
ar
X

iv
:1

60
2.

06
17

7v
5 

 [
q-

fi
n.

M
F]

  1
3 

Se
p 

20
17

Duality formulas for robust pricing and

hedging in discrete time∗

Patrick Cheridito† Michael Kupper‡ Ludovic Tangpi§

September 2017

Abstract

In this paper we derive robust super- and subhedging dualities for contingent claims that can depend
on several underlying assets. In addition to strict super- and subhedging, we also consider relaxed
versions which, instead of eliminating the shortfall risk completely, aim to reduce it to an acceptable
level. This yields robust price bounds with tighter spreads. As examples we study strict super-
and subhedging with general convex transaction costs and trading constraints as well as risk-based
hedging with respect to robust versions of the average value at risk and entropic risk measure. Our
approach is based on representation results for increasing convex functionals and allows for general
financial market structures. As a side result it yields a robust version of the fundamental theorem
of asset pricing.
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1 Introduction

Super- and subhedging dualities lie at the heart of no-arbitrage arguments in quantitative finance.
By relating prices to hedging, they provide bounds on arbitrage-free prices. But they also serve as a
stepping stone to the application of duality methods to portfolio optimization problems. In traditional
financial modeling, uncertainty is described by a single probability measure P, and the super- and
subhedging prices of a contingent claim with discounted payoff X are given by

φ(X) = inf {m ∈ R : there exists a Y ∈ G such that m−X + Y ≥ 0 P-a.s.} (1.1)

and
− φ(−X) = sup {m ∈ R : there exists a Y ∈ G such that X −m+ Y ≥ 0 P-a.s.} , (1.2)

∗We thank Daniel Bartl, Peter Carr, Samuel Drapeau, Marek Musiela, Jan Ob lój, Mete Soner and Nizar Touzi for
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where G is the set of all realizable discounted trading gains. Classical results assume that X depends
on a set of underlying assets which can be traded dynamically without transaction costs or constraints.
Then G is a linear space, and under a suitable no-arbitrage condition, one obtains dualities of the form

φ(X) = sup
Q∈Me(P)

EQX and − φ(−X) = inf
Q∈Me(P)

EQX, (1.3)

where Me(P) is the set of all (local) martingale measures equivalent to P; see e.g. [29] or [20] for an
overview.

In this paper we do not assume that the probabilities of all future events are known. So instead
of starting with a predefined probability measure, we specify a collection of possible trajectories for
a set of basic assets. This includes a wide range of setups, from a single binomial tree model to the
model-free case, in which at any time, the prices of all assets can lie anywhere in R+ (or R). We replace
the P-almost sure inequalities in (1.1) and (1.2) by a general set A of acceptable discounted positions
and consider super- and subhedging functionals of the form

φ(X) = inf {m ∈ R : m−X ∈ A−G} and − φ(−X) = sup {m ∈ R : X −m ∈ A−G} . (1.4)

If A is the cone of non-negative outcomes, this describes strict super- and subhedging, which requires
that the shortfall risk be eliminated completely. Alternatively, one can allow for a certain amount of
risk by enlarging the set A. This reduces the spread between super- and subhedging prices. Moreover,
the set of discounted trading gains G does not have to be a linear space and can describe general market
structures with transaction costs and trading constraints.

Our main result, Theorem 2.1, provides dual representations for the quantities in (1.4) in terms
of expected values of X. As a byproduct, it yields a robust fundamental theorem of asset pricing
(FTAP), which relates two different notions of no-arbitrage to the existence of generalized martingale
measures. In the case where the underlying assets are bounded, it holds for general sets A and G such
that G−A is convex. Otherwise, it needs that the set G−A is large enough. This can be guaranteed
by assuming that the financial market is sufficiently rich or, as shown in Proposition 2.2, that the
acceptability condition is not too strict. In Sections 3 and 4 we study different specifications of A and
G, for which the dual representations can be computed explicitly. Section 3 is devoted to the case where
A consists of all non-negative outcomes, corresponding to strict super- and subhedging. We consider
general semi-static trading strategies consisting of dynamic investments in the underlying assets and
static derivative positions. Proposition 3.1 covers general convex transaction costs and constraints on
the derivative holdings. Proposition 3.2 deals with dynamic shortselling constraints. In Section 4 we
relax the hedging requirement and control shortfall risk with a family of risk measures defined via
different probability measures. This allows to introduce risk-tolerance in a setup of model-uncertainty.
Our price bounds then become robust good deal bounds. Proposition 4.2 gives an explicit duality
formula in the case where shortfall risk is assessed with a robust average value at risk. Proposition 4.4
provides the same for a robust entropic risk measure.

Our approach is based on representation results for increasing convex functionals that we develop in
the appendix. It permits to combine robust methods with transaction costs, trading constraints, partial
hedging and good deal bounds. Robust hedging methods go back to [35] and were further investigated
in e.g. [17, 19, 42]. Various versions of robust FTAPs and superhedging dualities have been derived
in [1, 3, 4, 5, 9, 10, 11, 12, 15, 22, 23, 25, 30, 36, 43]. For FTAPs and superhedging dualities under
transaction costs we refer to [14, 21, 32, 38, 45] and the references therein. The literature on partial
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hedging started with the quantile-hedging approach of [27] and subsequently developed more general
risk-based methods; see e.g. [13, 28, 44] and the closely related literature on good deals, such as e.g.
[7, 37, 40, 46].

The rest of the paper is organized as follows: Section 2 introduces the notation and states the
paper’s main results. In Section 3 we study strict super- and subhedging and give robust FTAPs with
corresponding superhedging dualities under convex transaction costs and trading constraints. As special
cases we obtain versions of Kantorovich’s transport duality [39] that include martingale or supermartin-
gale constraints. In Section 4 we use robust risk measures to weaken the acceptability condition. This
yields robust good deal bounds lying closer together than the strict super- and subhedging prices of
Section 3. All proofs are given in the appendix.

2 Main results

We consider a model with J + 1 financial assets S0, . . . , SJ and finitely many trading periods t =
0, 1, . . . , T . As sample space we take a non-empty subset Ω of (R++ × RJ)T , where R++ denotes the
positive half-line (0,+∞). The initial prices of the assets are assumed to be known and given by
S0
0 = 1 together with numbers Sj

0 ∈ R, j = 1, . . . , J . Their future prices are uncertain and modeled

as Sj
t (ω) = ωj

t , t = 1, . . . , T , j = 0, . . . , J , ω ∈ Ω. To state and prove the results in this paper, it
will be convenient to quote prices in units of S0. Discounted like this, the asset prices become S̃0 ≡ 1
and S̃j

t = Sj
t /S

0
t , j = 1, . . . , J . However, derivatives on S0, . . . , SJ are usually specified in terms of the

nominal prices Sj
t and not the discounted prices S̃j

t . So the discounted payoff of a general contingent
claim on S0, . . . , SJ with maturity T is given by a mapping X : Ω → R.

We endow Ω with the Euclidean metric and denote the space of all Borel measurable functions
X : Ω → R by B. All discounted trading gains that can be realized by investing in the financial market
from time 0 until T are given by a subset G ⊆ B containing 0. G might contain discounted payoffs of
derivatives maturing before time T . Then the proceeds are invested in S0 and held until time T . All
acceptable discounted time-T positions are modeled with a subset A ⊆ B containing the positive cone
B+ := {X ∈ B : X ≥ 0} such that A+B+ ⊆ A and A−G is convex. The corresponding superhedging
functional is

φ(X) := inf {m ∈ R : m−X ∈ A−G} , where inf ∅ := +∞.

It determines for every liability with discounted time-T payoff X ∈ B, the minimal initial capital
needed such that m −X can be transformed into an acceptable position by investing in the financial
market. The case A = B+ corresponds to strict superhedging, which requires that a contingent claim
be superreplicated in every possible scenario ω ∈ Ω. A larger acceptance set A relaxes the superhedging
requirement and lowers the hedging costs. The subhedging functional induced by G and A is given by

−φ(−X) = sup {m ∈ R : X −m ∈ A−G} , where sup ∅ := −∞.

We assume that there exists a continuous function Z : Ω → [1,+∞) with compact sublevel sets1

{ω ∈ Ω : Z(ω) ≤ z} for all z ∈ R+. We will consider hedging dualities for discounted payoff functions
whose growth is controlled by Z. Let BZ ⊆ B be the subspace consisting of functions X ∈ B such that

1It follows from this assumption that Ω is σ-compact. In particular, it is a Borel measurable subset of (R++ × RJ)T .
On the other hand, if Ω is a non-empty subset of (R++ × RJ )T that is closed in R(J+1)T , any continuous function
Z : Ω → [1,+∞) with bounded sublevel sets has compact sublevel sets.
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X/Z is bounded, UZ the set of all upper semicontinuous X ∈ BZ and CZ the space of all continuous
X ∈ BZ . By PZ we denote the set of all Borel probability measures on Ω satisfying the integrability
condition EPZ < +∞. Define the convex conjugate φ∗ : PZ → R ∪ {±∞} by

φ∗(P) := sup
X∈CZ

(EPX − φ(X)).

Then the following holds:

Theorem 2.1. Assume

for every n ∈ N, there exists a z ∈ R+ such that n(Z − z)+ −
1

n
∈ G−A. (2.1)

Then the following three conditions are equivalent:

(i) there exist no X ∈ G−A and ε ∈ R++ such that X ≥ ε

(ii) there exists a probability measure P ∈ PZ such that EPX ≤ 0 for all X ∈ CZ ∩ (G −A)

(iii) φ is real-valued on BZ with φ(0) = 0 and φ(X) = maxP∈PZ
(EPX − φ∗(P)) for all X ∈ CZ.

