in the
conjugate gradient method. For positive definite matrices that are not necessarily Hermitian,
stronger convergence bounds have also been obtained in [2, 12, 17, 18] in terms of the field
of values. However, most of these bounds are derived by assuming the field of values lying in
a certain pre-defined region, which are not easy to apply or interpret. There is an inherited
theoretical difficulty in quantitatively characterizing the influence on the convergence by the
field of values, a two dimensional object. This issue also arises in the theory of the Krylov
subspace methods for solving linear systems.

In this paper, we study the relation between the convergence of the Krylov subspace
methods and the field of values through its bounding rectangle [a, b] × [−c, c] where a =
λmin

(
A+A∗

2

)
, b = λmax

(
A+A∗

2

)
(the smallest and the largest eigenvalue of the Hermitian part

of A) and c =
∣∣λmax

(
A−A∗

2

)∣∣ (the largest eigenvalue in absolute value of the skew-Hermitian
part of A). With this approach, new a priori error bounds will be derived in terms of a,
b and c. Simplified bounds will be presented for non-Hermitian positive definite matrices
and skew-Hermitian matrices, which relate the speed of convergence to the size and the
shape of the rectangular region. In particular, our bounds explain an interesting observed
convergence behavior where the error may first stagnate for certain iterations before it starts
to converge. Numerical examples will be presented to demonstrate the behavior of the new
error bounds.

In developing our a priori error bounds, we also derive a new a posteriori error bound
that is shown to provide a sharp and computable estimate of the error. The main technique
used in deriving new a priori error bounds is the same as in the literature [3, 7, 2, 17, 18]
by constructing Faber polynomial approximation of the exponential function in a region
containing the field of values. The novelty in this work is to use the Jacobi elliptic functions
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to construct a conformal mapping for the rectangular region that tightly encloses the fields
of value and to show that this highly complicated mapping can be simplified to yield some
simple final bounds.

The paper is organized as follows. In Section 2, we first present some preliminaries
about the Faber polynomial approximation and the Jacobi elliptic functions. In Section
3, we present a new a posteriori error bound, which relates the convergence to the decay
properties of functions of banded matrices. To study this decay behavior, we construct a
conformal mapping in Section 4 and present our new a priori error bound in Section 5. In
Section 6, we apply the same idea on skew-Hermitian matrices and derive simpler a priori
bounds. Numerical examples are presented in Section 7 and some concluding remarks in
Section 8.

2 Preliminaries

In this section, we briefly discuss some related results in complex analysis that will be needed.

2.1 Faber polynomials

Faber polynomials extend the theory of power series to domains more general than a disk. It
starts with the Riemann mapping theorem [20, Theorem 1.2] that states that every connected
domain in the extended complex plane whose boundary contains more than one point can
be mapped conformally onto a disk with its center at the origin. Let C̄ = C ∪ {∞} be the
extended complex plane and D be a bounded, closed continuum in the complex plane with
boundary Γ such that the complement of D is simply connected in the extended plane and
contains the point at ∞. A continuum is a non-empty, compact and connected subset of C.
Then there exists a function w = Φ(z) which maps the complement of D conformally onto
the exterior of a circle |w| = ρ > 0 and satisfies the normalization conditions

Φ(∞) =∞, lim
z→∞

Φ(z)

z
= 1. (2.1)

Then, the function Φ(z) has a Laurent expansion at infinity of the form

Φ(z) = z + α0 +
α−1

z
+ · · · .

Moreover, given any integer n > 0, [Φ(z)]n has a Laurent expansion of the form

[Φ(z)]n = zn + α
(n)
n−1z

n−1 + · · ·+ α
(n)
0 +

α
(n)
−1

z
+ · · ·

at infinity [20, p. 104]. Then, we call the following polynomial containing non-negative
powers of z in the expansion

Φn(z) = zn + α
(n)
n−1z

n−1 + · · ·+ α
(n)
0

the Faber polynomials generated by D.
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The Faber polynomials can be used to approximate analytic functions on D, essentially
through the power series approximation of a transformed function on |w| ≤ ρ. Let Ψ be the
inverse of Φ and let CR be the image under Ψ of the circle |w| = R > ρ. We denote by I(CR)
the bounded region enclosed by CR. By [20, Theorem 3.17], every function f(z) analytic on
I(CR) can be represented on I(CR) as a series of the Faber polynomials

f(z) =
∞∑
n=0

anΦn(z) (2.2)

with the coefficients an = 1
2πi

∫
|w|=R

f [Ψ(w)]
wn+1 dw. The partial sum of the above series

ΠN(z) =
N∑
n=0

anΦn(z) (2.3)

is a polynomial of degree at most N that we can use to approximate f(z) on I(CR). The
next theorem of [13] presents some approximation bounds concerning ΠN . We first need to
introduce the definition of total rotation of the boundary. For this, we assume D is a closed
Jordan region, i.e. its boundary Γ is rectifiable. Then there exists a tangent vector that
makes an angle Θ(z) with the positive real axis at almost all points z ∈ Γ. We say that Γ
has bounded total rotation V if V =

∫
Γ
|dΘ(z)| < ∞. Then V ≥ 2π and the equality holds

if D is convex; see [13].

Theorem 2.1. [13, Corollary 2.2] Assume D is a closed Jordan region whose boundary Γ
has bounded total rotation V . For any R > ρ, let f be an analytic function in I(CR). We
have for any N ≥ 0,

||f − ΠN ||∞ ≤
M(R)V

π

(
ρ
R

)N+1

1− ρ
R

, (2.4)

where M(R) = max
z∈CR

|f(z)| and || · ||∞ denotes the uniform norm on I(CR).

Theorem 2.1 is stated with CR defined from the conformal map Φ satisfying the normal-
ization condition (2.1). In the literature (see [2] for example), another normalization has also
been used and may be more convenient in our application. We may consider a conformal
map Φ̂ that maps the exterior of D onto the exterior of the unit disk (i.e. requiring ρ = 1

rather than (2.1)). The above theorem can be adapted to Φ̂ through a simple normalization

transformation. Namely, given Φ̂, let ρ = lim
z→∞

z

Φ̂(z)
and Φ(z) := ρΦ̂(z), where we assume ρ

is finite. Then Φ satisfies the normalization condition (2.1) but now maps the exterior of D
onto the exterior of the disk |w| = ρ. Applying Theorem 2.1 to Φ, (2.4) holds for any R > ρ.

Let r := R/ρ > 1. Let CR be the inverse image under Φ of the circle |w| = R and Ĉr be

the inverse image under Φ̂ of the circle |w| = r. It is easy to check that CR = Ĉr and then
M(R) := max

z∈CR
|f(z)| = max

z∈Ĉr
|f(z)|. Thus, (2.4) is reduced to

||f − ΠN ||∞ ≤
M̂(r)V

π

(
1
r

)N+1

1− 1
r

, (2.5)
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where M̂(r) := max
Φ̂(z)=r

|f(z)|. Namely, Theorem 2.1 holds verbatim for a conformal map that

is normalized to map the exterior of D onto the exterior of the unit disk. We note however
that ρ as defined in the two normalizations is invariant and is called logarithmic capacity of
D.

2.2 Jacobi elliptic functions

In this subsection, we introduce the Jacobi elliptic functions, which will be used to construct
a conformal mapping in Section 5. More details about the Jacobi elliptic functions can be
found in [1].

Elliptic functions were first introduced as inverse functions of (incomplete) elliptic inte-
grals. So before the introduction of the Jacobi elliptic functions, we first state the definition
and properties of elliptic integrals. Given φ ∈ C and a real parameter m with 0 < m < 1,
the (incomplete) Jacobi elliptic integral of the first kind is defined as

F (φ,m) :=

∫ φ

0

(1−m sin2 θ)−
1
2dθ. (2.6)

The (incomplete) Jacobi elliptic integral of the second kind is defined as

E(φ,m) :=

∫ φ

0

(1−m sin2 θ)
1
2dθ.

When φ = π
2
, the corresponding integrals

K(m) := F
(π

2
,m
)

=

∫ π
2

0

(1−m sin2 θ)−
1
2dθ,

E(m) := E
(π

2
,m
)

=

∫ π
2

0

(1−m sin2 θ)
1
2dθ

are called the complete Jacobi elliptic integrals of the first kind and the second kind. Let
m1 := 1 −m, the complementary parameter of m. Then, 0 < m1 < 1. For simplicity, we
shall use the following notations.

