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Abstract

We present a general Markovian framework for order book modeling. Through our ap-
proach, we aim at providing a tool enabling to get a better understanding of the price
formation process and of the link between microscopic and macroscopic features of fi-
nancial assets. To do so, we propose a new method of order book representation, and
decompose the problem of order book modeling into two sub-problems: dynamics of a
continuous-time double auction system with a fixed reference price; interactions between
the double auction system and the reference price movements. State dependency is in-
cluded in our framework by allowing the order flow intensities to depend on the order book
state. Furthermore, contrary to most existing models, the impact of the order book up-
dates on the reference price dynamics is not assumed to be instantaneous. We first prove
that under general assumptions, our system is ergodic. Then we deduce the convergence
towards a Brownian motion of the rescaled price process.

1 Introduction

Nowadays, most financial exchanges use a limit order book (LOB) mechanism. In these order-
driven markets, market participants send their buy and sell orders to a continuous-time double
auction system, where orders are matched according to their price and time priority. Under-
standing the LOB dynamics is one of the fundamental issues in the field of market microstruc-
ture and leads to many interesting applications in optimal execution, design of electronic trading
algorithms, minimization of market impact costs, short-term predictions and regulation. In the
recent years, many works have been devoted to the description of order book dynamics. Order
book models can be essentially divided into two types: economic models, where one focuses on
the behaviors of individual agents and their optimal decisions, see for example Parlour (1998),
Foucault (1999) and Roşu (2009); statistical models, where the order flows are seen as random
processes, see Smith, Farmer, Gillemot, and Krishnamurthy (2003), Cont, Stoikov, and Talreja
(2010), Abergel and Jedidi (2011), Cont and De Larrard (2013), Lakner, Reed, and Stoikov
(2013), Lachapelle, Lasry, Lehalle, and Lions (2014), Bayer, Horst, and Qiu (2015) and Abergel
and Jedidi (2015). With the notable exception of Abergel and Jedidi (2015), where the au-
thors consider the case of Hawkes-type dynamics, these models usually assume Poisson flows
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for the order arrival processes. Such assumption is mainly made for technical reasons, since
it is well-known that it is not consistent with market data. In Huang, Lehalle, and Rosen-
baum (2015), the authors propose to replace the Poisson assumption by a state-dependent
approach where the intensities of the flows depend on the state of the LOB. This model, called
“Queue-reactive” model, provides new insights for the order book dynamics, such as market
participants behaviors conditional on different states of the order book, the LOB’s asymptotic
form and the bid-ask spread distribution. It is also a very relevant tool for practitioners in the
perspective of transaction cost analysis of complex trading algorithms. In this paper, we aim at
extending the Queue-reactive model to a more general framework, in which most of the existing
statistical models can be included (up to minor modifications). Our goal is to give some theoret-
ical results on the system’s ergodicity as well as the asymptotic scaling limit of the price process.

In the LOB, price levels are discretized by a minimum price change unity called the tick value
(denoted by α). Market participants can place their buy/sell orders at any level which is a
multiple of the tick value and these orders will either stay in the LOB (a buy order with price
lower than the current best ask price, or a sell order with price higher than the current best bid
price, this type of orders being called “limit order”), or be matched with the existing orders
in the LOB (this type of orders being called “market order”). The LOB, as its name suggests,
is composed of all unmatched limit orders and can be seen as a (rough) approximation of the
current microstructural supply and demand on the different price levels.

Current statistical models differ in their way of representing the LOB. In Cont, Stoikov, and
Talreja (2010), the price grid is supposed to be finite (nminα, ..., nmaxα), and the LOB is repre-
sented by a nmax−nmin+1 dimensional vector that records the buying/selling quantities at each
of these price levels. In such representation, the different limits are indexed by their absolute
price level. In practice, to cover the intra-day price range [pmin, pmax], the dimension of the state
space have to be at least pmax−pmin

α
+11, which is typically a very large number. Another way of

representing the order book state is to use the relative indexing method. Following ideas from
the Zero-intelligence model of Smith, Farmer, Gillemot, and Krishnamurthy (2003), Abergel
and Jedidi (2011) propose to use the best bid and the best ask prices as two reference prices
to index the limits. In that case, the LOB is made of the following elements: the two reference
prices pbestbid and pbestask, and the limits around them which are two K dimensional vectors a
(for the ask side) and b (for the bid side). The vector a = [a1, ..., aK ] records the limit sizes at
the price levels [pbestbid + α, ..., pbestbid + Kα], while the vector b = [b1, ..., bK ] records the limit
sizes at the price levels [pbestask−α, ..., pbestask−Kα]2. In practice, observing a market depth of
five ticks is usually considered enough for most trading purposes. Consequently, for a typical
stock with spread size of order five ticks, the value of K should be generally of order 10 so that
essential information from the LOB is captured. Thus, the use of these two reference prices
reduces significantly the dimensionality of the state space. Note that in this representation, the
index of a limit at a given price level is no longer constant. Therefore, appropriate boundary
conditions must be defined to deal with price changes.

In this paper, we propose an original representation of the order book, using only one reference

1Of course if we choose nmin = 1 and nmax = ∞, we have a complete description of all the available
buying/selling offers in the whole price grid αN.

2Note that in this representation, there can be overlaps between the vector a and b when the bid-ask spread
is larger than one tick.
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price which is not necessarily directly observable from the order book state. We view this ref-
erence price as sort of market consensus about the underlying “efficient” price used by market
participants when making their trading decisions. We keep K limits on each side of the reference
price and the LOB is fully described by a 2K + 1 dimensional vector, which is then modeled
by a continuous-time Markov jump process. The use of this unique reference price gives us a
lot of flexibility when modeling the order book. Since the reference price is no longer directly
determined by the order book state, we can differentiate two types of jumps in the Markov
process: pure order book state jumps (jumps for which the reference price stays constant) and
common jumps (jumps for which a reference price change is involved). For large tick assets3,
such decomposition is proved to be very relevant when studying the conditional dependences
between the dynamics of the LOB and its state, see Huang, Lehalle, and Rosenbaum (2015).
Moreover, in this framework, we are able to easily incorporate exogenous price movements into
the order book dynamics. This can be simply done adding a reference price jump component
which is independent of the order book state.

At the high frequency scale, the LOB state is one of the two public information that are accessi-
ble to traders and their automates (the other being the history of the order flows). Thus it plays
a very important role in their trading decisions. In our framework , the LOB is assumed to be
a continuous-time Markov jump process, and the influence of the LOB state on the incoming
flows is modeled through a state-dependent infinitesimal generator matrix for the jump process.
Indeed, in practice, traders essentially rely on information deduced from the current LOB state
when deciding to send an order at a specific price level. Various simplifying assumptions on
the information set used by traders can be considered in our framework in order to facilitate
the empirical studies. The index of a limit, for example, is probably one of the most important
elements in their decision process, as it gives the distance between the target price and the
reference price. Influence of other variables, such as the target limit’s size, its relative distance
to the current best offer queues and the size of its opposite queue is studied in Huang, Lehalle,
and Rosenbaum (2015), and are shown to also have non-negligible effects on the dynamics of
the order flows.