If in addition to (2.1), one has

φ(X) = inf
Y ∈CZ ,Y≥X

φ(Y ) for all X ∈ UZ , (2.2)

then (i)–(iii) are also equivalent to each of the following three:

(iv) there exists no X ∈ G−A such that X(ω) > 0 for all ω ∈ Ω

(v) there exists a probability measure P ∈ PZ such that EPX ≤ 0 for all X ∈ UZ ∩ (G−A)

(vi) φ is real-valued on BZ with φ(0) = 0 and φ(X) = maxP∈PZ
(EPX − φ∗(P)) for all X ∈ UZ.

(2.1) and (2.2) are both conditions on the set G−A (the latter since φ is defined by G−A). (2.1)
is trivially satisfied if Ω is compact since in this case, (Z − z)+ = 0 for z ∈ R+ large enough. On the
other hand, if Ω is not compact, (2.1) holds if, for instance, for every n ∈ N, there exists a z ∈ R+

such that there is an investment opportunity yielding a discounted outcome of at least n(Z− z)+ at an
initial cost of no more than 1/n, or alternatively, if 1/n− n(Z − z)+ is considered to be an acceptable
discounted position. Proposition 2.2 below provides a class of acceptance sets such that (2.1) holds
without additional assumptions on G, and Proposition 2.3 gives an equivalent condition for (2.2). In
all our examples in Sections 3 and 4 below, both conditions, (2.1) and (2.2), are satisfied.

(i) and (iv) are no-arbitrage conditions, or in the case where the acceptance set A is larger than B+,
so called no-good deal conditions. (i) means that there exists no trading strategy starting with zero
initial capital generating an outcome that exceeds an acceptable position by a positive fraction of S0

T ,
or equivalently, no trading strategy turning a negative initial wealth into an acceptable position. The
same condition was used by [31] and [41] in the classical framework. (iv) is slightly stronger. In the case
where A equals B+, it corresponds to absence of model-independent arbitrage as introduced by [18]
and used e.g., in [1]. We point out that for A = B+, (i) and (iv) are both weaker than the traditional
no-arbitrage condition, which requires that there exist no trading strategies generating a non-negative
profit that is positive on a non-negligible part of the sample space (see e.g. [33, 34, 29, 23]).

4



(ii) and (v) generalize the concept of a martingale measure. For instance, if A = B+ and the
underlying assets are liquidly traded, they consist of proper martingale measures. But in the presence
of proportional transaction costs, they become ε-approximate martingale measures, and under short-
selling constraints, supermartingale measures (see the examples in Section 3).

(iii) and (vi) yield dual representations for the superhedging functional φ. The max means that the
right sides of (iii) and (vi) are suprema which are attained. (iii) and (vi) directly translate into dual
representations for the subhedging functional −φ(−X). If condition (iii) holds, one has

−φ(−X) = min
P∈PZ

(EPX + φ∗(P)) for all X ∈ CZ ,

and the representation extends to all X ∈ UZ if (vi) is satisfied. Moreover, note that as soon as φ is
real-valued on BZ with φ(0) = 0, the same is true for the subhedging functional, and one obtains by
convexity, φ(X) + φ(−X) ≥ 2φ(0) = 0, yielding the ordering

φ(X) ≥ −φ(−X) for all X ∈ BZ .

A wide class of acceptance sets can be written as

A =
{

X ∈ BZ : EPX + α(P) ≥ 0 for all P ∈ PZ

}

+B+ (2.3)

for a suitable mapping α : PZ → R+ ∪ {+∞}. In the extreme case α ≡ 0, A is the positive cone B+.
On the other hand, it can be shown that if α grows fast enough, assumption (2.1) of Theorem 2.1 is
automatically satisfied:

Proposition 2.2. Condition (2.1) holds if A is given by (2.3) for a mapping α : PZ → R+ ∪ {+∞}
satisfying

(A1) infP∈PZ
α(P) = 0 and

(A2) α(P) ≥ EPβ(Z) for all P ∈ PZ , where β : [1,+∞) → R is an increasing2 function with the

property limx→+∞ β(x)/x = +∞.

The following result gives a dual condition for assumption (2.2) which will be useful in Sections 3
and 4.

Proposition 2.3. Assume (2.1) holds. Then

φ∗(P) = sup
X∈CZ∩(G−A)

EPX ≤ sup
X∈UZ

(EPX − φ(X)) = sup
X∈UZ∩(G−A)

EPX for all P ∈ PZ ,

and the inequality is an equality if and only if φ satisfies (2.2).

2We call a function f from a subset I ⊆ R to R increasing if f(x) ≥ f(y) for x ≥ y.

5



3 Strict superhedging

In this section we concentrate on the case where the acceptance set A is given by the positive cone
B+. Ω is assumed to be a non-empty closed subset of

∏T
t=1([at, bt] × RJ

+) for numbers 0 < at ≤ bt,

and the price processes S0, . . . , SJ are given by S0
0 = 1, Sj

0 ∈ R+, j = 1, . . . , J and Sj
t (ω) = ωj

t , t ≥ 1,

ω ∈ Ω. They generate the filtration Ft = σ(Sj
s : j = 0, . . . , J, s ≤ t), t = 0, . . . , T . As growth function

we choose Z = 1 +
∑

j,t≥1(S̃
j
t )p for a constant p ≥ 1. It clearly is continuous, and the sublevel sets

{ω ∈ Ω : Z(ω) ≤ z} are compact for all z ∈ R+. Moreover, S̃j
t belongs to CZ for all j and t. For any

set G ⊆ B of discounted trading gains containing 0 such that G − B+ is convex, condition (2.1) is
equivalent to

for every n ∈ N, j = 1, . . . , J , and t = 1, . . . , T , there exist

X ∈ G and K ∈ R+ such that X ≥ n((S̃j
t )p −K)+ − 1/n.

(3.1)

For instance, in the case p = 1, condition (3.1) holds if the market offers call options on all assets
S1, . . . , SJ with every maturity t = 1, . . . , T at arbitrarily small prices.

Let us define
φ∗G(P) := sup

X∈G
EPX, P ∈ PZ ,

with the understanding that

EPX :=

{

EPX+ − EPX− if EPX− < +∞
−∞ otherwise,

and introduce the corresponding set of generalized martingale measures

M := {P ∈ PZ : φ∗G(P) = 0} =
{

P ∈ PZ : EPX ≤ 0 for all X ∈ G
}

.

3.1 Semi-static hedging with convex transaction costs and constraints

Let us first assume that the assets S0, . . . , SJ can be traded dynamically, and in addition, it is possible
to form a static portfolio of derivatives depending on S0, . . . , SJ . We describe the dynamic part of the
trading strategy by a J-dimensional predictable process (ϑt)

T
t=1 modeling the holdings of the assets

S1, . . . , SJ over time and suppose that buying or selling shares of Sj at time t incurs transaction costs
of the form gjt (ω,∆ϑjt+1(ω)Sj

t (ω)) for a continuous function gjt : Ω × R → R such that gjt (ω, x) is Ft-

measurable in ω and convex in x with gjt (ω, 0) = 0. In the case where Ω is an unbounded subset of
R(J+1)T , we also assume supx∈E |gjt (ω, x)|/Z(ω) to be bounded in ω for every bounded subset E ⊆ R.
The static portfolio can be formed by investing in a given set of derivatives with discounted payoffs
Hi ∈ CZ , i ∈ I. We make no assumptions on the index set I. In particular, (Hi)i∈I can be an infinite
collection. However, it is only possible to invest in finitely many of them. More precisely, we denote
by RI

0 the set of vectors in RI with at most finitely many components different from 0 and suppose
that the static part of the strategy θ is constrained to lie in a given convex subset Θ ⊆ RI

0 containing
0. Discounted transaction costs in the derivatives market are given by a convex mapping h : Θ → CZ

satisfying h(0) = 0. This means that they can depend on the underlying uncertainty. As usual, we
suppress the ω-dependence of gjt in the notation. Then the resulting set of discounted trading gains G
consists of outcomes of the form

T
∑

t=1

J
∑

j=1

(

ϑjt∆S̃
j
t −

gjt−1(∆ϑjtS
j
t−1)

S0
t−1

)

+
∑

i∈I

θiHi − h(θ),
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where ∆S̃j
t = S̃j

t − S̃j
t−1 and ∆ϑjt = ϑjt − ϑjt−1 with ϑj0 = 0.

For this specification of our general model, the following can be deduced from Theorem 2.1 and
Proposition 2.3:

Proposition 3.1. If G satisfies condition (3.1), the following four conditions are equivalent:

(i) there exist no X ∈ G and ε ∈ R++ such that X ≥ ε

(ii) there exists no X ∈ G such that X(ω) > 0 for all ω ∈ Ω

(iii) M 6= ∅

(iv) φ is real-valued on BZ with φ(0) = 0 and φ(X) = maxP∈PZ
(EPX − φ∗G(P)) for all X ∈ UZ .

Moreover,

φ∗G(P) =







∑T−1
t=0

∑J
j=1 E

P

[

1
S0
t
gj∗t

(

EP[S̃j
T
|Ft]−S̃j

t

S̃j
t

)

1{S̃j
t>0}

]

+ h∗(P) if P ∈ R

+∞ if P /∈ R,
(3.2)

for

gj∗t (y) := sup
x∈R

(xy − gjt (x)), h∗(P) := sup
θ∈Θ

EP

(

∑

i∈I

θiHi − h(θ)

)

,

and

R :=
{

P ∈ PZ : P[Sj
t = 0 and Sj

T > 0] = 0 for all j = 1, . . . , J and t ≤ T − 1
}

.

