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Quadratic approximation and time-varying feedback laws

Jean-Michel Coron∗, Ivonne Rivas†

Abstract

We present a method to construct stabilizing time-varying feedback laws for a large class of
systems. We apply our technique to several classical examples which do not satisfy the necessary
Brockett condition or the Coron condition for stabilization by means of continuous stationary
feedback laws.

1 Introduction

In this paper we first study the stabilization of finite dimensional control systems of the following
form

ẋ = Ax+Bu and ẏ = Ly +Q1(x, x) +Q2(x, u) +Q3(u, u), (1.1)

where n, m and k are three positive integers, A ∈ Rn×n, B ∈ Rn×m, L ∈ Rk×k and Q1 : Rn×Rn →
Rk, Q2 : Rn × Rm → Rk and Q3 : Rm × Rm → Rk are bilinear maps. For the control system (1.1),
the state is (xtr, ytr)tr ∈ Rn+k with x ∈ Rn and y ∈ Rk and the control is u ∈ Rm.

There are very few physical control systems having the form given by (1.1). However, as it will be
shown later on (in Theorem 4) the feedback laws, constructed to asymptotically stabilize the control
system (1.1), will also asymptotically stabilize systems for which (1.1) is a “good approximation”.
The construction of (1.1) such that it is a “good approximation” for a given system follows from
the power series expansion method introduced in [8] (see also [6, Chapter 8]) to study the local
controllability of a given control system ż = f(z, v) where the state is z ∈ Rl and the control
is v ∈ Rm. The method is the following one: let us assume that f(0, 0) = 0 and we want the
study the local controllability of ż = f(z, v) around 0 ∈ Rl with small controls. We expand
z = z1 + z2 + z3 + . . ., v = v1 + v2 + v3 + . . . where (z1, v1) is of order 1, (z2, v2) is of order 2, (z3, v3)
is of order 3 and so on. Identifying the different orders in ż = f(z, v) leads to

ż1 =
∂f

∂z
(0, 0)z1 +

∂f

∂v
(0, 0)v1, (1.2)
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ż2 =
∂f

∂z
(0, 0)z2 +

∂f

∂v
(0, 0)v2 +

1

2

∂2f

∂z2
(0, 0)(z1, z1)

+
∂2f

∂z∂v
(0, 0)(z1, v1) +

1

2

∂2f

∂v2
(0, 0)(v1, v1), (1.3)

and so on. The control system (1.2) is a linear control systems where the state is z1 ∈ Rl and the
control is v1 ∈ Rm. We decompose this linear system into its controllable part and its uncontrollable
part. Let n ∈ {0, 1, . . . l} be the dimension of the linear controllable part. We assume that n ∈
{1, . . . l−1} and let k := l−n ∈ {1, . . . l−1}. Performing, if necessary, a linear change of variables,
we may assume that the controllable part is the vector space

H := {z := (xtr, ytr)tr ∈ Rl withx ∈ Rn, y = 0 ∈ Rl−n}.

Then there exists A ∈ Rn×n, M ∈ Rn×l, L ∈ Rk×k and B ∈ Rn×m such that

∂f

∂z
(0, 0) =

(
A M
0 L

)
,
∂f

∂v
(0, 0) =

(
B
0

)
(1.4)

and such that the linear control system ẋ = Ax+Bu, where the state is x ∈ Rn and the control is
u ∈ Rm, is controllable. Let us assume that z1(0) ∈ H. Then z1(t) is in H for every time t. We
write z1 = (x, 0) and u = v1. From (1.2) we get

ẋ = Ax+Bu. (1.5)

We take v2 = 0. Let y ∈ Rl be the last l components of z2: z2 = (ξtr, ytr)tr for some ξ ∈ Rn. Then
(1.3) leads to

ẏ = Ly +Q1(x, x) +Q2(x, u) +Q3(u, u), (1.6)

where Q1 : Rn × Rn → Rk, Q2 : Rn × Rm → Rk and Q3 : Rm × Rm → Rk are bilinear maps. Note
that (1.5) and (1.6) are just our initial control system (1.1). The key points of the power series
expansion method is that, if (1.1) is controllable in time T , then ż = f(z, v) is locally controllable in
time T and, moreover, it provides a method to check if (1.1) is controllable in time T . This method
was used in [8] to prove a controllability result on a Korteweg-de Vries equation. (In fact, in the
case studied in [8], an expansion to the order 2 was not sufficient; an expansion to the order 3 was
necessary.) Here we use this power series expansion in order to asymptotically stabilize ż = f(z, v).
Roughly, speaking under the assumptions that 0 ∈ Rk is stable (but not necessarily asymptotically
stable) for ẏ = Ly, that (1.5) is controllable and that (1.1) is controllable, we provide a method
to construct time-varying periodic feedback laws (t, z) ∈ R× Rl 7→ v(t, z) ∈ Rm leading to a local
exponential stability of the closed-loop system ż = f(z, v(t, z)) for the weighted “norm” |x|2 + |y|.
We illustrate this method on some classical control systems. Note that this method can also be
used in the framework of partial differential equations: See [10] for a Korteweg de Vries equation.
Let us point out that the linearized control system of (1.1) around the trajectory (x̄, ȳ, ū) := (0, 0, 0)
is

ẋ = Ax+Bu and ẏ = Ly,

a linear control system which is never controllable. We assume the existence of T > 0 such that
the following three properties (P1), (P2), and (P3) hold

(P1) There exists
ρ1 ∈ (0, 1) (1.7)

such that

(ẋ = Ax)⇒
(
|x(T )|2 6 ρ1|x(0)|2

)
. (1.8)
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Note that Property (P1) implies that 0 ∈ Rn is asymptotically stable for ẋ = Ax. Conversely,
if 0 ∈ Rn is asymptotically stable for ẋ = Ax, then (P1) holds if T > 0 is large enough (and it
holds for every T > 0 if one is allowed to perform a suitable linear invertible transformation on x).
In particular if ẋ = Ax + Bu is controllable, this property always holds if T > 0 is large enough
provided one replaces A by A + BK with a suitable K ∈ Rm×n. In all the applications presented
below ẋ = Ax+Bu is controllable.

(P2)

|eTLy| ≤ |y|, ∀y ∈ Rk. (1.9)

Note that Property (P2) implies that 0 ∈ Rk is stable for ẏ = Ly. Conversely, if 0 ∈ Rk is stable
for ẏ = Ly, performing if necessary a linear invertible transformation on y, (1.9) holds for every
T > 0. Let us emphasize that our results are interesting only if 0 ∈ Rk is not asymptotically stable
for ẏ = Ly. Indeed if 0 ∈ Rk is asymptotically stable for ẏ = Ly and if Property (P1) also holds,
then 0 ∈ Rn+k is already globally asymptotically stable for (1.1) with the feedback law u = 0 and
0 ∈ Rn+k is already locally asymptotically stable for (1.19) with the feedback law uε = 0 provided
that (1.20) and (1.21) hold. In all the applications given below, 0 ∈ Rk is not asymptotically stable
for ẏ = Ly.