Under appropriate assumptions, the Queue-reactive model can be easily estimated using em-
pirical data. It provides many interesting new insights on the origin of some micro-structural
properties, such as the stylized empirical distribution of the LOB state. It has been shown in
Bouchaud, Mézard, and Potters (2002) that there exist some regularities in the order book’s
empirical form, that is the average value of the LOB state (a 2K dimensional vector in our
model). From a theoretical point of view, these regularities are closely linked with the notion
of ergodicity of the LOB system (the exact definition of ergodicity will be given in Section 3):
Ergodicity ensures the convergence of the LOB state distribution towards an invariant prob-
ability measure. Thus the stylized form observed on market data might be explained by a
law of large number type phenomenon for this invariant distribution. This hypothesis is sup-
ported by empirical studies in Huang, Lehalle, and Rosenbaum (2015), in which the authors
compare the theoretical asymptotic distributions in our model with empirical estimations, and
show that they are very close. In Huang, Lehalle, and Rosenbaum (2015), some assumptions
are made to ensure the LOB system’s ergodicity. In this paper, we want to generalize them
in an extended framework where the volume of the orders is no longer constant and the in-
fluence of the order book state on the dynamics of the reference price may not be instantaneous.

3A large tick asset is defined as an asset whose bid-ask spread is almost always equal to one tick.
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Another important element in order book modeling is the asymptotic behavior of the price.
Such analysis is very relevant as it provides useful insights on the price formation process, and
links the dynamics at the microscopic level with macroscopic features of the asset, such as its
volatility. We prove that in our framework, the rescaled reference price process converges to
a Brownian motion. An expression for the macroscopic volatility in terms of the flow rates is
derived using a functional central limit theorem together with the strong mixing property of
the price increments, in the spirit of Abergel and Jedidi (2011).

The paper is organized as follows. In Section 2, we set up the general Markovian framework.
Section 3 discusses the ergodicity properties of the model. The diffusive limit of the rescaled
price process is stated in Section 4. Finally, in Section 5, we give some specific models which can
be seen as particular cases of our framework. The technical proofs are gathered in an appendix.

2 A general Markovian framework

2.1 Representation of the order book

In our framework, the order book is made of two elements: the center position: a certain ref-
erence price (note that here the center position is not necessarily the mid price) and the shape
of the book (the queue sizes around the reference price), see Figure 1 for an example. The
center position, denoted by pref ∈ {nα + 0.5α, n ∈ Z}4, can be seen as the current consen-
sus price level and is used to index the limits. We write Q±i for the queue at the price level
pref ± (i − 0.5)α and denote its size by q±i and its price by pi. Then the total order book’s
shape at time t is an infinite vector q(t) = [..., q−k(t), ...q−1(t), q1(t), ..., qk(t), ...], with qi ∈ Z,
and |qi| is the number of orders at the limit Qi (qi < 0 if these orders are bid orders and qi > 0
if they are ask orders. Note that in such a representation, one can have qi ≥ 0 or qi < 0 for
all i). The LOB information at time t is therefore fully represented by X(t) := (q(t), pref (t)),
t ≥ 0. To restrict the value of X(t), we consider only K limits on each side, and thus have now
q(t) = [q−K(t), ...q−1(t), q1(t), ..., qK(t)] and X(t) ∈ Z2K × α(0.5 + Z).

The state space of q(t) is actually smaller than Z2K . More specifically, let us define

ibestbid(q) = max(−K − 1, sup{i|qi < 0})
ibestask(q) = min(K + 1, inf{i|qi > 0}).

The state space Ω of q(t) is defined as the set of all q ∈ Z2K , such that: for all i ∈ {−K, ...,K},
qi ≤ 0 if i ≤ ibestbid(q) and qi ≥ 0 if i ≥ ibestask(q).

2.2 Dynamics of the order book

In our general framework, we model the LOB vector X(t) as a continuous-time Markov jump
process, whose infinitesimal generator matrix Q will be given in Equation (4). We differentiate
two types of jumps in the order book dynamics: pure order book state jumps (for which pref
stays constant) and common jumps (for which a change in the value of pref is involved).

4For the generality of the framework, we allow for negative prices, however, in practice, the model should
of course be used over a reasonably small time interval so that prices remain positive.
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Figure 1: Limit order book

Pure order book state jump

There are three5 types of orders that interact directly with the order book and trigger pure
order book state jumps:

• Limit orders: insertion of a new order in the order book (a buy order at a lower price
than the best ask price, or a sell order at a higher price than the best bid price).

• Cancellation orders: cancellation of an already existing order in the order book.

• Market orders: consumption of available liquidity (a buy or sell order at the best available
price).

In the seminal work of Smith, Farmer, Gillemot, and Krishnamurthy (2003), the arrival times of
the above three types of orders at different price levels are assumed to be mutually independent
and exponentially distributed. Furthermore, each order has unit size. In our approach, the size
of the jumps, which represents the amount of volume inserted to/removed from the LOB for a
given event, is random. Moreover, the arrival rate of a given jump is assumed to be function of
the index of the target price, the current LOB state vector q(t), the direction of the jump and its
size. That is, for any q, q′ ∈ Ω (q 6= q′), p ∈ α(0.5+Z), n ∈ N+ and any ei = (a−K , ..., ai, ..., aK)
(aj = 0 for j 6= i and ai = 1), we have in cases where q + nei ∈ Ω and q − nei ∈ Ω:

Q(q,p),(q+nei,p) = fi(q, n)

Q(q,p),(q−nei,p) = gi(q, n)

Q̃(q,p),(q′,p) = 0, otherwise, (1)

where the fi and gi are 2K functions: Ω× N+ → R+.

5Four if we also consider the modification orders. We view modification orders as a combination of a
cancellation and an insertion order that arrive in a very short time interval.

5



Note that in (1), fi(q, n) and gi(q, n) have different meanings for different i and q. For example,
when i ≥ ibestask, fi(q, n) represents the arrival rate of sell limit orders of size n, and gi(q, n)
the sum of the rate of cancellations of size n and the arrival rate of market buy orders of size
n. When i ≤ ibestbid, the role of fi(q, n) and gi(q, n) are switched. Note also that q ± nei is not
always in the state space Ω even when q ∈ Ω. Thus some values of the functions fi and gi are
not needed in Equation (1) and assumed to be equal to zero. Furthermore, so that there is no
absorbing state, we assume ∑

i

∑
n

(
fi(q, n) + gi(q, n)

)
> 0.

Common jumps

The reference price pref can be viewed as a consensus value on the “efficient” price and takes
discretized values in α(0.5 + Z). In practice, this reference price is built based on two sets of
information: the current state of the LOB and the historical order flows. We have in mind
that pref moves in a Markovian manner, so its dynamics depends on the present information
only, that is the current state of the LOB. In our framework, we restrict the price jump size to
one tick at each time. We use two functions u, d : Ω→ R+ to describe respectively the rate of
positive and negative jumps:

∑
q′∈Ω

Q(q,p),(q′,p+α) = u(q)∑
q′∈Ω

Q(q,p),(q′,p−α) = d(q)∑
q′∈Ω

Q(q,p),(q′,p±nα) = 0, for n ≥ 2. (2)

To understand Equation (2), let us first consider the following simple example where the LOB
state information is summarized by the difference between the current value of pref and the
mid price pmid:

Example 1.

imid = (ibestbid + ibestask)/2,

u(q) = θ0 + θ1 max(0, α(imid − 0.5))

d(q) = θ0 + θ1 max(0,−α(imid + 0.5)),

with θ0 ≥ 0 and θ1 a positive constant representing the intensity of the adjustment of pref
towards pmid.

In the above example, we assume that the reference price jump rate depends on the deviation
of the current value of pref from pmid. Indeed, pmid is often considered an approximation of the
LOB center implied by its current state. We may also include other LOB information such as
the available quantities at Qibestbid and Qibestask when defining u(q) and d(q). Such additional
variables increase the complexity of our model but make it more realistic.
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Remark 2.1. In the already mentioned Queue-reactive model, changes of pref are triggered
by the order book events that modify pmid, while in Equation (2), they are driven by the order
book state. Although the Queue-reactive model cannot exactly be seen as a particular case of
the framework presented in this paper (see Section 5), most of the theoretical results shown in
Sections 3 and 4 still hold (with some minor modifications in some assumptions). In particular,
one can prove the diffusive limit of the reference price in the Queue-reactive model applying
almost the same method as that used here.