Proposition 3.1 extends Theorem 2.2 of [3], which provides a duality result for general convex
transaction costs in a model with a compact sample space in which there are no derivatives available
for hedging.

3.1.1 Proportional transaction costs

As a special case, let us consider proportional transaction costs together with the constraint that
some of the derivatives in the market might only be available to buy or sell. More precisely, dynamic
transaction costs are given by functions of the form gjt (x) = εjt |x| for Ft-measurable random coefficients
εjt ∈ C+

Z . The static part of the hedging portfolio is given by a vector θ ∈ RI
0 with associated cost

h(θ) =
∑

i∈I h
+
i θ

+
i −h−i θ

−
i for bid and ask prices h−i ∈ R∪{−∞} and h+i ∈ R∪{+∞}, where h+i = +∞

means that Hi cannot be bought and h−i = −∞ that it cannot be sold. The corresponding discounted
trading outcomes are of the form

T
∑

t=1

J
∑

j=1

(

ϑjt∆S̃
j
t − εjt−1|∆ϑ

j
t S̃

j
t−1|

)

+
∑

i∈I

(

θiHi − θ+i h
+
i + θ−i h

−
i

)

,

and

gj∗t (y) =

{

0 if |y| ≤ εjt
+∞ otherwise,

h∗(P) =

{

0 if h−i ≤ EPHi ≤ h+i for all i ∈ I
+∞ otherwise.
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By Proposition 3.1, one has

φ∗G(P) =

{

0 if P ∈ M
+∞ otherwise,

where M is the set of all probability measures P ∈ PZ satisfying the conditions

a) (1 − εjt )S̃
j
t ≤ EP[S̃j

T | Ft] ≤ (1 + εjt )S̃
j
t for all j = 1, . . . , J and t = 0, . . . , T − 1

b) h−i ≤ EPHi ≤ h+i for all i ∈ I.

So if (3.1) and (i) of Proposition 3.1 hold, one obtains the duality

φ(X) = max
P∈M

EPX for all X ∈ UZ . (3.3)

If εjt ≡ 0, dynamic trading is frictionless, and a) reduces to the standard martingale condition. In this
case, (3.3) is the superhedging duality given in Theorem 1.4 of [1] for S0 ≡ 1. On the other hand,
in the case where the coefficients εjt are constant and (Hi)i∈I consists of European options depending
continuously on S̃T , (3.3) becomes the superhedging duality shown in Theorem 2.6 of [23] for S0 ≡ 1.

3.1.2 Superlinear transaction costs

For Θ = RI
0 and transaction costs corresponding to

gjt (x) =
εjt
pj

|x|pj , h(θ) =
∑

i∈I

hiθi +
δi
qi
|θi|

qi

for positive Ft-measurable εjt ∈ CZ and constants δi > 0, pj, qj > 1, hi ∈ R, one obtains from
Proposition 3.1,

φ∗G(P) =

T−1
∑

t=0

J
∑

j=1

EP





(εjt )
1−p′j

S0
t p

′
j

∣

∣

∣

∣

∣

EP[S̃j
T | Ft] − S̃j

t

S̃j
t

∣

∣

∣

∣

∣

p′j


+
∑

i∈I

δ
1−q′i
i

q′i

∣

∣

∣E
PHi − hi

∣

∣

∣

q′i
,

where p′j := pj/(pj − 1), q′i := qi/(qi − 1), 0/0 := 0 and x/0 := +∞ for x > 0. Moreover, if (3.1) and
condition (i) of Proposition 3.1 hold, one has

φ(X) = max
P∈PZ

(EPX − φ∗G(P)) for all X ∈ UZ .

3.1.3 European call options and constraints on the marginal distributions

Let gjt : Ω × R → R be as in the beginning of Subsection 3.1 above and assume the family (Hi)i∈I
consists of all discounted European call option payoffs

(S̃j
t −K)+, j = 1, . . . J, t = 1, . . . , T, K ∈ R+.

Moreover suppose that arbitrary quantities of options with discounted payoffs (S̃j
t −K)+ can be bought

or sold at prices pj,+t,K and pj,−t,K , respectively. If limK→+∞ pj,+t,K = 0 for all j and t, condition (3.1) holds.
So if in addition, (i) of Proposition 3.1 is satisfied, one obtains

φ(X) = max
P



EPX −
T−1
∑

t=0

J
∑

j=1

EP

[

1

S0
t

gj∗t

(

EP[S̃j
T | Ft] − S̃j

t

S̃j
t

)

1{S̃j
t>0}

]



 , for all X ∈ UZ , (3.4)

where the maximum is over all P ∈ PZ such that
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a) P[Sj
t = 0 and Sj

T > 0] = 0 for all j = 1, . . . , J and t = 0, . . . , T − 1

b) pj,−t,K ≤ EP(S̃j
t −K)+ ≤ pj,+t,K for all j = 1, . . . , J, t = 1, . . . T and K ∈ R+.

EP(S̃j
t −K)+ can be written as

∫ +∞
K P[S̃j

t > x]dx. So condition b) puts constraints on the distributions

of S̃j
t under P, and in the limiting case pj,+t,K = pj,−t,K , it fully determines the distributions of S̃j

t under

P. In particular, if gjt ≡ 0 and pj,+t,K = pj,−t,K = pjt,K ∈ R+ for all j, t,K, it follows from (3.1) and (i) of

Proposition 3.1 that there exist unique marginal distributions νjt on R+ specified by
∫ +∞
K νjt (x,+∞)dx =

pjt,K , K ∈ R+, such that

φ(X) = max
P∈M

EPX for all X ∈ UZ , (3.5)

where M consists of all P ∈ PZ satisfying

a) S̃1, . . . , S̃J are martingales under P

b) the distribution of S̃j
t under P is νjt for all j = 1, . . . , J and t = 1, . . . , T .

(3.5) is a variant of Kantorovich’s transport duality [39] and has recently been studied in different
setups under the name martingale transport duality; see e.g., [4, 5, 30].

3.2 Semi-static hedging with short-selling constraints

Now assume that dynamic trading does not incur transaction costs, but only non-negative quantities
of the assets S1, . . . , SJ can be held. As above, one can invest statically in derivatives with discounted
payoffs Hi ∈ CZ , i ∈ I, according to a strategy θ lying in a convex subset Θ ⊆ RI

0 containing 0. Let
h : Θ → CZ be a convex mapping with h(0) = 0 and suppose that G consists of discounted outcomes
of the form

T
∑

t=1

J
∑

j=1

ϑjt∆S̃
j
t +

∑

i∈I

θiHi − h(θ),

where (ϑt)
T
t=1 is a non-negative J-dimensional predictable strategy and θ ∈ Θ. Then the following

variant of Proposition 3.1 holds:

Proposition 3.2. If (3.1) is satisfied, the conditions (i)–(iv) of Proposition 3.1 are equivalent, where

φ∗G(P) =

{

supθ∈Θ EP(
∑

i∈I θiHi − h(θ)) if S̃1, . . . , S̃J are supermartingales under P

+∞ otherwise,

and M = {P ∈ PZ : φ∗G(P) = 0}.

3.2.1 Dynamic and static short-selling constraints

If there are short-selling constraints on the dynamic as well as static part of the trading strategy, that
is, Θ = RI

0 ∩ RI
+, and h(θ) =

∑

i∈I hiθi for prices hi ∈ R, it follows by Proposition 3.2 from (3.1) and
condition (i) of Proposition 3.1 that φ(X) = maxP∈M EPX for all X ∈ UZ , where M is the set of all
measures P ∈ PZ such that

a) S̃1, . . . , S̃J are supermartingales under P

b) EPHi ≤ hi for all i ∈ I.
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3.2.2 Supermartingale transport duality

Suppose now that only the dynamic part of the trading strategy is subject to short-selling constraints
and (Hi)i∈I consists of all discounted call options (S̃j

t −K)+, j = 1, . . . , J , t = 1, . . . , T , K ∈ R+. If
arbitrary quantities of (S̃j

t −K)+ can be bought and sold at prices pj,+t,K ≤ pj,−t,K , respectively, condition

(3.1) is satisfied provided that limK→+∞ pj,+t,K = 0 for all j and t. So, if in addition, (i) of Proposition
3.1 holds, one obtains from Proposition 3.2 that

φ(X) = max
P∈M

EPX for all X ∈ UZ (3.6)

where M consists of the measures P ∈ PZ satisfying

a) S̃1, . . . , S̃J are supermartingales under P

b) pj,−t,K ≤ EP(S̃j
t −K)+ =

∫ +∞
K P[S̃j

t > x]dx ≤ pj,+t,K for all j = 1, . . . , J , t = 1, . . . , T and K ∈ R+.

In the special case pj,+t,K = pj,−t,K = pjt,K ∈ R+, condition b) is satisfied if and only if for all j and t, the

distribution of S̃j
t under P is equal to a measure νjt satisfying

∫ +∞
K νjt (x,+∞)dx = pjt,K for all K ∈ R+.

In this case, (3.6) becomes a supermartingale version of Kantorovich’s transport duality [39].

