SPARSE SPANNING k-CONNECTED SUBGRAPHS IN TOURNAMENTS

DONG YEAP KANG, JAEHOON KIM, YOUNJIN KIM, AND GEEWON SUH

ABSTRACT. In 2009, Bang-Jensen asked whether there exists a function g(k) such that every strongly k-connected n-vertex tournament contains a strongly k-connected spanning subgraph with at most kn + g(k) arcs. In this paper, we answer the question by showing that every strongly k-connected n-vertex tournament contains a strongly k-connected spanning subgraph with at most $kn + 750k^2 \log_2(k+1)$ arcs, and there is a polynomial-time algorithm to find the spanning subgraph.

1. INTRODUCTION

Search of certain subgraphs which inherit the properties of the original graph has a long history. For example, Hajnal [7] and Thomassen [15] proved that a graph G with high enough connectivity has two vertex disjoint k-connected subgraphs which together cover all vertices. Thomassen [14] also made a conjecture that a graph G with high enough connectivity has a k-connected spanning bipartite subgraph.

For directed graphs, such problems become more difficult. One of most important problems in this direction is the following $MSSS_k$ problem, where $MSSS_k$ stands for Minimum Spanning Strongly k-connected Subgraph: for a given strongly k-connected digraph D, find a spanning strongly k-connected subgraph of D with as few arcs as possible. For k = 1, we call it MSSSproblem by omitting k. It is known that the Hamilton cycle problem can be solved if one can solve the MSSS problem. Thus MSSS problem is a generalization of Hamilton cycle problem, so it has been studied extensively (see e.g [2, 3] for a survey). Since the Hamilton cycle problem is NP-hard for general directed graphs, MSSS problem is also NP-hard for general directed graphs. Thus it makes sense to consider subclasses of directed graphs for this problem, and this problem is solvable in polynomial-time for several classes of graphs (see [4, 5]). In particular, MSSS problem for tournaments is trivial as any strongly-connected tournament contains a Hamilton cycle (see [3, Corollary 1.5.2]). However, it is not known whether $MSSS_k$ problem is solvable in polynomial-time for tournaments for $k \geq 2$.

Naturally, one can ask about the size (the number of arcs) of minimum spanning strongly k-connected subgraphs for strongly k-connected tournaments. If we consider the same question for arc-connectivity, the following theorem was proved by Bang-Jensen, Huang and Yeo in 2004.

Theorem 1.1. [6] For $k \ge 1$, every strongly k-arc-connected n-vertex tournament contains a strongly k-arc-connected spanning subgraph D with $|E(D)| \le nk + 136k^2$.

This gives us an upper bound of the number of arcs in minimum spanning strongly k-arcconnected subgraphs for strongly k-arc-connected tournaments. However, for vertex-connectivity, no good upper bound was known. Indeed, Bang-Jensen [2] asked the following question in 2009.

Date: September 18, 2018.

The first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4005020) and also by TJ Park Science Fellowship (D. Kang). The second author was also partially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreements no. 306349 (J. Kim). The third author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (No. 2017R1A6A3A04005963) (Y. Kim). The fourth author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (2011-0011653) (G. Suh).

Question 1.2. [2] For $k \ge 1$, does there exist a function g = g(k) such that every strongly k-connected n-vertex tournament has a strongly k-connected spanning subgraph with at most kn + g(k) arcs?

In this paper, we answer this question by proving the following theorem.

Theorem 1.3. For $k \ge 1$, every strongly k-connected tournament T with n vertices has a strongly k-connected spanning subgraph D with at most $kn + 750k^2 \log_2(k+1)$ arcs.

Thus $g(k) = 750k^2 \log_2(k+1)$ is sufficient for answering Question 1.2, and this is asymptotically best possible up to logarithmic factor. Indeed, Bang-Jensen, Huang and Yeo [6] introduced an *n*-vertex tournament $\mathcal{T}_{n,k}$ for $n \ge k$ such that every strongly *k*-arc-connected spanning subgraph of $\mathcal{T}_{n,k}$ contains at least $nk + \frac{k(k-1)}{2}$ arcs. Since every strongly *k*-connected digraphs are also strongly *k*-arc-connected, this example shows that Theorem 1.3 is asymptotically best possible up to logarithmic factor. We conjecture that we can reduce g(k) to $O(k^2)$.

Conjecture 1.4. There is C > 0 such that for any positive integer k, every strongly k-connected n-vertex tournament T contains a strongly k-connected spanning subgraph D with at most $kn + Ck^2$ arcs.

One of two main ingredients for the proof of Theorem 1.3 is Lemma 3.4 which is, roughly speaking, a tool guaranteeing a sparse linkage structure from/to certain vertex-sets for any tournament. The other main ingredient is "robust linkage structures" introduced by Kühn, Lapinskas, Osthus and Patel in [9] to prove a conjecture of Thomassen on edge-disjoint Hamilton cycles in highly connected tournaments. Robust linkage structure is a very powerful tool for studying highly connected tournament. Further results were obtained by this method [8, 10, 12, 13]. The novelty of the proof of Theorem 1.3 is that it produces a highly connected 'sparse' subgraph in the tournament, whereas previous applications of the method only produced highly connected relatively dense subgraphs.

2. Basic terminology and tools

For any positive integer $N \ge 1$, [N] denotes the set $\{1, \ldots, N\}$. Let $\log := \log_2$, where we omit the base 2. A graph or simple graph is an undirected graph without multiple edges between two vertices and loops. A directed graph or digraph D = (V, E) is a pair of a vertex set V(D) = Vand an arc set E(D) = E, where E is a collection of ordered pairs in $V \times V$. We let \overline{uv} denote $(u, v) \in V \times V$ an arc from u to v. An oriented graph is a digraph obtained by orienting each edge $e \in E(G)$ for a simple graph G. An n-vertex tournament is an oriented graph obtained by orienting each edge $e \in E(K_n)$, where K_n is a simple complete graph of order n. For a set S of vertices, D - S denotes the induced digraph $D[V(D) \setminus S]$. For a set E' of arcs, D - E' denotes the digraph $(V(D), E(D) \setminus E')$. We say a digraph D' = (V', E') is a subgraph of D = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. We denote $D' \subseteq D$ if D' is a subgraph of D.