As soon as pref changes, the value of qi switches immediately to the value of one of its neighbors
(right if pref increases, left if it decreases). As we keep only K limits on each side, two bound-
ary distributions π−K and πK are introduced for generating the new queue sizes at Q−K (when
pref decreases) and QK (when pref increases). To possibly incorporate external information,
we moreover assume that with probability θreinit, the LOB state vector q(t) is redrawn from
some distribution (πinc if pref increases, πdec if pref decreases) when pref changes. As shown in
Huang, Lehalle, and Rosenbaum (2015), models where price dynamics are purely endogenous,
driven by order flows only, are usually not able to reproduce some of the important macroscopic
features of prices, such as the volatility. Thus the parameter θreinit can be understood as the
percentage of price changes due to exogenous information, in which case market participants
readjust very quickly their order flows around the new reference price, as if a new state of the
LOB was drawn from its (invariant) distribution (ergodicity conditions are discussed in the
next section).

For q ∈ Ω, we write q+ = [q−K+1, ..., q−1, q1, ..., qK ], q− = [q−K , ..., q−1, q1, ..., qK−1], [q+, l] =
[q−K+1, ..., q−1, q1, ..., qK , l] and [l, q−] = [l, q−K , ..., q−1, q1, ..., qK−1]. Under the above assump-
tions, we have for l ∈ Z and q, q′, q′′ ∈ Ω such that q′+ 6= q+ and q′′− 6= q−:

Q(q,p),([q+,l],p+α) = (1− θreinit)u(q)πK(l) + θreinitu(q)πinc([q+, l])

Q(q,p),(q′,p+α) = θreinitu(q)πinc(q′)

Q(q,p),([l,q−],p−α) = (1− θreinit)d(q)π−K(l) + θreinitd(q)πdec([l, q−])

Q(q,p),(q′′,p−α) = θreinitd(q)πdec(q′′). (3)

The infinitesimal generator matrix of X(t)

Equations (1), (2) and (3) give a complete description of the infinitesimal generator matrix Q
of the process X(t), which is summarized in the following assumption.

Assumption 2.1. Let q, q′, q′′, q̃ ∈ Ω, p, p̃ ∈ α(0.5 + Z), n ∈ N+, l ∈ Z be such that q′+ 6= q+

and q′′− 6= q−. The process X(t) is an irreducible Markov jump process with aperiodic embedded
chain whose infinitesimal generator matrix Q is of the following form (with 2K functions fi, gi :
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Ω× N+ → R+ and two functions u, d : Ω→ R+) :

Q(q,p),(q+nei,p) = fi(q, n)

Q(q,p),(q−nei,p) = gi(q, n)

Q(q,p),([q+,l],p+α) = (1− θreinit)u(q)πK(l) + θreinitu(q)πinc([q+, l])

Q(q,p),(q′,p+α) = θreinitu(q)πinc(q′)

Q(q,p),([l,q−],p−α) = (1− θreinit)d(q)π−K(l) + θreinitd(q)πdec([l, q−])

Q(q,p),(q′′,p−α) = θreinitd(q)πdec(q′′)

Q(q,p),(q,p) = −
∑

(q̃,p̃)∈Ω×α(0.5+Z),(q̃,p̃)6=(q,p)

Q(q,p),(q̃,p̃),

Q(q,p),(q̃,p̃) = 0, otherwise. (4)

Note that under Assumption (2.1), the dynamics of the process X(t) is invariant under trans-
lations of the LOB center position: its infinitesimal matrix generator Q satisfies:

Q(q1,p1),(q2,p1+β) = Q(q1,p2),(q2,p2+β),

for any q1, q2 ∈ Ω, p1, p2 ∈ α(0.5 +Z) and β ∈ αZ. One can also remark that in our framework,
the order book state process q(t) alone is also a continuous-time Markov jump process, whose
ergodicity is discussed in the next section.

2.3 Comparison with existing models

The first major difference between our approach and the existing Markovian models in the
literature is the introduction of state dependency in the order book dynamics. Most of the
current order book models follow the “Zero-intelligence” framework, using Poisson flows for
the processes of order arrivals. The Poisson assumption is clearly unrealistic, see for exam-
ple the empirical results in Huang, Lehalle, and Rosenbaum (2015). In our framework, we
propose to incorporate the strategic behaviors of market participants via a mean-field game
approach, assuming their decisions depend on an underlying “efficient” price pref and on the
LOB state vector q(t). Note also that Equation (1) allows us to have jumps of random size in
the order book’s shape, while a constant jump size is often assumed in the other existing models.

We also introduce a new method of LOB representation using one unique reference price pref .
Most models use the best bid and best ask prices as two reference prices for indexing the buy
and sell limits. In such models, these reference prices are directly determined by the order
book state. In particular, changes in the order book state are immediately carried on the
values of these prices. In our framework, pref is not necessarily deduced from the order book
state. Therefore, we can assume that changes in the order book state affect the value of pref
with some delay rate (the functions u and d introduced in Equation (2)). Thanks to this
original representation, we can naturally decompose the order book dynamics into two parts:
a continuous-time multidimensional queuing system (Equation (1)) and the dynamics of its
center, that is the reference price (Equations (2) and (3)). Compared with the Queue-reactive
model introduced in Huang, Lehalle, and Rosenbaum (2015), pref is no longer constrained
within the bid-ask spread. This desirable feature gives us the possibility of separating the
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exogenous and endogenous parts in the price dynamics by choosing appropriate price jump rate
functions u and d. For example, with the functions u and d of Example 1, one can interpret θ0

as the exogenous part in the dynamics of pref and θ1 as the intensity of the endogenous effects
driving pref towards the current mid price level.

3 Ergodicity

In this section, we discuss ergodicity properties in our framework. To do so, we make some
additional assumptions on the functions fi, gi, u and d.

Let
Pt(x,A) := P[Y (t) ∈ A|Y (0) = x]

be the transition probability at time t of a continuous or discrete-time Markov process Y with
state space Y . In this work, we say that the process Y is V-uniformly ergodic if there exists a
coercive6 function V > 1, an invariant distribution π, r ∈ (0, 1) and R > ∞ such that for any
x ∈ Y and t ∈ R+ (or N+ in discrete-time),

||Pt(x, .)− π(.)||V ≤ RrtV (x), (5)

where we write ||.||V for the V -norm of a signed measure, see Meyn and Tweedie (1993, 2009).
In continuous time, the main idea to prove such property is to design an appropriate Lyapunov
function V : Y → (1,∞), on which the following negative drift condition is satisfied for some
γ > 0 and B > 0:

QV (y) :=
∑
y′ 6=y

Qyy′ [V (y′)− V (y)]

≤ −γV (y) +B.

Then by Theorem 6.1 in Meyn and Tweedie (1993), the Markov process Y is non-explosive and
V-uniformly ergodic. Furthermore, by Theorem 4.2 in Meyn and Tweedie (1993) it is positive
Harris recurrent. Note that the same kind of method is used in Abergel and Jedidi (2011) in
order to show ergodicity properties of Zero-intelligence models.

As mentioned in the introduction, the LOB’s ergodicity implies here the existence of a unique
invariant distribution for the state vector q. This is relevant for explaining the stylized empirical
distribution of the LOB state. Mostly, as we will see in Section 4, the ergodicity analysis is the
basis for proving the diffusive limit of the reference price process.