4 Superhedging with respect to risk measures

In this section we relax the strict superhedging requirement and consider sets of acceptable discounted
outcomes of the form

A =
⋂

Q∈Q

{X ∈ BZ : ρQ(X) ≤ 0} +B+, (4.1)

where Q ⊆ PZ is a non-empty set of probability measures, and for every Q ∈ Q, ρQ : BZ → R is a
convex risk measure. More specifically, we concentrate on transformed loss risk measures:

ρQ(X) = min
s∈R

(

EQlQ(s−X) − s
)

for loss functions lQ : R → R. Up to a minus sign they coincide with the optimized certainty equivalents
of Ben-Tal and Teboulle [6]. For unbounded random variables, they were studied in Section 5 of [16].
We make the following assumptions:

(l1) every lQ is increasing3 and convex with limx→±∞(lQ(x) − x) = +∞

(l2) supQ EQlQ(ϕ(Z)) < +∞ for an increasing function ϕ : [1,+∞) → R satisfying
limx→+∞ ϕ(x)/x = +∞

(l3) l∗Q(1) = 0 for all Q ∈ Q, where l∗Q(y) = supx∈R(xy − lQ(x)), y ∈ R.

Then the following holds:

3i.e., lQ(x) ≥ lQ(y) for x ≥ y

10



Lemma 4.1. For every Q ∈ Q, ρQ is a real-valued convex risk measure on BZ with ρQ(0) = 0 and

dual representation

ρQ(X) = max
P∈PZ , P≪Q

(

EP[−X] − EQ

[

l∗Q

(

dP

dQ

)])

. (4.2)

Moreover, the acceptance set A given in (4.1) is of the form (2.3) for a mapping α : PZ → R+∪{+∞}
satisfying (A1) and (A2).

4.1 Robust average value at risk

Now assume, as in Section 3, that Ω is a closed subset of
∏T

t=1([at, bt] × RJ
+) for numbers 0 < at ≤ bt,

and consider the filtration Ft := σ(Sj
s : j = 0, . . . , J, s ≤ t) generated by Sj

t (ω) = ωj
t . We choose a

continuous function Z : Ω → R such that Z ≥ 1+
∑

j,t≥1 S̃
j
t . Then the sublevel sets {ω ∈ Ω : Z(ω) ≤ z},

z ∈ R+, are compact, and all S̃j
t belong to CZ .

For a fixed level 0 < λ ≤ 1 and Q from a given non-empty subset Q ⊆ PZ , consider the average
value at risk

AVaRQ
λ (X) :=

1

λ

∫ λ

0
VaRQ

u (X)du, X ∈ BZ .

It is well-known (see e.g. [29]) that it can be written as

AVaRQ
λ (X) = min

s∈R

(

EQ(s−X)+

λ
− s

)

, X ∈ BZ ,

and has a dual representation of the form

AVaRQ
λ (X) = max

P≪Q, dP/dQ≤1/λ
EP[−X], X ∈ BZ .

The corresponding robust acceptance set is

A =
⋂

Q∈Q

{

X ∈ BZ : AVaRQ
λ (X) ≤ 0

}

+B+

Let us assume the assets S0, . . . , SJ can be traded dynamically subject to proportional transaction
costs if positions in S1, . . . , SJ are rebalanced given by ε1, . . . , εJ ≥ 0. Moreover, there exists a family
of derivatives with discounted payoffs (Hi)i∈I ⊆ CZ that can be traded statically with bid and ask
prices h−i , h

+
i ∈ R. The resulting set of discounted trading gains G consists of outcomes of the form

T
∑

t=1

J
∑

j=1

(ϑjt∆S̃
j
t − εj |∆ϑ

j
t S̃

j
t−1|) +

∑

i∈I

(θiHi − θ+i h
+
i + θ−i h

−
i ), (4.3)

where (ϑt) is a J-dimensional (Ft)-predictable strategy and θ ∈ RI
0. Under these conditions, one has

the following:

Proposition 4.2. If Q is convex, σ(PZ , CZ)-closed and satisfies

sup
Q∈Q

EQϕ(Z) < +∞ for an increasing function ϕ : [1,+∞) → R such that lim
x→+∞

ϕ(x)

x
= +∞, (4.4)

the following are equivalent:
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(i) there exist no X ∈ G−A and ε ∈ R++ such that X ≥ ε

(ii) there exists no X ∈ G−A such that X(ω) > 0 for all ω ∈ Ω

(iii) M 6= ∅

(iv) φ is real-valued on BZ and φ(X) = maxP∈M EPX for all X ∈ UZ ,

where M is the set of all probability measures P ∈ PZ satisfying

a) (1 − εj)S̃
j
t ≤ EP[S̃j

T | Ft] ≤ (1 + εj)S̃
j
t for all j = 1, . . . , J and t = 0, . . . , T − 1

b) h−i ≤ EPHi ≤ h+i for all i ∈ I

c) dP/dQ ≤ 1/λ for some Q ∈ Q.

Examples 4.3. If Z = 1 +
∑

t,j≥1 S̃
j
t , the integrability condition (4.4) is satisfied by the following four

families of probability measures:
1. All Q ∈ PZ such that cjt ≤ EQ(S̃j

t )2 ≤ Cj
t for given constants 0 ≤ cjt ≤ Cj

t .
2. All Q ∈ PZ such that cjt ≤ EQ[(S̃j

t /S̃
j
t−1 − 1)2 | Ft−1] ≤ Cj

t for given constants 0 ≤ cjt ≤ Cj
t .

3. All Q ∈ PZ under which Y j
t = log(S̃j

t /S̃
j
t−1), j = 1, . . . , J , t = 1, . . . , T , forms a Gaussian family with

mean vector (EQY j
t ) in a bounded set M ⊆ RJT and covariance matrix CovQ(Y j

t , Y
k
s ) in a bounded set

Σ ⊆ RJT×JT .
4. The σ(PZ , CZ)-closed convex hull of any set Q ⊆ PZ satisfying (4.4).

It can easily be checked that the first two families are convex and σ(PZ , CZ)-closed. But the third
one is in general not convex. So to satisfy the assumptions of Proposition 4.2, one has to pass to the
σ(PZ , CZ)-closed convex hull.

4.2 Robust entropic risk measure

As in Subsection 4.1, suppose that Ω is a closed subset
∏T

t=1([at, bt] × RJ
+)T for numbers 0 < at ≤ bt,

consider the filtration (Ft) generated by (Sj
t ), j = 0, . . . , J , and let Z : Ω → R be a continuous function

such that Z ≥ 1 +
∑

j,t≥1 S̃
j
t .

For a fixed risk aversion parameter λ > 0 and Q in a given non-empty set Q ⊆ PZ , consider the
entropic risk measure

EntQλ (X) =
1

λ
logEQ exp(−λX), X ∈ BZ .

It admits the alternative representations

EntQλ (X) = min
s∈R

(

exp(λs− 1 − λX)

λ
− s

)

= max
P≪Q

(

EP[−X] −
1

λ
EQ

[

dP

dQ
log

dP

dQ

])

, X ∈ BZ ;

see e.g. [16]. The resulting robust acceptance set is

A =
⋂

Q∈Q

{

X ∈ BZ : EntQλ (X) ≤ 0
}

+B+.

If the set of discounted trading gains G is as in (4.3), one obtains the following variant of Proposition
4.2:
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Proposition 4.4. If Q is convex, σ(PZ , CZ)-closed and satisfies

sup
Q∈Q

EQ exp(ϕ(Z)) < +∞ for an increasing function ϕ : [1,+∞) → R with lim
x→+∞

ϕ(x)

x
= +∞, (4.5)

the following are equivalent:

(i) there exist no X ∈ G−A and ε ∈ R++ such that X ≥ ε

(ii) there exists no X ∈ G−A such that X(ω) > 0 for all ω ∈ Ω

(iii) there exists a P ∈ PZ such that EPX ≤ 0 for all X ∈ UZ ∩ (G−A)

(iv) φ is real-valued on BZ with φ(0) = 0 and φ(X) = maxP∈PZ
(EPX − η(P)) for all X ∈ UZ ,

where η : PZ → R+ ∪ {+∞} is given by

η(P) =

{

infQ∈Q,P≪Q EQ
(

dP
dQ log dP

dQ

)

/λ if P satisfies a)–b) and P ≪ Q for some Q ∈ Q

+∞ otherwise,

and a)–b) are the same conditions as in Proposition 4.2.

Examples 4.5. For Z = 1 +
∑

j,t≥1 S̃
j
t , the following are convex σ(PZ , CZ)-closed subsets of PZ

satisfying (4.5):
1. All Q ∈ PZ such that cjt ≤ EQ(S̃j

t )2 ≤ Cj
t and EQ exp(εjt (S̃

j
t )2) ≤ Dj

t for given constants 0 ≤ cjt ≤ Cj
t

and εjt ,D
j
t > 0.

2. All Q ∈ PZ such that cjt ≤ EQ[(S̃j
t /S̃

j
t−1 − 1)2 | Ft−1] ≤ Cj

t and EQ exp(εjt (S̃
j
t )2) ≤ Dj

t for given

constants 0 ≤ cjt ≤ Cj
t and εjt ,D

j
t > 0.

3. The σ(PZ , CZ)-closed convex hull of any set Q ⊆ PZ satisfying (4.5).

Note that Example 4.3.3 also satisfies condition (4.5). Therefore, its σ(PZ , CZ)-closed convex hull
fulfills the assumptions of Proposition 4.4.