(P3) There exist δ > 0, C0 > 0 and a measurable function v : [0, T ]× Sk−1 → Rm such that

|v(t, b)| 6 C0, ∀t ∈ [0, T ], ∀b ∈ Sk−1, (1.10)

|v(t, b)− v(t, b′)| 6 C0|b− b′|, ∀t ∈ [0, T ], ∀b ∈ Sk−1, ∀b′ ∈ Sk−1, (1.11)(
˙̃x = Ax̃+Bv(t, b), ˙̃y = Lỹ +Q1(x̃, x̃) +Q2(x̃, v(t, b)) +Q3(v(t, b), v(t, b)),

x̃(0) = 0, ỹ(0) = 0
)
⇒
(
x̃(T ) = 0, ỹ(T ) · eTLb 6 −2δ

)
, ∀b ∈ Sk−1. (1.12)

In (P3) and in the following, Sk−1 denotes the unit sphere of Rk: Sk−1 := {b ∈ Rk; |b| = 1}.
For ε > 0, let us consider the following periodic time-varying feedback law uε : R× Rk → Rm

uε(t, y) :=

ε
√
|e−tLy|v

(
t,
e−tLy

|e−tLy|

)
, ∀t ∈ [0, T ), ∀y ∈ Rk \ {0},

0, ∀t ∈ [0, T ), y = 0 ∈ Rk.
(1.13)

uε(t+ T, y) = uε(t, y), ∀t ∈ R, ∀y ∈ Rk. (1.14)

In order to motivate Property (P3), let us mention that the more popular condition of controllability
implies this property. More precisely, let us first define the (classical) notion of controllability we
are considering.

Definition 1 Let τ > 0. The control system (1.1) is locally controllable in time τ > 0 if there exists
η > 0 such that, for every (x0, y0) ∈ Rn×Rk such that |x0|+|y0| < η, there exists u ∈ L∞([0, τ ];Rm)
such that

(ẋ = Ax+Bu, ẏ = Ly +Q1(x, x) +Q2(x, u) +Q3(u, u), x(0) = x0, y(0) = y0)⇒
(x(τ) = 0, y(τ) = 0) . (1.15)
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(Let us point out that if ((xtr, ytr)tr, u) : [0, τ ] → Rn+k × Rm is a trajectory of the control system
(1.1), then, for every λ ∈ R, ((λxtr, λ2ytr)tr, λu) : [0, τ ]→ Rn+k × Rm is a trajectory of the control
system (1.1). Hence the local controllability in time τ > 0 implies in fact the global controllability
in time τ .) There are many explicit conditions relying on iterated Lie brackets allowing to check if
the control system (1.1) is locally controllable in small time (i.e. in time τ for every τ > 0). For
more details on these explicit conditions, see in particular [22] and [6, Chapter 3]. With this notion
of local controllability, one has the following proposition, which is proved in Appendix A.

Proposition 2 Let us assume that there exists τ ∈ (0, T ) such that the control system (1.1) is
locally controllable in time τ . Then Property (P3) holds.

In all the applications given below, there exists indeed a τ ∈ (0, T ) such that the control system
(1.1) is locally controllable in time τ .

We are interested in the asymptotic behavior of the solutions to the closed-loop system

ẋ = Ax+Buε(t, y) and ẏ = Ly +Q1(x, x) +Q2(x, u) +Q3(u, u). (1.16)

Let us emphasize that the regularity of uε is sufficient for the existence of solutions of the Cauchy
problem associated to (1.16). Moreover, by a theorem due to Kurzweil [12], 0 ∈ Rn+m is globally
asymptotically stable for (1.16) if and only if there is a Lyapunov function (of class C∞) which
is T -periodic with respect to time. The existence of this Lyapunov function is important since it
insures some robustness with respect to (small) perturbations, which is in fact the true goal of the
stabilization issue.

The following theorem, which is proved in Section 2, shows that the feedback law uε defined by
(1.13)-(1.14) leads to global asymptotic stability provided that ε > 0 is small enough.

Theorem 3 Let us assume that (P1), (P2) and (P3) hold. Then, there exists ε0 > 0 such that, for
every ε ∈ (0, ε0], there exist C > 0 and λ > 0 such that, for every solution (x, y) of (1.16), one has

|x(t)|2 + |y(t)| 6 Ce−λt
(
|x(0)|2 + |y(0)|

)
, ∀t ∈ [0,+∞). (1.17)

Our next result allows to stabilize nonlinear control systems for which the quadratic “approxima-
tion” satisfies the assumptions of Theorem 3. The control system takes now the following more
general form

ẋ = Ax+Bu+Rx(x, y, u), ẏ = Ly +Q1(x, x) +Q2(x, u) +Q3(u, u) +Ry(x, y, u), (1.18)

where the state is (xtr, ytr)tr ∈ Rn+k, with x ∈ Rn and y ∈ Rk, and the control is u ∈ Rm. We
assume that Rx : Rn × Rk → Rn and Ry : Rn × Rk → Rk are both continuous. Our next result
deals with the asymptotic stability of 0 for the closed-loop system{

ẋ = Ax+Buε(t, y) +Rx(x, y, uε(t, y)),
ẏ = Ly +Q1(x, x) +Q2(x, uε(t, y)) +Q3(uε(t, y), uε(t, y)) +Ry(x, y, uε(t, y)).

(1.19)

We have the following theorem, which is proved in Section 3.

Theorem 4 Let us assume that (P1), (P2) and (P3) hold. Let us also assume the existence of
η > 0 and M > 0 such that, for every (x, y, u) ∈ Rn × Rk × Rm satisfying |x|+ |y|+ |u| 6 1,

|Rx(εx, ε2y, εu)| ≤Mε1+η, ∀ε ∈ (0, 1), (1.20)

|Ry(εx, ε2y, εu)| ≤Mε2+η. (1.21)
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Then, there exists ε0 > 0 such that, for every ε ∈ (0, ε0], there exist C > 0, ρ > 0 and λ > 0 such
that, for every solution (x, y) of (1.19) with |x(0)|2 + |y(0)| 6 ρ, one has

|x(t)|2 + |y(t)| 6 Ce−λt
(
|x(0)|2 + |y(0)|

)
, ∀t ∈ [0,+∞).

Remark 5 Our method allows the construction of time-varying feedback laws. Note that, as first
pointed out by Sussmann in [21] and by Brockett in [1], there are controllable systems which cannot
be asymptotically stabilized by means of continuous stationary (i.e. which does not depend on time)
feedback laws. To overcome this difficulty the use of time-varying feedback laws have been proposed
in two pioneer works: [19] by Sontag and Sussmann for control systems with states of dimension 1,
[17] by Samson for the control system studied in Section 4.3 and that we revisit with our method.
General results showing that many controllable systems can be asymptotically (and even in finite
time) stabilized by means of time-varying feedback laws can be found in [3, 5]. The fact that the
control systems presented in Section 4 can be asymptotically stabilized by means of time-varying
feedback laws follows from [3, 5]. The novelty of our approach is to allow explicit constructions of
such feedback laws.