3.1 When pref stays constant

We first discuss the V-uniform ergodicity of the process q(t) when assuming u(q) = d(q) = 0
in Equation (4). Recall that the unused values of fi(q, n) and gi(q, n) in the definition of the
queue dynamics, that is when q ± nei /∈ Ω, are set to zero. With the convention 0/0 = 0, we

6|V (x)| → +∞ as ||x|| → ∞.
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define

f ∗i (q) :=
∑
n

fi(q, n)

g∗i (q) :=
∑
n

gi(q, n)

li(q, n) :=
fi(q, n)

f ∗i (q)

ki(q, n) :=
gi(q, n)

g∗i (q)

Gf,i,q(z) :=
∞∑
n=1

znli(q, n)

Gg,i,q(z) :=
∞∑
n=1

znki(q, n).

Thus, when f ∗i (q) > 0 (resp. g∗i (q) > 0), li(q, .) (resp. ki(q, .)) is a probability measure on
N+ with moment-generating function Gf,i,q(z) (resp. Gg,i,q(z)). We make the four following
assumptions.

Assumption 3.1. For any order book state q and any i ≥ ibestask, gi(q, n) = 0 for any n > qi
and for any order book state q and any i ≤ ibestbid, fi(q, n) = 0 for any n > −qi.

Assumption 3.2. There exists z∗ > 1 such that for any q and i, Gf,i,q(z∗) <∞ and Gg,i,q(z∗) <
∞. Furthermore, there exists L > 0 such that for any i,

lim
z→1+

sup
q

[f ∗i (q)Gf,i,q(z)1i>ibestbid + g∗i (q)G
g,i,q(z)1i<ibestask ] < L.

Assumption 3.3. There exist r > 0 and U > 1 such that

lim
z→1+

sup
(q,i):qi>U,i≥ibestask

[f ∗i (q)− g∗i (q)
1−Gg,i,q(z−1)

Gf,i,q(z)− 1
] < −r

lim
z→1+

sup
(q,i):qi<−U,i≤ibestbid

[g∗i (q)− f ∗i (q)
1−Gf,i,q(z−1)

Gg,i,q(z)− 1
] < −r. (6)

Assumption 3.4. For any z > 1,

Bf (z) := inf
(q,i):qi>U,i≥ibestask

(Gf,i,q(z)− 1) > 0

Bg(z) := inf
(q,i):qi<−U,i≤ibestbid

(Gg,i,q(z)− 1) > 0.

To understand the practical meaning of these assumptions, let us consider the following example
where the pure order book state jumps are assumed to have constant size equal to one. In
such situation, the four assumptions above can be rewritten as follows and are much easier to
interpret.
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Example 2. LOB model with constant order size.

• For n ≥ 2, fi(q, n) = gi(q, n) = 0 for any q ∈ Ω.

• There exists L > 0 such that for any i ∈ {−K, ...,K} and q ∈ Ω,

fi(q, 1)1i>ibestbid + gi(q, 1)1i<ibestask < L.

• There exist r > 0 and U > 1 such that

sup
(q,i):qi>U,i≥ibestask

[fi(q, 1)− gi(q, 1)] < −r

sup
(q,i):qi<−U,i≤ibestbid

[gi(q, 1)− fi(q, 1)] < −r.

Basically, Assumption 3.1 says that a bid/ask limit cannot become an ask/bid limit in a single
queue update event, that is the queue size cannot revert its sign in a single jump7. From
Example 2, we see that Assumption 3.2 essentially states that the total intensity of the order
insertion processes in the bid and ask side remains uniformly bounded with respect to the state
of the LOB. Assumption 3.3, which is the most important for the system’s ergodicity, forces
the individual queue sizes |qi| to decrease when they become larger than a certain threshold.
From these assumptions, we obtain the following theorem proved in appendix for the Markov
process q(t).

Theorem 3.1. When u = d = 0, under Assumptions 2.1, 3.1, 3.2, 3.3 and 3.4, the continuous-
time Markov jump process q(t) is non-explosive, V-uniformly ergodic and positive Harris recur-
rent.

Consider now the embedded Markov chain q(n) defined by q(n) = q(Jn), where Jn is the time
of the n-th jump, and q(Jn) the state of the LOB after this event. The study of the embedded
Markov chain is an important step in order to obtain the diffusivity of the price process in our
setting. We write

a∗i (q) =
f ∗i (q)∑

i[f
∗
i (q) + g∗i (q)]

, b∗i (q) =
g∗i (q)∑

i[f
∗
i (q) + g∗i (q)]

,

for the proportions of queue size increases and decreases, and replace Assumption 3.3 by the
following one.

Assumption 3.5. There exist r > 0 and U > 1 such that

lim
z→1+

sup
(q,i):qi>U,i≥ibestask

[a∗i (q)− b∗i (q)
1−Gg,i,q(z−1)

Gf,i,q(z)− 1
] < −r

lim
z→1+

sup
(q,i):qi<−U,i≤ibestbid

[b∗i (q)− a∗i (q)
1−Gf,i,q(z−1)

Gg,i,q(z)− 1
] < −r.

The following theorem is proved in appendix.

Theorem 3.2. When u = d = 0, under Assumptions 2.1, 3.1, 3.2, 3.4 and 3.5, the embedded
discrete-time Markov chain q(n) is V-uniformly ergodic and positive Harris recurrent.

7This assumption is not really mandatory but is realistic and technically quite convenient.
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3.2 General case

We are now interested in the case where u and d are no longer fixed to 0. Recall that q(n)
represents the state of the LOB after the n-th event and pref (n) is the reference price (the
center of the LOB) after the n-th event. We thus consider here the process of reference price
increments c(n) (since the reference price itself is of course not ergodic), defined as the reference
price change at the n-th event:

c(n) = pref (n)− pref (n− 1),

and the embedded chain Y (n) = (q(n), c(n)), n ∈ N, with c(0) an artificial starting value. The
process Y (n) remains obviously Markovian. For some z > 1, let

V z([q, c]) =
K∑

i=−K,i6=0

z|qi|−U .

We make two additional assumptions for the general case.

Assumption 3.6. There exist z > 1 and Lπ > 0 such that for Qinc, Qdec, QK, Q−K four
random variables such that Qinc ∼ πinc, Qdec ∼ πdec, QK ∼ πK and Q−K ∼ π−K:

E[V z([Qinc, c])] + E[V z([Qdec, c])] + E[z|QK |−U ] + E[z|Q−K |−U ] ≤ Lπ.

Assumption 3.7. There exists a finite set W ⊂ Ω such that the upper bound of the proportion
of reference price jumps in any order book state q is smaller than one on Ω/W :

sup
q∈Ω/W

u(q) + d(q)∑
i[f
∗
i (q) + g∗i (q)] + u(q) + d(q)

< 1.

Assumption 3.6 is technical and imposes some regularities on the four distributions πinc, πdec,
πK and π−K . Assumption 3.7 ensures that a reference price change is not the only possible
event except for a finite number of LOB states. Under these assumptions, we have the following
theorem proved in appendix on the ergodicity of the embedded chain Y (n).

Theorem 3.3. Under Assumptions 2.1, 3.1, 3.2, 3.4, 3.5, 3.6 and 3.7, the embedded discrete-
time Markov chain Y (n) = (q(n), c(n)) is V-uniformly ergodic and positive Harris recurrent.

4 Scaling limits

We are now interested in the scaling limit of the reference price process. Let Ji be the time of
the i-th jump of the process. Let

N(t) = inf{n, Jn ≤ t}

be the number of events until time t, with the convention inf{∅} = 0. Let Z(n) be the
cumulative price change until the n-th event, that is Z(0) = 0 and for n ≥ 1:

Z(n) =
n∑
i=1

c(i).

12



We have
Z(N(t)) = pref (t)− pref (0).