A Proofs

A.1 Representation of increasing convex functionals

In preparation for the proof of Theorem 2.1 we first derive representation results for general increasing
convex functionals on CZ and UZ . As in Section 2, Ω is a non-empty subset of (R++ × RJ)T and
Z : Ω → [1,+∞) a continuous function such that {ω ∈ Ω : Z(ω) ≤ z} is compact for all z ∈ R+. If
(Xn) is a sequence of functions Xn : Ω → R decreasing pointwise to a function X : Ω → R, we write
Xn ↓ X. The space CZ of continuous functions X : Ω → R such that X/Z is bounded forms a Stone
vector lattice; that is, it is a linear space with the property that for all X,Y ∈ CZ , the point-wise
minima X ∧ Y and X ∧ 1 also belong to CZ . Let ca+Z be the set of all Borel measures µ satisfying
〈Z, µ〉 :=

∫

Zdµ < +∞. We call a functional ψ : CZ → R increasing if ψ(X) ≥ ψ(Y ) for X ≥ Y and
define the convex conjugate ψ∗

CZ
: ca+Z → R ∪ {+∞} by

ψ∗
CZ

(µ) := sup
X∈CZ

(〈X,µ〉 − ψ(X)).
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Theorem A.1. Let ψ : CZ → R be an increasing convex functional with the property that for every

X ∈ CZ there exists a constant ε > 0 such that

lim
z→+∞

ψ(X + ε(Z − z)+) = ψ(X). (A.1)

Then

ψ(X) = max
µ∈ca+

Z

(〈X,µ〉 − ψ∗
CZ

(µ)) for all X ∈ CZ . (A.2)

Proof. Fix X ∈ CZ . It is immediate from the definition of ψ∗
CZ

that

ψ(X) ≥ sup
µ∈ca+

Z

(〈X,µ〉 − ψ∗
CZ

(µ)). (A.3)

On the other hand, the Hahn–Banach extension theorem (for example, in the form of Theorem 5.53
in [2]) applied to the trivial subspace {0} ⊆ CZ and the dominating function ψX : CZ → R, given by
ψX(Y ) := ψ(X +Y )−ψ(X), yields the existence of a linear functional ζX : CZ → R that is dominated
by ψX . Since ψX is increasing, the same must be true for ζX . So if we can show that for every sequence
(Xn) in CZ satisfying Xn ↓ 0, there exists a constant η > 0 such that ψX(ηXn) ↓ 0, then ζX(Xn) ↓ 0,
and we obtain from the Daniell–Stone theorem (see e.g., Theorem 4.5.2 in [24]) that ζX is of the form
ζX(Y ) = 〈Y, µX〉 for a measure µX ∈ ca+Z . It follows that 〈X,µX〉 − ψ(X) ≥ 〈X + Y, µX〉 − ψ(X + Y )
for all Y ∈ CZ . In particular, ψ∗

CZ
(µX) = 〈X,µX〉 − ψ(X), and the representation (A.2) follows from

(A.3).
Now, choose an ε > 0 such that (A.1) holds and m > 0 so that X1 ≤ mZ. Set η = ε/(4m) and

fix δ > 0. There exists a z ∈ R+ such that ψX(ε(Z − z)+) ≤ δ, and by our assumptions on Z, the set
Λ = {Z ≤ 2z} is compact. Therefore, one obtains from Dini’s lemma that

xn := max
ω∈Λ

Xn(ω) ↓ 0.

Since x 7→ ψX(x) is a convex function from R to R, it is continuous. In particular, there exists an n0
such that ψX(2ηxn) ≤ δ for all n ≥ n0. Moreover, it follows from

Xn ≤ Xn1{Z≤2z} +X11{Z>2z} ≤ xn1{Z≤2z} +mZ1{Z>2z} ≤ xn + 2m(Z − z)+

that
Xn − xn

2m
≤ (Z − z)+,

and therefore,

ψX (2η(Xn − xn)) = ψX

(

ε
Xn − xn

2m

)

≤ δ for all n.

This gives

ψX(ηXn) ≤
ψX(2ηxn) + ψX(2η(Xn − xn))

2
≤ δ for all n ≥ n0.

Hence, ψX(ηXn) ↓ 0, and the proof is complete.

To extend the representation (A.2) beyond CZ , we need the following version of condition (A.1):

lim
z→+∞

ψ(n(Z − z)+) = ψ(0) for every n ∈ N. (A.4)

The subsequent lemma shows that it implies (A.1).
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Lemma A.2. An increasing convex functional ψ : CZ → R with the property (A.4) also satisfies (A.1).

Proof. If (A.4) holds, one has for any X ∈ CZ , ε ∈ R+ and λ ∈ (0, 1),

ψ(X + ε(Z − z)+) ≤ λψ

(

X

λ

)

+ (1 − λ)ψ

(

ε
(Z − z)+

1 − λ

)

and

ψ

(

ε
(Z − z)+

1 − λ

)

→ ψ(0) for z → +∞.

Moreover, since z 7→ ψ(zX) is a real-valued convex function on R, it is continuous. In particular,

λψ

(

X

λ

)

→ ψ(X) and (1 − λ)ψ(0) → 0 for λ→ 1.

This shows that ψ(X + ε(Z − z)+) → ψ(X) for z → +∞.

Before giving conditions under which a representation of the form (A.2) holds on UZ , we note that
for a given X ∈ UZ ,

Xn(ω) := sup
ω′∈Ω





X(ω′)

Z(ω′)
− n

∑

j,t

|ωj
t − ω′j

t |



Z(ω)

defines a sequence in CZ such that Xn ↓ X. In addition to this fact, we need the following two auxiliary
results:

Lemma A.3. For every increasing convex functional ψ : CZ → R the following hold:

(i) There exists an increasing convex function ϕ : R+ → R∪{+∞} satisfying limx→+∞ ϕ(x)/x = +∞
such that ψ∗

CZ
(µ) ≥ ϕ(〈Z, µ〉) for all µ ∈ ca+Z .

(ii) If ψ satisfies (A.4), the sublevel sets {µ ∈ ca+Z : ψ∗
CZ

(µ) ≤ a}, a ∈ R, are σ(ca+Z , CZ)-compact.

Proof. For every µ ∈ ca+Z , one has

ψ∗
CZ

(µ) ≥ sup
y∈R+

(〈yZ, µ〉 − ψ(yZ)) = ϕ(〈Z, µ〉)

for the increasing convex function ϕ : R+ → R ∪ {+∞} given by

ϕ(x) := sup
y∈R+

(xy − ψ(yZ)).

It follows from the fact that ψ is real-valued that limx→+∞ ϕ(x)/x = +∞. This shows (i).
As the supremum of σ(ca+Z , CZ)-continuous functions, ψ∗

CZ
is σ(ca+Z , CZ)-lower semicontinuous.

Therefore, the sets Λa := {µ ∈ ca+Z : ψ∗
CZ

(µ) ≤ a} are σ(ca+Z , CZ)-closed. Moreover, every µ ∈ Λa

satisfies
m
〈

(Z − z)+, µ
〉

− ψ(m(Z − z)+) ≤ ψ∗
CZ

(µ) ≤ a for all m, z ∈ R+.
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So if (A.4) holds, there exists for every m ∈ R+ a z ∈ R+ such that

〈

(Z − z)+, µ
〉

≤
a+ ψ(0) + 1

m
for all µ ∈ Λa.

In particular,
lim

z→+∞
sup
µ∈Λa

〈

(Z − z)+, µ
〉

= 0,

and, as a result,
lim

z→+∞
sup
µ∈Λa

〈

Z1{Z>2z}, µ
〉

≤ lim
z→+∞

sup
µ∈Λa

〈

2(Z − z)+, µ
〉

= 0. (A.5)

From (i) we know that
〈Z, µ〉 ≤ ϕ−1(a) < +∞ for all µ ∈ Λa, (A.6)

where ϕ−1 : R → R+ is the right-continuous inverse of ϕ, given by

ϕ−1(y) := sup {x ∈ R+ : ϕ(x) ≤ y} with sup ∅ := 0.

The mapping f : X 7→ X/Z identifies CZ with the space of bounded continuous functions Cb, and
g : µ 7→ Zdµ identifies ca+Z with the set of all finite Borel measures ca+. It follows from (A.5) and (A.6)
that g(Λa) is tight. So one obtains from the direct half of Prokhorov’s theorem (see e.g., Theorem 8.6.7
in [8]) that g(Λa) is σ(ca+, Cb)-compact, which is equivalent to Λa being σ(ca+Z , CZ)-compact.

Lemma A.4. Let α : ca+Z → R∪{+∞} be a mapping such that infµ∈ca+
Z
α(µ) ∈ R and α(µ) ≥ ϕ(〈Z, µ〉)

for all µ ∈ ca+Z and a function ϕ : R+ → R ∪ {+∞} satisfying limx→+∞ ϕ(x)/x = +∞. Then the

following hold:

(i) ψ(X) := supµ∈ca+
Z

(〈X,µ〉 − α(µ)) defines an increasing convex functional ψ : BZ → R.

(ii) If all sublevel sets
{

µ ∈ ca+Z : α(µ) ≤ a
}

, a ∈ R, are relatively σ(ca+Z , CZ)-compact, then ψ(Xn) ↓
ψ(X) for every sequence (Xn) in CZ such that Xn ↓ X for an X ∈ CZ .

(iii) If all sublevel sets
{

µ ∈ ca+Z : α(µ) ≤ a
}

, a ∈ R, are σ(ca+Z , CZ)-compact, then ψ(Xn) ↓ ψ(X) for

every sequence (Xn) in CZ such that Xn ↓ X for an X ∈ UZ, and

ψ(X) = max
µ∈ca+

Z

(〈X,µ〉 − α(µ)) for all X ∈ UZ .

Proof. It is clear that ψ is increasing and convex. Moreover, for every X ∈ BZ , there exists an m ∈ R+

such that |X| ≤ mZ. Therefore,

ψ(X) ≥ sup
µ∈ca+

Z

(−m 〈Z, µ〉 − α(µ)) > −∞

as well as
ψ(X) ≤ sup

µ∈ca+
Z

(m 〈Z, µ〉 − α(µ)) ≤ sup
µ∈ca+

Z

(m 〈Z, µ〉 − ϕ(〈Z, µ〉)) < +∞.