2 Proof of Theorem 3

Let

ρ2 ∈ (ρ1,+∞). (2.1)

Theorem 3 is a corollary of the following proposition, where assumption (1.7) is no longer required.

Proposition 6 There exists ε0 > 0 and C > 0 such that, for every ε ∈ [0, ε0] and for every solution
of (1.16), one has

|x(t)|2 + |y(t)| 6 C
(
|x(s)|2 + |y(s)|

)
, ∀s ∈ [0, T ], ∀t ∈ [s, T ], (2.2)

|x(T )|2 + ε|y(T )| 6 ρ2|x(0)|2 + ε
(
1− ε2δ

)
|y(0)|. (2.3)

Proof of Proposition 6. Let (xtr, ytr)tr be a solution of (1.16) on [0, T ]. From now on, we denote
by C > 0 various constants which vary from place to place but do not depend on ε ∈ (0, 1), on
t ∈ [0, T ] or on (xtr, ytr)tr solution of (1.16). However, these constants C may depend on T , A, B,
L and v.
From (1.10), (1.13) and (1.16), we get that

d

dt

(
|x|4 + |y|2

)
6 C

(
|x|4 + |y|2

)
, (2.4)

which gives (2.2). From (1.10), (1.13), (1.16) and (2.2), we get that

|x(t)− etAx(0)| 6 Cε
(
|x(0)|+

√
|y(0)|

)
. (2.5)

From (1.16) and (2.5), we have

|y(t)− etLy(0)| 6 C
(
|x(0)|2 + ε2|y(0)|

)
. (2.6)
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From (1.8), (2.1), (2.5) and (2.6), there exists ε1 > 0, such that for every

ε ∈ [0, ε1], (2.7)

one has (2.3) for every solution of (1.16) satisfying |x(0)| > ε2/3
√
|y(0)|. From now on, we consider

that (2.7) holds and that

|x(0)| < ε2/3
√
|y(0)|. (2.8)

Note that if (x, y) is a solution of (1.16), then, for every λ > 0, (λx, λ2y) is also a solution of (1.16).
Hence, using also (2.8), in order to prove (2.3), we may assume, without loss of generality, that

b := y(0) ∈ Sk−1, (2.9)

|x(0)| 6 ε2/3. (2.10)

Equations (2.5), (2.6), (2.9) and (2.10) lead us to

|x(t)| 6 Cε2/3, |y(t)− eLtb| 6 Cε4/3, ∀t ∈ [0, T ]. (2.11)

Let us define x1 : [0, T ]→ Rn, x2 : [0, T ]→ Rn, x3 : [0, T ]→ Rn, r : [0, T ]→ Rm by

x1(t) := etAx(0), (2.12)

ẋ2 = Ax2 +Bv(t, b), x2(0) = 0, (2.13)

x3 := x− x1 − εx2, (2.14)

r(t) := uε(t, y(t))− εv(t, b). (2.15)

From (1.8) and (2.12), one has

|x1(T )|2 6 ρ1|x(0)|2. (2.16)

From (1.10), (1.12) and (2.13)

|x2(t)| 6 C, ∀t ∈ [0, T ], (2.17)

x2(T ) = 0. (2.18)

From (1.16), (2.12), (2.13) and (2.14), one has

ẋ3 = Ax3 +Buε(t, y(t))− εBv(t, b), x3(0) = 0. (2.19)

From (1.10), (1.11), (1.13), (2.11) and (2.19), one has

|x3(t)| 6 Cε2, ∀t ∈ [0, T ]. (2.20)

Concerning uε and r, using (1.10), (1.11) and (2.11), one has the following estimates

|uε(t, y(t))| 6 Cε, |r(t)| 6 Cε7/3, ∀t ∈ [0, T ]. (2.21)

Let us fix

ρ3/2 ∈ (ρ1, ρ2). (2.22)
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(The existence of ρ3/2 follows from (2.1)). From (2.14), (2.16), (2.18), (2.20) and (2.22), one gets
that

|x(T )|2 6 ρ3/2|x(0)|2 + Cε4. (2.23)

We now estimate y. Let y1 : [0, T ]→ Rk, y2 : [0, T ]→ Rk and y3 : [0, T ]→ Rk be defined by

ẏ1 = Ly1 + 2Q1(x1, x)−Q1(x1, x1) +Q2(x1, u), y1(0) = 0, (2.24)

ẏ2 = Ly2 +Q1(x2, x2) +Q2(x2, v) +Q3(v, v), y2(0) = 0, (2.25)

y3 := y − y1 − ε2y2 − etLb. (2.26)

In (2.24), (2.25) and in the following, u(t) := uε(t, y(t)) and, with a slight abuse of notation, v(t)
is v(t, b). Then, from (2.11), (2.12) and (2.24), one has

|y1(t)| 6 Cε2/3|x(0)|, ∀t ∈ [0, T ]. (2.27)

and (1.10), (1.12), (2.9), (2.13), (2.17) and (2.25) give us

|y2(T )| 6 C(1 + ε2), y2(T ) · eTLb 6 −2δ + Cε2. (2.28)

From (1.10), (2.9) and (2.28), we have

|eTLb+ ε2y2(T )| 6 1− 4δε2 + Cε4. (2.29)

Equation (1.16), (2.14), (2.15), (2.24), (2.25) and (2.26) give us

ẏ3 = Ly3 + εQ1(x2, x3) + εQ1(x3, x2) +Q1(x3, x3)

+ εQ2(x2, r) + εQ2(x3, v) +Q2(x3, r) + εQ3(v, r) + εQ3(r, v) +Q3(r, r), y3(0) = 0. (2.30)

From (2.17), (2.20), (2.21) and (2.30), one has

|y3(T )| 6 Cε3. (2.31)

Using (2.26), (2.27), (2.29) and (2.31), one has

|y(T )| 6 1− 4δε2 + Cε3 + Cε2/3|x(0)|. (2.32)

From (2.9), (2.22), (2.23) and (2.32), one gets that exists ε0 > 0 such that, if ε ∈ [0, ε0],

|x(T )|2 + ε|y(T )| 6 ρ2|x(0)|2 + ε(1− 2δε2)|y(0)|, (2.33)

which concludes the proof of Proposition 6.

Remark 7 It follows from our proof of Theorem 3 that, in this theorem, one can take

λ = min

{
− ln(ρ2)

T
,− ln(1− ε20δ)

T

}
. (2.34)
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3 Proof of Theorem 4

In this section we deduce Theorem 4 from Theorem 3 and the existence of homogeneous Lyapunov
function for asymptotically stable homogeneous time-varying vector fields.
Let Z be a time-varying vector field of period T with respect to time, i.e. Z : R×Rn → Rn satisfies

Z(t+ T, z) = Z(t, z), ∀t ∈ R, ∀z ∈ Rn.

We say that Z is a Carathéodory function if it satisfies the three following properties

∀R > 0,∃ C(R) > 0 such that |Z(t, z)| 6 C(R), ∀t ∈ R, ∀z ∈ Rn such that |z| 6 R,

∀z ∈ Rn, the function t ∈ R 7→ Z(t, z) is measurable,

for almost every t ∈ R, the function z ∈ R 7→ Z(t, z) is continuous.