Thus it represents the reference price at time t recentered its starting value. We show in this
section the diffusive behavior of Z(N(t)) as n tends to infinity.

Consider again the embedded chain Y (n) = (q(n), c(n)). From Theorem 3.3, Y (n) is V-
uniformly ergodic towards an invariant distribution π∗. We have the following theorem for
the rescaled price process in event time Ŝ(n)(t) := Z(bntc)√

n
.

Theorem 4.1. Under Assumptions 2.1, 3.1, 3.2, 3.4, 3.5, 3.6 and 3.7, if Eπ∗ [c(0)] = 0, then
the series

σ2 = Eπ∗ [c2
0] + 2

∞∑
n=1

Eπ∗ [c0cn], (7)

converges absolutely. Furthermore, if Y (0) ∼ π∗, we have the following convergence in law in
D[0,∞):

Ŝ(n)(t)
n→∞→ σB(t),

where B(t) is a standard Brownian motion.

Proof. This theorem is a direct application of Theorem 19.1 in Billingsley (2009). Indeed, the
sequence cn is clearly stationary and ergodic in the sense of Billingsley (2009) (for example
since it is stationary and mixing). Moreover, it has a finite second order moment and for all n,
Eπ∗ [cn] = Eπ∗ [c0] = 0.

Theorem 4.1 shows that in event time, the large scale limit of the reference price process is a
Brownian motion. However, the most relevant question is that of the large scale limit of the
reference price in calendar time. Thus we now consider the process

S̃(n)(t) =
Z
(
N(nt)

)
√
n

.

To prove the diffusivity of S̃(n)(t), we need a last assumption which is a bound of the expected
value on the waiting time between two events.

Assumption 4.1. There exists some m > 0, such that

inf
q∈Ω

{∑
i

(f ∗i (q) + g∗i (q)) + u(q) + d(q)
}
> m.

Let τn be the inter-arrival time between the n-th and the (n−1)-th jumps of the Markov process
X. We then have the following theorem proved in appendix for the long term behavior of the
reference price in calendar time.

Theorem 4.2. Under Assumptions 2.1, 3.1, 3.2, 3.4, 3.5, 3.6, 3.7 and 4.1, the process
(q(n), c(n), τ(n)) is positive Harris recurrent. Furthermore, if Eπ∗ [c(0)] = 0 and Y (0) ∼ π∗,
then

S̃(n)(t)
n→∞→ σ√

Eπ∗∗ [τ(1)]
B(t),

with π∗∗ is the invariant distribution of (q(n), c(n), τ(n)) and σ defined in (7).

Theorem 4.2 discusses the scaling limit of the underlying reference price. However, the difference
between this price and the more usual pbestbid(t), pbestask(t) or pmid(t) being bounded by 2K,
the same result applies replacing the reference price by any of those prices.
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5 Some specific models

The Markovian setting proposed in this work allows us for a wide range of possibilities for
modeling order book dynamics. The goal of this section is to give some natural and tractable
examples of models, essentially already introduced in the literature, which can be seen as
particular cases of our general framework. Together with the dynamics of the models, we
provide sufficient conditions so that the assumptions made in the previous sections are satisfied
in these specific models. Thus the ergodicity and diffusive scaling properties apply in all these
models.

5.1 Best bid/best ask Poisson model (Cont and De Larrard (2013))

The basic idea of this first model, inspired by that introduced in Cont and De Larrard (2013),
is to use a constant spread size (fixed to 1 tick) and to consider only two limits in the order
book.

Example 3. Poisson model with K = 1.

• We take K = 1, θreinit = 1 and assume that the functions fi, gi, u and d have the following
forms, with 0 < λ < µ <∞:

f1(q, n) = λ1n=1

g1(q, n) = µ1q1>01n=1

f−1(q, n) = µ1q−1<01n=1

g−1(q, n) = λ1n=1

u(q) = θ1q1=0

d(q) = θ1q−1=0.

• πinc and πdec satisfy Assumption 3.6 and

for any q−1 > 0, q1 ∈ Z,

πinc(q−1, q1) = πdec(q−1, q1) = 0,

for any q1 < 0, q−1 ∈ Z,

πinc(q−1, q1) = πdec(q−1, q1) = 0.

Note that here, the boundary distributions πK and π−K are no longer needed, since the order
book reinitialization probability θreinit is set to one.

In this model, the role of pref is very close to that of pmid, which splits the order book into
two parts: the bid side (Q−1) and the ask side (Q1). The limit order insertion, cancellation
and market order insertion processes are assumed to be independent Poisson processes. The
size of these orders is assumed to be constant and pref jumps with rate 0 when none of the
queues Q±1 is empty, with rate θ to the right side when Q1 is empty, with rate θ to the left side
when Q−1 is empty. When the value of θ is very large, the price jump is almost instantaneous
as soon as one of the two queues becomes empty. In that case, this model becomes very close
to that proposed in Cont and De Larrard (2013), where an infinite rate is used (note that the
convergence of the rescaled price process can still be proved with some minor modifications in
such case of infinite jump rate).
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5.2 Poisson model with K > 1

It is natural to try to extend the previous Poisson model in order to include more queues in
the order book and to allow for a spread size different from one tick. In such model, the role of
pref is slightly different since it is not necessarily the mid price. Again, pref can be understood
here as the underlying efficient price that determines the order arrival intensities at different
price levels. Now buy/sell limit orders can be inserted both on the right side and on the left
side of pref .

Example 4. Poisson model with K > 1.

• The functions fi, gi, u and d have the following forms, for i = −K, ...,K:

fi(q, 1) = λi1i>ibestbid(q) + γi1i=ibestbid(q)

+µi1i≤ibestbid(q)1qi<0

gi(q, 1) = λ−i1i<ibestask(q) + γ−i1i=ibestask(q)

+µ−i1i≥ibestask(q)1qi>0

fi(q, n) = 0, for n > 1

gi(q, n) = 0, for n > 1

u(q) = θibestask(q)

d(q) = θ−ibestbid(q).

• πK, π−K, πinc and πdec satisfy Assumption 3.6.

• For any i,j ∈ {−K, ...,K}, i < j, we have

µ−i > λi > 0

0 ≤ θi ≤ θj.

Limit orders, cancellations and market orders (which consume the quantities at the best offer

limits) are modeled by independent Poisson processes with different intensities λ
buy/sell
i , µ

buy/sell
i

and γ
buy/sell
i , depending on the distance from their target price to pref . We assume bid-ask

symmetry in this model, that is λbuyi = λsell−i , µbuyi = µsell−i and γbuyi = γselli , thus we omit the
index buy/sell in the above equations. Remark that the intensity of the buy/sell market order
flow at the best limit γi is a function of i, that is the position of the best limit with respect
to the reference price. This allows us to model the fact that market participants have different
behaviors towards the best limit, depending on their evaluation of the reference price.

The reference price jump dynamics is modeled by a sequence of increasing rates θi, i ∈ {−K, ...,K}.
This means that the larger the index of the best ask queue, the larger the probability of pref
to increase and the smaller the index of the best bid queue, the larger the probability of pref
to decrease. Note that in this model, we no longer assume any specific value for the reinitial-
ization probability θreinit and use Assumption 3.6 to impose some properties on the boundary
distributions πK and π−K and the initialization distributions πinc and πdec.
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5.3 Zero-intelligence model

We now present a different way of extending the Poisson model with K = 1 in order to include
more queues in the order book. This modeling approach where two reference prices are used is
called Zero-intelligence model and is introduced in Smith, Farmer, Gillemot, and Krishnamurthy
(2003). It is also considered in Abergel and Jedidi (2011) and is the basis of Cont, Stoikov,
and Talreja (2010). We define φ(i, j) as the absolute distance (in number of ticks) between the
queue Qi and Qj (φ(i, j) = |i− j|) and make the three following assumptions.