This shows (i).
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Now, let (Xn) be a sequence in CZ such that Xn ↓ X for some X ∈ UZ . By replacing ϕ with

ϕ̃(x) = inf
y≥x

ϕ(y) ∨ inf
µ∈ca+

Z

α(µ),

one can assume that ϕ is increasing. Then the right-continuous inverse ϕ−1 : R → R+, given by

ϕ−1(y) := sup {x ∈ R+ : ϕ(x) ≤ y} with sup ∅ := 0,

satisfies limy→+∞ ϕ−1(y)/y = 0 and 〈Z, µ〉 ≤ ϕ−1(α(µ)) for all

µ ∈ domα :=
{

ν ∈ ca+Z : α(ν) < +∞
}

.

Choose m ∈ R+ such that X1 ≤ mZ. Then

〈Xn, µ〉 − α(µ) ≤ m 〈Z, µ〉 − α(µ) ≤ mϕ−1(α(µ)) − α(µ) for all n and µ ∈ domα. (A.7)

If the sets
{

µ ∈ ca+Z : α(µ) ≤ a
}

, a ∈ R, are σ(ca+Z , CZ)-compact, then α is σ(ca+Z , CZ)-lower semicon-
tinuous. Furthermore, it follows from (A.7) that for a ∈ R large enough, there exists a sequence (µn)
in
{

µ ∈ ca+Z : α(µ) ≤ a
}

such that

ψ(Xn) ≤ 〈Xn, µn〉 − α(µn) +
1

n
for all n.

As shown in the proof of Lemma A.3, the pair (ca+Z , CZ) can be identified with (ca+, Cb), and σ(ca+, Cb)
is generated by the Kantorovich–Rubinstein norm (see e.g. Theorem 8.3.2 in [8]). So σ(ca+Z , CZ) is
metrizable. Therefore, after possibly passing to a subsequence, one can assume that (µn) converges to
a measure µ ∈

{

µ ∈ ca+Z : α(µ) ≤ a
}

in σ(ca+Z , CZ). Then

α(µ) ≤ lim inf
n

α(µn).

Moreover, for every ε > 0, there is an n′ such that 〈Xn′ , µ〉 ≤ 〈X,µ〉 + ε. Now choose n ≥ n′ such that
〈Xn′ , µn〉 ≤ 〈Xn′ , µ〉 + ε. Then

〈Xn, µn〉 ≤ 〈Xn′ , µn〉 ≤ 〈Xn′ , µ〉 + ε ≤ 〈X,µ〉 + 2ε,

showing that, lim supn 〈Xn, µn〉 ≤ 〈X,µ〉, and therefore,

inf
n
ψ(Xn) ≤ lim sup

n
(〈Xn, µn〉 − α(µn)) ≤ 〈X,µ〉 − α(µ) ≤ ψ(X).

In particular,
ψ(Xn) ↓ ψ(X) = max

µ∈ca+
Z

(〈X,µ〉 − α(µ)) ,

which shows (iii).
It remains to prove (ii). To do that we note that if α satisfies the assumption of (ii), the σ(ca+Z , CZ)-

lower semicontinuous hull α∗ has σ(ca+Z , CZ)-compact sublevel sets and

α∗(µ) ≥ ϕ∗(〈Z, µ〉) ∨ inf
µ∈ca+

Z

α(µ) for all µ ∈ ca+Z ,
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where ϕ∗ is the lower semicontinuous hull of ϕ. Since limx→+∞ ϕ∗(x)/x = +∞ and

ψ(X) = sup
µ∈ca+

Z

(〈X,µ〉 − α∗(µ)) for all X ∈ CZ ,

it follows from (iii) that ψ(Xn) ↓ ψ(X) for every sequence (Xn) in CZ such that Xn ↓ X for an X ∈ CZ .
This shows (ii).

Now we are ready to give our representation result for increasing convex functionals on UZ . For
µ ∈ ca+Z , we define

ψ∗
UZ

(µ) := sup
X∈UZ

(〈X,µ〉 − φ(X)).

Theorem A.5. Let ψ : UZ → R be an increasing convex functional satisfying condition (A.4). Then

the following are equivalent:

(i) ψ(X) = maxµ∈ca+
Z

(〈X,µ〉 − ψ∗
CZ

(µ)) for all X ∈ UZ

(ii) ψ(Xn) ↓ ψ(X) for all X ∈ UZ and every sequence (Xn) in CZ such that Xn ↓ X

(iii) ψ(X) = infY ∈CZ , Y≥X ψ(Y ) for all X ∈ UZ

(iv) ψ∗
CZ

(µ) = ψ∗
UZ

(µ) for all µ ∈ ca+Z .

Proof. Since, by Lemma A.2, (A.4) implies (A.1), we obtain from Theorem A.1 that

ψ(X) = max
µ∈ca+

Z

(

〈X,µ〉 − ψ∗
CZ

(µ)
)

for all X ∈ CZ .

Moreover, by Lemma A.3, the sublevel sets {µ ∈ ca+Z : ψ∗
CZ

(µ) ≤ a}, a ∈ R, are σ(ca+Z , CZ)-compact,
and there exists a function ϕ : R+ → R ∪ {+∞} such that limx→+∞ ϕ(x)/x = +∞ and ψ∗

CZ
(µ) ≥

ϕ(〈Z, µ〉) for all µ ∈ ca+Z .
(i) ⇒ (ii) is now a consequence of part (iii) of Lemma A.4, and (ii) ⇒ (iii) follows since for every

X ∈ UZ there exists a sequence (Xn) in CZ such that Xn ↓ X.
(iii) ⇒ (iv): One obviously has ψ∗

UZ
≥ ψ∗

CZ
. On the other hand, if for every X ∈ UZ , there is a

sequence (Xn) in CZ such that Xn ≥ X and ψ(Xn) ↓ ψ(X), then

sup
n

(〈Xn, µ〉 − ψ(Xn)) ≥ 〈X,µ〉 − ψ(X),

from which one obtains ψ∗
CZ

≥ ψ∗
UZ

.
(iv) ⇒ (i): For given X ∈ UZ , one obtains from the definition of ψ∗

UZ
that

ψ(X) ≥ sup
µ∈ca+

Z

(〈X,µ〉 − ψ∗
UZ

(µ)) = sup
µ∈ca+

Z

(〈X,µ〉 − ψ∗
CZ

(µ)).

Conversely, since there exists a sequence (Xn) in CZ such that Xn ↓ X, we can conclude by (iii) of
Lemma A.4 that

ψ(X) ≤ inf
n
ψ(Xn) = max

µ∈ca+
Z

(〈X,µ〉 − ψ∗
CZ

(µ)).
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A.2 Proof of Theorem 2.1

Having Theorems A.1 and A.5 in hand, we now can prove Theorem 2.1. The implications (iii) ⇒ (ii)
⇒ (i) as well as (vi) ⇒ (v) ⇒ (iv) ⇒ (i) hold without assumption (2.1). Indeed, (iv) ⇒ (i) is obvious.

(iii) ⇒ (ii): It follows from (iii) that

min
P∈PZ

φ∗(P) = − max
P∈PZ

−φ∗(P) = −φ(0) = 0.

In particular, since φ(X) ≤ 0 for all X ∈ G−A, there exists a P ∈ PZ such that

0 = φ∗(P) = sup
X∈CZ

(EPX − φ(X)) ≥ sup
X∈CZ∩(G−A)

(EPX − φ(X)) ≥ sup
X∈CZ∩(G−A)

EPX,

and therefore, EPX ≤ 0 for all X ∈ CZ ∩ (G−A).
(ii) ⇒ (i): Assume there exists an X ∈ G−A such that X ≥ ε for some ε ∈ R++. By assumption,

A+B+ ⊆ A. So it follows that ε belongs to CZ ∩ (G−A). But since EPε = ε > 0 for all P ∈ PZ , this
contradicts (ii).

(vi) ⇒ (v): If (vi) holds, then φ∗(P) ≥ supX∈UZ
(EPX − φ(X)) for all P ∈ PZ . So (v) follows from

(vi) like (ii) from (iii).
(v) ⇒ (iv): Assume there exists an X ∈ G−A such that X(ω) > 0 for all ω ∈ Ω and fix a P ∈ PZ .

Since P is a Borel measure on a measurable subset of R(J+1)T , it is regular. So there exist an ε > 0
and a closed set F ⊆ {X ≥ ε} such that P[F ] > 0, or equivalently, EP1F > 0. But since ε1F belongs to
UZ ∩ (G−A), this contradicts (v).

Now, we assume (2.1) and show (i) ⇒ (iii). Since A+B+ ⊆ A and A−G is convex, the mapping
φ : BZ → R ∪ {±∞} is increasing and convex. Moreover, it follows from (i) that φ(m) = m for all
m ∈ R, implying that φ(X) ∈ R for every bounded X ∈ B. By condition (2.1), there exists for every
n ∈ N a z ∈ R+ such that φ(n(Z − z)+) ≤ 1/n, and therefore,

φ
(n

2
Z
)

≤
φ(nz) + φ(n(Z − z)+)

2
≤
nz

2
+

1

2n
.

Now, one obtains from monotonicity and convexity that φ is real-valued on BZ . In addition, it follows
from (2.1) that φ satisfies (A.4), and so by Lemma A.2, also (A.1). Therefore, Theorem A.1 yields
φ(X) = maxµ∈ca+

Z
(〈X,µ〉 − φ∗CZ

(µ)) for all X ∈ CZ . Since φ(m) = m for all m ∈ R, φ∗CZ
(µ) is +∞ for

all µ ∈ ca+Z \ PZ , and one obtains φ(X) = maxP∈PZ
(EPX − φ∗(P)) for all X ∈ CZ .