Let I be an interval of R and let z : I → Rn. As usual, we say that z is a solution of ż = Z(t, z)
on I if z is absolutely continuous on every compact subinterval of I and

ż(t) = Z(t, z(t)) for almost every t ∈ I.

Let us recall that Carathéodory’s Theorem insures that, if Z is a Carathéodory function, then,
for every t0 ∈ R and for every z0 ∈ Rn there is an open interval I containing t0 and a solution
z : I → Rn of ż = Z(z) such that z(t0) = z0.

Let r = (r1, . . . , rn)tr ∈ (0,+∞)n and let Y = (Y1, ..., Yn)tr : R×Rn → Rn be a time-varying vector
field. One says that the time-varying vector field Y = (Y1, . . . , Yn)tr is r-homogeneous of degree 0 if

Yi(t, (ε
r1z1, ..., ε

rnzn)tr) = εriYi(t, z1, ..., zn), ∀ε > 0, ∀z = (z1, . . . , zn)tr ∈ Rn, ∀t ∈ R.

Theorem 8 ([15]) Let T > 0. Let Y be a time-varying vector field of period T with respect to
time. We assume that

Y is a Carathéodory vector field,

Y is r-homogeneous.

Let
θ ∈ (max{ri, 1 6 i 6 n},+∞).

Then there exists a function V ∈ C∞(R× (Rn \ {0});R) ∩ C1(R× Rn;R) such that

V (t, x) > V (t, 0) = 0, ∀(t, x) ∈ R× (Rn \ {0}),
V (t+ T, x) = V (t, x), ∀(t, x) ∈ R× Rn,

lim
|x|→+∞

Min {V (t, x); t ∈ R} = +∞,

∂V

∂t
+ Y · ∇V < 0 in R× (Rn \ {0})× R,

V (t, (εr1x1, . . . , ε
rnxn)tr) = εθV (t, (x1, . . . , xn)tr), ∀(ε, t, x) ∈ (0,+∞)× R× Rn.

As a corollary of this theorem, one has the following theorem.
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Theorem 9 ([15]) Let T > 0. Let X, Y and R be three time-varying vector fields of period T
with respect to time. We assume that

X,Y, and R are Carathéodory vector fields,

Y is r-homogeneous,

X = Y +R.

We also assume that, for some ρ > 0, η > 0 and M > 0, one has

|Ri(εr1x1, ..., εrnxn, t)| ≤Mεri+η, ∀ε ∈ (0, 1),

for every i ∈ {1, . . . , n} and for every x = (x1, ..., xn)tr ∈ Rn such that |x| ≤ ρ. Let us assume
that 0 is locally (or globally) asymptotically stable for ẋ = Y (t, x). Then 0 is locally asymptotically
stable for ẋ = X(t, x) and there exists λ > 0, C > 0 and ρ > 0 such that, for every solution
x : [0,+∞)→ Rn of ẋ = X(t, x) such that

n∑
i=1

|xi(0)|1/ri 6 ρ,

one has
n∑
i=1

|xi(t)|1/ri 6 Ce−λt
n∑
i=1

|xi(0)|1/ri , ∀t ∈ [0,+∞).

(In fact, in [15], Theorem 9 is stated with more regularity on the vector fields. However the
Carathéodory regularity is in fact sufficient. See also (the proof of) Theorem 12.16 in [6], which
relies on [16].)

Theorem 4 follows directly from Theorem 3 and Theorem 9.

4 Applications

In this section we present various applications of our approach to construct stabilizing time-varying
feedback laws.

4.1 An example with k = 1

Let us consider the control system

ẋ1 = x2, ẋ2 = w, ẏ = x21 − x22, (4.1)

where the state is (x1, x2, y)tr ∈ R3 and the control is w ∈ R. Let us recall the Poincaré inequality∫ 1

0
ϕ(t)2dt 6

1

π2

∫ 1

0
ϕ̇(t)2dt, ∀ϕ ∈ C1([0, 1]) such that ϕ(0) = ϕ(1) = 0. (4.2)

This inequality can be proved by expanding ϕ as the following Fourier series

ϕ(x) =

+∞∑
l=1

fl sin(lπx).
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Indeed, with this expansion, one has for every ϕ ∈ C1([0, 1]) such that ϕ(0) = ϕ(1) = 0,∫ 1

0
ϕ(t)2dt =

+∞∑
l=1

1

2
f2l 6

1

π2

+∞∑
l=1

π2l2

2
f2l =

1

π2

∫ 1

0
ϕ̇(t)2dt.

Note that 1/π2 is optimal in (4.2) as one can see by considering ϕ(x) := sin(πx). From inequality
(4.2), one gets that the control system (4.1) is not (locally or globally) controllable in time T if
T 6 π. Moreover, using the fact that 1/π2 is optimal in (4.2) and using the power series expansion
(see Section 1), one gets that the control system (4.1) is (locally and globally) controllable in time
T if T > π. However it does not satisfy the following necessary condition for feedback stabilization
by means of continuous stationary feedback laws due to Brockett [1] (see also [6, Theorem 1.1]).

Theorem 10 Let us consider the control system ż = f(z, w), where z ∈ Rl is the state, w ∈ Rm
is the control. Assume that f(0, 0) = 0 and 0 can be locally asymptotically stabilized by means of
continuous stationary feedback laws, i.e. there exists a continuous map w : Rl → Rm vanishing at
0, such that 0 is (locally) asymptotically stable for the closed-loop system ż = f(z, w(z)). Then

the image by f of every neighborhood of (0, 0) ∈ Rl × Rm is a neighborhood of 0 ∈ Rl. (4.3)

The control system (4.1) does not satisfy the Brockett condition (4.3). Indeed, if (α, β)tr ∈ R2 is
such that β < −α2, there is not (x1, x2, w)tr ∈ R3 such that

x2 = α, w = 0, x21 − x22 = β.

Hence, by Theorem 10, the control system (4.1) cannot be locally asymptotically stabilized by
means of continuous stationary feedback laws. We are going to see that Theorem 3 can be applied
to construct time-varying stabilizing feedback laws. Let us first point out that (1.8) is not satisfied.
In order to deal with this problem it suffices to apply the transformation w := −x1−x2 +u, which
transforms the control system (4.1) into the control system

ẋ1 = x2, ẋ2 = −x1 − x2 + u, ẏ = x21 − x22, (4.4)

where the state is (x1, x2, y)tr ∈ R3 and the control is u ∈ R. This control system is of the form
(1.1), with

A :=

(
0 1
−1 −1

)
, B :=

(
0
1

)
, L := 0,

Q1(x, x
′) := x1x

′
1 − x2x′2, ∀(x1, x2)tr ∈ R2, ∀(x′1, x′2)tr ∈ R2, Q2 := 0, Q3 := 0.