Example 5. Zero-intelligence model.

• The functions fi, gi, u and d have the following forms, for i = −K, ...,K:

fi(q, 1) = λφ(i,ibestbid(q))1i>ibestbid(q) + γ1i=ibestbid(q) + |qi|µφ(i,ibestask(q))1i≤ibestbid(q)

gi(q, 1) = λφ(i,ibestask(q))1i<ibestask(q) + γ1i=ibestask(q) + |qi|µφ(i,ibestbid(q))1i≥ibestask(q)

fi(q, n) = 0, for n > 1

gi(q, n) = 0, for n > 1

u(q) = θibestask(q)

d(q) = θ−ibestbid(q).

• πK, π−K, πinc and πdec satisfy Assumption 3.6.

• For any i,j ∈ {−K, ...,K}, λφ(i,j) > 0 and µφ(i,j) > 0.

• For any i,j ∈ {−K, ...,K}, i < j, we have

0 ≤ θi ≤ θj.

In this model, pref is no longer an underlying efficient price determining the order arrival
intensities. These intensities now depend on the positions of two different prices: pbestbid and
pbestask. Limit orders, cancellations and market orders are still described by independent Poisson
processes. Buy/sell limit orders are inserted in the queues to the left/right side of the best
ask/best bid price, with intensities depending on the distance between their price level and the
best ask/best bid price (λφ(i,ibestask/bestbid)); cancellations of buy/sell orders are sent to the queues
on the left/right side of the best ask/best bid price, with intensities being linear functions of
the queue sizes (|qi|µφ(i,ibestask/bestbid)); market buy/sell orders are sent to the best ask/best bid
queue, with intensity γ. The reference price pref now provides the center of the 2K dimensional
moving frame representing the LOB’s state and the same modeling approach as in Section 5.2
is used for its dynamics.

5.4 Queue-reactive model (Huang, Lehalle, and Rosenbaum (2015))

In Huang, Lehalle, and Rosenbaum (2015), the Queue-reactive model for order books is intro-
duced. This model takes into account the influence of the order book’s state in determining
the order arrival intensities (in a much more general way than considering only the position of
the best bid and best ask queues). The Queue-reactive model assumes that no buy/sell limit
order can be inserted on the right/left side of pref and uses the following assumption instead of
Equation (2) for the dynamics of the jumps of pref .
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Assumption 5.1. Whenever pmid increases (resp. decreases), pref increases (resp. decreases)
by α with probability θ, provided that q1 = 0 (resp. q−1 = 0) at that moment. Therefore, changes
in the value of pref are possibly triggered by one of the three following events:

• The insertion of a buy (resp. sell) limit order within the bid-ask spread while Q1 (resp.
Q−1 is empty).

• The cancellation of the last limit order at one of the best offer queues.

• A market order which consumes the last limit order at one of the best offer queues.

With some minor modifications in the proof of Theorem 4.2, one can prove that the scaling limit
of pref in the Queue-reactive model is a Brownian motion. As explained above, in this model,
changes of pref are triggered by events that modify the mid price. Here we propose a slightly
modified version of the Queue-reactive model8 by considering the following four assumptions
(note that the state space Ω is reduced in that case to Ω∗ := {q ∈ Ω, qi1i<0 ≤ 0, qi1i>0 ≥ 0}).

Example 6. Queue-reactive type model.

• The functions fi, gi, u and d have the following forms, for i = −K, ...,K:

fi(q, 1) = λ|i|(qi)1i>0 + µ|i|(−qi)1i<0

gi(q, 1) = λ|i|(−qi)1i<0 + µ|i|(qi)1i>0

fi(q, n) = 0, for n > 1

gi(q, n) = 0, for n > 1

u(q) = θ1q1=0

d(q) = θ1q−1=0,

with λ|i| and µ|i| non-negative functions defined on N, with µ|i|(0) = 0.

• We have

sup
i∈{1,...,K},qi∈N

(λi(qi)) < L <∞.

• There exist r > 0 and U > 1 such that for any qi > U and any i ∈ {1, ..., K}:

λi(qi)− µi(qi) < −r.

• There exists m′ > 0 such that for any i ∈ {1, ..., N}:

inf
qi∈N

[λi(qi) + µi(qi)] > m′.

Compared with Assumption 5.1, changes in pref are now driven by the relative position of the
mid price in the current order book state. Nevertheless, we can see that the two approaches
are quite similar. In this model, pref always stays between pbestask and pbestbid (since µ|i|(0) = 0
implies that the queue sizes on the left/right side of pref never become positive/negative). Such

8Model I in Huang, Lehalle, and Rosenbaum (2015) is used to describe the queue dynamics during constant
reference price periods.
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model gives us a much larger choice on the intensity functions λ|i| and µ|i| than when assuming
Poisson flows. Furthermore, with enough data points, these functions can be estimated in a
non-parametric way, as done in Huang, Lehalle, and Rosenbaum (2015). Finally the state-
dependent approach provides us very interesting insights about the way the order book state
influences market participants decisions and the mechanism making the empirical distribution
of the order book arise from these decisions, see Huang, Lehalle, and Rosenbaum (2015).

6 Conclusion

In this work, we extend the order book modeling approach proposed in Huang, Lehalle, and
Rosenbaum (2015) to a more general Markovian framework, allowing to take into account most
relevant features of LOB dynamics such as:

• Dependencies between the order arrival processes and the LOB state.

• Endogenous movements of the underlying efficient price and influence of the LOB state
on its dynamics.

• Exogenous movements of the underlying efficient price.

• Randomness in the size of the orders.

The ergodicity of the LOB system and the diffusive limit of the rescaled price process are es-
tablished under general assumptions. Finally, to illustrate the usefulness and the relevance of
our approach, several examples of classical models which can be seen as particular cases of our
general framework are presented.

To get a fully satisfying model, a last step would probably be to allow for a non-Markovian
component in the market order flow (since the Markov assumption is probably quite reasonable
for the limit order and cancellation flows). This can for example be done using self-exciting
processes, as in Abergel and Jedidi (2015). However, except for very specific cases (exponential
Hawkes processes for example), adding such non-Markovian component would certainly require
revising completely the mathematical approach to the model.
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7 Appendix

7.1 Proof of Theorem 3.1

Let us denote by Q̃ the infinitesimal generator matrix of q(t) when u = d = 0. The infinite
matrix Q̃ has the following form:

Q̃q,q+nei = fi(q, n)

Q̃q,q−nei = gi(q, n)

Q̃q,q = −
∑

q∈Ω,q′ 6=q

Q̃q,q′

Q̃q,q′ = 0, otherwise.

For some 1 < z ≤ z∗ (recall that z∗ is defined in Assumption 3.2), let us consider the function

V (q) =
K∑

i=−K,i6=0

z|qi|−U .

Since qi ≥ 0 for i ≥ ibestask, qi ≤ 0 for i ≤ ibestbid and qi = 0 for i ∈ (ibestbid, ibestask), we have

Q̃V (q) :=
∑
q′ 6=q

Q̃qq′ [V (q′)− V (q)]

=
∑

i≤ibestbid

∞∑
n=1

[(z−qi+n−U − z−qi−U)gi(q, n) + (z|qi+n|−U − z−qi−U)fi(q, n)]

+
∑

i≥ibestask

∞∑
n=1

[(zqi+n−U − zqi−U)fi(q, n) + (z|qi−n|−U − zqi−U)gi(q, n)]

+
∑

i∈(ibestbid,ibestask)

∞∑
n=1

[(zn−U − z−U)fi(q, n) + (zn−U − z−U)gi(q, n)].

