
Inertial Proximal Alternating Linearized Minimization
(iPALM) for Nonconvex and Nonsmooth Problems

Thomas Pock∗ Shoham Sabach†

Abstract

In this paper we study nonconvex and nonsmooth optimization problems with
semi-algebraic data, where the variables vector is split into several blocks of vari-
ables. The problem consists of one smooth function of the entire variables vector and
the sum of nonsmooth functions for each block separately. We analyze an inertial
version of the Proximal Alternating Linearized Minimization (PALM) algorithm and
prove its global convergence to a critical point of the objective function at hand.
We illustrate our theoretical findings by presenting numerical experiments on blind
image deconvolution, on sparse non-negative matrix factorization and on dictionary
learning, which demonstrate the viability and effectiveness of the proposed method.

Key words: Alternating minimization, blind image deconvolution, block coordinate de-
scent, heavy-ball method, Kurdyka- Lojasiewicz property, nonconvex and nonsmooth mini-
mization, sparse non-negative matrix factorization, dictionary learning.

1 Introduction

In the last decades advances in convex optimization have significantly influenced scientific
fields such as image processing and machine learning, which are dominated by computa-
tional approaches. However, it is also known that the framework of convexity is often too
restrictive to provide good models for many practical problems. Several basic problems such
as blind image deconvolution are inherently nonconvex and hence there is a vital interest
in the development of efficient and simple algorithms for tackling nonconvex optimization
problems.

∗Institute of Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria. Digital
Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220 Vienna, Austria. E-
mail: pock@icg.tugraz.at. Thomas Pock acknowledges support from the Austrian science fund (FWF)
under the project EANOI, No. I1148 and the ERC starting grant HOMOVIS, No. 640156.
†Department of Industrial Engineering and Management, Technion—Israel Institute of Technology,

Haifa 3200003, Israel. E-mail: ssabach@ie.technion.ac.il

1

ar
X

iv
:1

70
2.

02
50

5v
1

 [
m

at
h.

O
C

]
 8

 F
eb

 2
01

7

A large part of the optimization community has also been devoted to the development
of general purpose solvers [23], but in the age of big data, such algorithms often come to
their limits since they cannot efficiently exploit the structure of the problem at hand. One
notable exception is the general purpose limited quasi Newton method [18] which has been
published more than 25 years ago but still remains a competitive method.

A promising approach to tackle nonconvex problems is to consider a very rich the class of
problems which share certain structure that allows the development of efficient algorithms.
One such class of nonconvex optimization problems is given by the sum of three functions:

min
x=(x1,x2)

F (x) := f1 (x1) + f2 (x2) +H (x) , (1.1)

where f1 and f2 are assumed to be general nonsmooth and nonconvex functions with effi-
ciently computable proximal mappings (see exact definition in the next section) and H is a
smooth coupling function which is required to have only partial Lipschitz continuous gradi-
ents ∇x1H and ∇x2H (it should be noted that ∇xH might not be a Lipschitz continuous).

Many practical problems frequently used in the machine learning and image processing
communities fall into this class of problems. Let us briefly mention two classical examples
(another example will be discussed in Section 5).

The first example is Non-negative Matrix Factorization (NMF) [26, 15]. Given a non-
negative data matrix A ∈ Rm×n

+ and an integer r > 0, the idea is to approximate the matrix
A by a product of again non-negative matrices BC, where B ∈ Rm×r

+ and C ∈ Rr×n
+ . It

should be noted that the dimension r is usually much smaller than min{m,n}. Clearly this
problem is very difficult to solve and hence several algorithms have been developed (see,
for example, [33]). One possibility to solve this problem is by finding a solution for the
non-negative least squares model given by

min
B,C

1
2
‖A−BC‖2F , s.t. B ≥ 0, C ≥ 0, (1.2)

where the non-negativity constraint is understood pointwise and ‖·‖F denotes the classical
Frobenius norm. The NMF has important applications in image processing (face recog-
nition) and bioinformatics (clustering of gene expressions). Observe that the gradient of
the objective function is not Lipschitz continuous but it is partially Lipschitz continuous
which enables the application of alternating minimization based methods (see [10]). Ad-
ditionally, it is popular to impose sparsity constraints on one or both of the unknowns,
e.g., ‖C‖0 ≤ c, to promote sparsity in the representation. See [10] for the first globally
convergent algorithm for solving the sparse NMF problem. As we will see, the complicated
sparse NMF can be also simply handled by our proposed algorithm which seems to produce
better performances (see Section 5).

The second example we would like to mention is the important but ever challenging
problem of blind image deconvolution (BID) [16]. Let A ∈ [0, 1]M×N be the observed

2

blurred image of size M × N , and let B ∈ [0, 1]M×N be the unknown sharp image of the
same size. Furthermore, let K ∈ ∆mn denote a small unknown blur kernel (point spread
function) of size m×n, where ∆mn denotes the mn-dimensional standard unit simplex. We
further assume that the observed blurred image has been formed by the following linear
image formation model:

A = B ∗K + E,

where ∗ denotes a two dimensional discrete convolution operation and E denotes a small ad-
ditive Gaussian noise. A typical variational formulation of the blind deconvolution problem
is given by:

min
U,K
R (U) +

1

2
‖B ∗K − A‖2F , s.t. 0 ≤ U ≤ 1, K ∈ ∆mn. (1.3)

In the above variational model, R is an image regularization term, typically a function,
that imposes sparsity on the image gradient and hence favoring sharp images over blurred
images.

We will come back to both examples in Section 5 where we will show how the proposed
algorithm can be applied to efficiently solve these problems.

In [10], the authors proposed a proximal alternating linearized minimization method
(PALM) that efficiently exploits the structure of problem (1.1). PALM can be understood
as a blockwise application of the well-known proximal forward-backward algorithm [17, 11]
in the nonconvex setting. In the case that the objective function F satisfy the so-called
Kurdyka- Lojasiewicz (KL) property (the exact definition will be given in Section 3), the
whole sequence of the algorithm is guaranteed to converge to a critical point of the problem.

In this paper, we propose an inertial version of the PALM algorithm and show con-
vergence of the whole sequence in case the objective function F satisfy the KL property.
The inertial term is motivated from the Heavy Ball method of Polyak [29] which in its
most simple version applied to minimizing a smooth function f and can be written as the
iterative scheme

xk+1 = xk − τ∇f
(
xk
)

+ β
(
xk − xk−1

)
,

where β and τ are suitable parameters that ensure convergence of the algorithm. The
heavy ball method differs from the usual gradient method by the additional inertial term
β
(
xk − xk−1

)
, which adds part of the old direction to the new direction of the algorithm.

Therefore for β = 0, we completely recover the classical algorithm of unconstrained opti-
mization, the Gradient Method. The heavy ball method can be motivated from basically
three view points.

First, the heavy ball method can be seen as an explicit finite differences discretization
of the heavy ball with friction dynamical system (see [2]):

ẍ (t) + cẋ (t) + g (x (t)) = 0,

3

where x (t) is a time continuous trajectory, ẍ (t) is the acceleration, cẋ (t) for c > 0 is the
friction (damping), which is proportional to the velocity ẋ (t), and g (x (t)) is an external
gravitational field. In the case that g = ∇f the trajectory x (t) is running down the “energy
landscape” described by the objective function f until a critical point (∇f = 0) is reached.
Due to the presence of the inertial term, it can also overcome spurious critical points of f ,
e.g., saddle points.

Second, the heavy ball method can be seen as a special case of the so-called multi-
step algorithms where each step of the algorithm is given as a linear combination of all
previously computed gradients [12], that is, algorithm of the following form

xk+1 = xk −
k∑
i=0

αi∇f
(
xi
)
.

Let us note that in the case that the objective function f is quadratic, the parameters αi
can be chosen in a way such that the objective function is minimized at each step. This
approach eventually leads to the Conjugate Gradient (CG) method, pointing out a close
relationship to inertial based methods.

Third, accelerated gradient methods, as pioneered by Nesterov (see [21] for an overview),
are based on a variant of the heavy ball method that use the extrapolated point (based on
the inertial force) also for evaluating the gradient in the current step. It turns out that,
in the convex setting, these methods improve the worst convergence rate from O(1/k) to
O(1/k2), while leaving the computational complexity of each step basically the same.

In [35], the heavy ball method has been analyzed for the first time in the setting of
nonconvex problems. It is shown that the heavy ball method is attracted by the connected
components of critical points. The proof is based on considering a suitable Lyapunov
function that allows to consider the two-step algorithm as a one-step algorithm. As we
will see later, our convergence proof is also based on rewriting the algorithm as a one-step
method.

In [24], the authors developed an inertial proximal gradient algorithm (iPiano). The
algorithm falls into the class of forward-backward splitting algorithms [11], as it performs
an explicit forward (steepest descent) step with respect to the smooth (nonconvex) function
followed by a (proximal) backward step with respect to the nonsmooth (convex) function.
Motivated by the heavy ball algorithm mentioned before, the iPiano algorithm makes use of
an inertial force which empirically shows to improve the convergence speed of the algorithm.
A related method based on general Bregman proximal-like distance functions has been
recently proposed in [14].

Very recently, a randomized proximal linearization method has been proposed in [34].
The method is closely related to our proposed algorithm but convergence is proven only
in the case that the function values are strictly decreasing. This is true only if the inertial

4

force is set to be zero or the algorithm is restarted whenever the function values are not de-
creasing. In this paper, however, we overcome this major drawback and prove convergence
of the algorithm without any assumption on the monotonicity of the objective function.

The remainder of the paper is organized as follows. In Section 2 we give an exact
definition of the problem and the proposed algorithm. In Section 3 we state few technical
results that will be necessary for the convergence analysis, which will be presented in Section
4. In Section 5 we present some numerical results and analyze the practical performance
of the algorithm in dependence of its inertial parameters.

2 Problem Formulation and Algorithm

In this paper we follow [10] and consider the broad class of nonconvex and nonsmooth
problems of the following form

minimize F (x) := f1 (x1) + f2 (x2) +H (x) over all x = (x1, x2) ∈ Rn1 × Rn2 , (2.1)

where f1 and f2 are extended valued (i.e., giving the possibility of imposing constraints
separately on the blocks x1 and x2) and H is a smooth coupling function (see below for more
precise assumptions on the involved functions). We would like to stress from the beginning
that even though all the discussions and results of this paper derived for two blocks of
variables x1 and x2, they hold true for any finite number of blocks. This choice was done
only for the sake of simplicity of the presentation of the algorithm and the convergence
results.

As we discussed in the introduction, the proposed algorithm can be viewed either as a
block version of the recent iPiano algorithm [24] or as an inertial based version of the recent
PALM algorithm [10]. Before presenting the algorithm it will be convenient to recall the
definition of the Moreau proximal mapping [20]. Given a proper and lower semicontinuous
function σ : Rd → (−∞,∞], the proximal mapping associated with σ is defined by

proxσt (p) := argmin

{
σ (q) +

t

2
‖q − p‖2 : q ∈ Rd

}
, (t > 0) . (2.2)

Following [10], we take the following as our blanket assumption.