Finally, if conditions (2.1)–(2.2) and (iii) of Theorem 2.1 hold, φ is a real-valued increasing convex
functional on BZ fulfilling (A.4) as well as condition (iii) of Theorem A.5. So Theorem A.5 yields that
φ also satisfies condition (i) of Theorem A.5, and therefore, (vi) of Theorem 2.1, which completes the
proof.

A.3 Proofs of Propositions 2.2 and 2.3

Proof of Proposition 2.2

If the acceptance set A is of the form (2.3) for a mapping α : PZ → R+ ∪ {+∞} satisfying (A1)–(A2),
it can be written as

A = {X ∈ BZ : ρ(X) ≤ 0} +B+ for ρ(X) := sup
P∈PZ

(

EP(−X) − α(P)
)

.
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By passing to the lower convex hull, one can assume that β is convex. Then, Jensen’s inequality yields

α(P) ≥ EPβ(Z) ≥ β(EPZ) for all P ∈ PZ .

By identifying (CZ , ca
+
Z ) with (Cb, ca

+) like in the proof of Lemma A.3, one deduces from Prokhorov’s
theorem that the sets {P ∈ PZ : EPβ(Z) ≤ a}, a ∈ R, are σ(PZ , CZ)-compact. As a consequence, the
sets {P ∈ PZ : α(P) ≤ a}, a ∈ R, are relatively σ(PZ , CZ)-compact, and one obtains from part (ii) of
Lemma A.4 that for every n ∈ N,

ρ

(

1

n
− n(Z − z)+

)

= −
1

n
+ ρ

(

−n(Z − z)+
)

↓ −
1

n
for z → +∞.

In particular, 1/n−n(Z− z)+ ∈ A ⊆ A−G for z large enough, showing that condition (2.1) holds.

Proof of Proposition 2.3

By our assumptions on G and A, one has φ(0) ≤ 0. Moreover, if φ(0) = −∞, G − A contains R,
which by (2.1), implies G − A = BZ . Then φ ≡ −∞ on BZ , φ∗ ≡ +∞, and all the statements of
Proposition 2.3 become obvious. On the other hand, if φ(0) > −∞, it follows from (2.1), like in the
proof of Theorem 2.1, that φ is real-valued on BZ . Then

φ∗(P) ≤ sup
X∈UZ

(EPX − φ(X)) for all P ∈ PZ ,

and since it follows from (2.1) that φ satisfies (A.4), Theorem A.5 yields that the inequality is an
equality if and only if φ satisfies condition (2.2). Next, note that since

X − φ(X) − ε ∈ CZ ∩ (G−A) for all X ∈ CZ and ε > 0,

one has
φ∗(P) = sup

X∈CZ

EP(X − φ(X)) = sup
X∈CZ∩(G−A)

EPX,

and analogously,
sup

X∈UZ

(EPX − φ(X)) = sup
X∈UZ∩(G−A)

EPX.

This completes the proof of Proposition 2.3.

A.4 Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1

We start by showing the implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i). If (iv) holds, one has 0 = φ(0) =
maxP∈PZ

−φ∗G(P), yielding (iii). Moreover, since EPX ≤ 0 for every X ∈ G and P ∈ M, (iii) implies
(ii). That (ii) implies (i) is obvious.

To prove (i) ⇒ (iv), we first note that (3.1) implies (2.1) and (i) is a reformulation of condition (i)
of Theorem 2.1 in the case A = B+. So, by Theorem 2.1, it follows from (i) that φ is real-valued on
BZ with φ(0) = 0. Moreover, we know from Proposition 2.3 that

φ∗(P) ≤ sup
X∈UZ∩(G−B+)

EP ≤ sup
X∈G

EPX = φ∗G(P), P ∈ PZ .
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So if we can show that
φ∗(P) ≥ φ∗G(P) for all P ∈ PZ , (A.8)

we obtain φ∗ = φ∗G, and by Proposition 2.3, condition (2.2) holds. Then it follows from Theorem 2.1
that (i) implies (iv). To prove (A.8), we observe that

sup
X∈G

EPX = sup
ϑ

EP
[

∑

t,j≥1

ϑjt∆S̃
j
t −

gjt−1(∆ϑjtS
j
t−1)

S0
t−1

]

+ sup
θ

(

∑

i

θiE
PHi − h(θ)

)

,

and since gjt−1(0) = 0, the first supremum can be taken over strategies ϑ such that

EP
[

∑

t,j≥1

ϑjt∆S̃
j
t −

gjt−1(∆ϑjtS
j
t−1)

S0
t−1

]

≥ 0.

Therefore,

EP





∑

t,j≥1

ϑjt∆S̃
j
t − gjt−1(∆ϑjtS

j
t−1)/S0

t−1





can be approximated by

EP





∑

t,j≥1

ϑ̃jt∆S̃
j
t − gjt−1(∆ϑ̃jtS

j
t−1)/S0

t−1





for continuous Ft−1-measurable functions ϑ̃jt : Ω → R with compact support. But since

∑

t,j≥1

(

ϑ̃jt∆S
j
t −

gjt−1(∆ϑ̃jtS
j
t−1)

S0
t−1

)

+
∑

i

θiHi − h(θ)

is in CZ ∩G, it follows that φ∗(P) ≥ supX∈CZ∩G EPX ≥ φ∗G(P) for all P ∈ PZ .
It remains to show that φ∗G is of the form (3.2). To do this we note that

T
∑

t=1

ϑjt∆S̃
j
t =

T
∑

t=1

t
∑

s=1

∆ϑjs∆S̃
j
t =

T
∑

s=1

T
∑

t=s

∆ϑjs∆S̃
j
t =

T
∑

t=1

∆ϑjt(S̃
j
T − S̃j

t−1).

Hence,

sup
X∈G

EPX = sup
ϑ

EP





∑

t,j≥1

∆ϑjt(S̃
j
T − S̃j

t−1) −
gjt−1(∆ϑjtS

j
t−1)

S0
t−1



+ sup
θ

(

∑

i

θiE
PHi − h(θ)

)

,

where the first supremum can be taken over strategies ϑ such that

EP
[

∑

t,j≥1

∆ϑjt(S̃
j
T − S̃j

t−1) −
gjt−1(∆ϑjtS

j
t−1)

S0
t−1

]

≥ 0.
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Now EP
[

∑

t,j≥1 ∆ϑjt(S̃
j
T − S̃j

t−1) − gjt−1(∆ϑjtS
j
t−1)/S

0
t−1

]

can be approximated by

EP





∑

t,j≥1

∆ϑ̃jt(S̃
j
T − S̃j

t−1) −
gjt−1(∆ϑ̃jtS

j
t−1)

S0
t−1





= EP





∑

t,j≥1

∆ϑ̃jt(E
P[S̃j

T | Ft−1] − S̃j
t−1) −

gjt−1(∆ϑ̃jtS
j
t−1)

S0
t−1





for bounded Ft−1-measurable mappings ∆ϑ̃jt with compact support. On {Sj
t−1 > 0}, one has

sup
∆ϑ̃j

t

(

∆ϑ̃jt(E
P[S̃j

T | Ft−1] − S̃j
t−1) −

gjt−1(∆ϑ̃jtS
j
t−1)

S0
t−1

)

=
1

S0
t−1

sup
∆ϑ̃j

t

(

∆ϑ̃jtS
j
t−1

EP[S̃j
T | Ft−1] − S̃j

t−1

S̃j
t−1

− gjt−1(∆ϑ̃jtS
j
t−1)

)

=
1

S0
t−1

gj∗t−1

(

EP[S̃j
T | Ft−1] − S̃j

t−1

S̃j
t−1

)

,

and on {Sj
t−1 = 0},

sup
∆ϑ̃j

t

(

∆ϑ̃jt(E
P[S̃j

T | Ft−1] − S̃j
t−1) −

gjt−1(∆ϑ̃jtS
j
t−1)

S0
t−1

)

= sup
∆ϑ̃j

t

∆ϑ̃jtE
P[S̃j

T | Ft−1] = +∞1
{EP[S̃j

T
|Ft−1]>0}

.

Since P[Sj
t−1 = 0 and EP[S̃j

T > 0 | Ft−1] > 0] > 0 if and only if P[Sj
t−1 = 0 and Sj

T > 0] > 0, this proves
(3.2).

Proof of Proposition 3.2

It follows as in the proof of Proposition 3.1 that

φ∗(P) = sup
X∈UZ

(

EPX − φ(X)
)

= φ∗G(P) for all P ∈ PZ ,

and (i)–(iv) are equivalent. Moreover,

φ∗G(P) = sup
ϑ≥0

EP





∑

t,j≥1

ϑjt∆S̃
j
t



+ sup
θ∈Θ

EP

(

∑

i∈I

θiHi − hi

)

,

and since the first supremum can be taken over non-negative predictable strategies (ϑt) such that

EP





∑

t,j≥1

ϑjt∆S̃
j
t



 ≥ 0,
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it can equivalently be taken over bounded non-negative predictable strategies. Now, it is easy to see
that

φ∗G(P) =

{

supθ E
P(
∑

i∈I θiHi − h(θ)) if S̃1, . . . , S̃J are supermartingales under P

+∞ otherwise.

A.5 Proofs of Lemma 4.1 and Propositions 4.2 and 4.4

Proof of Lemma 4.1

It follows from (l1)–(l2) that for all X ∈ BZ , s 7→ EQlQ(s − X) is a real-valued increasing convex
function on R such that

lim
s→±∞

EQlQ(s−X) − s = +∞.