K := K(m), K ′ := K(m1) = K(1−m);

E := E(m), E ′ := E(m1) = E(1−m).
(2.7)

We now introduce the Jacobi elliptic functions. There are a total of twelve Jacobi elliptic
functions in the family, but we will only discuss the basic three of them that will be used in
this work. If u = F (φ,m) where F (φ,m) is the incomplete elliptic integral of the first kind
defined in (2.6), three of the Jacobi elliptic functions are defined as

sn(u|m) := sinφ

cn(u|m) := cosφ

dn(u|m) :=

√
1−m sin2 φ

(2.8)
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The notations sn(σ|m), cn(σ|m) and dn(σ|m) indicate that sn, cn and dn are functions
of two independent arguments: a complex argument u and a real parameter m ∈ (0, 1).
Furthermore, for a fixed m ∈ (0, 1), sn(u) := sn(u|m), cn(u) := cn(u|m) and dn(u) :=
dn(u|m) are doubly periodical meromorphic functions defined on u ∈ C [21, p. 14].

In later sections, we will need some properties of the Jacobi elliptic integrals and Jacobi
elliptic functions. We summarize them in the proposition below. For details, see [1], [19]
and [21].

Proposition 2.2. 1. K = K(m) and E = E(m) are positive-valued functions of m.
Moreover, they are differentiable with respect to the parameter m ∈ (0, 1), and

dK

dm
=
E −m1K

2mm1

, (2.9)

dE

dm
=
E −K

2m
. (2.10)

2. [1, 17.3.26, p. 591]

lim
m→1

[
K − 1

2
ln

(
16

m1

)]
= 0 (2.11)

3. [1, 17.4.5, p. 592]
E(u+ 2iK ′) = E(u) + 2i(K ′ − E ′) (2.12)

4. sn, cn and dn satisfy

sn2(u|m) + cn2(u|m) = 1

m · sn2(u|m) + dn2(u|m) = 1

5. [1, Table 16.2, p. 570] sn, cn and dn are one-valued, doubly-periodic functions. For
any l, n ∈ Z,

sn(u+ 2lK + 2niK ′|m) = (−1)lsn(u|m)

cn(u+ 2lK + 2niK ′|m) = (−1)l+ncn(u|m)

dn(u+ 2lK + 2niK ′|m) = (−1)ndn(u|m)

6. [1, Table 16.8, p. 572]

sn(2iK ′ − σ|m) = sn(−σ|m) = −sn(σ|m)

cn(2iK ′ − σ|m) = −cn(−σ|m) = −cn(σ|m)

dn(2iK ′ − σ|m) = −dn(−σ|m) = −dn(σ|m) (2.13)

7. [1, Table 16.16, p. 574] Derivatives:

d

du
sn(u|m) = cn(u|m) · dn(u|m) (2.14)

d

du
cn(u|m) = −sn(u|m) · dn(u|m) (2.15)

d

du
dn(u|m) = −m · sn(u|m) · cn(u|m) (2.16)
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8. [1, 16.21, p. 575] Let u = x+ iy where x, y ∈ R and denote

s = sn(x|m), c = cn(x|m), d = dn(x|m),

s1 = sn(y|m1), c1 = cn(y|m1), d1 = dn(y|m1),

Then

sn(x+ iy|m) =
s · d1 + ic · d · s1 · c1

c2
1 +ms2 · s2

1

(2.17)

cn(x+ iy|m) =
c · c1 + is · d · s1 · d1

c2
1 +ms2 · s2

1

(2.18)

dn(x+ iy|m) =
d · c1 · d1 + ims · c · s1

c2
1 +ms2 · s2

1

(2.19)

We will also need to use the signs of the real and imaginary parts of sn(u|m), cn(u|m)
and dn(u|m) when m ∈ (0, 1) and u ∈ C is in the rectangular domain [−K,K] × [0, 2iK ′]
(i.e. Re(u) ∈ [−K,K] and Im(u) ∈ [0, 2K ′]). This is discussed in [19, pp. 172-176] and we
summarize it in Table 1, 2 and 3 for easy future references.

PPPPPPPPPIm(u)
Re(u)

(−K, 0) (0, K)

(K ′, 2iK ′) (−,−) (+,−)
(0, K ′) (−,+) (+,+)

Table 1: Signs of (Re(sn(u|m)), Im(sn(u|m)))

PPPPPPPPPIm(u)
Re(u)

(−K, 0) (0, K)

(K ′, 2iK ′) (−,+) (−,−)
(0, K ′) (+,+) (+,−)

Table 2: Signs of (Re(cn(u|m)), Im(cn(u|m)))

PPPPPPPPPIm(u)
Re(u)

(−K, 0) (0, K)

(K ′, 2iK ′) (−,+) (−,−)
(0, K ′) (+,+) (+,−)

Table 3: Signs of (Re(sn(u|m)), Im(sn(u|m)))

3 A posteriori error bound

In this section, we first introduce the Arnoldi method for approximating w(τ) = e−τAv and
then discuss an a posteriori error bound. Given A ∈ Cn×n and v ∈ Cn with ||v||2 = 1, k

7



iterations of the Arnoldi process generates an orthonormal basis {v1, v2, · · · , vk, vk+1} for the
Krylov subspace Kk+1(A, v) = span{v,Av,A2v, · · · , Akv} by

hk+1,kvk+1 = Avk −
k∑
i=1

hi,kvi, hk+1,k ≥ 0.

Simultaneously, a k-by-k upper Hessenberg matrix Hk = [hij] is generated satisfying

AVk = VkHk + hk+1,kvk+1e
T
k , (3.1)

where Vk = [v1, v2, · · · , vk] and ek ∈ Rn is the k-th coordinate vector. We note that

h2
k+1,k = ‖Avk‖2 −

k∑
i=1

h2
i,k ≤ ‖A‖2. (3.2)

We can approximate w(τ) = e−τAv by its orthogonal projection on Kk(A, v), VkV
T
k e
−τAv,

which is further approximated as

VkV
T
k e
−τAv = VkV

T
k e
−τAVke1 ≈ Vke

−τV Tk AVke1 = V T
k e
−τHke1.

We call
wk(τ) := V T

k e
−τHke1 (3.3)

the Arnoldi approximation to w(τ) in (1.2); see [14, 27].
Let W (A) := {x∗Ax : x ∈ Cn; ‖x‖2 = 1} be the field of values of A and µ(A) :=

max {Re(z) : z ∈ W (A)} be the logarithmic norm of A (associated with the Euclidean inner
product). We also define ν(A) := −µ(−A) = min {Re(z) : z ∈ W (A)}. Then we have

µ(A) = λmax

(
A+ A∗

2

)
and ν(A) = λmin

(
A+ A∗

2

)
, (3.4)

where λmax and λmin denote the largest and the smallest eigenvalues respectively. In this
notation, A is positive definite if and only if ν(A) > 0. An important property associated
with the logarithmic norm [9, 28] is that for t ≥ 0,

||etA|| ≤ etµ(A). (3.5)

We now present a bound on the approximation error ||w(τ) − wk(τ)|| in terms of the
(k, 1) entry of the matrix e−tHk .

Theorem 3.1. Let A ∈ Cn×n and v ∈ Cn with ||v|| = 1. Let Vk be the orthogonal matrix and
Hk be the upper Hessenberg matrix generated by the Arnoldi process for A and v satisfying
(3.1). Let wk(τ) = Vke

−τHke1 be the Arnoldi approximation to w(τ) = e−τAv. Then the
approximation error satisfies

||w(τ)− wk(τ)|| ≤ hk+1,ke
−min{ν(A),0}τ

∫ τ

0

|h(t)|dt, (3.6)

where
h(t) := eTk e

−tHke1 (3.7)

is the (k, 1) entry of the matrix e−tHk and ν(A) is defined in (3.4).
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Proof. First, we have w′(t) = −Ae−tAv = −Aw(t) and

w′k(t) = −VkHke
−tHke1

= −(AVk − hk+1,kvk+1e
T
k )e−tHke1

= −Awk(t) + hk+1,kh(t)vk+1.

Let Ek(t) := w(t)− wk(t). Then

E ′k(t) = −Aw(t)− (−Awk(t) + hk+1,kh(t)vk+1)

= −AEk(t)− hk+1,kh(t)vk+1.

Note that Ek(0) = w(0)−wk(0) = v− Vke1 = 0. Solving the initial value problem for Ek(t),
we have

Ek(τ) = −hk+1,k

∫ τ

0

h(t)e(t−τ)Avk+1dt.