Assumption A. (i) f1 : Rn1 → (−∞,∞] and f2 : Rn2 → (−∞,∞] are proper and
lower semicontinuous functions such that infRn1 f1 > −∞ and infRn2 f2 > −∞.

(ii) H : Rn1 × Rn2 → R is differentiable and infRn1×Rn2 F > −∞.

(iii) For any fixed x2 the function x1 → H (x1, x2) is C1,1
L1(x2)

, namely the partial gradient

∇x1H (x1, x2) is globally Lipschitz with moduli L1 (x2), that is,

‖∇x1H (u, x2)−∇x1H (v, x2)‖ ≤ L1 (x2) ‖u− v‖ , ∀ u, v ∈ Rn1 .

Likewise, for any fixed x1 the function x2 → H (x1, x2) is assumed to be C1,1
L2(x1)

.

5

(iv) For i = 1, 2 there exists λ−i , λ
+
i > 0 such that

inf {L1 (x2) : x2 ∈ B2} ≥ λ−1 and inf {L2 (x1) : x1 ∈ B1} ≥ λ−2 , (2.3)

sup {L1 (x2) : x2 ∈ B2} ≤ λ+1 and sup {L2 (x1) : x1 ∈ B1} ≤ λ+2 , (2.4)

for any compact set Bi ⊆ Rni , i = 1, 2.

(v) ∇H is Lipschitz continuous on bounded subsets of Rn1 × Rn2 . In other words, for
each bounded subset B1 ×B2 of Rn1 × Rn2 there exists M > 0 such that:

‖(∇x1H (x1, x2)−∇x1H (y1, y2) ,∇x2H (x1, x2)−∇x2H (y1, y2))‖
≤M ‖(x1 − y1, x2 − y2)‖ .

We propose now the inertial Proximal Alternating Linearized Minimization (iPALM)
algorithm.

iPALM: Inertial Proximal Alternating Linearized Minimization

1. Initialization: start with any (x01, x
0
2) ∈ Rn1 × Rn2 .

2. For each k = 1, 2, . . . generate a sequence
{(
xk1, x

k
2

)}
k∈N as follows:

2.1. Take αk1, β
k
1 ∈ [0, 1] and τ k1 > 0. Compute

yk1 = xk1 + αk1
(
xk1 − xk−11

)
, (2.5)

zk1 = xk1 + βk1
(
xk1 − xk−11

)
, (2.6)

xk+1
1 ∈ proxf1

τk1

(
yk1 −

1

τ k1
∇x1H

(
zk1 , x

k
2

))
. (2.7)

2.2. Take αk2, β
k
2 ∈ [0, 1] and τ k2 > 0. Compute

yk2 = xk2 + αk2
(
xk2 − xk−12

)
, (2.8)

zk2 = xk2 + βk2
(
xk2 − xk−12

)
, (2.9)

xk+1
2 ∈ proxf2

τk2

(
yk2 −

1

τ k2
∇x2H

(
xk+1
1 , zk2

))
. (2.10)

The parameters τ k1 and τ k2 , k ∈ N, are discussed in Section 4 but for now, we can say
that they are proportional to the respective partial Lipschitz moduli of H. The larger the
partial Lipschitz moduli the smaller the step-size, and hence the slower the algorithm. As
we shall see below, the partial Lipschitz moduli L1 (x2) and L2 (x1) are explicitly available
for the examples mentioned at the introduction. However, note that if these are unknown,

6

or still too difficult to compute, then a backtracking scheme [6] can be incorporated and
the convergence results developed below remain true, for simplicity of exposition we omit
the details.

In Section 5, we will show that the involved functions of the non-negative matrix fac-
torization model (see (1.2)) and of the blind image deconvulation model (see (1.3)) do
satisfy Assumption A. For the general setting we point out the following remarks about
Assumption A.

(i) The first item of Assumption A is very general and most of the interesting constraints
(via their indicator functions) or regularizing functions fulfill these requirements.

(ii) Items (ii)-(v) of Assumption A are beneficially exploited to build the proposed iPALM
algorithm. These requirements do not guarantee that the gradient of H is globally
Lipschitz (which is the case in our mentioned applications). The fact that ∇H is
not globally Lipschitz reduces the potential of applying the iPiano and PFB meth-
ods in concrete applications and therefore highly motivated us to study their block
counterparts (PALM in [10] and iPALM in this paper).

(iii) Another advantage of algorithms that exploit block structures inherent in the model
at hand is the fact that they achieve better numerical performance (see Section 5) by
taking step-sizes which is optimized to each separated block of variables.

(iv) Item (v) of Assumption A holds true, for example, when H is C2. In this case
the inequalities in (2.4) could be obtained if the sequence, which generated by the
algorithm, is bounded.

The iPALM algorithm generalizes few known algorithms for different values of the in-
ertial parameters αki and βki , k ∈ N and i = 1, 2. For example, when αki = βki = 0,
k ∈ N, we recover the PALM algorithm of [10] which is a block version of the classical
Proximal Forward-Backward (PFB) algorithm. When, there is only one block of variables,
for instance only i = 1, we get the iPiano algorithm [24] which is recovered exactly only
when βk1 = 0, k ∈ N. It should be also noted that in [24], the authors additionally assume
that the function f1 is convex (an assumption that is not needed in our case). The iPiano
algorithm by itself generalizes two classical and known algorithms, one is the Heavy-Ball
method [30] (when f1 ≡ 0) and again the PFB method (when αk1 = 0, k ∈ N).

3 Mathematical Preliminaries and Proof Methodol-

ogy

Throughout this paper we are using standard notations and definitions of nonsmooth anal-
ysis which can be found in any classical book, see for instance [31, 19]. We recall here few

7

notations and technical results. Let σ : Rd → (−∞,∞] be a proper and lower semicontinu-
ous function. Since we are dealing with nonconvex and nonsmooth functions that can have
the value ∞, we use the notion of limiting subdifferential (or simply subdifferential), see
[19], which is denoted by ∂σ. In what follows, we are interested in finding critical points
of the objective function F defined in (2.1). Critical points are those points for which the
corresponding subdifferential contains the zero vector 0. The set of critical points of σ is
denoted by critσ, that is,

critσ = {u ∈ domσ : 0 ∈ ∂σ (u)} .

An important property of the subdifferential is recorded in the following remark (see [31]).

Remark 3.1. Let
{(
uk, qk

)}
k∈N be a sequence in graph (∂σ) that converges to (u, q) as

k → ∞. By the definition of ∂σ (u), if σ
(
uk
)

converges to σ (u) as k → ∞, then (u, q) ∈
graph (∂σ).

The convergence analysis of iPALM is based on the proof methodology which was
developed in [5] and more recently extended and simplified in [10]. The main part of the
suggested methodology relies on the fact that the objective function of the problem at hand
satisfies the Kurdyka- Lojasiewicz (KL) property. Before stating the KL property we will
need the definition of the following class of desingularizing functions. For η ∈ (0,∞] define

Φη ≡

ϕ ∈ C [[0, η) ,R+] such that

ϕ (0) = 0

ϕ ∈ C1 on (0, η)

ϕ′ (s) > 0 for all s ∈ (0, η)

 . (3.1)

The function σ is said to have the Kurdyka- Lojasiewicz (KL) property at u ∈ dom ∂σ if
there exist η ∈ (0,∞], a neighborhood U of u and a function ϕ ∈ Φη, such that, for all

u ∈ U ∩ [σ(u) < σ(u) < σ(u) + η],

the following inequality holds

ϕ (σ (u)− σ (u)) dist (0, ∂σ (u)) ≥ 1, (3.2)

where for any subset S ⊂ Rd and any point x ∈ Rd

dist (x, S) := inf {‖y − x‖ : y ∈ S} .

When S = ∅, we have that dist (x, S) = ∞ for all x. If σ satisfies property (3.2) at each
point of dom ∂σ, then σ is called a KL function.

The convergence analysis presented in the following section is based on the uniformized
KL property which was established in [10, Lemma 6, p. 478].

8

Lemma 3.1. Let Ω be a compact set and let σ : Rd → (−∞,∞] be a proper and lower
semicontinuous function. Assume that σ is constant on Ω and satisfies the KL property at
each point of Ω. Then, there exist ε > 0, η > 0 and ϕ ∈ Φη such that for all u in Ω and all
u in the following intersection{

u ∈ Rd : dist (u,Ω) < ε
}
∩ [σ (u) < σ (u) < σ (u) + η] , (3.3)

one has,
ϕ′ (σ (u)− σ (u)) dist (0, ∂σ (u)) ≥ 1. (3.4)

We refer the reader to [9] for a depth study of the class of KL functions. For the
important relation between semi-algebraic and KL functions see [8]. In [3, 4, 5, 10], the
interested reader can find through catalog of functions which are very common in many
applications and satisfy the KL property.

Before concluding the mathematical preliminaries part we would like to mention few
important properties of the proximal map (defined in (2.2)). The following result can be
found in [31].

Proposition 3.1. Let σ : Rd → (−∞,∞] be a proper and lower semicontinuous function
with infRd σ > −∞. Then, for every t ∈ (0,∞) the set proxtσ (u) is nonempty and compact.

It follows immediately from the definition that proxσ is a multi-valued map when σ is
nonconvex. The multi-valued projection onto a nonempty and closed set C is recovered
when σ = δC , which is the indicator function of C that defined to be zero on C and ∞
outside.

The main computational effort of iPALM involves a proximal mapping step of a proper
and lower semicontinuous but nonconvex function. The following property will be essential
in the forthcoming convergence analysis and is a slight modification of [10, Lemma 2, p.
471].

Lemma 3.2 (Proximal inequality). Let h : Rd → R be a continuously differentiable function
with gradient ∇h assumed Lh-Lipschitz continuous and let σ : Rd → (−∞,∞] be a proper
and lower semicontinuous function with infRd σ > −∞. Then, for any v, w ∈ domσ and
any u+ ∈ Rd defined by

u+ ∈ proxσt

(
v − 1

t
∇h (w)

)
, t > 0, (3.5)

we have, for any u ∈ domσ and any s > 0:

g
(
u+
)
≤ g (u) +

Lh + s

2

∥∥u+ − u∥∥2 +
t

2
‖u− v‖2 − t

2

∥∥u+ − v∥∥2 +
L2
h

2s
‖u− w‖2 , (3.6)

where g := h+ σ.

9

Proof. First, it follows immediately from Proposition 3.1 that u+ is well-defined. By the
definition of the proximal mapping (see (2.2)) we get that

u+ ∈ argminξ∈Rd

{
〈ξ − v,∇h (w)〉+

t

2
‖ξ − v‖2 + σ (ξ)

}
,

and hence in particular, by taking ξ = u, we obtain〈
u+ − v,∇h (w)

〉
+
t

2

∥∥u+ − v∥∥2 + σ
(
u+
)
≤ 〈u− v,∇h (w)〉+

t

2
‖u− v‖2 + σ (u) .