For a collection of arcs E, we let $V(E) := \{u : \exists v \text{ such that } \overline{uv} \in E \text{ or } \overline{vu} \in E\}$. A path always denotes a directed path. A path $P = (v_1, v_2, \ldots, v_n)$ is called a path from v_1 to v_n , and we say v_i is the *i*th vertex of P. Sometimes, we consider the path P as a collection of arcs and V(P) denotes $\{v_1, \ldots, v_n\}$. A directed graph D = (V, E) is strongly connected if for any $u, v \in V$, there is a path from u to v. We say that digraph D is strongly k-connected, if $|V| \ge k + 1$ and for $S \subseteq V$ with $|S| \le k - 1$, the digraph D - S remains strongly connected. Similarly, D is strongly k-arc-connected, if for $W \subseteq E$ with $|W| \le k - 1$, the digraph D - W remains strongly connected. It is easy to see that every strongly k-connected digraph is strongly k-arc-connected. For a directed graph D = (V, E) and $v \in V$, let

$$N_D^+(v) := \{ u \in V(D) : \vec{vu} \in E(D) \} \text{ and } N_D^-(v) := \{ u \in V(D) : \vec{uv} \in E(D) \}$$

We call u an *out-neighbor* of v if $\overrightarrow{vu} \in E(D)$ and u an *in-neighbor* of v if $\overrightarrow{uv} \in E(D)$. We define

$$\begin{aligned} d_D^+(v) &:= |N_D^+(v)|, \ d_D^-(v) &:= |N_D^-(v)|, \ d_D(v) &:= d_D^+(v) + d_D^-(v), \\ \delta^+(D) &= \min_{v \in V(D)} d_D^+(v), \ \delta^-(D) &= \min_{v \in V(D)} d_D^-(v) \ \text{and} \ \delta(D) &= \min_{v \in V(D)} d_D(v). \end{aligned}$$

For a digraph $D, B \subseteq V(D)$ out/in-dominates $C \subseteq V(D)$ if every vertex in C is an out/inneighbor of a vertex in B, respectively. A tournament T is transitive if V(T) can be ordered into v_1, \ldots, v_n such that $\overrightarrow{v_iv_j} \in E(T)$ if and only if i < j. We say that T is a transitive tournament with respect to the ordering $\sigma = (v_1, \ldots, v_n)$ with the source vertex v_1 and the sink vertex v_n .

We say a directed path $P = (v_1, \ldots, v_p)$ in T is backwards-transitive if $v_i v_j \in E(T)$ whenever $i \ge j+2$. For a vertex v and a vertex-set $U = \{u_1, \ldots, u_k\}$, a collection $\{P_1, \ldots, P_k\}$ of k paths is a k-fan from v to U if P_i is a path from v to $u_i \in U$, $U \cap V(P_i) = \{u_i\}$ for each $i \in [k]$, and $V(P_i) \cap V(P_j) = \{v\}$ for distinct $i, j \in [k]$. Similarly, a collection $\{P_1, \ldots, P_k\}$ of k paths is a k-fan from U to v if P_i is a path from $u_i \in U$ to $v, U \cap V(P_i) = \{u_i\}$ for each $i \in [k]$, and $V(P_i) \cap V(P_j) = \{v\}$ for distinct $i, j \in [k]$.

We will use the following well-known fact deduced from Menger's theorem later. We omit the proof.

Fact 1. For any strongly k-connected digraph D, a vertex $v \in V(D)$ and $U \subseteq V(D)$ with $|U| \ge k$, there exists a k-fan from v to U and a k-fan from U to v.

Note that if $v \in U$, then one of the paths in the k-fan is a trivial path from v to v.

Lemma 2.1. For positive integers n, k with $n \ge 2$ and $k \le n$, an n-vertex tournament T has at least k vertices of out-degree at least (n-k)/2 and k vertices of in-degree at least (n-k)/2. Moreover, T has a vertex v with $n/4 \le d_T^+(v) \le 3n/4$ and a vertex u with $n/4 \le d_T^-(u) \le 3n/4$.

Proof. Note that any *n*-vertex tournament contains a vertex with out-degree at least (n-1)/2. Let v_1, \ldots, v_n be an ordering of V(T) such that $d_T^+(v_1) \geq \cdots \geq d_T^+(v_n)$. Then $T[\{v_k, \ldots, v_n\}]$ contains a vertex with out-degree at least (n-k)/2, thus $d_T^+(v_k) \geq (n-k)/2$. Hence *T* contains *k* vertices of out-degree at least (n-k)/2. It follows that *T* also contains *k* vertices of in-degree at least (n-k)/2. It follows that *T* also contains *k* vertices of in-degree at least (n-k)/2 by reversing every arc of *T* and applying the same argument.

This also gives us at least $\lfloor n/2 \rfloor$ vertices with out-degree at least $\frac{n-\lfloor n/2 \rfloor}{2} \ge n/4$, and at least $\lceil n/2 \rceil + 1$ vertices with in-degree at least $\frac{n-\lceil n/2 \rceil-1}{2} \ge \frac{n}{4} - 1$. Hence there exists a vertex v with $n/4 \le d_T^+(v) \le (n-1) - (n/4 - 1) = 3n/4$. By reversing every arc of T and applying the same argument, it follows that there is a vertex u with $n/4 \le d_T^-(u) \le 3n/4$.

We introduce the following useful lemmas regarding in-dominating sets and out-dominating sets of tournaments.

Lemma 2.2. Let v be a vertex in an n-vertex tournament T with $d_T^+(v) = d$. Then there exist $A \subseteq V(T)$ and a vertex $a \in A$ such that the following properties hold:

- (a1) We have $\frac{1}{2}\log(d+1) + 1 \le s \le \frac{5}{2}\log(d+1) + 2$ where s = |A|.
- (a2) T[A] is a transitive tournament with respect to the ordering (v_1, \ldots, v_s) with source v and sink a.
- (a3) A in-dominates $V(T) \setminus A$.
- (a4) For $1 \le i \le s/5 13$, we have

$$|N_T^+(v_i) \setminus A|, |N_T^-(v_i) \setminus A| \ge 8d^{1/7} - 1.$$

(a5) For any positive integers i, k with $1 \le i \le s - 5 \log(k) - 30$, we have

$$|N_T^+(v_i) \setminus A|, |N_T^-(v_i) \setminus A| \ge 1000k^2.$$

Proof. Let $L_0 = V(T)$. If d = 0, then let $L_1 = \emptyset$ and $A := \{v_1\}$. Then it is obvious that A with an ordering (v_1) satisfies all (a1)–(a5). Now suppose $d \ge 1$. Let $v_1 := v$, $A_1 := \{v_1\}$ and $L_1 := N_T^+(v_1)$. Suppose L_1, \ldots, L_i has already been defined with $|L_i| \ge 1$. If L_i contains only one vertex u, let $v_{i+1} := u$ and $A_{i+1} := A_i \cup \{v_{i+1}\}$. If $|L_i| \ge 2$, Lemma 2.1 implies that there exists a vertex $u \in L_i$ with $|L_i|/4 \le d_{T[L_i]}^+(u) \le 3|L_i|/4$. Let $v_{i+1} := u$ and $L_{i+1} := L_i \cap N_T^+(v_{i+1})$. This procedure gives vertices v_1, \ldots, v_s and sets L_1, \ldots, L_s with $L_s = \emptyset$. We let $A := A_s$ with ordering (v_1, \ldots, v_s) and let $a := v_s$. From the construction, (a2) and (a3) are obvious.