Since τ − t > 0 in the integral, using (3.5), we have

||e(t−τ)A|| = ||e(τ−t)(−A)|| ≤ e(τ−t)µ(−A) = e(t−τ)ν(A).

Then the approximation error satisfies

||Ek(τ)|| ≤ hk+1,k

∣∣∣∣∣∣∣∣∫ τ

0

h(t)e(t−τ)Avk+1dt

∣∣∣∣∣∣∣∣
≤ hk+1,k

∫ τ

0

|h(t)| · ||e(t−τ)A||dt

≤ hk+1,k

∫ τ

0

|h(t)| · e(t−τ)ν(A)dt

Thus, if ν(A) ≥ 0, we have ||Ek(τ)|| ≤ hk+1,k

∫ τ
0
|h(t)|dt. If ν(A) < 0, then

||Ek(τ)|| ≤ hk+1,k

∫ τ

0

|h(t)|etν(A)e−τν(A)dt ≤ hk+1,ke
−τν(A)

∫ τ

0

|h(t)|dt.

This completes the proof.

h(t) in the above bound is computable a posteriori for any given t. Being the (k, 1)
entry of the matrix e−tHk , it is expected to become small as k increases because of a decay
property associated with functions of a banded matrix (see [3, 4, 5, 7]). This provides an
understanding of the convergence of the error. Indeed, in §5, we shall extend the techniques
introduced in [3, 7] to derive some sharp decay bounds on h(t), which will result in some
new a priori bounds. Before we do that, we will need to construct some conformal mapping
first in the next section.

We also remark that the a posteriori bound in the theorem contains the integral of h(t)
that is not directly computable. For practical error estimates, we can approximate it using
a quadrature rule, say, the Simpson’s rule, by computing h(t) at some selected discrete
points. This provides a fairly sharp a posteriori error estimates; see the numerical examples
in §7. Note that there are several a posteriori error estimates presented in [27] derived from
approximation of a different error expression, one of which is τh(τ).
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4 Conformal mapping

In this section, we construct a conformal mapping which maps the exterior of a rectangle
onto the exterior of a unit disk and discuss some of its properties. Given a rectangle in
z̃-plane whose vertices are a± ic and b± ic where b > a and c > 0, we map the exterior of
this rectangle conformally onto |u| > 1. This can be done in the following three steps.

• Step 1:

z = φ1(z̃) = z̃ − a+ b

2
(4.1)

shifts the original rectangle to a new rectangle with vertices ±α ± iβ, where α = b−a
2

and β = c.

• Step 2: φ2 : z 7→ w is defined through an auxiliary variable σ by
z = α− i

λ
{E(σ|m)−m1σ}

w =
1− dn(σ|m)√
msn(σ|m)

(4.2)

where sn(σ|m), cn(σ|m) and dn(σ|m) are Jacobi elliptic functions and E(σ|m) :=∫ σ
0
dn2(z|m)dz. The parameter m is determined from α, β by the equation

E −m1K

β
=
E ′ −mK ′

α
, (4.3)

here K, E, K ′ and E ′ are functions of m or m1 := 1−m defined in (2.7). The existence
and uniqueness of m will be shown in Lemma 4.1 below. It is shown in [19, p. 178]
that φ2 conformally maps the exterior of the rectangle [−α, α]× [−β, β] to the upper
half plane {Im(w) > 0} and that the range of σ is in the rectangle [−K,K]× [0, 2iK ′].

• Step 3:

u = φ3(w) =
i+ w

i− w
(4.4)

maps {Im(w) > 0} onto {|u| > 1}.

Now let
Φ̃ := φ3 ◦ φ2 ◦ φ1 (4.5)

be the composition of the above three conformal mappings defined in (4.1), (4.2) and (4.4).
Then Φ̃ maps the exterior of the rectangle [a, b]× [−c, c] conformally onto the exterior of the
unit circle.

The rest of this section will present several results concerning Φ̃ that we will use in the
next section, but first we give a proof of existence of a unique solution of (4.3) that appears
not readily available in the literature.

Lemma 4.1. E(m)−(1−m)K(m) ∈ (0, 1) is an increasing function and E ′(m)−mK ′(m) ∈
(0, 1) is an decreasing function. For any 0 < α, β < +∞, there exists a unique m ∈ (0, 1),
as a function of β/α, satisfying (4.3).
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Proof. Let f(m) := E −m1K = E(m) − (1 −m)K(m) be a function of m ∈ (0, 1). Then
E ′(m)−mK ′(m) = f(1−m). By the definition of K(m) and E(m), K(0) = π

2
, E(0) = π

2
,

and then
lim
m→0

f(m) = 0. (4.6)

Moreover, by (2.11),

lim
m→1

m1

[
K(m)− 1

2
ln

(
16

m1

)]
= 0,

and therefore

lim
m→1

m1K(m) = lim
m→1

m1 ln

(
16

m1

)
= lim

m1→0
m1 ln

(
16

m1

)
= 0.

Again by the definition of E(m), E(1) = 1. Then

lim
m→1

f(m) = E(1)− lim
m→1

m1K(m) = 1. (4.7)

By (2.9) and (2.10), f(m) is differentiable in (0, 1) and

d

dm
f(m) =

K(m)

2
> 0.

So f is an increasing function of m over (0, 1). Now consider

g(m) :=
f(m)

f(1−m)
=

E(m)− (1−m)K(m)

E(1−m)−mK(1−m)
. (4.8)

By (4.6) and (4.7), g(m) is an increasing function of m over (0, 1) with

lim
m→0

g(m) = 0, lim
m→1

g(m) = +∞.

Then for any 0 < α, β < +∞, there exists a unique m ∈ (0, 1) such that g(m) = β
α

, i.e.,
(4.3).

The parameter m determined by (4.3) is defined by the aspect ratio β/α (or the shape) of
the rectangle [a, b]× [−c, c]. For example, from the proof, m ≈ 0 if the rectangle is narrowly
around the real axis, while m ≈ 1 if the rectangle is nearly a vertical line in the complex
plane. When m = 1/2, the rectangle is a square.

As in §2, we denote by Cr in the z̃-plane the inverse image of the circle |u| = r under
Φ̃ for a given r > 1. We need to determine the minimum of Re(z̃) in Cr, i.e. the left most
point of Cr. First we prove a lemma about the Jacobi elliptic functions, which is a direct
result of Proposition 2.2.

Lemma 4.2. For u = x+ iy where −K < x < K and 0 < y < 2K ′,

sgn(Im(cn(u|m))) = sgn(Im(dn(u|m))).
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Proof. By (2.18) and (2.19),

Im(cn(u|m)) =
sn(x|m)dn(x|m)sn(y|m1)dn(y|m1)

1− dn2(x|m)sn2(y|m1)

Im(dn(u|m)) =
m · sn(x|m)cn(x|m)sn(y|m1)

1− dn2(y|m)sn2(y|m1)
.

So,

sgn(Im(cn(u|m))) = sgn(Im(dn(u|m))) · sgn(cn(x|m) · dn(x|m) · dn(y|m1)) (4.9)

Write x = F (φ,m). When −K < x < K, we have φ ∈ (−π
2
, π

2
). So,

cn(x|m) = cosφ > 0. (4.10)

By the definition of dn(u|m), for any x, y ∈ R,

dn(x|m) > 0, dn(y|m1) > 0. (4.11)

Applying (4.10) and (4.11) to (4.9), we conclude that the imaginary part of cn(u|m) and
that of dn(u|m) have the same sign.

The following lemma shows that the minimum of Re(z̃) in Cr is attained at the inverse
of u = −r.

Lemma 4.3. Let Φ̃ : z̃ 7→ u be defined in (4.5). Let Ψ̃ : u 7→ z̃ be its inverse mapping and
Cr be the image of |u| = r > 1 under Ψ̃. Then

min{Re(z̃) : z̃ ∈ Cr} = Ψ̃(−r).