Thus

σ
(
u+
)
≤
〈
u− u+,∇h (w)

〉
+
t

2
‖u− v‖2 − t

2

∥∥u+ − v∥∥2 + σ (u) . (3.7)

Invoking first the descent lemma (see [7]) for h, and using (3.7), yields

h
(
u+
)

+ σ
(
u+
)
≤ h (u) +

〈
u+ − u,∇h (u)

〉
+
Lh
2

∥∥u+ − u∥∥2 +
〈
u− u+,∇h (w)

〉
+
t

2
‖u− v‖2 − t

2

∥∥u+ − v∥∥2 + σ (u)

= h (u) + σ (u) +
〈
u+ − u,∇h (u)−∇h (w)

〉
+
Lh
2

∥∥u+ − u∥∥2
+
t

2
‖u− v‖2 − t

2

∥∥u+ − v∥∥2 .
Now, using the fact that 〈p, q〉 ≤ (s/2) ‖p‖2 + (1/2s) ‖q‖2 for any two vectors p, q ∈ Rd and
every s > 0, yields〈

u+ − u,∇h (u)−∇h (w)
〉
≤ s

2

∥∥u+ − u∥∥2 +
1

2s
‖∇h (u)−∇h (w)‖2

≤ s

2

∥∥u+ − u∥∥2 +
Lh

2

2s
‖u− w‖2 ,

where we have used the fact that ∇h is Lh-Lipschitz continuous. Thus, combining the last
two inequalities proves that (3.6) holds.

Remark 3.2. It should be noted that if the nonsmooth function σ is also known to be
convex, then we can derive the following tighter upper bound (cf. (3.6))

g
(
u+
)
≤ g (u) +

Lh + s− t
2

∥∥u+ − u∥∥2 +
t

2
‖u− v‖2 − t

2

∥∥u+ − v∥∥2 +
L2
h

2s
‖u− w‖2 . (3.8)

3.1 Convergence Proof Methodology

In this section we briefly summarize (cf. Theorem 3.1 below) the methodology recently
proposed in [10] which provides the key elements to obtain an abstract convergence result
that can be applied to any algorithm and will be applied here to prove convergence of

10

iPALM. Let
{
uk
}
k∈N be a sequence in Rd which was generated from a starting point u0

by a generic algorithm A. The set of all limit points of
{
uk
}
k∈N is denoted by ω (u0), and

defined by{
u ∈ Rd : ∃ an increasing sequence of integers {kl}l∈N such that ukl → u as l→∞

}
.

Theorem 3.1. Let Ψ : Rd → (−∞,∞] be a proper, lower semicontinuous and semi-
algebraic function with inf Ψ > −∞. Assume that

{
uk
}
k∈N is a bounded sequence generated

by a generic algorithm A from a starting point u0, for which the following three conditions
hold true for any k ∈ N.

(C1) There exists a positive scalar ρ1 such that

ρ1
∥∥uk+1 − uk

∥∥2 ≤ Ψ
(
uk
)
−Ψ

(
uk+1

)
, ∀ k = 0, 1,

(C2) There exists a positive scalar ρ2 such that for some wk ∈ ∂Ψ
(
uk
)

we have∥∥wk
∥∥ ≤ ρ2

∥∥uk − uk−1
∥∥ , ∀ k = 0, 1,

(C3) Each limit point in the set ω (u0) is a critical point of Ψ, that is, ω (u0) ⊂ crit Ψ.

Then, the sequence
{
uk
}
k∈N converges to a critical point u∗ of Ψ.

4 Convergence Analysis of iPALM

Our aim in this section is to prove that the sequence
{(
xk1, x

k
2

)}
k∈N which is generated

by iPALM converges to a critical point of the objective function F defined in (2.1). To
this end we will follow the proof methodology described above in Theorem 3.1. In the
case of iPALM, similarly to the iPiano algorithm (see [24]), it is not possible to prove that
condition (C1) hold true for the sequence

{(
xk1, x

k
2

)}
k∈N and the function F , namely, this

is not a descent algorithm with respect to F . Therefore, we first show that conditions
(C1), (C2) and (C3) hold true for an auxiliary sequence and auxiliary function (see details
below). Then, based on these properties we will show that the original sequence converges
to a critical point of the original function F .

We first introduce the following notations that simplify the coming expositions. For
any k ∈ N, we define

∆k
1 =

1

2

∥∥xk1 − xk−11

∥∥2 , ∆k
2 =

1

2

∥∥xk2 − xk−12

∥∥2 and ∆k =
1

2

∥∥xk − xk−1
∥∥2 , (4.1)

it is clear, that using these notations, we have that ∆k = ∆k
1 + ∆k

2 for all k ∈ N. Using
these notations we can easily show few basic relations of the sequences

{
xki
}
k∈N,

{
yki
}
k∈N,

and
{
zki
}
k∈N, for i = 1, 2, generated by iPALM.

11

Proposition 4.1. Let
{(
xk1, x

k
2

)}
k∈N be a sequence generated by iPALM. Then, for any

k ∈ N and i = 1, 2, we have

(i)
∥∥xki − yki ∥∥2 = 2

(
αki
)2

∆k
i ;

(ii)
∥∥xki − zki ∥∥2 = 2

(
βki
)2

∆k
i ;

(iii)
∥∥xk+1

i − yki
∥∥2 ≥ 2

(
1− αki

)
∆k+1
i + 2αki

(
αki − 1

)
∆k
i .

Proof. The first two items follow immediately from the facts that xki −yki = αki
(
xk−1i − xki

)
and xki − zki = βki

(
xk−1i − xki

)
, for i = 1, 2 (see steps (2.5), (2.6), (2.8) and (2.9)). The last

item follows from the following argument∥∥xk+1
i − yki

∥∥2 =
∥∥xk+1

i − xki − αki
(
xki − xk−1i

)∥∥2
= 2∆k+1

i − 2αki
〈
xk+1
i − xki , xki − xk−1i

〉
+ 2

(
αki
)2

∆k
i

≥ 2
(
1− αki

)
∆k+1
i + 2αki

(
αki − 1

)
∆k
i , (4.2)

where we have used the fact that

2
〈
xk+1
i − xki , xki − xk−1i

〉
≤
∥∥xk+1

i − xki
∥∥2 +

∥∥xki − xk−1i

∥∥2 = 2∆k+1
i + 2∆k

i ,

that follows from the Cauchy-Schwartz and Young inequalities. This proves item (iii).

Now we prove the following property of the sequence
{(
xk1, x

k
2

)}
k∈N generated by iPALM.

Proposition 4.2. Suppose that Assumption A holds. Let
{(
xk1, x

k
2

)}
k∈N be a sequence

generated by iPALM, then for all k ∈ N, we have that

F
(
xk+1

)
≤ F

(
xk
)

+
1

sk1

(
L1(x

k
2)2
(
βk1
)2

+ sk1τ
k
1α

k
1

)
∆k

1 +
1

sk2

(
L2(x

k+1
1)2

(
βk2
)2

+ sk2τ
k
2α

k
2

)
∆k

2

+
(
L1(x

k
2) + sk1 − τ k1

(
1− αk1

))
∆k+1

1 +
(
L2(x

k+1
1) + sk2 − τ k2

(
1− αk2

))
∆k+1

2 ,

where sk1 > 0 and sk2 > 0 are arbitrarily chosen, for all k ∈ N.

Proof. Fix k ≥ 1. Under our Assumption A(ii), the function x1 → H (x1, x2) (x2 is fixed)
is differentiable and has a Lipschitz continuous gradient with moduli L1 (x2). Using the
iterative step (2.7), applying Lemma 3.2 for h (·) := H

(
·, xk2

)
, σ := f1 and t := τ k1 with the

12

points u = xk1, u+ = xk+1
1 , v = yk1 and w = zk1 yields that

H
(
xk+1
1 , xk2

)
+ f1

(
xk+1
1

)
≤ H

(
xk1, x

k
2

)
+ f1

(
xk1
)

+
L1(x

k
2) + sk1
2

∥∥xk+1
1 − xk1

∥∥2
+
τ k1
2

∥∥xk1 − yk1∥∥2 − τ k1
2

∥∥xk+1
1 − yk1

∥∥2 +
L1(x

k
2)2

2sk1

∥∥xk1 − zk1∥∥2
≤ H

(
xk1, x

k
2

)
+ f1

(
xk1
)

+
(
L1(x

k
2) + sk1

)
∆k+1

1 + τ k1
(
αk1
)2

∆k
1

− τ k1
((

1− αk1
)

∆k+1
1 + αk1

(
αk1 − 1

)
∆k

1

)
+
L1(x

k
2)2
(
βk1
)2

sk1
∆k

1

= H
(
xk1, x

k
2

)
+ f1

(
xk1
)

+
(
L1(x

k
2) + sk1 − τ k1

(
1− αk1

))
∆k+1

1

+
1

sk1

(
L1(x

k
2)2
(
βk1
)2

+ sk1τ
k
1α

k
1

)
∆k

1, (4.3)

where the second inequality follows from Proposition 4.1. Repeating all the arguments
above on the iterative step (2.10) yields the following

H
(
xk+1
1 , xk+1

2

)
+ f2

(
xk+1
2

)
≤ H

(
xk+1
1 , xk2

)
+ f2

(
xk2
)

+
(
L2(x

k+1
1) + sk2 − τ k2

(
1− αk2

))
∆k+1

2

+
1

sk2

(
L2(x

k+1
1)2

(
βk2
)2

+ sk2τ
k
2α

k
2

)
∆k

2. (4.4)

By adding (4.3) and (4.4) we get

F
(
xk+1

)
≤ F

(
xk
)

+
1

sk1

(
L1(x

k
2)2
(
βk1
)2

+ sk1τ
k
1α

k
1

)
∆k

1 +
1

sk2

(
L2(x

k+1
1)2

(
βk2
)2

+ sk2τ
k
2α

k
2

)
∆k

2

+
(
L1(x

k
2) + sk1 − τ k1

(
1− αk1

))
∆k+1

1 +
(
L2(x

k+1
1) + sk2 − τ k2

(
1− αk2

))
∆k+1

2 .

This proves the desired result.

Before we proceed and for the sake of simplicity of our developments we would like
to chose the parameters sk1 and sk2 for all k ∈ N. The best choice can be derived by
minimizing the right-hand side of (3.6) with respect to s. Simple computations yields that
the minimizer should be

s = Lh
‖u− w‖
‖u+ − u‖

,

where u, u+, w and Lh are all in terms of Lemma 3.2. In Proposition 4.2 we have used
Lemma 3.2 with the following choices u = xk1, u+ = xk+1

1 and w = zk1 . Thus

sk1 = L1(x
k
2)

∥∥xk1 − zk1∥∥∥∥xk+1
1 − xk1

∥∥ = L1(x
k
2)βk1

∥∥xk1 − xk−11

∥∥∥∥xk+1
1 − xk1

∥∥ ,
where the last equality follows from step (2.6). Thus, from now on, we will use the following
parameters:

sk1 = L1(x
k
2)βk1 and sk2 = L2(x

k+1
1)βk2 , ∀ k ∈ N. (4.5)

An immediate consequence of this choice of parameters which combined with Proposition
4.2 is recorded now.