The construction also implies that

$$\frac{|L_i|}{4} \le |L_{i+1}| \le \frac{3|L_i|}{4} \text{ for } i \in [s-2] \text{ and } |L_{s-1}| = 1.$$
(2.1)

Note that we have $s \ge 2$ because $d \ge 1$. This implies

$$\left(\frac{4}{3}\right)^{s-i-1} \le |L_i| \le 4^{s-i-1} \text{ for } i \in [s-1].$$
(2.2)

In particular, (2.2) with i = 1 and the fact that $d = |L_1|$ together imply

$$\frac{1}{2}\log(d) + 2 \le s \le \frac{\log(d)}{2 - \log(3)} + 2 \le \frac{5}{2}\log(d) + 2$$

Thus we get (a1).

Note that $L_i \setminus (L_{i+1} \cup \{v_{i+1}\}) \subseteq N_T^+(v_i) \setminus A$ and $L_{i-1} \setminus (L_i \cup \{v_i\}) \subseteq N_T^-(v_i)$. Thus, for $1 \leq i \leq s/5 - 13$ we have

$$|N_T^+(v_i) \setminus A| \geq |L_i \setminus L_{i+1}| - 1 \stackrel{(2.1)}{\geq} \frac{1}{4} |L_i| - 1 \stackrel{(2.2)}{\geq} \frac{1}{4} (\frac{4}{3})^{s-i-1} - 1 \geq \frac{1}{4} (\frac{4}{3})^{4s/5+12} - 1$$

$$\stackrel{(a1)}{\geq} \frac{1}{4} (\frac{4}{3})^{\frac{2}{5} \log(d+1) + 64/5} - 1 \geq 8d^{1/7} - 1$$

Similarly we also get $|N_T^-(v_i) \setminus A| \ge |L_{i-1} \setminus L_i| - 1 \ge 8d^{1/7} - 1$. Thus (a4) holds. For $i \le s - 5\log(k) - 30$, (2.2) implies that

$$|L_i| \ge \left(\frac{4}{3}\right)^{s-i-1} \ge \left(\frac{4}{3}\right)^{5\log(k)+29} > 4100k^2.$$

Therefore, (a5) follows from

$$|N_T^+(v_i) \setminus A| \ge |L_i \setminus L_{i+1}| - 1 \stackrel{(2.1)}{\ge} \frac{1}{4} |L_i| - 1 \ge 1000k^2, \ |N_T^+(v_i) \setminus A| \ge |L_{i-1} \setminus L_i| - 1 \ge 1000k^2.$$

By reversing arcs of a tournament T in Lemma 2.2, we have the following analogue.

Lemma 2.3. Let v be a vertex in an n-vertex tournament T with $d = d_T^-(v)$. Then there exist $B \subseteq V(T)$ and a vertex $b \in B$ such that the following properties hold:

- (b1) We have $\frac{1}{2}\log(d+1) + 1 \le s \le \frac{5}{2}\log(d+1) + 2$ where s = |B|
- (b2) T[B] is a transitive tournament with respect to the ordering (v_1, \ldots, v_s) with source b and sink v.
- (b3) B out-dominates $V(T) \setminus B$.
- (b4) For $i \ge 4s/5 + 14$, we have

$$|N_T^+(v_i) \setminus B|, |N_T^-(v_i) \setminus B| \ge 8d^{1/7} - 1.$$

(b5) For any positive integers i, k with $5\log(k) + 31 \le i \le s$, we have

$$|N_T^+(v_i) \setminus B|, |N_T^-(v_i) \setminus B| \ge 1000k^2.$$

3. Sparse linkage structure

In this section, we will prove Lemma 3.4. For an ordering $\sigma = (v_1, \dots, v_n)$ of vertices, we say that an arc $\overrightarrow{v_i v_j}$ is σ -forward if i < j, and σ -backward if j < i. For two integers a, b, we let $\sigma(a, b) := \{v_\ell : a \leq \ell \leq b, \ell \in [n]\}$. For positive integers n, k, t, an n-vertex digraph D and an ordering σ of V(D), we say an D is (σ, k, t) -good if it satisfies the following.

- (D1) Every arc in D is a σ -forward arc.
- (D2) Every vertex in $\sigma(1, n-t)$ has out-degree at least k in D.
- (D3) Every vertex in $\sigma(t+1, n)$ has in-degree at least k in D.

Note that if $n \leq t$, then $\sigma(1, n-t) = \sigma(t+1, n) = \emptyset$, so (D2) and (D3) are vacuous. Also note that (D2) or (D3) never holds together with (D1) if t < k. In Lemma 3.4, we will show that every almost complete oriented graph has a spanning subgraph D' and an ordering σ such that D' is a sparse (σ, k, t) -good digraph for appropriate k, t. The following shows that (σ, k, t) -good digraph D' provides a sparse linkage structure from/to certain vertex sets.

Claim 3.1. Let k, t be two positive integers with $t \ge k$. Let D' be a (σ, k, t) -good digraph for an ordering σ of V(D'). Then for a set $S \subseteq V(D')$ of k-1 vertices and $v \in V(D') \setminus S$, there exists a path P in D' - S from v to $\sigma(n - t + 1, n)$ and a path P' in D' - S from $\sigma(1, t)$ to v.