In order to apply Theorem 3, let us first check that properties (P1), (P2) and (P3) are satisfied.
Let x = (x1, x2)

tr : [0, T ]→ R2 be a solution of ẋ = Ax. Then

d

dt

(
x21 + x22

)
= −x22,

d

dt
x2 = −x1 − x2 6= 0 for (x1, x2) ∈ (R \ {0})× {0},

which, together with the (proof of the) LaSalle invariance principle implies that (P1) holds. Since
L = 0, one has (P2). Let us now turn to (P3). Let us first point that, by the Poincaré inequality
(4.2), (P3) cannot hold if T 6 π. Let us also mention that, by the controllability of (4.1) in time T
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if T > π and by Proposition 2, (P3) holds if T > π. Let us give an explicit v having the properties
required in (P3). We take T = 3.6 and define v : [0, T ]× {−1, 1} → R by

v(t, b) :=


g(t), if b = −1 and 1 ≤ t ≤ T,
0, if b = −1 and otherwise,

f(t), if b = 1 and T/4 ≤ t ≤ (T + 4)/4,

(4.5)

with

f(t) =
1

10
((t2(12 + t(4 + t))− 2t(6 + t(3 + t))T + (2 + t(2 + t))T 2)),

g(t) =
T 4

2560
((2 + (−1 + t)t(10 + t(3 + t)))− 128(−5 + t(7 + t(3 + 2t)))T

+ 16(7 + 6t(1 + t))T 2 − 8(1 + 2t)T 3 + T 4).

These controls are represented on Fig. 1. Clearly (1.10) and (1.11) hold.
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-20
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1.5

2

2.5

3

v v

Figure 1: Control v defined by (4.5) for b = −1 on the left and b = 1 on the right.

Straightforward computations show that (1.12) holds, since, for ỹ defined in (1.12), one has, for
b = 1, ỹ(3.6) ∗ b = −4.92 and, for b = −1, ỹ(3.6) ∗ b = −0.12. See also Fig. 2.
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Figure 2: Solutions of (4.4) with x(0) = 0 ∈ R2, y(0) = 0 ∈ R and u = v(t, b) for v defined in (4.5), with
b = 1 on the left and b = −1 on the right.
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The feedback law u defined by (1.13) and (1.14) is

uε(t, y) = ε
√
|y|v(t− 4bt/4c, Sign(y)),

where, for s ∈ R, bsc is the integer part of s and Sign(s) is the sign of s: Sign(s) = 1 for s ∈ (0,+∞),
Sign(s) = −1 for s ∈ (−∞, 0) and Sign(0) = 0.

Figure 3: Trajectory of the solution of the control system (4.1). For ε = 0.9 and initial data x1(0) =
−0.2, x2(0) = 0.5 and y(0) = 0.46 and comparison of decay between |(x1, x2)tr|2 + 0.9|y| and y(t) =
0.38 exp(−0.012t).

Figure 4: Trajectory of the solution of the control system (4.1). For ε = 0.9 and initial data x1(0) = −0.6,
x2(0) = 0.1 and y(0) = −0.2 and comparison of decay between |(x1, x2)tr|2 + 0.9|y| and 0.037 exp(−0.027t).

4.2 An example with k = 2

We consider the control system

ẋ1 = w1, ẋ2 = w2, ẏ1 = x21 − x22, ẏ2 = 2x1x2, (4.6)

where the state is z := (x1, x2, y1, y2)
tr ∈ R4 and the control is u = (w1, w2)

tr ∈ R2. One easily
check that, for every T > 0, this control system is (globally) controllable in time T . This control
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system satisfies the Brockett condition (4.3). However one has the following necessary condition,
due to Coron [2] for feedback stabilization by means of stationary feedback laws, a condition which
is slightly stronger than the Brockett condition (4.3).

Theorem 11 If the control system ż = f(z, v), where z ∈ Rl is the state, v ∈ Rm is the control
and f(0, 0) = 0, can be locally asymptotically stabilized by means of continuous stationary feedback
laws, then, for ε > 0 small enough,

f∗ (Hl−1 ({(z, u) ∈ Rn; f(z, u) 6= 0, |z| < ε and |u| < ε}))) = Hl−1(Rl \ {0},Z),

where Hl−1(Ω,Z) denotes the (l− 1)-singular homology group of Ω with integer coefficients and f∗
is the homomorphism induced by f : {(z, u) ∈ Rn; f(z, u) 6= 0, |z| < ε and |u| < ε} → Rl \ {0}
(see, e.g., [20, page 161]).

The control system (4.6) does not satisfy the Coron condition in Theorem 11. Indeed, the control
system (4.6) can be written as ż = f(z, u), with for z = (x1, x2, y1, y2)

tr ∈ R4 and u = (w1, w2)
tr ∈

R2,
f(z, u) = (w1, w2, x

2
1 − x22, 2x1x2)tr.

Then one can check that, for every ε > 0,

f∗
(
H3

(
{(z, u) ∈ R4 × R2; f(z, u) 6= 0, |z| < ε and |u| < ε}

)
,Z)
)

= 2H3(R4 \ {0},Z).

By Theorem 11, since the control system (4.6) does not satisfy (11), it cannot be asymptotically
stabilized by means of (continuous) stationary feedback laws. However it is locally controllable
in small-time and, by [5], it can be asymptotically stabilized by means of periodic time-varying
feedback laws. Let us check that, once more, the method presented in this article allows to construct
such feedback laws.
As in the previous application in Section 4.1, condition (P1) is not satisfied. In order to deal with
this problem it suffices to apply the transformation w1 = −x1 + u1 and w2 = −x2 + u2, which
transforms the control system (4.6) into

ẋ1 = −x1 + u1, ẋ2 = −x2 + u2, ẏ1 = x21 − x22, ẏ2 = 2x1x2, (4.7)

where the state is x = (x1, x2, y1, y2)
tr ∈ R4 and the control is u = (u1, u2)

tr ∈ R2. This control
system has the form (1.1), with n = m = k = 2,

A :=

(
−1 0
0 −1

)
, B :=

(
1 0
0 1

)
, L := 0, (4.8)

Q1(x, x
′) := (x1x

′
1 − x2x′2, 2x1x′2)tr, ∀(x1, x2)tr ∈ R2, ∀(x′1, x′2)tr ∈ R2, Q2 := 0, Q3 := 0. (4.9)

Then (P1) is satisfied with ρ1 := e−T ∈ (0, 1). Clearly (4.8) implies that (P2) holds. By the
controllability of (4.6) in time T for every T > 0 and by Proposition 2, (P3) holds for every T > 0.
Let us give an explicit v having the properties required in (P3). We choose T := 4 and consider
the control law v : [0, T ]× S1 → R2 defined by

v1(t, b) = −3
√

70

512
Sign(b2) sin ((arccos(b1))/2) t(t− 4)(t2 − 8), (4.10)

v2(t, b) = −3
√

70

512
Sign(b2) cos ((arccos(b1))/2) t(t− 4)(t2 − 8), (4.11)
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with v = (v1, v2)
tr and b = (b1, b2)

tr. This control is represented on Fig. 5 and 6.