13

Corollary 4.1. Suppose that Assumption A holds. Let
{(
xk1, x

k
2

)}
k∈N be a sequence gener-

ated by iPALM, then for all k ∈ N, we have that

F
(
xk+1

)
≤ F

(
xk
)

+
(
L1(x

k
2)βk1 + τ k1α

k
1

)
∆k

1 +
(
L2(x

k+1
1)βk2 + τ k2α

k
2

)
∆k

2

+
((

1 + βk1
)
L1(x

k
2)− τ k1

(
1− αk1

))
∆k+1

1 +
((

1 + βk2
)
L2(x

k+1
1)− τ k2

(
1− αk2

))
∆k+1

2 .

Similarly to iPiano, the iPALM algorithm generates a sequence which does not ensure
that the function values decrease between two successive elements of the sequence. Thus
we can not obtain condition (C1) of Theorem 3.1. Following [24] we construct an auxiliary
function which do enjoy the property of function values decreases. Let Ψ : Rn1×n2 ×
Rn1×n2 → (−∞,∞] be the auxiliary function which is defined as follows

Ψδ1,δ2 (u) := F (u1) +
δ1
2
‖u11 − u21‖2 +

δ2
2
‖u12 − u22‖2 , (4.6)

where δ1, δ2 > 0, u1 = (u11, u12) ∈ Rn1 ×Rn2 , u2 = (u21, u22) ∈ Rn1 ×Rn2 and u = (u1, u2).

Let
{(
xk1, x

k
2

)}
k∈N be a sequence generated by iPALM and denote, for all k ∈ N, uk1 =(

xk1, x
k
2

)
, uk2 =

(
xk−11 , xk−12

)
and uk =

(
uk1, u

k
2

)
. We will prove now that the sequence{

uk
}
k∈N and the function Ψ defined above do satisfy conditions (C1), (C2) and (C3) of

Theorem 3.1. We begin with proving condition (C1). To this end we will show that there
are choices of δ1 > 0 and δ2 > 0, such that there exists ρ1 > 0 which satisfies

ρ1
∥∥uk+1 − uk

∥∥2 ≤ Ψ
(
uk
)
−Ψ

(
uk+1

)
.

It is easy to check that using the notations defined in (4.1), we have, for all k ∈ N, that

Ψ
(
uk
)

= F
(
xk
)

+
δ1
2

∥∥xk1 − xk−11

∥∥2 +
δ2
2

∥∥xk2 − xk−12

∥∥2 = F
(
xk
)

+ δ1∆
k
1 + δ2∆

k
2.

In order to prove that the sequence
{

Ψ
(
uk
)}

k∈N decreases we will need the following
technical result (we provide the proof in Appendix 7).

Lemma 4.1. Consider the functions g : R5
+ → R and h : R5

+ → R defined as follow

g (α, β, δ, τ, L) = τ (1− α)− (1 + β)L− δ,
h (α, β, δ, τ, L) = δ − τα− Lβ.

Let ε > 0 and ᾱ > 0 be two real numbers for which 0 ≤ α ≤ ᾱ < 0.5 (1− ε). Assume, in
addition, that 0 ≤ L ≤ λ for some λ > 0 and 0 ≤ β ≤ β̄ with β̄ > 0. If

δ∗ =
ᾱ + β̄

1− ε− 2ᾱ
λ, (4.7)

τ∗ =
(1 + ε) δ∗ + (1 + β)L

1− α
, (4.8)

then g (α, β, δ∗, τ∗, L) = εδ∗ and h (α, β, δ∗, τ∗, L) ≥ εδ∗.

14

Based on the mentioned lemma we will set, from now on, the parameters τ k1 and τ k2 for
all k ∈ N, as follow

τ k1 =
(1 + ε) δk1 +

(
1 + βk1

)
L1(x

k
2)

1− αk1
and τ k2 =

(1 + ε) δk2 +
(
1 + βk2

)
L2(x

k+1
1)

1− αk2
. (4.9)

Remark 4.1. If we additionally know that fi, i = 1, 2, is convex, then a tighter bound can
be used in Proposition 3.2 as described in Remark 3.8. Using the tight bound will improve
the possible parameter τ ki that can be used (cf. (4.9)). Indeed, in the convex case, (4.7)
and (4.8) are given by

δ∗ =
ᾱ + 2β̄

2 (1− ε− ᾱ)
λ, (4.10)

τ∗ =
(1 + ε) δ∗ + (1 + β)L

2− α
, (4.11)

Thus, the parameters τ ki , i = 1, 2, can be taken in the convex case as follows

τ k1 =
(1 + ε) δk1 +

(
1 + βk1

)
L1(x

k
2)

2− αk1
and τ k2 =

(1 + ε) δk2 +
(
1 + βk2

)
L2(x

k+1
1)

2− αk2
.

This means that in the convex case, we can take smaller τ ki , i = 1, 2, which means larger
step-size in the algorithm. On top of that, in the case that fi, i = 1, 2, is convex, it should
be noted that a careful analysis shows that in this case the parameters αki , i = 1, 2, can be
in the interval [0, 1) and not [0, 0.5) as stated in Lemma 4.1 (see also Assumption B below).

In order to prove condition C1 and according to Lemma 4.1, we will need to restrict
the possible values of the parameters αki and βki , i = 1, 2, for all k ∈ N. The following
assumption is essential for our analysis.

Assumption B. Let ε > 0 be an arbitrary small number. For all k ∈ N and i = 1, 2, there
exist 0 < ᾱi < (1/2) (1− ε) such that 0 ≤ αki ≤ ᾱi. In addition, 0 ≤ βki ≤ β̄i for some
β̄i > 0.

Remark 4.2. It should be noted that using Assumption B, we obtain that τ k1 ≤ τ+1 where

τ+1 =
(1 + ε) δ1 +

(
1 + β̄1

)
λ+1

1− ᾱ1

,

where δ1 is given in (4.7). Similar arguments show that

τ k2 ≤ τ+2 :=
(1 + ε) δ2 +

(
1 + β̄2

)
λ+2

1− ᾱ2

.

15

Now we will prove a descent property of
{

Ψ
(
uk
)}

k∈N.

Proposition 4.3. Let
{
xk
}
k∈N be a sequence generated by iPALM which is assumed to be

bounded. Suppose that Assumptions A and B hold true. Then, for all k ∈ N and ε > 0, we
have

ρ1
∥∥uk+1 − uk

∥∥2 ≤ Ψ
(
uk
)
−Ψ

(
uk+1

)
,

where uk =
(
xk,xk−1

)
, k ∈ N and ρ1 = (ε/2) min {δ1, δ2} with

δ1 =
ᾱ1 + β̄1

1− ε− 2ᾱ1

λ+1 and δ2 =
ᾱ2 + β̄2

1− ε− 2ᾱ2

λ+2 . (4.12)

Proof. From the definition of Ψ (see (4.6)) and Corollary 4.1 we obtain that

Ψ
(
uk
)
−Ψ

(
uk+1

)
= F

(
xk
)

+ δ1∆
k
1 + δ2∆

k
2 − F

(
xk+1

)
− δ1∆k+1

1 − δ2∆k+1
2

≥
(
τ k1
(
1− αk1

)
−
(
1 + βk1

)
L1(x

k
2)− δ1

)
∆k+1

1

+
(
δ1 − τ k1αk1 − L1(x

k
2)βk1

)
∆k

1

+
(
τ k2
(
1− αk2

)
−
(
1 + βk2

)
L2(x

k+1
1)− δ2

)
∆k+1

2

+
(
δ2 − τ k2αk2 − L2(x

k+1
1)βk2

)
∆k

2

= ak1∆k+1
1 + bk1∆k

1 + ak2∆k+1
2 + bk2∆k

2,

where

ak1 := τ k1
(
1− αk1

)
−
(
1 + βk1

)
L1(x

k
2)− δ1 and bk1 := δ1 − τ k1αk1 − L1(x

k
2)βk1 ,

ak2 := τ k2
(
1− αk2

)
−
(
1 + βk2

)
L2(x

k+1
1)− δ2 and bk2 := δ2 − τ k2αk2 − L2(x

k+1
1)βk2 .

Let ε > 0 be an arbitrary. Using (4.9) and (4.12) with the notations of Lemma 4.1 we
immediately see that ak1 = g1

(
αk1, β

k
1 , δ1, τ

k
1 , L1(x

k
2)
)

and ak2 = g2
(
αk2, β

k
2 , δ2, τ

k
2 , L2(x

k+1
1)

)
.

From Assumptions A and B we get that the requirements of Lemma 4.1 are fulfilled,
which means that Lemma 4.1 can be applied. Thus ak1 = εδ1 and ak2 = εδ2. Using
again the notions of Lemma 4.1, we have that bk1 = h1

(
αk1, β

k
1 , δ1, τ

k
1 , L1(x

k
2)
)

and bk2 =

h2
(
αk2, β

k
2 , δ2, τ

k
2 , L2(x

k+1
1)

)
. Thus we obtain from Lemma 4.1 that bk1 ≥ εδ1 and bk2 ≥ εδ2.

Hence, for ρ1 = (ε/2) min {δ1, δ2}, we have

Ψ
(
uk
)
−Ψ

(
uk+1

)
≥ ak1∆k+1

1 + bk1∆k
1 + ak2∆k+1

2 + bk2∆k
2

≥ εδ1
(
∆k+1

1 + ∆k
1

)
+ εδ1

(
∆k+1

2 + ∆k
2

)
≥ ρ1

(
∆k+1

1 + ∆k
1

)
+ ρ1

(
∆k+1

2 + ∆k
2

)
= ρ1

∥∥uk+1 − uk
∥∥2 ,

where the last equality follows from (4.1). This completes the proof.

Now, we will prove that condition (C2) of Theorem 3.1 holds true for the sequence{
uk
}
k∈N and the function Ψ.

16

Proposition 4.4. Let
{
xk
}
k∈N be a sequence generated by iPALM which is assumed to

be bounded. Suppose that Assumptions A and B hold true. Assume that uk =
(
xk,xk−1

)
,

k ∈ N. Then, there exists a positive scalar ρ2 such that for some wk ∈ ∂Ψ
(
uk
)

we have∥∥wk
∥∥ ≤ ρ2

∥∥uk − uk−1
∥∥ .

Proof. Let k ≥ 2. By the definition of Ψ (see (4.6)) we have that

∂Ψ
(
uk
)

=
(
∂x1F

(
xk
)

+ δ1
(
xk1 − xk−11

)
, ∂x2F

(
xk
)

+ δ2
(
xk2 − xk−12

)
, δ1
(
xk−11 − xk1

)
,

δ2
(
xk−12 − xk2

))
.

By the definition of F (see (2.1)) and [10, Proposition 1, Page 465] we get that

∂F
(
xk
)

=
(
∂f1

(
xk1
)

+∇x1H
(
xk1, x

k
2

)
, ∂f2

(
xk2
)

+∇x2H
(
xk1, x

k
2

))
. (4.13)

From the definition of the proximal mapping (see (2.2)) and the iterative step (2.7) we have

xk1 ∈ argminx1∈Rn1

{〈
x1 − yk−11 ,∇x1H

(
zk−11 , xk−12

)〉
+
τ k−11

2

∥∥x1 − yk−11

∥∥2 + f1 (x1)

}
.