Proof. By (4.1),
dz̃

dz
= 1. (4.12)

Recall the definition E(σ|m) =
∫ σ

0
dn2(z|m)dz, the identities sn2+cn2 ≡ 1 andm·sn2+dn2 ≡

1, we have from (4.2) that

dz

dσ
= − i

λ
{dn2 − (1−m)} = − i

λ
{m−m · sn2} = − i

λ
·m · cn2. (4.13)

Note that By (2.14) and (2.16), we have d(dn)
dσ

= −m · sn · cn and d(sn)
dσ

= cn · dn. Then by
(4.2),

dw

dσ
=
−(−m · sn · cn) ·

√
m · cn− (1− dn) ·

√
m · cn · dn

m · sn2

=

√
m · cn · (m · sn2 − dn+ dn2)

m · sn2

=

√
m · cn · (1− dn)

1− dn2

=

√
m · cn

1 + dn
(4.14)

12



By (4.4), w = iu−1
u+1

and then
dw

du
=

2i

(u+ 1)2
. (4.15)

Combining (4.12), (4.13), (4.14) and (4.15), we have

dz̃

du
=
dz̃

dz
· dz
dσ
· dσ
dw
· dw
du

= − i
λ
·m · cn2 · 1 + dn√

m · cn
· 2i

(u+ 1)2

=
2
√
m · cn(1 + dn)

λ(u+ 1)2
. (4.16)

(4.4) also implies

w2 = −(u− 1)2

(u+ 1)2
. (4.17)

On the other hand, by (4.2),

w2 =
(1− dn)2

m · sn2
=

(1− dn)2

1− dn2
=

1− dn
1 + dn

. (4.18)

So,

dn =
1− w2

1 + w2
=

(u+ 1)2 + (u− 1)2

(u+ 1)2 − (u− 1)2
=

1

2

(
u+

1

u

)
(4.19)

and hence

1 + dn =
(u+ 1)2

2u
.

Substituting this into (4.16), we have

dz̃

du
=

√
m · cn
λu

. (4.20)

Now let u be on the circle of radius r on the complex u-plane. Then we can write u = reiθ

where −π < θ ≤ π. Hence
du

dθ
= reiθ · i = iu. (4.21)

Treating z̃ ∈ Cr as a function of θ, we have from (4.20) and (4.21) that

dz̃

dθ
=
i
√
m

λ
· cn(σ|m). (4.22)

So
d(Re(z̃))

dθ
= Re

(
dz̃

dθ

)
= −
√
m

λ
Im(cn(σ|m)).

From (4.19) and u = r cos θ + ir sin θ, we write dn(σ|m) as a function of θ,

dn(σ|m) =
1

2

(
r +

1

r

)
cos θ +

i

2

(
r − 1

r

)
sin θ.

13



So Im(dn(σ|m)) < 0 when θ ∈ (−π, 0), and Im(dn(σ|m)) > 0 when θ ∈ (0, π]. By Lemma
4.2, the imaginary part of cn(σ|m) always has the same sign as that of dn(σ|m). Thus, by

(4.22), d(Re(z̃))
dθ

> 0 when θ ∈ (−π, 0), and d(Re(z̃))
dθ

< 0 when θ ∈ (0, π]. The minimum value
of Re(z̃) is attained when θ = π, i.e., u = −r.

Next, we find the explicit form for Ψ̃(−r) in Lemma 4.3.

Lemma 4.4. Let Φ̃ : z̃ 7→ u be the conformal mapping from the exterior of the rectangle
[a, b]× [−c, c] onto the exterior of the unit disk, as defined in (4.5), and let Ψ̃ : u 7→ z̃ be its
inverse. Then for any r > 1, we have

Ψ̃(−r) = a− 1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt, (4.23)

where the parameters m is determined by (4.3) and λ is the ratio in (4.3).

Proof. Recall that Φ̃ = φ3 ◦φ2 ◦φ1 with φ1, φ2 and φ3 the three conformal mappings defined
in (4.1), (4.2) and (4.4). Let

Φ := φ3 ◦ φ2 (4.24)

and Ψ be its inverse. Then obviously

Ψ̃(−r) = φ−1
1 ◦Ψ(−r) (4.25)

The proof of this lemma consists of two parts. First, we prove that for any r > 1,

Ψ(r) = α +
1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt. (4.26)

By the same equation (4.19) that was derived from (4.2) and (4.4), w in the map can be
eliminated to define Φ: z ←→ σ ←→ u through the auxiliary parameter σ as

z(σ) = α− i

λ
{E(σ|m)−m1σ}

dn(σ|m) =
1

2

(
u+

1

u

) (4.27)

To compute Ψ(r), set u = r above. Then the corresponding σ satisfies

dn(σ|m) =
1

2

(
r +

1

r

)
> 1. (4.28)

By Table 3, σ ∈ C is on the line segment connecting 0 and iK ′. Let

t = −i
√
m · sn(s|m), (4.29)

where s is on the line segment connecting 0 and σ. By Tables 1, 2 and 3, sn(s|m) is purely
imaginary with positive imaginary part, and cn(s|m) and dn(s|m) are both real and positive.
Then

m · sn2(s|m) = −t2,
m · cn2(s|m) = m−m · sn2(s|m) = m+ t2 =⇒

√
m · cn(s|m) =

√
m+ t2,

dn2(s|m) = 1−m · sn2(s|m) = 1 + t2 =⇒ dn(s|m) =
√

1 + t2.
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By (4.29) and (2.14),
dt = −i

√
m · cn(s|m) · dn(s|m)ds,

then

ds =
dt

−i
√
m · cn(s|m) · dn(s|m)

=
dt

−i
√
m+ t2

√
1 + t2

.

By (4.28),

m · sn2(σ|m) = 1− dn2(σ|m) = −1

4

(
r − 1

r

)2

,

then
√
m · sn(σ|m) =

i

2

(
r − 1

r

)
.

Thus, as s moves along the positive imaginary axis from 0 to σ, t as defined by (4.29) moves
along the positive real axis from 0 to 1

2

(
r − 1

r

)
. Then

Ψ(r) = z(σ) = α− i

λ
{E(σ|m)−m1σ}

= α− i

λ

{∫ σ

0

dn2(s|m)ds−m1σ

}
= α− i

λ

∫ σ

0

m · cn2(s|m)ds

= α− i

λ

∫ 1
2(r− 1

r )

0

(m+ t2)
dt

−i
√
m+ t2

√
1 + t2

= α +
1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt.

This completes the proof of the first part (4.26).
We next prove for any r > 1,

Ψ(−r) = −Ψ(r). (4.30)

Let σ and σ̃ be the auxiliary parameters in (4.27) corresponding to r and −r respectively.
Then

dn(σ̃|m) =
1

2

(
−r +

1

−r

)
= −1

2

(
r +

1

r

)
= −dn(σ|m).

By (2.13), σ̃ = 2iK ′ − σ. Thus, using (2.12) and (4.3), we get

Ψ(−r) = z(σ̃) = α− i

λ
{E(2iK ′ − σ|m)−m1(2iK ′ − σ)}

= α− i

λ
{2i(K ′ − E ′)− E(σ|m)− 2m1iK

′ +m1σ}

= α− i

λ
{−2i(E ′ −mK ′)− [E(σ|m)−m1σ]}

= α− i

λ
{−2i · λα− [E(σ|m)−m1σ]}

= −α +
i

λ
{E(σ|m)−m1σ} = −z(σ) = −Ψ(r).
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Finally, applying φ−1
1 to Ψ(−r) as in (4.25) and noting that α = b−a

2
, (4.23) is proved.

Finally, we show that Φ̃ can be normalized according to (2.1).

Lemma 4.5. Let λ be the ratio in (4.3). We have

lim
z̃→∞

Φ̃(z̃)

z̃
= 2λ > 0.

Proof. First, by (4.19) and m ·sn2(σ|m)+dn2(σ|m) = 1, we have
√
m ·sn(σ|m) = i

2

(
u− 1

u

)
.

Applying it to (4.20), we have

dz̃

du
=

i

2λ
· cn(σ|m)

sn(σ|m)

(
1− 1

u2

)
. (4.31)

As z̃ →∞, σ → iK ′ and u→∞ (see [19, p. 178]). Since

lim
σ→iK′

cn(σ|m)

sn(σ|m)
= lim

σ→iK′
cn′(σ|m)

sn′(σ|m)
= lim

σ→iK′
−sn(σ|m)dn(σ|m)

cn(σ|m)dn(σ|m)
= −

(
lim
σ→iK′

cn(σ|m)

sn(σ|m)

)−1

,

we have lim
σ→iK′

cn(σ|m)
sn(σ|m)

= −i. Applying it to (4.31), dz̃
du
→ 1

2λ
or du

dz̃
→ 2λ as z̃ → ∞. Then

Φ̃(z̃)
z̃
→ 2λ as z̃ →∞. λ > 0 follows from Lemma 4.1.