Proof. If $n \leq t$, then the claim is trivial as $\sigma(n-t+1,n) = \sigma(1,t) = V(D')$. Assume $n \geq t+1$. Let $\sigma = (v_1, \ldots, v_n)$. Take a path P starting at v and ending at v_j with the largest possible j. If $j \leq n-t$, then (D1) and (D2) imply that v_j has at least k out-neighbors with larger indices. Thus $N_{D'}^+(v_j) \setminus S$ contains a vertex $v_{j'}$ with j' > j. However, $P \cup \{\overline{v_j v_{j'}}\}$ contradicts the maximality of j. Thus we have j > n - t. Therefore there exists a path P in T - S from v to $v_i \in \sigma(n-t+1, n)$. We can find P' in a similar way.

The following two claims are useful to prove Lemma 3.4.

Claim 3.2. For an integer $s \ge 0$, let G be a bipartite graph with bipartition $A \cup B$ with A = $\{a_1,\ldots,a_n\}, B = \{b_1,\ldots,b_n\}$ satisfying the following.

- (P1_s) For all $i, j \in [n]$ with i < j, we have $|N_G(a_i) \cap \{b_{i+1}, \ldots, b_j\}| \ge \frac{j-i-s}{2}$, (P2_s) for all $i, j \in [n]$ with i < j, we have $|N_G(b_j) \cap \{a_i, \ldots, a_{j-1}\}| \ge \frac{j-i-s}{2}$.

Then G contains a matching of size at least n - s - 1.

Proof. We may assume that n - s - 1 > 0, otherwise the claim is obvious. By König's theorem, it is enough to show that minimum vertex cover has size at least n - s - 1. Assume we have a minimum vertex cover W of G. If $A \subseteq W$ or $B \subseteq W$, then $|W| \ge n \ge n - s - 1$. So we may assume that each of $A \setminus W$ and $B \setminus W$ contains an element. Consider the smallest index i such that $a_i \in A \setminus W$, and the largest index j such that $b_i \in B \setminus W$. We have i < j, otherwise W contains at least n-1 vertices. Then we have

$$\{a_1, \dots, a_{i-1}\} \cup \{b_{j+1}, \dots, b_n\} \cup (N_G(b_j) \cap \{a_i, \dots, a_{j-1}\}) \cup (N_G(a_i) \cap \{b_f i + 1, \dots, b_j\}) \subseteq W.$$

By $(P1_s)$ and $(P2_s)$, we have

$$|W| \ge i - 1 + (n - j) + \frac{j - i - s}{2} + \frac{j - i - s}{2} \ge n - s - 1$$

as desired.

Claim 3.3. For $s \ge 0$, let D be an n-vertex oriented graph with $\delta(D) \ge n - s - 1$. Then there exists an ordering $\sigma = (v_1, \ldots, v_n)$ of V(D) that satisfies the following.

(Q1_s) For any $i, j \in [n]$ with i < j, v_i has at least $\frac{j-i-s}{2}$ out-neighbours in $\{v_{i+1}, \ldots, v_j\}$, (Q2_s) For any $i, j \in [n]$ with i < j, v_j has at least $\frac{j-i-s}{2}$ in-neighbours in $\{v_i, \ldots, v_{j-1}\}$.

Moreover, we can find such an ordering in polynomial-time on n.

Proof. We start with an arbitrary ordering $\sigma_1 = (v_1, \ldots, v_n)$ of V(D). Assume we have an ordering σ_{ℓ} of V(D) for some $\ell \geq 1$. If σ_{ℓ} satisfies $(Q1_s)$ and $(Q2_s)$, then we are done. Otherwise consider $1 \leq i < j \leq n$ that does not satisfy $(Q1_s)$ or $(Q2_s)$. Let us define

$$\sigma_{\ell+1} := \begin{cases} (v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_j, v_i, v_{j+1}, \dots, v_n) & \text{if } i < j \text{ does not satisfy } (Q1_s), \\ (v_1, \dots, v_{i-1}, v_j, v_i, \dots, v_{j-1}, v_{j+1}, \dots, v_n) & \text{if } i < j \text{ does not satisfy } (Q2_s). \end{cases}$$

Note that $\sigma_{\ell+1}$ has at least one more σ -forward arc than σ_{ℓ} . The number of σ -forward arcs in D is at most $\binom{n}{2}$, so the procedure must end before we have $\sigma_{\binom{n}{2}}$. Thus we obtain a desired ordering in polynomial-time in n.

Now we prove Lemma 3.4. It will be frequently used in the proof of Theorem 1.3.

Lemma 3.4. For integers $s \ge 0$ and $k \ge 1$, let D be an n-vertex oriented graph with $\delta(D) \ge n-1-s$. Then there exist an ordering σ of V(D) and a $(\sigma, k, 2k+s-1)$ -good spanning subgraph D' of D with $|E(D')| \le kn-k+sk$.

Proof. If n < 2k + s, then an arbitrary ordering σ of V(D) with a digraph D' with no arcs is $(\sigma, k, 2k + s - 1)$ -good. Thus we may assume that $n \ge 2k + s$. By Claim 3.3, we can find an ordering $\sigma = (v_1, \ldots, v_n)$ which satisfies condition $(Q1_s)$ and $(Q2_s)$ in Claim 3.3. We consider an auxiliary bipartite graph H_0 with a bipartition $A \cup B$, where $A = \{v_1, \ldots, v_n\}$ and $B = \{v'_1, \ldots, v'_n\}$, such that $v_i v'_j \in H_0$ if and only if $\overline{v_i v'_j}$ is a σ -forward arc of D. (i.e. i < j and $\overline{v_i v'_j} \in E(D)$.)

Note that the conditions $(Q1_s)$ and $(Q2_s)$ imply that the graph H_0 satisfies the condition $(P1_s)$ and $(P2_s)$. Assume we have a graph H_ℓ satisfying the condition $(P1_{s+2\ell})$ and $(P2_{s+2\ell})$. By Claim 3.2, H_ℓ contains a matching M_ℓ of size at least $n - s - 2\ell - 1$. Let $H_{\ell+1} := H_\ell \setminus M_\ell$. Then for any $i, j \in [n]$, we have $|N_{H_\ell}(a_i) \setminus N_{H_{\ell+1}}(a_i)| \leq 1$ and $|N_{H_\ell}(b_j) \setminus N_{H_{\ell+1}}(b_j)| \leq 1$. Thus the graph $H_{\ell+1}$ satisfies the condition $(P1_{s+2\ell+2})$ and $(P2_{s+2\ell+2})$. Repeating this for $0 \leq \ell \leq k - 1$ provides arc-disjoint matchings $M_0, M_1, \ldots, M_{k-1}$ of H_0 where the size of M_ℓ is at least $n - s - 2\ell - 1$ for $0 \leq \ell \leq k - 1$. By deleting some arcs, we may assume that for $0 \leq \ell \leq k - 1$ we have

$$|E(M_{\ell})| = n - s - 2\ell - 1. \tag{3.1}$$

Let M be a subgraph of H_0 such that $E(M) := \bigcup_{\ell=0}^{k-1} E(M_\ell)$ and let D_1 be a subgraph of D such that

$$V(D_1) := V(D), \ E(D_1) := \{ \overrightarrow{v_i v_j} : v_i v_j' \in E(M) \}.$$