Writing down the optimality condition yields

∇x1H
(
zk−11 , xk−12

)
+ τ k−11

(
xk1 − yk−11

)
+ ξk1 = 0,

where ξk1 ∈ ∂f1
(
xk1
)
. Hence

∇x1H
(
zk−11 , xk−12

)
+ ξk1 = τ k−11

(
yk−11 − xk1

)
= τ k−11

(
xk−11 − xk1 + αk−11

(
xk−11 − xk−21

))
,

where the last equality follows from step (2.5). By defining

vk1 := ∇x1H
(
xk1, x

k
2

)
−∇x1H

(
zk−11 , xk−12

)
+τ k−11

(
xk−11 − xk1 + αk−11

(
xk−11 − xk−21

))
, (4.14)

we obtain from (4.13) that vk1 ∈ ∂x1F
(
xk
)
. Similarly, from the iterative step (2.10), by

defining

vk2 := ∇x2H
(
xk1, x

k
2

)
−∇x2H

(
xk1, z

k−1
2

)
+ τ k−12

(
xk−12 − xk2 + αk−12

(
xk−12 − xk−22

))
, (4.15)

we have that vk2 ∈ ∂x2F
(
xk
)
.

Thus, for

wk :=
(
vk1 + δ1

(
xk1 − xk−11

)
, vk2 + δ2

(
xk2 − xk−12

))
, δ1
(
xk1 − xk−11 , δ2

(
xk2 − xk−12

))
,

we obtain that ∥∥wk
∥∥ ≤ ∥∥vk1∥∥+

∥∥vk2∥∥+ 2δ1
∥∥xk1 − xk−11

∥∥+ 2δ2
∥∥xk2 − xk−12

∥∥ . (4.16)

17

This means that we have to bound from above the norms of vk1 and vk2 . Since ∇H is
Lipschitz continuous on bounded subsets of Rn1 ×Rn2 (see Assumption A(v)) and since we
assumed that

{
xk
}
k∈N is bounded, there exists M > 0 such that∥∥vk1∥∥ ≤ τ k−11

∥∥xk−11 − xk1 + αk−11

(
xk−11 − xk−21

)∥∥+
∥∥∇x1H

(
xk1, x

k
2

)
−∇x1H

(
zk−11 , xk−12

)∥∥
≤ τ k−11

∥∥xk−11 − xk1
∥∥+ τ k−11 αk−11

∥∥xk−11 − xk−21

∥∥+M
∥∥xk − (zk−11 , xk−12

)∥∥
≤ τ+1

(∥∥xk−11 − xk1
∥∥+

∥∥xk−11 − xk−21

∥∥)+M
∥∥(xk1 − xk−11 − βk−11

(
xk−11 − xk−21

)
, xk2 − xk−12

)∥∥ ,
= τ+1

(∥∥xk−11 − xk1
∥∥+

∥∥xk−11 − xk−21

∥∥)+M
∥∥(xk − xk−1

)
− βk−11

(
xk−11 − xk−21 ,0

)∥∥
≤
(
τ+1 +M

) (∥∥xk − xk−1
∥∥+

∥∥xk−1 − xk−2
∥∥) ,

where the third inequality follows from (2.6), the fact the sequence
{
τ k1
}
k∈N is bounded

from above by τ+1 (see Remark 4.2) and αk1, β
k
1 ≤ 1 for all k ∈ N. On the other hand, from

the Lipschitz continuity of ∇x2H (x1, ·) (see Assumption A(iii)), we have that∥∥vk2∥∥ ≤ τ k−12

∥∥xk−12 − xk2 + αk−12

(
xk−12 − xk−22

)∥∥+
∥∥∇x2H

(
xk1, x

k
2

)
−∇x2H

(
xk1, z

k−1
2

)∥∥
≤ τ k−12

∥∥xk−12 − xk2
∥∥+ τ k−12 αk−12

∥∥xk−12 − xk−22

∥∥+ L1(x
k
1)
∥∥xk2 − zk−12

∥∥
≤ τ+2

(∥∥xk−12 − xk2
∥∥+

∥∥xk−12 − xk−22

∥∥)+ λ+2
∥∥xk2 − xk−12 − βk−12

(
xk−12 − xk−22

)∥∥
≤
(
τ+2 + λ+2

) (∥∥xk−12 − xk2
∥∥+

∥∥xk−12 − xk−22

∥∥)
≤
(
τ+2 + λ+2

) (∥∥xk − xk−1
∥∥+

∥∥xk−1 − xk−2
∥∥) ,

where the third and fourth inequalities follow from (2.9), the fact the sequence
{
τ k2
}
k∈N is

bounded from above by τ+2 (see Remark 4.2) and βk2 ≤ 1 for all k ∈ N. Summing up these
estimations, we get from (4.16) that∥∥wk

∥∥ ≤ ∥∥vk1∥∥+
∥∥vk2∥∥+ 2δ1

∥∥xk1 − xk−11

∥∥+ 2δ2
∥∥xk2 − xk−12

∥∥
≤
∥∥vk1∥∥+

∥∥vk2∥∥+ 2 (δ1 + δ2)
∥∥xk − xk−1

∥∥
≤
(
τ+1 +M + τ+2 + λ+2

) (∥∥xk − xk−1
∥∥+

∥∥xk−1 − xk−2
∥∥)+ 2 (δ1 + δ2)

∥∥uk − uk−1
∥∥

≤
(√

2
(
τ+1 +M + τ+2 + λ+2

)
+ 2 (δ1 + δ2)

)∥∥uk − uk−1
∥∥ ,

where the second inequality follows from the fact that
∥∥xki − xk−1i

∥∥ ≤ ∥∥xk − xk−1
∥∥ for

i = 1, 2, the third inequality follows from the fact that
∥∥xk − xk−1

∥∥ ≤ ∥∥uk − uk−1
∥∥ and the

last inequality follows from the fact that
∥∥xk − xk−1

∥∥+
∥∥xk−1 − xk−2

∥∥ ≤ √2
∥∥uk − uk−1

∥∥.

This completes the proof with ρ2 =
√

2
(
τ+1 +M + τ+2 + λ+2

)
+ 2 (δ1 + δ2).

So far we have proved that the sequence
{
uk
}
k∈N and the function Ψ (see (4.6)) satisfy

conditions (C1) and (C2) of Theorem 3.1. Now, in order to get that
{
uk
}
k∈N converges to

a critical point of Ψ, it remains to prove that condition (C3) holds true.

Proposition 4.5. Let
{
xk
}
k∈N be a sequence generated by iPALM which is assumed to

be bounded. Suppose that Assumptions A and B hold true. Assume that uk =
(
xk,xk−1

)
,

k ∈ N. Then, each limit point in the set ω (u0) is a critical point of Ψ.

18

Proof. Since
{
uk
}
k∈N is assumed to be bounded, the set ω (u0) is nonempty. Thus there

exists u∗ = (x∗1, x
∗
2, x̂1, x̂2) which is a limit point of

{
ukl
}
l∈N, which is a subsequence of{

uk
}
k∈N. We will prove that u∗ is a critical point of Ψ (see (4.6)). From condition (C2),

for some wk ∈ ∂Ψ
(
uk
)
, we have that∥∥wk

∥∥ ≤ ρ2
∥∥uk − uk−1

∥∥ .
From Proposition 4.3, it follow that for any N ∈ N, we have

ρ1

N∑
k=0

∥∥uk+1 − uk
∥∥2 ≤ Ψ

(
u0
)
−Ψ

(
uN+1

)
. (4.17)

Since F is bounded from below (see Assumption A(ii)) and the fact that Ψ (·) ≥ F (·) we
obtain that Ψ is also bounded from below. Thus, letting N →∞ in (4.17) yields that

∞∑
k=0

∥∥uk+1 − uk
∥∥2 <∞, (4.18)

which means that
lim
k→∞

∥∥uk+1 − uk
∥∥ = 0. (4.19)

This fact together with condition (C1) implies that
∥∥wk

∥∥→ 0 as k →∞. Thus, in order to
use the closedness property of ∂Ψ (see Remark 3.1) we remain to show that

{
Ψ
(
uk
)}

k∈N
converges to Ψ (u∗). Since f1 and f2 are lower semicontinuous (see Assumption A(i)), we
obtain that

lim inf
k→∞

f1
(
xk1
)
≥ f1 (x∗1) and lim inf

k→∞
f2
(
xk2
)
≥ f2 (x∗2) . (4.20)

From the iterative step (2.7), we have, for all integer k, that

xk+1
1 ∈ argminx1∈Rn1

{〈
x1 − yk1 ,∇x1H

(
zk1 , x

k
2

)〉
+
τ k1
2

∥∥x1 − xk1∥∥2 + f1 (x1)

}
.

Thus letting x1 = x∗1 in the above, we get

〈
xk+1
1 − yk1 ,∇x1H

(
zk1 , x

k
2

)〉
+
τ k1
2

∥∥xk+1
1 − xk1

∥∥2 + f1
(
xk+1
1

)
≤
〈
x∗1 − yk1 ,∇x1H

(
zk1 , x

k
2

)〉
+
τ k1
2

∥∥x∗1 − xk1∥∥2 + f1 (x∗1) .

Choosing k = kl − 1 and letting k goes to infinity, we obtain

lim sup
l→∞

f1

(
xkl1

)
≤ lim sup

l→∞

(〈
x∗1 − x

kl
1 ,∇x1H

(
zkl−11 , xkl−12

)〉
+
τ kl−11

2

∥∥∥x∗1 − xkl−11

∥∥∥2)
+ f1 (x∗1) , (4.21)

19

where we have used the facts that both sequences
{
xk
}
k∈N (and therefore

{
zk
}
k∈N) and{

τ k1
}
k∈N (see Remark 4.2) are bounded, ∇H continuous and that the distance between

two successive iterates tends to zero (see (4.19)). For that very reason we also have that

xkl1 → x∗1 as l → ∞, hence (4.21) reduces to lim supl→∞ f1

(
xkl1

)
≤ f1 (x∗1). Thus, in view

of (4.20), f1

(
xkl1

)
tends to f1 (x∗1) as k →∞. Arguing similarly with f2 and xk+1

2 we thus

finally obtain from (4.19) that

lim
l→∞

Ψ
(
ukl
)

= lim
l→∞

{
f1

(
xkl1

)
+ f2

(
xkl2

)
+H

(
xkl
)

+
δ1
2

∥∥∥xkl1 − xkl−11

∥∥∥2 +
δ2
2

∥∥∥xkl2 − xkl−12

∥∥∥2}
= f1 (x∗1) + f2 (x∗2) +H (x∗1, x

∗
2)

= F (x∗1, x
∗
2) (4.22)

= Ψ (u∗) .

Now, the closedness property of ∂Ψ (see Remark 3.1) implies that 0 ∈ ∂Ψ (u∗), which
proves that u∗ is a critical point of Ψ. This proves condition (C3).

Now using the convergence proof methodology of [10] which is summarized in Theorem
3.1 we can obtain the following result.