5 A priori error bound for non-Hermitian matrices

In this section, we derive new a priori error bounds for the Arnoldi approximations of e−τAv.
We shall bound the error in terms of the following spectral information of A:

a = min
i

{
λi

(
A+ A∗

2

)}
= ν(A)

b = max
i

{
λi

(
A+ A∗

2

)}
= µ(A)

c = max
i

{∣∣∣∣λi(A− A∗2

)∣∣∣∣}
(5.1)

where λi(M) (1 ≤ i ≤ n) are the eigenvalues of M . These three numbers provide a region
bounding W (A), the field of values of A, i.e. W (A) is contained in the rectangle [a, b]×[−c, c].

We shall study the convergence of the Arnoldi method through bounding |h(t)| (the
(k, 1) entry of e−tHk) in the a posteriori bound of §3 as in [30]. As mentioned before,
analytic functions of banded matrices have a decay property, i.e. their entries decreases
away from the main diagonal. Sharp decay bounds were originally derived by Benzi and
Golub [5] for Hermitian matrices; see [4, 6] and the references contained therein for some
further improvements. Generalizations to the non-Hermitian case, which is applicable to
the Hessenberg matrix Hk here, have been obtained by Benzi and Razouk [7] and Benzi
and Boito [3]. Specifically, for non-Hermitian matrices, the Faber polynomial approximation
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and the conformal mappings on a circular region containing the field of value have been
introduced in [3, 7] to bound the decay rate. Here we will follow the same approach of [3, 7],
but we will use the conformal mapping that is constructed in §4 so as to utilize a more
precise region [a, b] × [−c, c] that encloses the field of values. By using a smaller bounding
region, a stronger approximation result and hence a stronger bound are obtained as follows.

Theorem 5.1. Let Hk be a k-by-k upper Hessenberg matrix and let h(t) = eTk e
−tHke1 be the

(k, 1) entry of the matrix e−tHk . Let ak = mini

{
λi

(
Hk+H∗k

2

)}
, bk = maxi

{
λi

(
Hk+H∗kT

2

)}
and ck = maxi

{∣∣∣λi (Hk−H∗k2

)∣∣∣}. Then for any q with 0 < q < 1,

|h(t)| ≤ 2Q
qk−1

1− q
e−tz̃, (5.2)

where Q = 11.08,

z̃ = ak −
1

λ

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds, (5.3)

and the parameters m is determined from ak, bk, ck by (4.3) and λ is the ratio in (4.3).

Proof. Let Φ̃ : z̃ 7→ u be the conformal mapping from the exterior of the rectangle [ak, bk]×
[−ck, ck] onto the exterior of the unit disk, as defined in (4.5). For a fixed t ≥ 0, let
f(z) = e−tz. Since f is an analytic function, it can be approximated by the partial sum
Πk−2(z) of the series of Faber polynomials generated by Φ̃ as defined in (2.3). Let r = 1

q
> 1

and consider Cr, the inverse image under Φ̃ of the circle |w| = r. Applying Theorem 2.1 or
(2.5), the approximation error in I(Cr) is bounded as

||f − Πk−2||∞ = max
z∈I(Cr)

|f(z)− Πk−2(z)| ≤ 2M(r)
(1
r
)k−1

1− 1
r

,

where M(r) = max
z∈Cr
|f(z)| and we note that the total rotation around the rectangle is V = 2π.

Since Πk−2(z) is a polynomial of degree k − 2, [Πk−2(Hk)]k1 = eTkΠk−2(Hk)e1 = 0. Then

|h(t)| = |[f(Hk)]k1| = |[f(Hk)]k1 − [Πk−2(Hk)]k1|
≤ ||f(Hk)− Πk−2(Hk)||2
≤ Q · max

z∈W (Hk)
|f(z)− Πk−2(z)|,

where W (Hk) is the field of values of Hk and the last inequality is by Crouzeix’s Theorem
[8]. Since W (Hk) ⊆ [ak, bk]× [−ck, ck] ⊆ Cr, we have

|h(t)| ≤ Q max
z∈I(Cr)

|f(z)− Πk−2(z)| ≤ 2QM(r)

(
1
r

)k−1

1− 1
r

.

Now, the theorem follows from M(r) = max
z∈Cr

e−tz = max
z∈Cr

e−tRe(z) = e−tz̃, where

z̃ = min{Re(z) : z ∈ Cr} = Ψ̃(r) = ak −
1

λ

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds

by Lemma 4.3 and Lemma 4.4.
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We remark that Q = 11.08 is called Crouzeix’s constant and it is conjectured that it can
be reduced to 2 [8]. Combining the above theorem with Theorem 3.1 leads to the following
a priori error bound in the following theorem.

Theorem 5.2. Let A ∈ Cn×n and v ∈ Cn with ||v|| = 1 and let wk(τ) = Vke
−τHke1 be the

Arnoldi approximation (3.3) to w(τ) = e−τAv. Then for any 0 < q < 1, the approximation
error satisfies

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1

1− q
e−τ min{a,0}−τ z̃, (5.4)

where Q = 11.08,

z̃ = a− 1

λ

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds, (5.5)

the parameters m is determined by (4.3) from a, b, c of (5.1) and λ is the ratio in (4.3).

Proof. First note that Hk = V T
k AVk for an orthogonal Vk. Then

W (Hk) ⊆ W (A) ⊆ [a, b]× [−c, c]

Now, Theorem 5.1 holds for h(t) = eTk e
−tHke1, and indeed, from above and following the

same proof, it holds with a, b, c in place of ak, bk, ck. Namely, |h(t)| ≤ 2Q qk−1

1−q e
−tz̃ with z̃

defined as in (5.5) but from a, b, c. Now, using this bound in a posteriori error bound (3.6)
in Theorem 3.1 and noting that hk+1,k ≤ ‖A‖2 (see (3.2)), we have that, if z̃ 6= 0,

||w(τ)− wk(τ)|| ≤ hk+1,ke
−min{ν(A),0}τ2Q

qk−1

1− q

∫ τ

0

e−tz̃dt

≤ 2Q ‖A‖2
qk−1

1− q
e−min{a,0}τ 1− e−τ z̃

z̃

= 2Q ‖A‖2
qk−1

1− q
e−min{a,0}τe−τ z̃

eτ z̃ − 1

z̃

≤ 2Qτ‖A‖2
qk−1

1− q
e−τ min{a,0}−τ z̃

where we have used ex−1
x
≤ 1 for any x 6= 0. If z̃ = 0, the integration above gives τ and the

final bound holds for this case as well. So the theorem is proved.

For the rest of this section, we consider the case that A is positive definite (i.e. a > 0).
In that case, the bound is simplified to

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1

1− q
e−τ z̃, (5.6)

Bounding z̃ of (5.5) using 0 < m < 1, we have

z̃ ≥ a− 1

λ

∫ 1
2( 1

q
−q)

0

√
1 + s2

√
1 + s2

ds = a− 1

2λ

(
1

q
− q
)
.

This leads to a simple but obviously crude bound. In particular, the bound can be further

simplified by setting the exponent a − 1
2λ

(
1
q
− q
)

to 0, i.e. q = 1√
a2λ2+1+aλ

. We state these

as the following corollary.
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Corollary 5.3. Under the the assumptions of Theorem 5.2 and that A is positive definite
(i.e. a > 0), for any 0 < q < 1, the approximation error satisfies

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1

1− q
e−τ{a−

1
2λ( 1

q
−q)}.

In particular, for q = 1√
a2λ2+1+aλ

, we have

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1

1− q
, (5.7)

i.e. the error converges at least at the rate of 1√
a2λ2+1+aλ

.

Note that aλ = 2aE
′(m)−mK′(m)

b−a = 2E
′(m)−mK′(m)

b/a−1
. Since m is a function of (b− a)/c (see

Lemma 4.1) and b/a is the condition number of the Hermitian part of A, the bound relates
the convergence to this condition number and the shape of the rectangle.

More generally, we can find q = q0 such that z̃ = 0. Then (5.7) holds with this q0 and the
error converges at the rate q0. We call this q0 the threshold convergence rate. However, this
q0 may not give the best bound possible among choices of q. Note that q influences the error
bound through two opposing actions of qk and e−τ z̃. Namely, choosing smaller q results in a
faster geometrically decreasing term qk, but e−τ z̃ may be much larger to result in an overall
larger bound. So the best choice of q should balance the two effects and will depend on k.
For example, smaller q may be used for larger k so that the more significant decrease in qk

can offset the increase in e−τ z̃. This suggest a superlinear convergence behavior where, as k
increases, the error is bounded with a smaller rate q.