Then by construction of H_0 , every arc of D_1 is a σ -forward arc and

$$\Delta(M) \le k \text{ and } |E(M)| = \sum_{\ell=0}^{k-1} |E(M_{\ell})| \stackrel{(3.1)}{=} kn - k^2 - sk.$$
(3.2)

Also this implies that

$$\Delta^{+}(D_{1}) \leq k, \ \Delta^{-}(D_{1}) \leq k, \ |E(D_{1})| = kn - k^{2} - sk,$$

$$d_{D_{1}}^{-}(v_{i}) \leq \min\{k, i - 1\} \text{ and } d_{D_{1}}^{+}(v_{i}) \leq \min\{k, n - i\}.$$
(3.3)

For each vertex $2k + s \leq i \leq n$, the number of σ -forward arcs towards v_i in D is at least $\lceil \frac{i-1-s}{2} \rceil \geq \lceil \frac{2k+s-1-s}{2} \rceil \geq k$ by $(Q2_s)$. Thus for each $2k + s \leq i \leq n$, we can choose a set N_i^- of σ -forward arcs towards v_i such that $N_i^- \subseteq E(D) \setminus E(D_1)$ and $|N_i^-| = k - d_{D_1}^-(v_i)$. Similarly, for each $1 \leq i \leq n - 2k - s + 1$, we can choose a set N_i^+ of σ -forward arcs from v_i such that $N_i^+ \cap E(D_1) = \emptyset$ and $|N_i^+| = k - d_{D_1}^-(v_i)$. Define a digraph $D' \subseteq D$ with

$$V(D') := V(D), \ E(D') := E(D_1) \cup \bigcup_{i=2k+s}^n N_i^- \cup \bigcup_{i=1}^{n-2k-s+1} N_i^+.$$

Then D' satisfies (D1) by construction, and satisfies (D2) since $|d_{D'}^+(v_i)| \ge d_{D_1}^+(v_i) + |N_i^+| \ge k$ for $i \in [n - 2k - s + 1]$. Similarly, D' also satisfies (D3), thus D' is $(\sigma, k, 2k + s - 1)$ -good. Note that

$$\begin{vmatrix} \prod_{i=2k+s}^{n} N_{i}^{-} \\ \leq \sum_{i=2k+s}^{n} (k - d_{D_{1}}^{-}(v_{i})) &= k(n - 2k - s + 1) - \sum_{i=1}^{n} d_{D_{1}}^{-}(v_{i}) + \sum_{i=1}^{2k+s-1} d_{D_{1}}^{-}(v_{i}) \\ \leq k(n - 2k - s + 1) - |E(D_{1})| + \sum_{i=1}^{2k+s-1} \min\{k, i-1\} \stackrel{(3.3)}{=} \binom{k}{2} + sk.$$

Here, we get the second inequality because $E(D_1) = \sum_{i=1}^n d_{D_1}^-(v_i)$. Similarly, we also have $|\bigcup_{i=1}^{n-2k-s+1} N_i^+| \leq {k \choose 2} + sk$. Thus we have

$$|E(D')| \leq |E(D_1)| + \left| \bigcup_{i=2k+s}^{n} N_i^{-} \right| + \left| \bigcup_{i=1}^{n-2k-s+1} N_i^{+} \right|$$

$$\stackrel{(3.3)}{\leq} kn - k^2 - sk + 2\binom{k}{2} + 2sk = kn - k + sk.$$

4. Small tournaments

In this section, we show that Theorem 1.3 holds for any strongly k-connected tournament T with at most $100k \log(k + 1)$ vertices. Note that Theorem 4.2 is sufficient for our purpose. To prove Theorem 4.2, we use the following lemma, which is a modification of Lemma 2.1 in [12], and the proof is almost identical except a few changes.

Lemma 4.1. [12] Let $k \ge 1$ and $n \ge 5k$ be integers. Every n-vertex tournament T contains two disjoint sets of vertices X and Y of size k such that for any set S of k-1 vertices and any $x \in X \setminus S, y \in Y \setminus S$ there is a path P in T - S from x to y.

Proof. Let $\overrightarrow{K_{k,k}}$ be a bipartite digraph with partition A, B such that |A| = |B| = k and for every $u \in A, v \in B$, we have $\overrightarrow{uv} \in E(\overrightarrow{K_{k,k}})$. If T contains $\overrightarrow{K_{k,k}}$ with bipartition A and B as a subgraph, then X := A, Y := B are sufficient for our purpose. Thus we may assume that T does not contain $\overrightarrow{K_{k,k}}$ as a subgraph.

Let $X = \{x_1, \ldots, x_k\}$ be a set of k vertices in T of largest out-degree and $\{y_1, \ldots, y_k\}$ be a set of k vertices in T of largest in-degree. Since $n \ge 5k$, we may assume $X \cap Y = \emptyset$. From Lemma 2.1, we have $d_T^+(x_i) \ge (n-k)/2 \ge 2k$ and $d_T^-(y_i) \ge (n-k)/2 \ge 2k$ for all $i \in [k]$. Consider a set $S \subseteq V(T)$ of size k-1. For each $i, j \in [k]$ let $X_{i,j} := N^+(x_i) \setminus N^-(y_j), Y_{i,j} := N^-(y_j) \setminus N^+(x_i),$ $I_{i,j} = N^+(x_i) \cap N^-(y_j)$. Let $M_{i,j}$ be a maximum matching between $X_{i,j}$ and $Y_{i,j}$ such that every arc is directed from $X_{i,j}$ to $Y_{i,j}$. For each $z \in I_{i,j}$, T contains a path (x_i, z, y_j) and for each $\overrightarrow{ww'} \in M_{i,j}, T$ contains a path (x_i, w, w', y_j) . Moreover, those paths are all pairwise internally vertex disjoint. Thus if $|M_{i,j}| + |I_{i,j}| \ge k$ for all $i, j \in [k]$, then for any x_i and y_j , there are at least k internally vertex disjoint paths from x_i to y_j . So we are done since for each $i, j \in [k]$ at least one path from x_i to y_j does not intersect with S. If there exist $i, j \in [k]$ such that $|M_{i,j}| + |I_{i,j}| < k$, then we have

$$|X_{i,j} \setminus V(M_{i,j})| \ge |N_T^+(x_i) - I_{i,j} - V(M_{i,j})| \ge d_T^+(x_i) - k \ge k.$$

Similarly we get $|Y_{i,j} \setminus V(M_{i,j})| \ge k$. Since $M_{i,j}$ is a maximal matching from $X_{i,j}$ to $Y_{i,j}$, for any $x' \in X_{i,j} \setminus V(M_{i,j})$ and $y' \in Y_{i,j} \setminus V(M_{i,j})$ we have $\overrightarrow{y'x'} \in E(T)$. This contradicts the fact that T does not contain $\overrightarrow{K_{k,k}}$.