Corollary 4.2. Let
{
xk
}
k∈N be a sequence generated by iPALM which is assumed to be

bounded. Suppose that Assumptions A and B hold true. Assume that uk =
(
xk,xk−1

)
,

k ∈ N. If F is a KL function, then the sequence
{
uk
}
k∈N converges to a critical point u∗

of Ψ.

Proof. The proof follows immediately from Theorem 3.1 since Proposition 4.3 proves that
condition (C1) holds true, Proposition 4.4 proves that condition (C2) holds true, and
condition (C3) was proved in Proposition 4.5. It is also clear that if F is a KL function
then obviously Ψ is a KL function since we just add two quadratic functions.

To conclude the convergence theory of iPALM we have to show that the sequence{
xk
}
k∈N which is generated by iPALM converges to a critical point of F (see (2.1)).

Theorem 4.1 (Convergence of iPALM). Let
{
xk
}
k∈N be a sequence generated by iPALM

which is assumed to be bounded. Suppose that Assumptions A and B hold true. If F is a
KL function, then the sequence

{
xk
}
k∈N converges to a critical point x∗ of F .

Proof. From Corollary 4.2 we have that the sequence
{
uk
}
k∈N converges to a critical point

u∗ = (u∗11, u
∗
12, u

∗
21, u

∗
22) of Ψ. Therefore, obviously also the sequence

{
xk
}
k∈N converges.

Let x∗ be the limit point of
{
xk
}
k∈N. Thence u∗1 = (u∗11, u

∗
12) = x∗ and u∗2 = (u∗21, u

∗
22) = x∗

(see the discussion on Page 14). We will prove that x∗ is a critical point of F (see (2.1)),
that is, we have to show that 0 ∈ ∂F (x∗). Since u∗ is a critical point of Ψ, it means that
0 ∈ ∂Ψ (u∗). Thus

0 ∈ (∂x1F (u∗1) + δ1 (u∗11 − u∗12) , ∂x2F (u∗2) + δ2 (u∗21 − u∗22) , δ1 (u∗11 − u∗12) , δ2 (u∗21 − u∗22)) ,

20

Figure 1: ORL database which includs 400 faces which we used in our NMF example.

which means that
0 ∈ (∂x1F (u∗1) , ∂x2F (u∗2)) = ∂F (x∗) .

This proves that x∗ is a critical point of F .

5 Numerical Results

In this section we consider several important applications in image processing and machine
learning to illustrate the numerical performance of the proposed iPALM method. All algo-
rithms have been implemented in Matlab R2013a and executed on a server with Xeon(R)
E5-2680 v2 @ 2.80GHz CPUs and running Linux.

5.1 Non-Negative Matrix Factorization

In our first example we consider the problem of using the Non-negative Matrix Factorization
(NMF) to decompose a set of facial images into a number of sparse basis faces, such that
each face of the database can be approximated by using a small number of those parts.
We use the ORL database [32] that consists of 400 normalized facial images. In order to
enforce sparsity in the basis faces, we additionally consider a `0 sparsity constraint (see, for
example, [27]). The sparse NMF problem to be solved is given by

min
B,C

{
1

2
‖A−BC‖2 : B,C ≥ 0, ‖bi‖0 ≤ s, i = 1, 2, . . . , r

}
, (5.1)

where A ∈ Rm×n is the data matrix, organized in a way that each column of the matrix A
corresponds to one face of size m = 64× 64 pixels. In total, the matrix holds n = 400 faces
(see Figure 1 for a visualization of the data matrix A). The matrix B ∈ Rm×r holds the
r basis vectors bi ∈ Rm×1, where r corresponds to the number of sparse basis faces. The
sparsity constraint applied to each basis face requires that the number of non-zero elements
in each column vector bi, i = 1, 2, . . . , r should have less or equal to s non-zero elements.
Finally, the matrix C ∈ Rr×n corresponds to the coefficient vectors.

21

The application of the proposed iPALM algorithm to this problem is straight-forward.
The first block of variables corresponds to the matrix B and the second block of variables
corresponds to the matrix C. Hence, the smooth coupling function of both blocks is given
by

H (B,C) =
1

2
‖A−BC‖2 .

The block-gradients and respective block-Lipschitz constants are easily computed via

∇BH (B,C) = (BC − A)CT , L1 (C) =
∥∥CCT

∥∥
2
,

∇CH (B,C) = BT (BC − A) , L2 (B) =
∥∥BTB

∥∥
2
.

The nonsmooth function for the first block, f1 (B), is given by the non-negativity constraint
B ≥ 0 and the `0 sparsity constraint applied to each column of the matrix B, that is,

f1 (B) =

{
0, B ≥ 0, ‖bi‖0 ≤ s, i = 1, 2, . . . , r,

∞, else.

Although this function is an indicator function of a nonconvex set, it is shown in [10], that
its proximal mapping can be computed very efficiently (in fact in linear time) via

B = proxf1

(
B̂
)
⇔ bi = Ts

(
b̂+i

)
, i = 1, 2, . . . , r,

where b̂+i = max{b̂i, 0} denotes an elementwise truncation at zero and the operator Ts

(
b̂+i

)
corresponds to first sorting the values of b̂+i , keeping the s largest values and setting the
remaining m− s values to zero.

The nonsmooth function corresponding to the second block is simply the indicator
function of the non-negativity constraint of C, that is,

f2 (C) =

{
0, C ≥ 0,

∞, else,

and its proximal mapping is trivially given by

C = proxf2

(
Ĉ
)

= Ĉ+,

which is again an elementwise truncation at zero.

In our numerical example we set r = 25, that is we seek for 25 sparse basis images.
Figure 2 shows the results of the basis faces when running the iPALM algorithm for dif-
ferent sparsity settings. One can see that for smaller values of s, the algorithm leads to
more compact representations. This might improve the generalization capabilities of the
representation.

22

In order to investigate the properties of iPALM on the inertial parameters, we run the
algorithm for a specific sparsity setting (s = 33%) using different constant settings of αi
and βi for i = 1, 2. From our convergence theory (see Proposition 4.3) it follows that the
parameters δi, i = 1, 2, have to be chosen as constants. However, in practice we shall use
a varying parameter δki , i = 1, 2, and assume that the parameters will become constant
after a certain number of iterations. Observe, that the nonsmooth function of the first
block is nonconvex (`0 constraint), while the nonsmooth function of the second block is
convex (non-negativity constraint) which will affect the rules to compute the parameters
(see Remark 4.1).

We compute the parameters τ ki , i = 1, 2, by invoking (4.7) and (4.8), where we practi-
cally choose ε = 0. Hence, for the first, completely nonconvex block, we have

δk1 =
αk1 + βk1
1− 2αk1

L1(x
k
2), τ k1 =

δk1 +
(
1 + βk1

)
L1(x

k
2)

1− αk1
⇒ τ k1 =

1 + 2βk1
1− 2αk1

L1(x
k
2),

from which it directly follows that α ∈ [0, 0.5).

For the second block, where the nonsmooth function is convex we follow Remark 4.1
and invoke (4.10) and (4.11) to obtain

δk2 =
αk2 + 2βk2

2
(
1− 2αk2

)L2(x
k+1
1), τ k2 =

δk2 +
(
1 + βk2

)
L2(x

k+1
1)

2− αk2
⇒ τ k2 =

1 + 2βk2
2
(
1− αk2

)L2(x
k+1
1).

Comparing this parameter to the parameter of the first block we see that now α ∈ [0, 1)
and the value of τ is smaller by a factor of 2. Hence, convexity in the nonsmooth function
allows for twice larger steps.

(a) s = 50% (b) s = 33% (c) s = 25%

Figure 2: 25 basis faces using different sparsity settings. A sparsity of s = 25% means
that each basis face contains only 25% non-zero pixels. Clearly, stronger sparsity leads to
a more compact representation.

In Tables 1 and 2, we report the performance of the iPALM algorithm for different
settings of the inertial parameters αki and βki , i = 1, 2 and k ∈ N. Since we are solving a

23

K = 100 K = 500 K = 1000 K = 5000 time (s)

α1,2 = β1,2 = 0.0 12968.17 7297.70 5640.11 4088.22 196.63
α1,2 = β1,2 = 0.2 12096.91 8453.29 6810.63 4482.00 190.47
α1,2 = β1,2 = 0.4 12342.81 11496.57 9277.11 5617.02 189.27

α1 = β1 = 0.2, α2 = β2 = 0.4 12111.55 8488.35 6822.95 4465.59 201.05
α1 = β1 = 0.4, α2 = β2 = 0.8 12358.00 11576.72 9350.37 5593.84 200.11

αk1,2 = βk1,2 = (k − 1)/(k + 2) 5768.63 3877.41 3870.98 3870.81 186.62

Table 1: Values of the objective function of the sparse NMF problem after K iterations,
using different settings for the inertial parameters αi and βi, i = 1, 2 and using computation
of the exact Lipschitz constant.

K = 100 K = 500 K = 1000 K = 5000 time (s)

α1,2 = β1,2 = 0.0 8926.23 5037.89 4356.65 4005.53 347.17
α1,2 = β1,2 = 0.2 8192.71 4776.64 4181.40 4000.41 349.42
α1,2 = β1,2 = 0.4 8667.62 4696.64 4249.57 4060.95 351.78

α1 = β1 = 0.2, α2 = β2 = 0.4 8078.14 4860.74 4274.46 3951.28 353.53
α1 = β1 = 0.4, α2 = β2 = 0.8 8269.27 4733.76 4243.29 4066.63 357.35

αk1,2 = βk1,2 = (k − 1)/(k + 2) 5071.71 3902.91 3896.40 3869.13 347.90

iPiano (β = 0.4) 14564.65 12200.78 11910.65 7116.22 258.42

Table 2: Values of the objective function of the sparse NMF problem after K iterations,
using different settings for the inertial parameters αi and βi, i = 1, 2 and using backtracking
to estimate the Lipschitz constant.

nonconvex problem, we report the values of the objective function after a certain number
of iterations (100, 500, 1000 and 5000). As already mentioned, setting αi = βi = 0, i =
1, 2, reverts the proposed iPALM algorithm to the PALM algorithm [10]. In order to
estimate the (local) Lipschitz constants L1(x

k
2) and L2(x

k+1
1) we computed the exact values

of the Lipschitz constants by computing the largest eigenvalues of Ck(Ck)T and (Bk)TBk,
respectively. The results are given in table 1. Furthermore, we also implemented a standard
backtracking procedure, see for example [6, 24], which makes use of the descent lemma in
order to estimate the value of the (local) Lipschitz constant. In terms of iterations of
iPALM, the backtracking procedure generally leads to a better overall performance but
each iteration also takes more time compared to the exact computation of the Lipschitz
constants. The results based on backtracking are shown in table 2.

We tried the following settings for the inertial parameters.

• Equal: Here we used the same inertial parameters for both the first and the second

24

block. In case all parameters are set to be zero, we recover PALM. We observe that
the use of the inertial parameters can speed up the convergence but for too large
inertial parameters we also observe not as good results as in the case that we use
PALM, i.e., no inertial is used. Since the problem is highly nonconvex the final
value of the objective function can be missleading since it could correspond to a bad
stationary point.