In determining q to be used in the bound (5.6), we consider the minimization at each
step k of

E(q) :=
qk−1

1− q
e−τ z̃. (5.8)

Taking derivative of E with respect to q and using

dz̃

dq
= −1

λ

√
m+ 1

4

(
1
q
− q
)2

√
1 + 1

4

(
1
q
− q
)2

1

2

(
− 1

q2
− 1

)
=

√
m+ 1

4

(
1
q
− q
)2

λq
,

we have

dE

dq
=

(k − 1)qk−2(1− q)− qk−1(−1)

(1− q)2
e−τ z̃ +

qk−1

1− q
e−τ z̃(−τ)

dz̃

dq

= e−τ z̃
qk−3

(1− q)2

[
(k − 1)q + (2− k)q2 − C(1− q)

√
(1− q2)2 + 4mq2

]
,

where C = τ
2λ

. Thus optimal q = q(k) can be found by solving

(k − 1)q + (2− k)q2 − C(1− q)
√

(1− q2)2 + 4mq2 = 0. (5.9)

Note that a solution q ∈ (0, 1) exists because the function in the equation is 1 when q = 1
and −C < 0 when q = 0.

Finally, we discuss a special case, i.e. m ≈ 0.

19



Corollary 5.4. Under the assumptions of Theorem 5.2, and m ≈ 0, the approximation error
satisfies

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1
0

1− q0

where

q0 =

√
κ− 1√
κ+ 1

+O(
√
m),

and κ = b
a
.

Proof. E ′ = E(1−m) and K ′ = K(1−m) are both functions of m and have the following
expansions at m = 0 [1, 17.3.11-12, p. 591]

E ′ = E(m1) = E(1−m) = 1− 1

4
m lnm+O(m) (5.10)

K ′ = K(m1) = K(1−m) = −1

2
lnm+O(1) (5.11)

Then E ′ −mK ′ can be expanded at m = 0 as

E ′ −mK ′ = 1 +
1

4
m lnm+O(m). (5.12)

Since α = b−a
2

,

λ =
E ′ −mK ′

α
=

2

b− a

(
1 +

1

4
m lnm

)
+O(m).

Then

aλ =
2

κ− 1

(
1 +

1

4
m lnm

)
+O(m). (5.13)

At the same time, for 0 ≤ s ≤ 1
q
− q,

√
m+ s2

√
1 + s2

=
s√

1 + s2
+O(

√
m),

so ∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds =

∫ 1
2( 1

q
−q)

0

s√
1 + s2

ds+O(
√
m)

=
1

2

(
1

q
+ q

)
− 1 +O(

√
m). (5.14)

Let q = q0 be the unique solution of

aλ =

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds, (5.15)
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where the existence of q0 and the uniqueness follow from the fact that the integral on the
right is a function of q monotonically decreasing from ∞ to 0 for 0 < q < 1. Using (5.13)
and (5.14), the equation is written as

2

κ− 1
=

1

2

(
1

q
+ q

)
− 1 +O(

√
m).

Solving this, the solution q0 with 0 < q0 < 1 is

q0 =

√
κ− 1√
κ+ 1

+O(
√
m).

Using this q0 in the bound (5.4), we have z̃ = 0 and the theorem is proved.

Note that m is determined by β/α. In particular, for m ≈ 0, E(m) and K(m) have the
expansions

E = E(m) =
π

2
− π

8
m+O(m2)

K = K(m) =
π

2
+
π

8
m+O(m2).

We also have the expansion of E ′ −mK ′ in (5.12). Then

β

α
=
E −m1K

E ′ −mK ′
=
π

2
m+O(m2), or c =

(b− a)π

4
m+O(m2).

So the above theorem applies to the case when c/(b− a) is small or A is nearly Hermitian.
In an earlier paper [30], it is shown that for a symmetric positive definite matrix A, the

approximation error satisfies

||w(τ)− wm(τ)|| ≤ τ ||A||(
√
κ+ 1)

(√
κ− 1√
κ+ 1

)m−1

,

where κ = b/a is the condition number of the matrix A. This implies a conjugate gradient

like convergence rate q =
√
κ−1√
κ+1

regardless of the norm of the matrix. Then Theorem 5.4
shows that the same conclusion holds if A is nearly Hermitian.

6 A priori error bound for skew-Hermitian matrices

In this section, we consider the special case that A is skew-Hermitian which, as discussed in
the introduction, arises in some interesting applications. We write A = −iH with H being
an Hermitian matrix. In this case, the Arnoldi algorithm is theoretically equivalent to the
Lanczos algorithm for H. As we will see, the error bounds for computing

w(τ) := eiτHv. (6.1)

is also significantly simplified.
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Applying k steps of the Lanczos method to H and v1 = v with ‖v‖ = 1 (see [10]), we
obtain an orthonormal basis {v1, v2, · · · , vk, vk+1} and a k-by-k tridiagonal matrix Tk such
that

HVk = VkTk + βk+1vk+1e
T
k , (6.2)

where Vk = [v1, v2, · · · , vk]. This is equivalent to (3.1) for the Arnoldi algorithm for A = −iH
with Hk = −iTk and hk+1,k = βk+1. Then, the corresponding approximation of w(τ) is

wk(τ) := Vke
iτTke1, (6.3)

which we call the Lanczos approximation. Then the same a posteriori error bound of Theo-
rem 3.1 holds with hk+1,k = βk+1 and h(t) := eTk e

itTke1. Namely,

||w(τ)− wk(τ)|| ≤ βk+1

∫ τ

0

|h(t)|dt ≤ ‖H‖
∫ τ

0

|h(t)|dt (6.4)

Furthermore, slightly better bounds may be obtained by shifting the matrix. Specifically,
for any α ∈ R, we can consider the shifted matrix H − αI and correspondingly w(τ, α) :=
eiτ(H−αI)v = e−iταw(τ) and wk(τ, α) := Vke

iτ(Tk−αI)e1 = e−iταwk(τ). Since (H − αI)Vk =
Vk(Tk − αI) + βk+1vk+1e

T
k , we can apply (6.4) to H − αI to get

‖w(τ, α)− wk(τ, α)‖ ≤ ‖H − αI‖
∫ τ

0

|h(t, a)|dt

where h(t, α) := eTk e
it(Tk−αI)e1 = e−itαh(t). Thus

‖w(τ)− wk(τ)‖ = ‖w(τ, α)− wk(τ, α)‖ ≤ ‖H − αI‖
∫ τ

0

|h(t)|dt. (6.5)

We now bound h(t) as in the previous section to obtain the following a priori error bound.

Theorem 6.1. Let A = −iH ∈ Cn×n be a skew-Hermitian matrix and v ∈ Cn with ||v|| = 1.
Then, for any q with 0 < q < 1, the error of the Lanczos approximation wk(τ) = Vke

iτTke1

(6.3) satisfies

||w(τ)− wk(τ)|| ≤ 4 min{1/(1− q2), τρ/q}
1− q

qkeτρ(
1
q
−q), (6.6)

where ρ = (λmax(H) − λmin(H))/4 with λmin(H) and λmax(H) being the smallest and the
largest eigenvalues of H respectively.

Proof. Let a = λmin(H) and b = λmax(H). We first bound h(t) := eTk e
itTke1 as in Theorem

5.1 by constructing a conformal map and using the Faber polynomial approximation. Let
Φ := φ3 ◦ φ2 ◦ φ1 where z1 = φ1(z) = −iz maps the exterior of E := {iλ : λ ∈ [a, b]} to
the exterior of [a, b], z2 = φ2(z1) = 2

b−a

(
z1 − a+b

2

)
maps the exterior of [a, b] to the exterior

of [−1, 1], w = φ3(z2) = i(z2 +
√
z2

2 − 1) maps the exterior of [−1, 1] to {|w| > 1}. In the

definition of φ3, we choose the branch of
√
z2 − 1 such that lim

z 7→∞

√
z2−1
z

= 1. Then Φ maps

the exterior of E to the exterior of the unit circle {|w| = 1} with ρ := limz→∞
z

Φ(z)
= b−a

4
.