Now we prove the theorem, which has worse upper bound than the upper bound in Theorem 1.3 for sufficiently large n. However, if n is small enough, for example, $n \leq 100k \log(k+1)$, then the following theorem implies Theorem 1.3.

Theorem 4.2. For any integer $k \ge 1$, every strongly k-connected tournament T contains a strongly k-connected spanning subgraph D with $|E(D)| \le (5k-2)n + \binom{5k}{2}$.

Proof. If T has less than 5k vertices, then T itself is sufficient to be D. Otherwise, let $V' \subseteq V$ be a set of 5k vertices. By applying Lemma 4.1, we can find two disjoint sets $X = \{x_1, \ldots, x_k\}, Y = \{y_1, \ldots, y_k\}$ of size k such that for any set $S \subseteq V'$ of size k-1 and vertices $x \in X, y \in Y$, there exists a path from x to y in T[V'] - S. We apply Lemma 3.4 to T with parameters 0, k corresponding to s, k, and we obtain an ordering $\sigma = (v_1, \ldots, v_n)$ of V(T) and a $(\sigma, k, 2k - 1)$ -good spanning subgraph $D' \subseteq T$ with $|E(D')| \leq kn - k$.

FIGURE 1. Two paths from u to v in the outline of the idea when k = 2.

For each $n-2k+2 \leq i \leq n$, let $\{P(v_i, j) : j \in [k]\}$ be a k-fan from v_i to X (which exists since T is strongly k-connected) such that $P(v_i, j)$ is a path from v_i to x_j . Note that if $v_i = x_j$, then $P(v_i, j)$ is a path of one vertex. Similarly, for each $1 \leq i \leq 2k - 1$, let $\{Q(v_i, j) : j \in [k]\}$ be a k-fan from Y to v_i such that $Q(v_i, j)$ is a path from y_j to v_i . Note that if $v_i = y_j$, then $Q(v_i, j)$ is a path of one vertex.

For each $n - 2k + 2 \le i \le n$ and $1 \le i' \le 2k - 1$, it follows that

$$\sum_{j=1}^{k} |E(P(v_i, j))| \le n - 1, \quad \sum_{j=1}^{k} |E(Q(v_{i'}, j))| \le n - 1,$$

because no vertex other than v_i is covered by two distinct paths in a k-fan from v_i to X or by two distinct paths in a k-fan from Y to v_i . Let D be the subgraph of T such that

$$V(D) := V(T), \ E(D) := E(T(V')) \cup E(D') \cup \bigcup_{i=1}^{2k-1} \bigcup_{j=1}^{k} Q(v_i, j) \cup \bigcup_{i=n-2k+2}^{n} \bigcup_{j=1}^{k} P(v_i, j).$$

Then

$$\begin{split} E(D)| &\leq |E(T(V'))| + |E(D')| + (2k-1)(n-1) + (2k-1)(n-1) \\ &\leq \binom{5k}{2} + kn - k + (4k-2)n \leq (5k-2)n + \binom{5k}{2}. \end{split}$$

Moreover, for any set $S \subseteq V(D)$ of k-1 vertices and any vertices $u, v \in V(T) \setminus S$, there is a path P from v to v_i and a path P' from $v_{i'}$ to u in D' - S for some $i \ge n - 2k + 2$ and $i' \le 2k + 1$, by Claim 3.1. Since $\{P(v_i, j) : j \in [k]\}$ and $\{Q(v_{i'}, j) : j \in [k]\}$ are k-fans, there are $s, s' \in [k]$ such that both $P(v_i, s)$ and $Q(v_{i'}, s')$ do not intersect S. Let $x_s^* \in X$ and $y_{s'}^* \in Y$ be the endpoints of $P(v_i, s)$ and $Q(v_{i'}, s')$, respectively. (note that if $v_i \in X$ ($v_{i'} \in Y$), then $x_s^* = v_i \ (y_{s'}^* = v_{i'})$.) By Claim 4.1, there is a path P'' in T[V'] - S from x_s^* to $y_{s'}^*$. Hence $E(P) \cup E(P(v_i, s)) \cup E(P'') \cup E(Q(v_{i'}, s')) \cup E(P')$ contains a path in D - S from u to v. Thus D is strongly k-connected.

5. Proof of Theorem 1.3

Outline of the idea. For a strongly k-connected tournament T, we construct a set A which is the union of many in-dominating sets, a set B which is the union of many out-dominating sets and k pairwise vertex disjoint paths P_1, \ldots, P_k from A to B such that the path P_t is from a_{i_t} to b_{j_t} for each $t \in [k]$. We choose the size of in-dominating sets and out-dominating sets in A and B to be sufficiently small (Lemmas 2.2 and 2.3) so that there are few vertices in both A and B.

To find a sparse subgraph D, we divide the vertex set V(T) into V_1, V'_1, V_2, V_3, V_4 and apply Lemma 3.4 to each set and find two small sets W^+ and W^- such that D contains k internally vertex-disjoint paths from any vertex u to W^+ and k internally vertex-disjoint paths from W^- to any vertex v. We also add some arcs to the subgraph D so that there are k arcs in D from each vertex in W^+ to A, and k arcs in D from B to each vertex in W^- . Note that this is possible since A is a union of many in-dominating sets and B is a union of many out-dominating sets. By adding some arcs inside A and B, we can also ensure that there are k internally vertex-disjoint paths from any vertex in A to the vertices a_{i_1}, \ldots, a_{i_k} and k internally vertex-disjoint paths from $b_{j_1}, \ldots b_{j_k}$ to any vertex in B. Then for each distinct vertices $u, v \in V(T)$, the paths from u to W^+ , the arcs from W^+ to A, the paths inside A to a_{i_1}, \ldots, a_{i_k} , the paths P_1, \ldots, P_k , the paths inside B from b_{j_1}, \ldots, b_{j_k} , the arcs from B to W^- , and the paths from W^- to v all together form k internally vertex-disjoint paths from u to v as in Figure 1. Since u and v are arbitrarily chosen, D is strongly k-connected while D is sparse enough.