• Double: Since the nonsmooth function of the second block is convex, we can take
twice larger inertial parameters. We observe an additional speedup by taking twice
larger inertial parameters. Again, same phenomena occur here, too large inertial
parameters yields inferior performances of the algorithm.

• Dynamic: We also report the performance of the algorithm in case we choose dy-
namic inertial parameters similar to accelerated methods in smooth convex optimiza-
tion [21]. We use αki = βki = (k − 1) / (k + 2), i = 1, 2, and we set the parameters
τ k1 = L1(x

k
2) and τ k2 = L2(x

k+1
1). One can see that this setting outperforms the other

settings by a large margin. Although our current convergence analysis does not sup-
port this setting, it shows the great potential of using inertial algorithms when tackling
nonconvex optimization problems. The investigation of the convergence properties in
this setting will be subject to future research.

Finally, we also compare the proposed algorithm to the iPiano algorithm [24], which is
similar to the proposed iPALM algorithm but does not make use of the block structure.
Note that in theory, iPiano is not applicable since the gradient of the overall problem
is not Lipschitz continuous. However, in practice it turns out that using a backtracking
procedure to determine the Lipschitz constant of the gradient is working and hence we
show comparisons. In the iPiano algorithm, the step-size parameter τ (α in terms of [24])
was set as

τ ≤ 1− 2β

L
,

from which it follows that the inertial parameter β can be chosen in the interval [0, 0.5).
We used β = 0.4 since it give the best results in our tests. Observe that the performance of
iPALM is much better compared to the performance of iPiano. In terms of CPU time, one
iteration of iPiano is clearly slower than one iteration of iPALM using the exact computation
of the Lipschitz constant, because the backtracking procedure is computationally more
demanding than the computation of the largest eigenvalues of Ck(Ck)T and (Bk)TBk.
Comparing the iPiano algorithm to the version of iPALM which uses backtracking, one
iteration of iPiano is faster since iPALM needs to backtrack the Lipschitz constants for
both of the two blocks.

5.2 Blind Image Deconvolution

In our second example, we consider the well-studied (yet challenging) problem of blind
image deconvolution (BID). Given a blurry and possibly noisy image f ∈ RM of M =

25

m1 × m2 pixels, the task is to recover both a sharp image u of the same size and the
unknown point spread function b ∈ RN , which is a small 2D blur kernel of size N = n1×n2

pixels. We shall assume that the blur kernel is normalized, that is b ∈ ∆N , where ∆N

denotes the standard unit simplex defined by

∆N =

{
b ∈ RN : bi ≥ 0, i = 1, 2, . . . , N,

N∑
i=1

bi = 1

}
. (5.2)

Furthermore, we shall assume that the pixel intensities of the unknown sharp image u are
normalized to the interval [0, 1], that is u ∈ UM , where

UM =
{
u ∈ RM : ui ∈ [0, 1] , i = 1, 2, . . . ,M

}
. (5.3)

We consider here a classical blind image deconvolution model (see, for example, [28]) defined
by

min
u,b

{
8∑
p=1

φ (∇pu) +
λ

2
‖u ∗m1,m2 b− f‖

2 : u ∈ UM , b ∈ ∆N

}
. (5.4)

The first term is a regularization term which favors sharp images and the second term is
a data fitting term that ensures that the recovered solution approximates the given blurry
image. The parameter λ > 0 is used to balance between regularization and data fitting.
The linear operators ∇p are finite differences approximation to directional image gradients,
which in implicit notation are given by

(∇1u)i,j = ui+1,j − ui,j, (∇2u)i,j = ui,j+1 − ui,j,

(∇3u)i,j =
ui+1,j+1 − ui,j√

2
, (∇4u)i,j =

ui+1,j−1 − ui,j√
2

(∇5u)i,j =
ui+2,j+1 − ui,j√

5
, (∇6u)i,j =

ui+2,j−1 − ui,j√
5

,

(∇7u)i,j =
ui+1,j+2 − ui,j√

5
, (∇8u)i,j =

ui−1,j+2 − ui,j√
5

,

for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. We assume natural boundary conditions, that is
(∇p)i,j = 0, whenever the operator references a pixel location that lies outside the domain.
The operation u∗m1,m2 b denotes the usual 2D modulo - m1,m2 discrete circular convolution
operation defined by (and interpreting the image u and the blur kernel b as 2D arrays)

(u ∗m1,m2 b)i,j =

n1∑
k=0

n2∑
l=0

bk,l u(i−k)modm1
,(j−l)modm2

, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. (5.5)

For ease the notation, we will rewrite the 2D discrete convolutions as the matrix vector
products of the form

v = u ∗m1,m2 b⇔ v = K (b)u⇔ v = K (u) b, (5.6)

26

where K (b) ∈ RM×M is a sparse matrix, where each row holds the values of the blur kernel
b, and K (u) ∈ RM×N is a dense matrix, where each column is given by a circularly shifted
version of the image u. Finally, the function φ (·) is a differentiable robust error function,
that promotes sparsity in its argument. For a vector x ∈ RM , the function φ is defined as

φ (x) =
M∑
i=1

log
(
1 + θx2i

)
, (5.7)

where θ > 0 is a parameter. Here, since the argument of the function are image gradients,
the function promotes sparsity in the edges of the image. Hence, we can expect that sharp
images result in smaller values of the objective function than blurry images. For images
that can be well described by piecewise constant functions (see, for example, the books
image in Figure 3), such sparsity promoting function might be well suited to favor sharp
images, but we would like to stress that this function could be a bad choice for textured
images, since a sharp image usually has much stronger edges than the blurry image. This
often leads to the problem that the trivial solution (b being the identity kernel and u = f)
has a lower energy compared to the true solution.

In order to apply the iPALM algorithm, we identify the following functions

H (u, b) =
8∑
p=1

φ (∇pu) +
λ

2
‖u ∗m1,m2 b− f‖

2 , (5.8)

which is smooth with block Lipschitz continuous gradients given by

∇uH (u, b) = 2θ
8∑
p=1

∇T
p vec

(
(∇pu)i,j

1 + θ (∇pu)2i,j

)m1,m2

i,j=1

+ λKT (b) (K (b)u− f) ,

∇bH (u, b) = λKT (u) (K (u) b− f) ,

where the operation vec (·) denotes the formation of a vector from the values passed to its
argument. The nonsmooth function of the first block is given by

f1 (u) =

{
0, u ∈ UM ,

∞, else,
(5.9)

and the proximal map with respect to f1 is computed as

u = proxf1 (û)⇔ ui,j = max {0,min(1, ûi,j)} . (5.10)

The nonsmooth function of the second block is given by the indicator function of the unit
simplex constraint, that is,

f2 (b) =

{
0, b ∈ ∆N ,

∞, else.
(5.11)

27

(a) original books image (b) convolved image

(c) α1,2 = β1,2 = 0 (d) α1,2 = β1,2 = 0.4 (e) α1,2 = β1,2 = k−1
k+2

Figure 3: Results of blind deconvolution using K = 5000 iterations and different settings
of the inertial parameters. The result without inertial terms (i.e., αi = βi = 0 for i = 1, 2)
is significantly worse compared to the result using inertial terms. The best results are
obtained using the dynamic choice of the inertial parameters.

In order to compute the proximal map with respect to f2, we use the algorithm proposed
in [13] which computes the projection onto the unit simplex in O(N logN) time.

We applied the BID problem to the books image of size m1 ×m2 = 495 × 323 pixels

28

K = 100 K = 500 K = 1000 K = 5000 time (s)

α1,2 = β1,2 = 0.0 2969668.92 1177462.72 1031575.57 847268.70 1882.63
α1,2 = β1,2 = 0.4 5335748.90 1402080.44 1160510.16 719295.30 1895.61
α1,2 = β1,2 = 0.8 5950073.38 1921105.31 1447739.06 780109.56 1888.25

αk1,2 = βk1,2 = (k − 1)/(k + 2) 2014059.03 978234.23 683694.72 678090.51 1867.19

Table 3: Values of the objective function of the BID problem, after K iterations and using
different settings for the inertial parameters αi and βi for i = 1, 2.

(see Figure 3). We set λ = 106, θ = 104 and generated the blurry image by convolving it
with a s-shaped blur kernel of size n1×n2 = 31×31 pixels. Since the nonsmooth functions
of both blocks are convex, we can set the parameters as (compare to the first example)

τ k1 =
1 + 2βk1

2
(
1− αk1

)L1(x
k
2) and τ k2 =

1 + 2βk2
2
(
1− αk2

)L2(x
k+1
1). (5.12)

To determine the values of the (local) Lipschitz constants, we used again a backtracking
scheme [6, 24]. In order to avoid the trivial solution (that is, u = f and b being the identity
kernel) we took smaller descent steps in the blur kernel which was realized by multiplying
τ k2 , k ∈ N, by a factor of c = 5. Note that this form of “preconditioning” does not violate
any step-size restrictions as we can always take larger values for τ than the value computed
in (5.12).

Table 3 shows an evaluation of the iPALM algorithm using different settings of the
inertial parameters αi and βi for i = 1, 2. First, we observe that the use of inertial param-
eters lead to higher values of the objective function after a smaller number of iterations.
However, for a larger number of iterations the use of inertial forces leads to significantly
lower values. Again, the use of dynamic inertial parameters together with the parameter
τ k1 = L1(x

k
2) and τ k2 = L2(x

k+1
1) leads to the best overall performance. In Figure 3 we

show the results of the blind deconvolution problem. One can see that the quality of the
recovered image as well as the recovered blur kernel is much better using inertial forces.
Note that the recovered blur kernel is very close to the true blur kernel but the recovered
image appears slightly more piecewise constant than the original image.

5.3 Convolutional LASSO

In our third experiment we address the problem of sparse approximation of an image
using dictionary learning. Here, we consider the convolutional LASSO model [36], which
is an interesting variant of the well-known patch-based LASSO model [25, 1] for sparse
approximations. The convolutional model inherently models the transnational invariance
of images, which can be considered as an advantage over the usual patch-based model which
treats every patch independently.

29

K = 100 K = 200 K = 500 K = 1000 time (s)

α1,2 = β1,2 = 0.0 336.13 328.21 322.91 321.12 3274.97
α1,2 = β1,2 = 0.4 329.20 324.62 321.51 319.85 3185.04
α1,2 = β1,2 = 0.8 325.19 321.38 319.79 319.54 3137.09

αk1,2 = βk1,2 = (k − 1)/(k + 2) 323.23 319.88 318.64 318.44 3325.37

Table 4: Values of the objective function for the convolutional LASSO model using different
settings of the inertial parameters.