Construct the Faber polynomials from this conformal map Φ and the Faber polynomial
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approximation Πk−2 of f(z) := etz as defined in (2.3). Let r := 1
q
> 1 and let Cr be the inverse

image under Φ of the circle |w| = r. Applying Theorem 2.1 or (2.5), the approximation error
in I(Cr) is bounded as,

||f − Πk−2||∞ ≤ 2M(r)
(1
r
)k−1

1− 1
r

= 2M(r)
qk−1

1− q
,

where M(r) = max
z∈Cr
|f(z)| and we note that the total rotation of E (a line segment) is V = 2π.

To find M(r), for any z ∈ Cr, we write z = Φ−1(w) with w = reiθ where θ ∈ [0, 2π).
Then, it follows from the definition of Φ that

z2 =
1

2

(
−iw +

1

−iw

)
=

1

2

(
−ie

iθ

q
+
iq

eiθ

)
= − i

2

[(
1

q
− q
)

cos θ + i

(
1

q
+ q

)
sin θ

]
,

z1 =
b− a

2
z2 +

b+ a

2
=

[
b− a

4

(
1

q
+ q

)
sin θ +

b+ a

2

]
− i
[
b− a

4

(
1

q
− q
)

cos θ

]
,

z = iz1 =
b− a

4

(
1

q
− q
)

cos θ + i

[
b− a

4

(
1

q
+ q

)
sin θ +

b+ a

2

]
.

Thus

M(r) = max
z∈Cr
|etz| = max

z∈Cr
etRe(z) = e

t(b−a)
4 ( 1

q
−q).

Now, let λj (1 ≤ j ≤ n) be the eigenvalues of iTk. Then λj ⊂ E. As in the proof of
Theorem 5.1, we have

|h(t)| = |[f(iTk)]k1| = |[f(iTk)]k1 − [Πk−2(iTk)]k1|
≤ ||f(iTk)− Πk−2(iTk)||2 = max

j
|f(λj)− Πk−2(λj)|

≤ max
z∈E
|f(z)− Πk−2(z)| ≤ ||f − Πk−2||∞

≤ 2qk−1

1− q
e
t(b−a)

4 ( 1
q
−q).

Finally, using (6.5) with α = (a+ b)/2, we have ‖H − αI‖ = (b− a)/2 and hence

||w(τ)− wk(τ)|| ≤ b− a
2

∫ τ

0

2qk−1

1− q
e
t(b−a)

4 ( 1
q
−q)dt

=
4qk−1

(1− q)
(

1
q
− q
) (e τ(b−a)4 ( 1

q
−q) − 1

)
≤ 4qk

(1− q) (1− q2)
min{1, τ(b− a)

4

(
1

q
− q
)
}e

τ(b−a)
4 ( 1

q
−q)

=
4qk

1− q
min{ 1

1− q2
,
τρ

q
}eτρ(

1
q
−q)

where we have used ex − 1 ≤ min{1, x}ex for any x ≥ 0.
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As before, we have an error bound for any given q ∈ (0, 1). Using smaller q results in a

faster geometrically decreasing term qk, but eτρ(
1
q
−q) is expected to be larger. So, again, we

study the value of q that minimizes the bound

E(q) :=
qk

(1− q)(1− q2)
eτρ(

1
q
−q), (6.7)

Taking derivative of E(q) with respect to q to get

dE

dq
=

qk−2eτρ(
1
q
−q)

(1− q)3(1 + q)2

[
τρq4 + (3− k)q3 + q2 + kq − τρ

]
.

With E(q) → ∞ as q → 0 or 1, the optimal value q0 = q0(k) that minimizes E(q) is given
by the solution of the equation

τρq4 + (3− k)q3 + q2 + kq − τρ = 0.

Note that it can be shown that the above equation has a unique solution q0 ∈ (0, 1) (see [29]
for details).

Note that 1
1−q in E(q) is a well bounded term unless q ≈ 1. For example, it is bounded

by 10 if q ≤ 0.9. To quantitatively interpret the bound, we can consider minimization of

Es(q) = qkeτρ(
1
q
−q), (6.8)

which is essentially the same as E(q) unless q ≈ 1. Differentiate Es to get

dEs
dq

= eτρ(
1
q
−q)qk−2

[
−τρq2 + kq − τρ

]
.

The discriminant of the quadratic −τρq2 + kq− τρ is ∆ = k2− 4(τρ)2. So, if k ≤ 2τρ, Es(q)
is monotonically decreasing with the minimum occurring at q0 = 1. If k > 2τρ, Es(q) is

minimized at q0 =
k−
√
k2−4(τρ)2

2τρ
< 1. Thus, the bound implies different convergence behavior

at two stages of the Lanczos iterations.

1. When 1 ≤ k ≤ 2τρ, there is essentially no decrease in the error bound.

2. For k > 2τρ, the error bounds for subsequent steps decrease at least at the rate of q0.

The convergence behavior as implied from this theory is indeed what has been observed in
the numerical examples (see §7), where the error initially stagnates for approximately 2τρ
steps and then begins to decrease superlinearly. Thus our bound qualitatively explains this
convergence property observed numerically.

Finally, we note that the convergence bound for skew-Hermitian matrices have also been
studied by Hochbruch and Lubich [18, Theorem 4]. It is proved there that for k ≥ 2ρτ ,

||w(τ)− wk(τ)|| ≤ 12e
−(ρτ)2

k

(eρτ
k

)k
. (6.9)
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Interestingly, the range of validity of the bound coincides with the point of initial convergence
as implied by our bound. It turns out that this bound can be implied from a special case
of our error bound (6.6). For k ≥ 2ρτ , let q = τρ

k
≤ 1

2
. Then our bound (6.6), simply using

1/(1− q2) for the minimum, reduces to (6.9) as follows:

||w(τ)− wk(τ)|| ≤
4
(
τρ
k

)k
(1− 1

2
)(1− 1

2
)2
eτρ(

k
τρ
− τρ
k )

=
32

3
e−

(τρ)2

k

(eτρ
k

)k
≤ 12e−

(τρ)2

k

(eτρ
k

)k
.

7 Numerical examples

In this section, we present several numerical examples to demonstrate the error bounds
obtained in this paper. All tests were carried out on a PC in MATLAB (R2013b) with the
machine precision ≈ 2e − 16. The Jacobi elliptic integrals that are needed for our bounds
are computed using MATLAB built-in functions ellipticK and ellipticE.

We will construct several testing matrices with different spectral distributions and com-
pare the actual approximation error with the new a posterior error estimate (3.6) and a priori
bounds (5.4) or (6.6). The integral in the a posterior error estimate (3.6) is approximated
using Simpson’s rule with 10 subintervals on [0, τ ].

We shall compare our bounds with the bounds by Saad [27] and where applicable with
those of Hochbruck and Lubich [18] as well. For example, if the matrices are positive semidef-
inite, we consider the following bound of Saad [27, Cor. 2.2]:

||w(τ)− wk(τ)|| ≤ 2

k!
(τ ||A||)k. (7.1)

and the following bound of Hochbruck and Lubich [18, Theorem 2]:

||e−τAv − Vke−τHke1|| ≤ 12e−ρτ
(eρτ
k

)k
, (7.2)

which holds for k ≥ 2ρτ and with the assumption that the field of values W (A) is contained
in the disk |z − ρ| < ρ.

Example 1. Given an odd integer N and a rectangle [a, b]× [−c, c] in the complex plane
where a, b and c are all positive real numbers, let A be the N2 ×N2 block diagonal matrix
with the diagonal blocks being 2× 2 matrices B`,j for ` = 1, 2, · · · , N and j = 1, 2, · · · , N−1

2
,

where

B`,j =

[
x` yj
−yj x`

]
, x` = a+

(`− 1)(b− a)

N − 1
and yj =

2jc

N − 1
.

Then, the eigenvalues of A are xl ± iyj with i being the imaginary unit, which are the grid
points of the N ×N lattice on [a, b]× [−c, c]. Clearly, A is a normal matrix, so the field of
values of A is the convex hull of its eigenvalues, i.e., the rectangle [a, b]× [−c, c].