Proof of Theorem 1.3. Let T be a strongly k-connected n-vertex tournament with a vertexset V. Note that Theorem 1.3 is trivial for k = 1 since every strongly connected n-vertex tournament contains a Hamilton cycle (see [3, Theorem 1.5.1]). There is an algorithm that finds a Hamilton cycle in an n-vertex tournament and runs in $O(n^2)$ (see [11]). If $k \ge 2$ and $n \le 100k \log(k+1)$, then Theorem 4.2 implies Theorem 1.3. Thus we may assume that

$$k \ge 2, n > 100k \log(k+1).$$

Now we construct an appropriate in-dominating set A and out-dominating set B as we sketched before. Let X and Y be two disjoint sets such that X is a set of 3k-1 vertices with smallest outdegrees, and let Y is a set of 3k-1 vertices with smallest in-degrees. Let $\delta^- := \max_{y \in Y} d_T^-(y)$ and $\delta^+ := \max_{x \in X} d_T^+(x)$. Without loss of generality, we assume

$$\delta^- \ge \delta^+. \tag{5.1}$$

Choose $x_1 \in X$ having the largest number of out-neighbors in $V \setminus (X \cup Y)$ among all vertices in X, and let

$$d_1^+ := |(V \setminus (X \cup Y)) \cap N_T^+(x_1)|.$$

We apply Lemma 2.2 with $T - ((X - \{x_1\}) \cup Y), x_1, d_1^+$ corresponding to T, v, d to find a set A_1 and a sink vertex $a_1 \in A_1$ satisfying (a1)–(a5). Note that (a1) implies that A_1 is nonempty and $a_1 = x_1$ could happen when $d_1^+ = 0$. For given x_1, \ldots, x_i and A_1, \ldots, A_i , let us choose $x_{i+1} \in X \setminus \{x_1, \ldots, x_i\}$ having the largest number of out-neighbours in $V \setminus (X \cup Y \cup \bigcup_{j=1}^i A_j)$ among all the vertices in $X \setminus \{x_1, \ldots, x_i\}$ and let

$$d_{i+1}^{+} := |(V \setminus (X \cup Y \cup \bigcup_{j=1}^{i} A_j)) \cap N_T^{+}(x_{i+1})|.$$

We apply Lemma 2.2 with $T - ((X - \{x_{i+1}\}) \cup Y \cup \bigcup_{j=1}^{i} A_j), x_{i+1}, d_{i+1}^+$ corresponding to T, v, d to find a set A_{i+1} and a sink vertex $a_{i+1} \in A_{i+1}$ satisfying (a1)–(a5). By repeating this 3k - 1 times, we get A_1, \ldots, A_{3k-1} and a_1, \ldots, a_{3k-1} . We let $A := \bigcup_{i=1}^{3k-1} A_i$.

Next, we choose $y_1 \in Y$ having the largest number of in-neighbours in $V \setminus (X \cup Y \cup A)$. Let

$$d_1^- := |(V \setminus (X \cup Y \cup A)) \cap N_T^-(y_1)|.$$

Then we apply Lemma 2.3 with $T - (X \cup (Y - \{y_1\}) \cup A), y_1, d_1^-$ corresponding to T, v, d to find a set B_1 and a source vertex $b_1 \in B_1$ satisfying (b1)–(b5). Note that (b1) implies that B_1 is nonempty and $b_1 = y_1$ could happen when $d_1^- = 0$. For given A, y_1, \ldots, y_i and B_1, \ldots, B_i , let us choose $y_{i+1} \in Y \setminus \{y_1, \ldots, y_i\}$ having the largest number of in-neighbours in $V \setminus (X \cup Y \cup A \cup \bigcup_{i=1}^i B_j)$ among all the vertices in $Y \setminus \{y_1, \ldots, y_i\}$ and let

$$d_{i+1}^{-} := |(V \setminus (X \cup Y \cup A \cup \bigcup_{j=1}^{i} B_j)) \cap N_T^{-}(y_{i+1})|$$

We apply Lemma 2.3 with $T - (X \cup (Y - \{y_{i+1}\}) \cup A \cup \bigcup_{j=1}^{i} B_j), y_{i+1}, d_{i+1}^{-}$ corresponding to T, v, d to find a set B_{i+1} and a source vertex $b_{i+1} \in B_{i+1}$ satisfying (b1)–(b5). By repeating this 3k - 1 times, we get B_1, \ldots, B_{3k-1} and b_1, \ldots, b_{3k-1} . We let $B := \bigcup_{i=1}^{3k-1} B_i$. Note that $T[B_i]$ is a transitive tournament for each $i \in [3k-1]$. For each i, we let B'_i be the set of the

last max($\lceil |B_i|/5 - 13\rceil, 0$) vertices, and let B''_i be the set of the first min($\lceil 5 \log(k) + 30\rceil, |B_i|$) vertices in the transitive ordering of $T[B_i]$, respectively. Note that B'_i and B''_i are not necessarily disjoint.

We define

$$A_{\text{sink}} := \{a_1, \dots, a_{3k-1}\}, B_{\text{source}} := \{b_1, \dots, b_{3k-1}\}, B' := \bigcup_{i=1}^{3k-1} B'_i, \text{ and } B'' := \bigcup_{i=1}^{3k-1} B''_i.$$

From this construction, we get numbers $d_1^+, \ldots, d_{3k-1}^+, d_1^-, \ldots, d_{3k-1}^-$ satisfying

$$\delta^+ \ge d_1^+ \ge d_2^+ \ge \dots \ge d_{3k-1}^+ \quad \text{and} \quad \delta^- \ge d_1^- \ge d_2^- \ge \dots \ge d_{3k-1}^-,$$
 (5.2)

and sets $A_1, \ldots, A_{3k-1}, B_1, \ldots, B_{3k-1}, B'_1, \ldots, B'_{3k-1}, B''_1, \ldots, B''_{3k-1}$ and vertices $a_1, \ldots, a_{3k-1}, b_1, \ldots, b_{3k-1}$ satisfying the following (A1)–(A3) and (B1)–(B6) for all $i \in [3k-1]$.