Figure 5: Controls v1(t, b) and v2(t, b) defined in (4.10) and (4.11) for t ∈ [0, 4] and b ∈ S1 respectively when
b2 is negative.

Figure 6: Controls v1(t, b) and v2(t, b) defined in (4.10) and (4.11) for t ∈ [0, 4] and b ∈ S1 respec-
tively when b2 is positive.

In figure 7 the condition condition (P3) can be verified.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1
x2
y1
y2

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

x1
x2
y1
y2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x1
x2
y1
y2

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1
x2
y1
y2

Figure 7: Solutions of (4.7) with x(0) = 0 ∈ R2, y(0) = 0 ∈ R2 and v = v(t, b) = (v1(t, b), v2(t, b)) where v
is defined in (4.10) and (4.11) when b ∈ S1 takes the values (0.5, 0.86)tr, (−0.5, 0.86)tr, (−0.5,−0.86)tr and
(0.5, 0.86)tr respectively.
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For the control system (4.7), we consider the feedback law

ui(t, y) = uiε(t, y) = ε
√
|y|vi(t, y/|y|), i = 1, 2. (4.12)

In Figure 8 and 9, a trajectory of system (4.7) with the feedback law (4.12) is shown.
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Figure 8: Trajectory of the solution of the control system (4.7) for ε = 0.7 and initial data x1(0) = −0.4,
x2(0) = 0.4, y1(0) = −0.6 and y2(0) = −0.2, and comparison of the decay rate between |(x1, x2)tr|2 +
ε|(y1, y2)tr| and 0.67 exp(−0.13t).
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Figure 9: Trajectory of the solution of the control system (4.7) for ε = 0.8 and initial data x1(0) = −0.48,
x2(0) = −0.2, y1(0) = 0.7 and y2(0) = 0.2 and comparison of the decay rate between |(x1, x2)tr|2+ε|(y1, y2)tr|
and 1.14 exp(−0.2t).
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4.3 The baby stroller control system

In this section, we consider the following nonlinear system, describing the motion of a baby stroller
(or unicycle),

ẋ1 = w1 cosx2, ẋ2 = w2, ẏ = w1 sinx2, (4.13)

where x1 and y are the coordinates of the midpoint between the two back wheels, x2 is an angle
which gives the orientation of the baby stroller (see Figure 10). For this control system, the state
is (x1, x2, y)tr ∈ R3 and the control is (w1, w2)

tr ∈ R2.
By a theorem due to Rashevski and Chow (see, for example, [6, Theorem 3.19]), the control system
(4.13) is locally controllable in time T for every T > 0. The control system (4.13) does not satisfy
the Brockett condition (4.3), as it can be easily checked by looking at the solution of

w1 cosx2 = 0, w2 = 0, w1 sinx2 = ε,

where the unknown is (x1, x2, y, w1, w2)
tr ∈ R5 and the data is ε 6= 0. Hence, by Theorem 10, the

control system (4.13) cannot be locally asymptotically stabilized by means of continuous stationary
feedback laws. Let us emphasize that, however, by [3], we know that the control system (4.13) can
be asymptotically stabilized by means of periodic time-varying feedback laws. Various explicit
stabilizing periodic time-varying feedback laws for the control system (4.13) were constructed. Let
us just mention Samson’s pioneer work [17], as well as [7]. Let us show how Theorem 4 can be
applied in order to construct such stabilizing feedback laws.

x1

y

x2

Figure 10: Baby Stroller design of system(4.13)

The quadratic approximation (in the sense explained in the introduction) of (4.13) around (~0, 0) ∈
R3 × R is

ẋ1 = w1, ẋ2 = w2, ẏ = w1x2, (4.14)

where the state is (x1, x2, y)tr ∈ R3 and the control is (w1, w2)
tr ∈ R2.
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The control system (4.14) has the form of (1.1). However it does not satisfies Property (P1). In
order to handle this problem, we perform the following change of variables

u1 = w1 + x1, u2 = w2 + x2,

which transforms the control system (4.14) into the control system

ẋ1 = −x1 + u1, ẋ2 = −x2 + u2, ẏ = −x1x2 + x2u1, (4.15)

where the state is (x1, x2, y)tr ∈ R3 and the control is (u1, u2)
tr ∈ R2. It still has the form (1.1)

with n = 2, m = 2, k = 1,

A :=

(
−1 0
0 −1

)
, B :=

(
1 0
0 1

)
,

Q1(x, x̃) := −1

2
(x1x̃2 + x̃1x2) , Q2(x, u) = x2u1, Q3(u, ũ) = 0,

for every x = (x1, x2)
tr ∈ R2, every x̃ = (x̃1, x̃2)

tr ∈ R2, every u = (u1, u2)
tr ∈ R2 and every ũ ∈ R2.

Property (P1) now holds. For the control system (4.15), one has L = 0 and therefore Property
(P2) holds. Let us now consider Property (P3). By a theorem due to Sussmann [22], the control
system (4.15) is locally controllable in time T for every T > 0 and, therefore, by Proposition 2,
(P3) holds for every T > 0. Let us give an explicit u having the properties required in (P3). We
take T := 3. Let a± = (2187− 280δ ∓ 140ε1)/2187 with δ > 0 as in (P3) and ε1 > 0. Let us define
v = (v1, v2)

tr : [0, 3]× {−1, 1} → R2 by

v1(t,±1) = a±(t4 − 6t3 + 10t2 − t− 3), ∀t ∈ [0, 3], (4.16)

v2(t, 1) = −v2(t,−1) = t4 − 2t3 + 3t2 − 18t+ 18, ∀t ∈ [0, 3]. (4.17)

The controls t ∈ [0, T ] 7→ v(t, b) with b ∈ S0 = {−1, 1} are plotted on Figure 11.
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Figure 11: Controls (4.16) and (4.17) for b = −1 on the left and for b = 1 on the right.

Clearly (1.10) and (1.11) hold. Straightforward computations give that, if we take 2δ = 0.5 and
ε1 = 0.12 , then, for ỹ defined in (1.12), for b = −1, ỹ(3) = 1.49 and for b = 1, ỹ(3) = −1.49, which
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shows that (1.12) holds.
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Figure 12: Solutions of (4.15) with x(0) = 0 ∈ R2, y(0) = 0 ∈ R and u = v(t, b) for v defined in (4.16) and
(4.17), with b = −1 on the and b = 1 on the right.

For ε > 0, we define uε = (u1ε, u2ε)
tr : R× R→ R2 by (1.13) and (1.14). Let

ρ2 ∈ (ρ1, 1).

We may now apply Proposition 6. Let ε0 > 0 and C > 0 be as in this proposition and let ε ∈ (0, ε0].
By Proposition 6, we get that

|x(t)|2 + ε|y(t)| 6 C
(
|x(0)|2 + ε|y(0)|

)
, ∀t ∈ [0, T ],

|x(T )|2 + ε|y(T )| 6 ρ2|x(0)|2 + ε
(
1− ε2δ

)
|y(0)|

for every solution (x, y) : [0, T ]→ R2 × R of the closed-loop system

ẋ1 = −x1 + uε1, ẋ2 = −x2 + uε2(t, y), ẏ = −x1x2 + x2uε1(t, y).