The idea of the convolutional LASSO model is to learn a set of small convolution filters
dj ∈ Rl×l, j = 1, 2, . . . , p, such that a given image f ∈ Rm×n can be written as f ≈∑p

j=1 dj ∗m,n vj, where ∗m,n denotes again the 2D modulo m,n discrete circular convolution
operation and vj ∈ Rm×n are the corresponding coefficient images which are assumed to
be sparse. In order to make the convolution filters capture the high-frequency information
in the image, we fix the first filter d1 to be a Gaussian (low pass) filter g with standard
deviation σl and we set the corresponding coefficient image vj equal to the initial image
f . Furthermore, we assume that the remaining filters dj, j = 2, 3, . . . , p have zero mean as
well as a `2-norm less or equal to 1. In order to impose a sparsity prior on the coefficient
images vj we make use of the `1-norm. The corresponding objective function is hence given
by

min
(dj)

p
j=1,(vj)

p
j=1

p∑
j=1

λ ‖vj‖1 +
1

2

∥∥∥∥∥
p∑
j=1

dj ∗m,n vj − f

∥∥∥∥∥
2

2

, (5.13)

s.t. d1 = g, v1 = f
l∑

a,b=1

(dj)a,b = 0, ‖dj‖2 ≤ 1, j = 2, 3, . . . , p,

where the parameter λ > 0 is used to control the degree of sparsity. It is easy to see that
the convolutional LASSO model nicely fits to the class of problems that can be solved using
the proposed iPALM algorithm. We leave the details to the interested reader. In order
to compute the (local) Lipschitz constants we again made use of a backtracking procedure
and the parameters τ ki , i = 1, 2 were computed using (5.12).

We applied the convolutional LASSO problem to the Barbara image of size 512 × 512
pixels, which is shown in Figure 4. The Barbara image contains a lot of stripe-like texture
and hence we expect that the learned convolution filters will contain these characteristic
structures. In our experiment, we learned a dictionary made of 81 filter kernels, each of
size 9× 9 pixels. The regularization parameter λ was set to λ = 0.2. From Figure 4 it can
be seen that the learned convolution filters indeed contain stripe-like structures of different
orientations but also other filters that are necessary to represent the other structures in the
image. Table 4 summarizes the performance of the iPALM algorithm for different settings
of the inertial parameters. From the results, one can see that larger settings of the inertial

30

parameters lead to a consistent improvement of the convergence speed. Again, using a
dynamic choice of the inertial parameters clearly outperforms the other settings.

For illustration purposes we finally applied the learned dictionary to denoise a noisy
variant of the same Barbara image. The noisy image has been generated by adding zero-
mean Gaussian noise with standard deviation σ = 0.1 to the original image. For denoising
we use the previously learned dictionary d and minimizing the convolutional LASSO prob-
lem only with respect to the coefficient images v. Note that this is a convex problem and
hence,it can be efficiently minimized using for example the FISTA algorithm [6]. The de-
noised image is again shown in Figure 4. Observe that the stripe-like texture is very well
preserved in the denoised image.

6 Conclusion

In this paper we proposed iPALM which an inertial variant of the Proximal Alternating
Linearized Minimization (PALM) method proposed in [10] for solving a broad class of non-
convex and nonsmoooth optimization problems consisting of block-separable nonsmooth,
nonconvex functions with easy to compute proximal mappings and a smooth coupling func-
tion with block-Lipschitz continuous gradients. We studied the convergence properties of
the algorithm and provide bounds on the inertial and step-size parameters that ensure
convergence of the algorithm to a critical point of the problem at hand. In particular, we
showed that in case the objective function satisfies the Kurdyka- Lojasiewicz (KL) property,
we can obtain finite length property of the generated sequence of iterates. In several numer-
ical experiments we show the advantages of the proposed algorithm to minimize a number
of well-studied problems and image processing and machine learning. In our experiments
we found that choosing the inertial and step-size parameters dynamically, as pioneered by
Nesterov [22], leads to a significant performance boost, both in terms of convergence speed
and convergence to a “better” critical point of the problem. Our current convergence the-
ory does not support this choice of parameters but developing a more general convergence
theory will be interesting and a subject for future research.

7 Appendix A: Proof of Lemma 4.1

We first recall the result that should be proved.

Lemma 7.1. Consider the functions g : R5
+ → R and h : R5

+ → R defined as follow

g (α, β, δ, τ, L) = τ (1− α)− (1 + β)L− δ,
h (α, β, δ, τ, L) = δ − τα− Lβ.

Let ε > 0 and ᾱ > 0 be two real numbers for which 0 ≤ α ≤ ᾱ < 0.5 (1− ε). Assume, in

31

(a) Original Barbara image (b) Learned 9× 9 dictionary

(c) Noisy Barbara image (σ = 0.1) (d) Denoised Barbara image (PSNR=28.33)

Figure 4: Results of dictionary learning using the convolutional LASSO model. Observe
that the learned dictionary very well captures the stripe-like texture structures of the
Barbara image.

addition, that 0 ≤ L ≤ λ for some λ > 0 and 0 ≤ β ≤ β̄ with β̄ > 0. If

δ∗ =
ᾱ + β̄

1− ε− 2ᾱ
λ, (7.1)

τ∗ =
(1 + ε) δ∗ + (1 + β)L

1− α
, (7.2)

32

then g (α, β, δ∗, τ∗, L) = εδ∗ and h (α, β, δ∗, τ∗, L) ≥ εδ∗.

Proof. From the definition of g we immediately obtain that

g (α, β, δ∗, τ∗, L) = τ∗ (1− α)− (1 + β)L− δ∗ = εδ∗,

this proves the first desired result. We next simplify h (α, β, δ∗, τ∗, L)− εδ∗ as follows

h (α, β, δ∗, τ∗, L)− εδ∗ = (1− ε) δ∗ − τ∗α− Lβ

= (1− ε) δ∗ −
(1 + ε) δ∗ + L (1 + β)

1− α
α− Lβ

= (1− ε) δ∗ −
(1 + ε) δ∗α + L (1 + β)α + Lβ (1− α)

1− α

= (1− ε) δ∗ −
(1 + ε) δ∗α + L (α + β)

1− α
.

Thus, we only remain to show that

(1− ε) δ∗ −
(1 + ε) δ∗α + L (α + β)

1− α
≥ 0.

Indeed, simple manipulations yields the following equivalent inequality

(1− ε− 2α) δ∗ ≥ L (α + β) . (7.3)

Using now (7.1) and the facts that α ≤ ᾱ, β ≤ β̄ and 0 < L ≤ λ we obtain that (7.3) holds
true. This completes the proof of the lemma.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation. Signal Processing, IEEE Transactions
on, 54(11):4311–4322, 2006.

[2] F. Alvarez and H. Attouch. An inertial proximal method for maximal monotone op-
erators via discretization of a nonlinear oscillator with damping. Set-Valued Analysis,
9(1-2):3–11, 2001.

[3] H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features. Math. Program., 116(1-2, Ser. B):5–16, 2009.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization
and projection methods for nonconvex problems: an approach based on the Kurdyka-L
ojasiewicz inequality. Math. Oper. Res., 35(2):438–457, 2010.

33

[5] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting, and
regularized Gauss-Seidel methods. Math. Program., 137(1-2, Ser. A):91–129, 2013.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation. Prentice-
Hall International Editions, Englewood Cliffs, NJ, 1989.

[8] J. Bolte, A. Daniilidis, and A. Lewis. The Lojasiewicz inequality for nonsmooth suban-
alytic functions with applications to subgradient dynamical systems. SIAM J. Optim.,
17(4):1205–1223, 2006.

[9] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of lojasiewicz inequali-
ties: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc., 362(6):3319–3363,
2010.

[10] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Math. Program. Series A, 146:459–494, 2014.

[11] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Model. Simul., 4(4):1168–1200, 2005.

[12] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex
minimization: a novel approach. Math. Program., 145(1-2, Ser. A):451–482, 2014.

[13] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T.Chandra. Efficient projections onto
the l1-ball for learning in high dimensions. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages 272–279, 2008.

[14] R. .I.BoŢ and E. R. Csetnek. An inertial tseng’s type proximal algorithm for non-
smooth and nonconvex optimization problems. Journal of Optimization Theory and
Applications, pages 1–17, 2015.

[15] D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix
factorization. Nature, 401:788–791, 1999.

[16] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman. Understanding and evaluating
blind deconvolution algorithms. In Computer Vision and Patter Recognition (CVPR),
2009.

[17] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Applied Mathematics, 16(6):964–979, 1979.

[18] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503–528, 1989.

34

[19] B. S. Mordukhovich. Variational analysis and generalized differentiation. I, volume
330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 2006. Basic theory.

[20] J. J. Moreau. Proximitéet dualité dans un espace hilbertien. Bull. Soc. Math. France,
93:273–299, 1965.

[21] Y. Nesterov. Introductory Lectures on Convex Optimization, volume 87 of Applied
Optimization. Kluwer Academic Publishers, Boston, MA, 2004.

[22] Y. E. Nesterov. A method for solving the convex programming problem with conver-
gence rate O(1/k2). Dokl. Akad. Nauk SSSR, 269(3):543–547, 1983.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition,
2006.

[24] P. Ochs, Y. Chen, T. Brox, and T.Pock. iPiano: inertial proximal algorithm for
nonconvex optimization. SIAM J. Imaging Sci., 7(2):1388–1419, 2014.

[25] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision Research, 37(23):3311 – 3325, 1997.

[26] P. Paatero and U. Tapper. Positive matrix factorization: A nonnegative factor model
with optimal utilization of error estimates of data values. Environmetrics, 5:111–126,
1994.

[27] R. Peharz and F. Pernkopf. Sparse nonnegative matrix factorization with 0-constraints.
Neurocomputing, 80(0):38 – 46, 2012.

[28] D. Perrone, R. Diethelm, and P. Favaro. Blind deconvolution via lower-bounded log-
arithmic image priors. In International Conference on Energy Minimization Methods
in Computer Vision and Pattern Recognition (EMMCVPR), 2015.

[29] B. T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[30] B. T. Polyak. Some methods of speeding up the convergence of iteration methods.
{U.S.S.R.} Comput. Math. and Math. Phys., 4(5):1–17, 1964.

[31] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1998.

[32] F. Samaria and A. Harter. Parameterisation of a stochastic model for human face
identification. In WACV, pages 138–142. IEEE, 1994.

35

[33] S. Sra and I. S. Dhillon. Generalized nonnegative matrix approximations with Bregman
divergences. In Y. Weiss, B. Schölkopf, and J.C. Platt, editors, Advances in Neural
Information Processing Systems 18, pages 283–290. MIT Press, 2006.

[34] Y. Xu and W. Yin. A globally convergent algorithm for nonconvex optimization based
on block coordinate update. Technical report, Arxiv preprint, 2014.

[35] S.K. Zavriev and F.V. Kostyuk. Heavy-ball method in nonconvex optimization prob-
lems. Computational Mathematics and Modeling, 4(4):336–341, 1993.

[36] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2528–2535,
2010.

36

	1 Introduction
	2 Problem Formulation and Algorithm
	3 Mathematical Preliminaries and Proof Methodology
	3.1 Convergence Proof Methodology

	4 Convergence Analysis of iPALM
	5 Numerical Results
	5.1 Non-Negative Matrix Factorization
	5.2 Blind Image Deconvolution
	5.3 Convolutional LASSO

	6 Conclusion
	7 Appendix A: Proof of Lemma ??