Then by Assumption 3.1,

Q̃V (q) =
∑

i≤ibestbid

∞∑
n=1

[(z−qi+n−U − z−qi−U)gi(q, n) + (z−qi−n−U − z−qi−U)fi(q, n)]

+
∑

i≥ibestask

∞∑
n=1

[(zqi+n−U − zqi−U)fi(q, n) + (zqi−n−U − zqi−U)gi(q, n)]

+
∑

i∈(ibestbid,ibestask)

∞∑
n=1

[(zn−U − z−U)fi(q, n) + (zn−U − z−U)gi(q, n)]

=
∑

i≤ibestbid

z−qi−U
∞∑
n=1

(zn − 1)[gi(q, n)− fi(q, n)

zn
]

+
∑

i≥ibestask

zqi−U
∞∑
n=1

(zn − 1)[fi(q, n)− gi(q, n)

zn
]

+
∑

i∈(ibestbid,ibestask)

z−U
∞∑
n=1

(zn − 1)[fi(q, n) + gi(q, n)].
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Using the definition of Gf,i,q(z), Gg,i,q(z), f ∗i (q) and g∗i (q), we get

Q̃V (q) =
∑

i≤ibestbid

z−qi−U [g∗i (q)(G
g,i,q(z)− 1)− f ∗i (q)(1−Gf,i,q(z−1))]

+
∑

i≥ibestask

zqi−U [f ∗i (q)(Gf,i,q(z)− 1)− g∗i (q)(1−Gg,i,q(z−1))]

+
∑

i∈(ibestbid,ibestask)

z−U [f ∗i (q)(Gf,i,q(z)− 1) + g∗i (q)(G
g,i,q(z)− 1)].

Moreover, since for z > 1 we have Gf/g,i,q(z−1) < 1 and Gf/g,i,q(z) > 1, we obtain

Q̃V (q) ≤
∑

i:i≤ibestbid,qi<−U

z−qi−U(Gg,i,q(z)− 1)
(
g∗i (q)− f ∗i (q)

1−Gf,i,q(z−1)

Gg,i,q(z)− 1

)
+

∑
i:i≥ibestask,qi>U

zqi−U(Gf,i,q(z)− 1)
(
f ∗i (q)− g∗i (q)

1−Gg,i,q(z−1)

Gf,i,q(z)− 1

)
+

∑
i:i≤ibestbid,qi≥−U

g∗i (q)G
g,i,q(z) +

∑
i:i≥ibestask,qi≤U

f ∗i (q)Gf,i,q(z)

+
∑

i∈(ibestbid,ibestask)

[f ∗i (q)Gf,i,q(z) + g∗i (q)G
g,i,q(z)]

≤
∑

i:i≤ibestbid,qi<−U

z−qi−U(Gg,i,q(z)− 1)
(
g∗i (q)− f ∗i (q)

1−Gf,i,q(z−1)

Gg,i,q(z)− 1

)
+

∑
i:i≥ibestask,qi>U

zqi−U(Gf,i,q(z)− 1)
(
f ∗i (q)− g∗i (q)

1−Gg,i,q(z−1)

Gf,i,q(z)− 1

)
+
∑
i

[f ∗i (q)Gf,i,q(z)1i>ibestbid + g∗i (q)G
g,i,q(z)1i<ibestask ].

Now note that
sup
q

[f ∗i (q)Gf,i,q(z)1i>ibestbid + g∗i (q)G
g,i,q(z)1i<ibestask ]

is an increasing function of z. Thus by Assumption 3.2, we can find z′ > 1 such that for any
z ≤ z′, q ∈ Ω and i ∈ [−K, ...,K]:(

f ∗i (q)Gf,i,q(z)1i>ibestbid + g∗i (q)G
g,i,q(z)1i<ibestask

)
< L.

From Assumption 3.3, we see that we can find some z̃ with 1 < z̃ ≤ z′ such that for any
(q, i), qi < −U, i ≤ ibestbid, for any 1 < z ≤ z̃:

g∗i (q)− f ∗i (q)
1−Gf,i,q(z−1)

Gg,i,q(z)− 1
< −r, (8)

and for any (q, i), qi > U, i ≥ ibestask, for any 1 < z ≤ z̃:

f ∗i (q)− g∗i (q)
1−Gg,i,q(z−1)

Gf,i,q(z)− 1
< −r. (9)
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Thus taking z in the definition of the function V satisfying 2Kz−U > 1 (so that the function
V is coercive) and 1 < z ≤ z̃, we obtain

Q̃V (q) ≤ −r
∑

i:i≤ibestbid,qi<−U

z−qi−U(Gg,i,q(z)− 1)

−r
∑

i:i≥ibestask,qi>U

zqi−U(Gf,i,q(z)− 1) + 2KL.

≤ −rBg(z)
∑

i:i≤ibestbid,qi<−U

z−qi−U

−rBf (z)
∑

i:i≥ibestask,qi>U

zqi−U + 2KL.

By Assumption 3.4, B := min(Bg(z), Bf (z)) > 0. Therefore we get

Q̃V (q) ≤ −rB
∑

i:|qi|>U

z|qi|−U + 2KL

≤ −rB
∑
i

z|qi|−U + 2K(L+ rB)

= −rBV (q) + 2K(L+ rB).

Finally, remark that in our setting, any compact set included in Ω is finite. A singleton being a
petite set and a finite union of singletons remaining a petite set, see Proposition 5.5.5 in Meyn
and Tweedie (2009), we get that all the compact sets are petite. Therefore by Theorem 6.1
in Meyn and Tweedie (1993), q(t) is non-explosive and V-uniformly ergodic. Furthermore, by
Theorem 4.2 in Meyn and Tweedie (1993) it is positive Harris recurrent.

7.2 Proof of Theorem 3.2

For some 1 < z ≤ z∗, set again

V (q) =
K∑

i=−K,i6=0

z|qi|−U .

We write P̃q,q′ the transition probability from q to q′. In the same way as in the preceding
proof, we have

∆V (q) :=
∑
q′∈Ω

P̃q,q′(V (q′)− V (q))

=
∑

i≤ibestbid

z−qi−U [b∗i (q)(G
g,i,q(z)− 1)− a∗i (q)(1−Gf,i,q(z−1))]

+
∑

i≥ibestask

zqi−U [a∗i (q)(G
f,i,q(z)− 1)− b∗i (q)(1−Gg,i,q(z−1))]

+
∑

i∈(ibestbid,ibestask)

z−U [a∗i (q)(G
f,i,q(z)− 1) + b∗i (q)(G

g,i,q(z)− 1)].

Following the same method as in the proof of Theorem 3.1, we can easily find 1 < z′ ≤ z∗ and
B > 0 such that taking z = z′ in the definition of V , it is coercive and we get

∆V (q) ≤ −rV (q) +B.
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Now define the set C := {q, rV (q) ≤ 2B}, C is obviously a finite set and is therefore petite.
Furthermore, we have

∆V (q) ≤ −r
2
V (q) +B1q∈C .

Thus by Theorem 16.1.2 in Meyn and Tweedie (2009), q(n) is V-uniformly ergodic.

Eventually, the fact that the chain is positive Harris recurrent is deduced from Theorem 9.1.8
together with Theorem 15.0.1 in Meyn and Tweedie (2009).