Let us now check, using Theorem 4, that the same time-varying feedback also leads to asymptotic
stability for the initial control system (4.13), i.e. that 0 ∈ R3 is also (locally) asymptotically stable
for

ẋ1 = (−x1 + uε1(t, y)) cosx2, ẋ2 = −x2 + uε2(t, y), ẏ = (−x1 + uε1(t, y)) sinx2. (4.18)

Let Rx : R2 × R× R2 → R2 and Ry : R2 × R× R→ R be defined by

Rx(x, y, u) := ((−x1 + u1)(−1 + cosx2), 0)tr, Ry(x, y, u) := (−x1 + u1)(−x2 + sinx2),

for every x = (x1, x2)
tr ∈ R2, every y ∈ R and every u = (u1, u2)

tr ∈ R2. Then (4.13) is the control
system (1.19). Let us point out that there exists M1 > 0 such that

|x3(−1 + cosx2)| 6M1(|x2|+ |x3|)3, |x3(−x2 + sinx2)| 6M1(|x2|+ |x3|)4, ∀(x2, x3)tr ∈ R2.

In particular (1.20) and (1.21) hold for η := 2 > 0 provided that M > 0 is large enough. Hence,
using Theorem 4, one gets the following proposition.
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Proposition 12 There exists ε0 > 0 such that, for every ε ∈ (0, ε0], there exist C > 0, ρ > 0 and
λ > 0 such that, for every solution (x, y) of (4.18) with |x(0)|2 + |y(0)| 6 ρ, one has

|x(t)|2 + |y(t)| 6 Ce−λt
(
|x(0)|2 + |y(0)|

)
, ∀t ∈ [0,+∞).

Numerical simulations are presented on Fig. 13 and Fig. 14.

Figure 13: Trajectory of the closed-loop control system (4.13) for ε = 0.7 and initial data x1(0) = 0.6,
x2(0) = 0.4, and y(0) = −0.49 and comparison of the decay rate between |(x1, x2)tr|2 + 0.7|y| and
0.48 exp(−0.19t).

Figure 14: Trajectory of the closed-loop control system (4.13) for ε = 0.7 and initial data x1(0) = −0.2,
x2(0) = 0.7, and y(0) = −0.5 and comparison of the decay rate between |(x1, x2)tr|2 + 0.7|y| and
0.85 exp(−0.19t).

4.4 Underactuated surface vessel system

Let us consider the nonlinear system that describes the dynamic positioning of surface vessels which
describes drilling, pipe-laying and diving support. More precisely, a ship that has not side thruster,
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but two independent main thrusters located at a distance from the center line in order to provide
both surge force and yaw moment.

u̇ = − d1
m1

u+
m2

m1
vr +

1

m1
τ1, v̇ = −m1

m2
ur − d2

m2
v, ṙ = − d3

m3
r +

m1 −m2

m3
uv +

1

m3
τ3, (4.19)

ż1 = u+ z2r, ż2 = v − z1r, ż3 = r, (4.20)

where the state is (u, v, r, z1, z2, z3)
tr ∈ R6 and the control is (τ1, τ3) ∈ R2. Physically, u, v and r are

the velocities in surge, sway and yaw respectively, the parameters mi > 0 and di > 0 for i = 1, 2, 3
are the ship inertia, added mass effect and hydrodynamic damping, τ1 is the surge control force
and τ3 is the yaw control moment. Once more,

• using [22], one gets that the control system (4.19)-(4.20) is locally controllable in small time,

• the control system (4.19)-(4.20) does not satisfy the Brockett condition (4.3) and, therefore,
by Theorem 10, the control system (4.19)-(4.20) cannot be locally asymptotically stabilized
by means of continuous stationary feedback laws,

• by [5], the control system (4.19)-(4.20) can be asymptotically stabilized by means of periodic
time-varying feedback laws.

Let us point out that time-varying stabilizing feedback laws for the control system (4.19)-(4.20)
have been constructed by Mazenc, Pettersen and Nijmeijer in [13]. Let us show how Theorem 3
can be used in order to construct other time-varying stabilizing feedback laws.
Before treating the system, we perform transformations already presented in [13]. We do the
following change of variables

Z2 = z2 +
m2

d2
v, u = − d2

m1
(z1 − µ)

τr =
m1 −m2

m3
uv − d3

m3
r +

1

m3
τ3,

τµ =
d2
m2

z1 +
d2
m2

µ− Z2r +
m2

d2
vr − 1

d2
(m2vr − d1u+ τ1)

Then the control system (4.19)-(4.20) becomes the control system

ż1 = − d2
m1

z1 −
d2
m1

µ+ Z2r −
m2

d2
vr, Ż2 = µr, ż3 = r, (4.21)

v̇ = − d2
m2

v +
d2
m2

(z1 + µ)r, µ̇ = τµ, ṙ = τr, (4.22)

where the state is (z1, Z2, z3, v, µ, r)
tr ∈ R5 and the control is (τµ, τr)

tr ∈ R2.
From now on, in order to simplify the notations, we consider the case where the physical constants
are equal to 1. i.e. mi = 1 and di = 1 for i = 1, 2. Once more a preliminary change of variables
is necessary to guaranty that the system satisfies the assumptions of Theorem 4. We perform the
following change of variables

τµ = −µ+ τ∗µ and τr = −2z3 − r + τr∗. (4.23)
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With the notations of Section 1, x := (z1, µ, z3, r)
tr ∈ R4 and y := (v, Z2)

tr. Then the control
system has the form (1.1) with n = 4, m = 2, k = 2,

A :=


−1 −1 0 0
0 −1 0 0
0 0 0 1
0 0 −2 −1

 , B :=


0 0
1 0
0 0
0 1

 , (4.24)

L =

(
−1 0
0 0

)
, Q1(x, x) =

(
(z1 + µ)r

µr

)
, Q2 := 0, Q3 := 0. (4.25)

Simple computations show

‖eAT ‖2 =

∥∥∥∥∥∥∥∥∥∥


1
e4
− 1
e4

0 0
0 1

e4
0 0

0 0
sin(2

√
7)√

7e2
+

cos(2
√
7)

e2
2 sin(2

√
7)√

7e2

0 0 −4 sin(2
√
7)√

7e2
cos(2

√
7)

e2
− sin(2

√
7)√

7e2


∥∥∥∥∥∥∥∥∥∥
2

= max

{
1

e4
,

∣∣∣∣∣7e2 cos
(
2
√

7
)
− 7ie2 sin

(
2
√

7
)

7e4

∣∣∣∣∣ ,
∣∣∣∣∣7e2 cos

(
2
√

7
)

+ 7ie2 sin
(
2
√

7
)

7e4

∣∣∣∣∣
}

= 0.13,

hence, the property (P1) holds for T = 4. Property (P2) follows from (4.25). Again, by using [22],
one gets that the control system (1.1), with A, B, L and Q defined by (4.24) and (4.25), is locally
controllable in time T for every T > 0 and by Proposition 2, (P3) holds for every T > 0. Let us,
once more, give an explicit v having the properties required in (P3). We again choose T = 4 and
define the “control v” for Property (P3) by