In particular, there exists a minimizing s, and it is easy to see that ρQ is a real-valued decreasing
convex functional on BZ with the translation property ρQ(X + m) = ρQ(X) −m, m ∈ R. Moreover,
EQlQ(cZ) < +∞ for all c ∈ R+. So BZ is contained in the Orlicz heart M lQ corresponding to Q and
the Young function lQ(.) − lQ(0). By Theorem 4.6 and the computation in Section 5.4 of [16],

ρQ(X) = max
P

(

EP[−X] − EQ

[

l∗Q

(

dP

dQ

)])

, X ∈ BZ ,

where the maximum is over all P ≪ Q such that dP/dQ is in the norm-dual of M lQ . For all these P,
one has EPZ = EQ[ZdP/dQ] < +∞, showing that P ∈ PZ . On the other hand, since lQ(x) ≥ xy− l∗Q(y)
for all x, y ∈ R, one has for every X ∈ BZ , s ∈ R and P ≪ Q,

EQlQ(s−X) − s ≥ EQ

[

(s−X)
dP

dQ

]

− EQ

[

l∗Q

(

dP

dQ

)]

− s = EP[−X] − EQ

[

l∗Q

(

dP

dQ

)]

.

This proves the duality (4.2). By Jensen’s inequality and (l3),

EQl∗Q(dP/dQ) ≥ l∗QE
Q[dP/dQ] = l∗Q(1) = 0,

and therefore, minP∈PZ
EQl∗Q(dP/dQ) = EQl∗Q(dQ/dQ) = 0, showing that ρQ(0) = 0. Moreover, since

⋂

Q∈Q

{X ∈ BZ : ρQ(X) ≤ 0} = {X ∈ BZ : sup
Q∈Q

ρQ(X) ≤ 0},

the acceptance set A can be written as

A =
{

X ∈ BZ : EPX + α(P) ≥ 0 for all P ∈ PZ

}

+B+,

where α(P) := infQ∈Q αQ(P) with

αQ(P) :=

{

EQl∗Q(dP/dQ) if P ≪ Q

+∞ otherwise.
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It follows from minP∈PZ
αQ(P) = 0 for all Q ∈ Q that minP∈PZ

α(P) = 0. Hence (A1) holds. Moreover,
since l∗Q(y) ≥ xy − lQ(x) for all x, y ∈ R, one has for every P ∈ PZ for which there exists a Q ∈ Q such
that P ≪ Q,

α(P) = inf
Q∈Q,P≪Q

EQl∗Q

(

dP

dQ

)

≥ inf
Q∈Q,P≪Q

EQ

[

ϕ(Z)
dP

dQ
− lQ(ϕ(Z))

]

≥ EPϕ(Z) − sup
Q∈Q

EQlQ(ϕ(Z)),

which implies (A2) for β = ϕ− supQ∈Q EQlQ(ϕ(Z)).

Proof of Proposition 4.2

Since AVaRQ
λ is a transformed loss risk measure with loss function lQ(x) = x+/λ, it follows from

the integrability condition (4.4) that the assumptions of Lemma 4.1 are satisfied. So one obtains from
Proposition 2.2 that condition (2.1) holds. Moreover, G−A is a convex cone. Therefore, by Proposition
2.3,

φ∗(P) = sup
X∈CZ∩(G−A)

EPX =

{

0 if EPX ≤ 0 for all X ∈ CZ ∩ (G−A)
+∞ otherwise.

(A.9)

Let us denote M̂ := {P ∈ PZ : φ∗(P) = 0} and write M = MG ∩ MA, where MG is the set of all
P ∈ PZ satisfying conditions a)–b) of Proposition 4.2 and MA the set of all P ∈ PZ fulfilling condition
c). Since for X ∈ A, the negative part X− belongs to BZ , one obtains from (A.9),

φ∗(P) ≤ sup
X∈UZ∩(G−A)

EPX ≤ sup
X∈G,EPX>−∞

EPX − inf
X∈A

EPX for all P ∈ PZ . (A.10)

It follows as in the proof of Proposition 3.1 that the second supremum in (A.10) is zero for all P ∈ MG,
while it can be seen from the dual representation

AVaRQ
λ (X) = sup

P∈PZ , dP/dQ≤1/λ
EP[−X]

that the infimum is zero for all P ∈ MA. In particular, M̂ ⊇ M = MG ∩MA.
On the other hand, it can be shown as in the proof of Proposition 3.1 that M̂ ⊆ MG. Moreover, it

follows from our assumptions on Q that MA is convex and σ(PZ , CZ)-closed. Indeed, for P1,P2 ∈ MA

and 0 ≤ µ ≤ 1, there exist Q1,Q2 ∈ Q together with Y1, Y2 ∈ B+ bounded by 1/λ such that P1 = Y1 ·Q1

and P2 = Y2 ·Q2. Therefore,

(µP1 + (1 − µ)P2)[E] ≤
1

λ
(µQ1 + (1 − µ)Q2)[E]

for all measurable sets E. It follows that

d(µP1 + (1 − µ)P2)

d(µQ1 + (1 − µ)Q2)
≤

1

λ
,

showing that MA is convex. Furthermore, if (Pn) is a sequence in MA converging to a P ∈ PZ in
σ(PZ , CZ), there exist Qn ∈ Q and Yn ∈ B+ bounded by 1/λ such that Pn = Yn · Qn. Condition
(4.4) implies that supQ∈Q EQZ < +∞ and supQ∈Q EQ[Z1{Z>z}] → 0 for z → +∞. So it follows like in
the proof of Lemma A.3 that Q is σ(PZ , CZ)-compact. Hence, by passing to a subsequence, one can
assume that Qn converges to a Q in Q with respect to σ(PZ , CZ). Then

EPX = lim
n

EPnX ≤
1

λ
lim
n

EQnX =
1

λ
EQX for all X ∈ C+

Z . (A.11)
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As probability measures on R(J+1)T , P and Q are regular. Therefore, it follows from (A.11) that
dP/dQ ≤ 1/λ, showing that MA is σ(PZ , CZ)-closed. By a separating hyperplane argument, one

obtains for every P̂ ∈ PZ \MA, an X ∈ CZ such that EP̂X < infP∈MA
EPX = 0, implying X ∈ A and

φ∗(P̂) = supX∈CZ∩(G−A) E
P̂X = +∞. So M̂ ⊆ MA, and as a consequence M̂ = M. This shows that

φ∗(P) = sup
X∈UZ∩(G−A)

EPX =

{

0 if P ∈ M
+∞ otherwise,

and it follows from Proposition 2.3 that (2.2) holds. As a result, all conditions (i)–(vi) of Theorem 2.1
are equivalent, which implies that the conditions (i)–(iv) of Proposition 4.2 are equivalent.

Proof of Proposition 4.4

EntQλ is a transformed loss risk measure corresponding to the loss function lQ(x) = exp(λx − 1)/λ.
Therefore, it follows from condition (4.5) that Lemma 4.1 applies. So we know that condition (2.1)
holds. As in the proof of Proposition 4.2, one has

φ∗(P) ≤ sup
X∈UZ∩(G−A)

EPX ≤ sup
X∈G,EPX>−∞

EPX − inf
X∈A

EPX for all P ∈ PZ , (A.12)

and supX∈G,EPX>−∞ EPX = 0 for P in the set MG of all measures in PZ satisfying conditions a)–b).
Furthermore, since

EntQλ (X) = sup
P∈PZ

(EP[−X] − ηQ(P)) for all X ∈ BZ ,

where

ηQ(P) =

{

EQ
(

dP
dQ log dP

dQ

)

/λ if P ≪ Q

+∞ otherwise,

one obtains

inf
Q∈Q

ηQ(P) ≥ sup
X∈BZ

(

EP[−X] − sup
Q∈Q

EntQλ (X)

)

≥ sup
X∈A

EP[−X] ≥ φ∗(P) for P ∈ MG.

It follows from the assumptions that there exists a continuous function ϕ̃ : [1,+∞) → R such that

lim
x→+∞

ϕ̃(x)

x
= +∞ and lim

x→+∞

ϕ(x)

ϕ̃(x)
= +∞.

Denote Z̃ = exp(ϕ̃(Z)). Then, it follows from condition (4.5) that supQ∈Q EQZ̃ < +∞ and

supQ∈Q EQ[Z̃1{Z̃>z}] → 0 for z → +∞. So one obtains as in the proof of Lemma A.3 that Q is

relatively compact in the topology σ(PZ̃ , CZ̃). But since Q was assumed to be σ(PZ , CZ)-closed, and
σ(PZ̃ , CZ̃) is stronger than σ(PZ , CZ), Q is σ(PZ̃ , CZ̃)-compact. Moreover, for all X ∈ CZ , exp(X)
belongs to CZ̃ and

EntQλ (X) =
1

λ
logEQ exp(−λX)
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is concave as well as σ(PZ̃ , CZ̃)-continuous in Q. Therefore, one obtains from a minimax result, such
as e.g. the one of Ky Fan [26], that for all P ∈ PZ ,

inf
Q∈Q

ηQ(P) = inf
Q∈Q

sup
X∈CZ

(

EP[−X] − EntQλ (X)
)

= sup
X∈CZ

(

EP[−X] − sup
Q∈Q

EntQλ (X)

)

= sup
X∈CZ∩A

EP[−X] ≤ φ∗(P).

Since φ∗(P) = +∞ for P ∈ PZ \MG, this shows that

η(P) =

{

infQ∈Q ηQ(P) if P ∈ MG

+∞ otherwise

}

= φ∗(P),

which, by (A.12), implies φ∗(P) = supX∈UZ∩(G−A) E
PX. So Proposition 2.3 gives us that condition

(2.2) holds. Now Proposition 4.4 is a consequence of Theorem 2.1.
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