The primary purpose of this numerical test is to compare our a priori bound with
Hochbruch and Lubich’s bound (7.2). The latter is applicable when W (A) is contained in a

disk |z−ρ| < ρ. We therefore choose [a, b]×[−c, c] to be the square [1−
√

2
2
, 1+

√
2

2
]×[−

√
2

2
,
√

2
2

]
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which is enclosed in the circle |z − 1| < 1 and construct a matrix A as above such that the
eigenvalues of A form a 31 × 31 lattice in the square. We apply the Arnoldi method to
compute e−τAv where v is a random normalized vector and we use τ = 10, 20, 30, 40. In
Figure 1, we plot against the iteration number the actual error ||w(τ)− wk(τ)|| in the solid
line, the a posteriori error estimate (3.6) in the +-line, our a priori bound (5.4) in the dashed
line, Hochbruch and Lubich’s bound (7.2) in the dotted line, and Saad’s bound (7.1) in the
x-line. Note that Hochbruch and Lubich’s bound is only valid for k ≥ 2ρτ .
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Figure 1: Example 1. W (A) in |z − 1| < 1 and τ = 10, 20, 30, 40. Error (solid), our a
posteriori bound (+), our a priori bound (dashed), Saad’s bound (x), and Hochbruck and
Lubich’s bound (dotted).

We observe that when τ is relatively small, our new a priori bound is comparable to
Hochbruch and Lubich’s bound, but as τ increases, our bound improves significantly. In
particular, for larger τ values, the error ||w(τ)−wk(τ)|| first stagnates for certain number of
iterations before it starts to converge. Our a priori bound nicely captures this behavior and
the point where the convergence begins, while Hochbruch and Lubich’s bound is pessimistic
and is applicable to iterations long after the initial point of convergence. Our a posteriori
error estimate is sharp at the convergence stage for all tests.

In the next example, we use the same construction as in Example 1, but consider the
field of values contained in rectangles of different shape. This is to investigate the influence
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on the convergence rate by the shape of the rectangle through the parameter m in (4.3).
Example 2. For a given parameter m ∈ (0, 1), we determine the dimensions of the

rectangle α and β by α = E ′ − mK ′, β = E − m1K. We then construct a matrix as
in Example 1 whose field of values is contained in the rectangle [0, 2α] × [−β, β]. We use
m ∈ {0.01, 0.1, 0.9, 0.99} whose corresponding values of α, β are listed in Figure 2. Note from
Section 3.3 that m ≈ 0 means that the matrix is close to being Hermitian, and that m ≈ 1
means the matrix is close to being skew-Hermitian with a real spectral shift. We apply the
Arnoldi method to compute e−τAv for a random normalized vector v and we use τ = 30 to
give τA a moderate norm. In Figure 2 we plot the error ||w(τ) − wk(τ)|| in the solid line,
our a posteriori error estimate (3.6) in +-line, our a priori bound (5.4) in the dashed line
and Saad’s bound (7.1) in the x-line.
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m = 0.01 (α = 0.979 , β = 0.008)

10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

10
5

10
10

Iteration Number

E
rr

or
 a

nd
 B

ou
nd

s

m = 0.1 (α = 0.847 , β = 0.080)
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m = 0.9 (α = 0.080 , β = 0.847)
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m = 0.99 (α = 0.008 , β = 0.979)

Figure 2: Example 2. m = 0.01, 0.1 (top) and m = 0.9, 0.99 (bottom). Error(solid), our a
posteriori bound (+), our a priori bound (dashed), Saad’s bound (x).

Figure 2 shows that the convergence is related to m. For smaller m when the eigenvalues
lie close to the real axis, the convergence occurs at early iterations and at a faster rate.
As m increases to 1, the convergence has an initial stagnation stage before the convergence
occurs. Again, this behavior is captured in our new a priori bound. Our new bound also
significantly improves Saad’s, which is based on the norm of the matrix only. Our a posteriori
error estimate is sharp for all tests.

27



We further demonstrate our new bounds for non-positive definite matrices. We construct
as in Example 1 a matrix A whose field of values is contained in the square [σ, 2+σ]× [−1, 1]
with σ = −1 and −10. We plot in Figure 3 the actual error (solid), a posteriori bound
(+), a priori bound (dashed) and Saad’s bound (x). We see that our bounds are still valid
when A is not positive definite. They also demonstrate the initial stagnation of convergence.
However, the bound becomes more pessimistic for larger σ.
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ν(A) = −1
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Figure 3: Example 2. Non-positive definite matrix with negative ν(A). Error (solid), our a
posteriori bound (+), our a priori bound (dashed), and Saad’s bound (x).

In the next example, we consider matrices arising in the convection diffusion equation

∂

∂t
u(x, y) = 4u(x, y)− ux(x, y)− uy(x, y), u = 0 in ∂Ω (7.3)

where (x, y) ∈ Ω = [0, 1]2. The finite-difference discretization in x, y with a uniform mesh
leads to an initial value problem (1.1) and hence the problem of computing w(τ) = e−τAv.

Example 3. Let −A be the finite-difference discretization of (7.3) in a 20 × 20 grid in
[0, 1]2 scaled with h2 so that ||A||2 ≈ 8. Then A is non-Hermitian but positive definite. Let
v be a random vector with ||v||2 = 1 and we compute the matrix exponential w(τ) = e−τAv.
We use various values of τ = 2, 10, 20, 50 and apply the Arnoldi method to A and v and the
results are presented in Figure 4 with ||w(τ)−wk(τ)|| in the solid line, our a posteriori error
estimate (3.6) in the +-line, our a priori bound (5.4) in the dashed line and Saad’s bound
(7.1) in the x-line.

We observe that for τ = 2, our a priori bound is already a significant improvement on
the classical bound by Saad. For modestly large values of τ , Saad’s bound becomes very
pessimistic due to the large norm of τA, while our a priori bound still follows the convergence
curve of the error. For the case when τ = 50 (τ ||A||2 ≈ 400) or larger, our a priori bound
also becomes very pessimistic. In all the cases, our a posteriori error estimate remains sharp.

Our final example concerns skew-Hermitian matrices.
Example 4. Let H be an n × n diagonal matrix whose j-th diagonal entry is j/n. Let

v be a random n × 1 normalized vector. Then ||H|||2 = 1 and the spectral gap 4ρ =
λmax(H) − λmin(H) is approximately 1. We apply k iterations of the Lanczos method to
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Figure 4: Example 3. τ = 2, 10, 20, 50. Error(solid), a posteriori bound (+), a priori bound
(dashed), Saad’s bound (x).

compute w(τ) = eiτHv. We will test n = 1000 with τ = 2, 10, 20, 50 and the results are
presented in Figure 5 with ||w(τ)− wk(τ)|| in the solid line, our a posteriori error estimate
(6.4) in the +-line, our a priori bound (5.4) in the dashed line, Hochbruch and Lubich’s
bound (6.9) in the dotted line, and Saad’s bound in the x-line.

We first observe that our bound only improves Hochbruch and Lubich’s bound very
slightly. It is significantly better than Saad’s bound when τ is large. In all cases, our and
Hochbruch and Lubich’s bound follow the actual error quite closely and our a posteriori
error estimate is sharp. In addition, for larger τ , the error typically stagnates first for
some iterations before it starts to converge. An analysis of our bound has shown that the
convergence may be expected to start at k = 2τρ. For τ = 2, 10, 20, 50, the corresponding k
is 1, 5, 10 and 25, respectively. This basically matches the actual convergence curve in Figure
5, especially when τ is relatively large and more iterations are needed for the convergence.

8 Concluding remarks

For the computation of e−τAv with a non-Hermitian matrix A by the Krylov subspace meth-
ods, we have presented an a posteriori error bound that provides a sharp estimate of the
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Figure 5: Example 4. 1000 × 1000 diagonal matrix with ajj = j/1000. τ = 2, 10, 20, 50.
Error (solid), a posteriori bound (+), a priori bound (dashed), Hochbruch and Lubich’s
bound (dotted), and Saad’s bound (x).

error. We have also derive new a priori error bounds based on the largest and the smallest
eigenvalues of the Hermitian and the skew-Hermitian parts of A. Using this simple spectral
information, our bounds capture convergence characteristics of the Krylov subspace meth-
ods. They also explain often observed initial stagnation of the convergence curve. Numerical
comparisons with existing bounds also show that our new bounds may significantly improve
the a priori bound by Hochbruch and Lubich [18] that is based on a circular enclosing region
of the field of values and the one by Saad [27] that is based on the norm. Finally, it agrees
with the bound [30] for the symmetric positive definite case.

The technique developed in this paper provides a new way to analyze convergence of
the Krylov subspace method for non-Hermitian matrices through the bounding rectangle for
the field of values. It may be extended to other linear algebra problems. For the future
works, we plan to study convergence bounds for linear systems based on the Hermitian and
the skew-Hermitian parts of A, which may also add to the theory of the Krylov subspace
method for linear systems.
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cussions and in particular for his suggestion to use the technique in [3] that has turned out
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