τ∗µ :=
(−2338875b2 + 4096b1e

4 + 41895b2e
4)(32 + 16t− 20t2 + t4)

32768c(−30499 + 559e4)
(4.26)

and

τ∗r := 2c
−256b1e

4(−256 + 416t− 304t2 + 156t3 − 49t4 + 6t5)

4096b1e4 + 315b2(−7425 + 133e4)
+

315b2(−118800 + 10056t− 49578t2 + 34270t3 − 1771t4 − 1028t5)

4096b1e4 + 315b2(−7425 + 133e4)
+

315b2(e4(2128− 104t+ 850t2 − 598t3 + 23t4 + 20t5))

4096b1e4 + 315b2(−7425 + 133e4)
(4.27)

for c = 1
4 , see figure 15.
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Figure 15: Controls τµ and τr defined in (4.23) with (4.26) and 4.27 respectively, with b1 = cos θ and
b2 = sin θ for θ ∈ [0, 2π].
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Figure 16: Solution of (4.21)-(4.22)-(4.23) starting from 0 ∈ R6, with v = (τµ, τr) with τ∗µ defined in (4.26),
τ∗r defined in (4.27), for b = (0, 1)tr on the left and for b = (1, 0)tr on the right.

Trajectories of the closed-loop system are shown on Figures 17 and 18 for ε = 0.5 and for different
values of the initial data.

Figure 17: Trajectory of the solution of the control system (4.21) and (4.22) for ε = 0.5 and the initial data
z1(0) = 0.8, z3(0) = 0.3, µ(0) = 0.2, r(0) = 0.1, v(0) = −0.2, z2(0) = 0.5. and comparison of the decay rate
between |(z1, z3, µ, r)tr|2 + 0.5|(v, z2)tr| and 0.49 exp(−0.2t).
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Figure 18: Trajectory of the solution of the control system (4.21) and (4.22) for ε = 0.5 and the initial data
z1(0) = 0.56, z3(0) = −0.3, µ(0) = 0.2, r(0) = 0.1, v(0) = −0.2 and z2(0) = 0.5 and comparison of decay
rate between |(z1, z3, µ, r)tr|2 + 0.5|(v, z2)tr| and 7.38 exp(−0.15t).

5 Open Problems

In the literature, there are interesting models that do not adapt to our study, as the rigid spacecraft
[9] described by the control system

ẋ1 = x5x6, ẋ2 = x1 + cx3x6, ẋ3 = x5,

ẋ5 = u1, ẋ6 = u2

where the state is (x1, x2, x3, x5, x6)
tr ∈ R5 and the control (u1, u2)

tr ∈ R2, and c 6= 0, as well the
X4-flyer modeled by (see [23])

ẋ = x1, ẋ1 =
1

m
α sin(β), ẏ = y1, ẏ1 =

1

m
α cos(β), α̇ = u,

β̇ = ϕ, ż = z1, ż1 = g − 1

m
ν, ϕ̇ = ω, ω̇ = τϕ

where the state is (x, x1, y, y1, z, z1, α, β, ϕ, ω)tr ∈ R10 and the control is (u, ν, τϕ)tr ∈ R3.

For the satellite,

L :=

(
0 0
1 0

)
and, for the X4-flyer,

L :=

(
0 −1
0 0

)
.

Therefore, these two problems do not satisfy Property (P2).

A Proof of Proposition 2

Proof of Proposition 2. Let us assume, for the moment, that the following lemma holds.
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Lemma 13 Let τ ∈ (0, T ). Let us assume that the control system (1.1) is locally controllable in
time τ . Then there exists ū ∈ L∞([0, T ];Rm) such that, if (x̄, ȳ) ∈ C0([0, T ];Rn×Rk) is the solution
of

˙̄x = Ax̄+Bū(t), ˙̄y = Lȳ +Q1(x̄, x̄) +Q2(x̄, ū) +Q3(ū, ū), x̄(0) = 0, ȳ(0) = 0, (A.1)

then the following two properties hold

x̄(T ) = 0 and ȳ(T ) = 0, (A.2)

the linearized control system control system of (1.1) around ((x̄tr, ȳtr)tr, ū) is controllable. (A.3)

For r > 0, let Bk
r be the open ball of radius r centered at 0 ∈ Rk. Using the inverse mapping

theorem and Lemma 13, there exists r > 0 and W ∈ C1(Bk
r ;L∞([0, T ];Rm)) such that, for every

b ∈ Bk
r ,(

ẋ = Ax+BW (b)(t), ẏ = Ly +Q1(x, x) +Q2(x,W (b)(t))

+Q3(W (b)(t),W (b)(t)), x(0) = 0, y(0) = 0
)
⇒
(
x(T ) = 0, y(T ) = b

)
. (A.4)

Let us now define v : [0, T ]× Sk−1 → Rm by

v(t, b) := W

(
−eTL rb

2‖eTL‖2

)
(t), ∀(t, b) ∈ [0, T ]× Sk−1. (A.5)

Then one has (1.10), and if C0 > 0 is large enough, (1.11) holds. Moreover, from (A.4) and (A.5),
one has, for every b ∈ Sk−1,(

˙̃x = Ax̃+Bv(t, b), ˙̃y = Lỹ +Q1(x̃, x̃) +Q2(x, v(t, b))

+Q3(v(t, b), v(t, b)), x̃(0) = 0, ỹ(0) = 0
)
⇒
(
x̃(T ) = 0, ỹ(T ) = −eTL rb

2‖eTL‖2
)
, (A.6)

which shows that (1.12) holds with

δ :=
r

4‖eTL‖2‖e−TL‖22
. (A.7)

Finally, let us prove Lemma 13. By the R. Hermann [11] and T. Nagano [14] theorem and the
controllability assumption, the control system (1) satisfies the Lie algebra rank condition at (0, 0) ∈
Rn+k ×Rm (see, e.g., [6, Definition 3.16]). Then, by [4, Theorem 1.3], for every η > 0, there exists
ū ∈ C∞([0, T − τ ];Rm) such that, if (x̄, ȳ) ∈ C∞([0, T − τ ];Rn × Rk) is the solution of (A.1) on
[0, T − τ ], then the following two properties hold

|x̄(T − τ)|+ |ȳ(T − τ)| < η, (A.8)

the linearized control system control system of (1.1) around ((x̄tr, ȳtr)tr, ū) is controllable. (A.9)

We choose η > 0 as in Definition 1. Then, from (A.8) we can extend ū to [0, T ] so it is an element
of L∞([0, T ];Rm) such that, if (x̄, ȳ) is extended to [0, T ] so it is the element of C0([0, T ];Rn×Rk)
which is the solution of (A.1) on [0, T ], then (A.2) holds. Then (A.9) implies (A.3). This concludes
the proof of Lemma 13 and, also, the proof of Proposition 2.

Remark 14 An alternative proof of Proposition 2 can be provided by using [18] instead of [4].
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