7.3 Proof of Theorem 3.3

For ease of notation, we write V instead of V z. Let Qinc, Qdec, QK , Q−K be four random
variables such that Qinc ∼ πinc, Qdec ∼ πdec, QK ∼ πK and Q−K ∼ π−K . We define

u∗(q) =
u(q)∑

i[f
∗
i (q) + g∗i (q)] + u(q) + d(q)

d∗(q) =
d(q)∑

i[f
∗
i (q) + g∗i (q)] + u(q) + d(q)

n∗(q) =

∑
i[f
∗
i (q) + g∗i (q)]∑

i[f
∗
i (q) + g∗i (q)] + u(q) + d(q)

EK = E[zQK−U ]

E−K = E[zQ−K−U ]

Eπinc = E[V ([Qinc, c])]

Eπdec = E[V ([Qdec, c])].

Remarking that V ([q, c]) does not depend on c, we write from now on V (q) instead of V ([q, c]).
Moreover, we set P[q,c],[q′,c′] as the transition probability from state [q, c] to state [q′, c′] and P̃q,q′
as the transition matrix of the embedded chain q(n) when u = d = 0. Using the form of the
infinitesimal generator Q, we deduce

∆V ([q, c]) :=
∑

(q′,c′)∈Ω×{−α,α}

P[q,c],[q′,c′](V (q′)− V (q))

= n∗(q)
∑
q′∈Ω

P̃q,q′(V (q′)− V (q))

+u∗(q)
[
(1− θreinit)(EK − z|q−K |−U) + θreinit(Eπinc − V (q))

]
+d∗(q)

[
(1− θreinit)(E−K − z|qK |−U) + θreinit(Eπdec − V (q))

]
.

By Assumption 3.6, we have

∆V ([q, c]) ≤ n∗(q)
∑
q′∈Ω

P̃q,q′(V (q′)− V (q)) + 2LK + 2Lπ.

Then as in the proof of Theorem 3.2, we can find 1 < z′ ≤ z∗ and B > 0 such that taking
z = z′ in the definition of V , it is coercive and we get

∆V (q) ≤ −n∗(q)rV (q) +Bn∗(q) + 2LK + 2Lπ.
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Moreover, Assumption 3.7 ensures that for any q except those belonging to the finite set W ,
n∗(q) > M with M ∈ (0, 1]. Consequently,

∆V (q) ≤ −MrV (q) +B + 2LK + 2Lπ + ν1[q,c]∈W×{−α,α},

with ν > 0. Now define the set C := {[q, c], MrV (q) ≤ 2B + 4LK + 4Lπ}. Being finite, C ∪W
is a petite set and we have

∆V ([q, c]) ≤ −Mr

2
V ([q, c]) + (B + 2LK + 2Lπ + ν)1[q,c]∈C∪W .

Hence from Theorem 16.1.2 in Meyn and Tweedie (2009), Y (n) is V-uniformly ergodic.

Eventually, the fact that the chain is positive Harris recurrent is deduced from Theorem 9.1.8
together with Theorem 15.0.1 in Meyn and Tweedie (2009).

7.4 Proof of Theorem 4.2

7.4.1 Preliminary lemma

We start with the following preliminary lemma.

Lemma 7.1. For the Markov chain (q(n), c(n), τ(n)), the Cartesian product of any finite set
included in Ω× {−α, α} and R+ is petite.

Proof. We first show that for any q ∈ Ω and c ∈ {−α, α}, the set q× c×R+ is petite (actually
small). We define the measure νq,c,τ which is so that for any B ∈ B(Ω×{−α, α}×R+), νq,c,τ (B)
is the transition probability from [q, c, τ ] to B in a single step:

νq,c,τ (B) = P[q,c,τ ],B.

Recall that in our framework, the transition probabilities from (q(n), c(n), τ(n)) depend only
on the value of q(n). So we can write νq,c,τ (B) as νq(B). In the sense of Equation (5.43) in
Meyn and Tweedie (2009), the transition probability P[q,r,τ ],B can be seen as a sampling kernel
for the Markov chain (q(n), c(n), τ(n)), using the Dirac measure at point 1 on Z+ as sampling
measure. Moreover, for any τ ∈ R+ and any B ∈ B(Ω× {−α, α} × R+), we have

P[q,c,τ ],B ≥ νq(B).

Therefore the set q× c×R+ is petite. Then, as the union of two petite sets remains petite, see
Proposition 5.5.5 in Meyn and Tweedie (2009), we have the result.

7.4.2 A law of large numbers

In the next proposition, we give a law of large numbers for the inter-arrival times, which is the
key element to establish the diffusive behavior of the price in calendar time. Within the proof
of this proposition, we show that (q(n), c(n), τ(n)) is positive Harris recurrent.

Proposition 7.1. Let τi be the inter-arrival time between the i-th and the i−1-th jumps of the
Markov process X. Under Assumptions 3.1, 3.2, 3.4, 3.5, 3.6, 3.7 and 4.1, almost surely, we
have

1

n

n∑
i=1

τi →
n→∞

Eπ∗∗ [τ(1)],

with π∗∗ the invariant distribution of (q(n), c(n), τ(n)).
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Proof. First we show that the Markov chain (q(n), c(n), τ(n)) is positive Harris recurrent. For
the Markov chain (q(n), c(n)), we have already proved that a coercive function V can be found,
such that the following drift condition is satisfied for some a > 0 and L <∞:

∆V ([q, c]) ≤ −aV ([q, c]) + L.

Now, for the Markov chain (q(n), c(n), τ(n)), take

V ∗([q, c, t]) = V ([q, c]) + t.

With obvious notation, we have

∆V ∗([q, c, t]) = ∆V ([q, c]) + E[q,c,t][τ ]− t
≤ −aV ([q, c]) + L+ Ex[τ ]− t.

Taking a′ = min(a, 1) and L′ = L+ 1/m, using Assumption 4.1, we get

∆V ∗([q, c, t]) ≤ −aV ([q, c]) + L+ 1/m− t
≤ −a′[V ([q, c]) + t] + L+ 1/m

≤ −a′V ∗([q, c, t]) + L′.

Now let C = {([q, c, t]), a′V ∗([q, c, t]) ≤ 2L′}. We have

∆V ∗([q, c, t]) ≤ −a
′

2
V ∗([q, c, t]) + L′1[q,c,t]∈C .

According to Lemma 7.1, the set C is petite. Thus we can apply Theorem 15.0.1 in Meyn and
Tweedie (2009) to deduce that the Markov chain (q(n), r(n), τ(n)) is positive recurrent and
thus admits an invariant measure.

Now remark that the function V ∗ is unbounded off petite sets (using Lemma 7.1 together with
the fact that any subset of a petite set is itself petite). Consequently, Theorem 9.1.8 in Meyn
and Tweedie (2009) enables us to obtain that the Markov chain (q(n), c(n), τ(n)) is Harris re-
current. Therefore it is positive Harris recurrent.

We end the proof thanks to Theorem 17.0.1 from Meyn and Tweedie (2009).

7.4.3 End of the proof of Theorem 4.2

We have

S̃(n)(t) =
Z(btn/Eπ∗∗ [τ(1)]c)√

n
+
(Z(N(nt))√

n
− Z(btn/Eπ∗∗ [τ(1)]c)√

n

)
.

According to Proposition 7.1, the sequence of processes N(nt)/n converges to t/Eπ∗∗ [τ(1)].
Moreover, the limit of Z(btn/Eπ∗∗ [τ(1)]c)/

√
n is continuous. Thus, using Skorohod representa-

tion theorem together with continuity properties in Skorohod topology, see Proposition VI.2.1
in Jacod and Shiryaev (2003), we get that the second term on the right hand side of the above
equality tends to zero. Finally, from Theorem 4.1, we get

Z(btn/Eπ∗∗ [τ(1)]c)√
n

n→∞→ σ√
Eπ∗∗ [τ(1)]

Bt.

Combining these two results, we obtain the weak convergence of the rescaled price process to a
Brownian motion with variance σ2/Eπ∗∗ [τ(1)], which concludes the proof.
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