- (A1) $\frac{1}{2}\log(d_i^+ + 1) + 1 \le |A_i| \le \frac{5}{2}\log(d_i^+ + 1) + 2,$
- (A2) $T[A_i]$ is a transitive tournament with source x_i and sink a_i ,
- (A3) A_i in-dominates $V \setminus (A \cup B)$,
- (B1) $\frac{1}{2}\log(d_i^- + 1) + 1 \le |B_i| \le \frac{5}{2}\log(d_i^- + 1) + 2,$
- (B2) $T[B_i]$ is a transitive tournament with sink y_i and source b_i ,
- (B3) B_i out-dominates $V \setminus (A \cup B)$,
- (B4) $|B'_i| \ge |B_i|/5 13$ and for $v \in B'_i$ we have

$$|N_T^+(v) \setminus (A \cup \bigcup_{j=1}^i B_j)| \ge 8(d_i^-)^{1/7} - 1, \ |N_T^-(v) \setminus (A \cup \bigcup_{j=1}^i B_j)| \ge 8(d_i^-)^{1/7} - 1.$$

(B5) $|B_i''| < 5\log(k) + 31$ and for $v \in B_i \setminus B_i''$ we have

$$|N_T^+(v) \setminus (A \cup \bigcup_{j=1}^i B_j)| \ge 1000k^2, \ |N_T^-(v) \setminus (A \cup \bigcup_{j=1}^i B_j)| \ge 1000k^2.$$

(B6) For any vertex $v \in B_i \setminus B'_i$, we have $B'_i \subseteq N^+_T(v)$.

By Lemma 2.1, each of $T[A_{\text{sink}}]$ and $T[B_{\text{source}}]$ contains k vertices of in-degree at least k and k vertices of out-degree at least k. Let $a_{i_1}, \ldots, a_{i_k} \in A_{\text{sink}}$ be k distinct vertices having in-degree at least k in $T[A_{\text{sink}}]$ and let $b_{j_1}, \ldots, b_{j_k} \in B_{\text{source}}$ be distinct k vertices having outdegree at least k in $T[B_{\text{source}}]$. By (A1), (B1) and the fact that $\delta^- \leq n-1$, we have $|A \cup B| \leq (6k-2)(\frac{5}{2}\log(n)+2) < n-k$ since $n \geq 100k \log(k+1)$ and $k \geq 2$. Thus we have

$$|V \setminus (A \cup B)| \ge k. \tag{5.3}$$

Our aim is to find collections of arcs E_0, E_1, E_2, E_3, E_4 and E_5 which together form a desired digraph D. Since the tournament T is strongly k-connected, by Menger's theorem, let P_1, \ldots, P_k be k vertex-disjoint paths from $\{a_{i_1}, \ldots, a_{i_k}\}$ to $\{b_{j_1}, \ldots, b_{j_k}\}$. We choose those k vertex-disjoint paths with the minimum length $\sum_{i=1}^{k} |E(P_i)|$, and thus each path P_i is backwards-transitive for $1 \leq i \leq k$. Note that $V(P_i)$ is not necessarily disjoint from $A \cup B \setminus \{a_{i_1}, \ldots, a_{i_k}, b_1, \ldots, b_{j_k}\}$. By permuting indices, we may assume that P_s is a backwards-transitive path from a_{i_s} to b_{j_s} . See Figure 2 for the picture which we currently have. Let $V^{\text{int}}(P_s)$ be the set of internal vertices of P_s . We define

$$V_1 := (A \cup B) \setminus (\bigcup_{i=1}^k V^{\text{int}}(P_i)), \ V_1' := (A \cup B) \cap (\bigcup_{i=1}^k V^{\text{int}}(P_i)) \text{ and } E_0 := \bigcup_{s=1}^k E(P_s).$$
(5.4)

Before starting the construction of E_1, E_2, E_3, E_4 and E_5 , we prove Claim 5.1 and Claim 5.3 showing that for any $v \in A \cup B$ there exists a k-fan from v to $V \setminus (A \cup B)$ and a k-fan from $V \setminus (A \cup B)$ to v consisting of short paths.

Claim 5.1. For any vertex $v \in A \cup B$, we can find a k-fan $\{P^-(v,1),\ldots,P^-(v,k)\}$ from $V \setminus (A \cup B)$ to v such that $\sum_{i=1}^k |E(P^-(v,i))| \le 70k \log(k+1)$.

FIGURE 2. A picture when $k = 1, i_1 = 1$ and $j_1 = 2$.

Proof of Claim 5.1. Note that (5.1), (5.2), (A1) and (B1) together imply that

$$|A \cup B| \le (6k - 2)(\frac{5}{2}\log(\delta^{-} + 1) + 2).$$
(5.5)

We consider the following two cases.

Case 1. $\delta^{-} < 60k^{2}$.

In this case, consider $\{P^-(v,1),\ldots,P^-(v,k)\}$, a k-fan from $V \setminus (A \cup B)$ to v. Such a k-fan exists because of Fact 1 and (5.3). By (5.5), we have $|A \cup B| \leq (6k-2)(\frac{5}{2}\log(60k^2+1)+2) \leq 69k\log(k+1)$. Since every vertex in each $P^-(v,i)$ is in $A \cup B$ except for one vertex, we have $\sum_{i=1}^{k} |E(P^-(v,i))| \leq |A \cup B| + k \leq 70k\log(k+1)$.

Case 2. $\delta^- > 60k^2$.

Since $k \geq 2$, we have

$$\delta^{-} \ge (6k-2)(\frac{5}{2}\log(\delta^{-}+1)+2) + 2k \stackrel{(5.5)}{\ge} |A \cup B| + 2k.$$

Thus for any vertex $u \notin Y$, we have $d^{-}(u) \ge \delta^{-} \ge |A \cup B| + 2k$.

If $v \notin Y$, take k distinct paths of length 1 from $V \setminus (A \cup B)$ to v, and let $P^{-}(v, 1), \ldots, P^{-}(v, k)$ be those paths of length 1. Then we have $\sum_{i=1}^{k} |E(P^{-}(v,i))| \leq k \leq 70k \log(k+1)$. If $v \in Y$, then take $\{Q_1, \ldots, Q_k\}$, a k-fan from $V \setminus Y$ to v given by Fact 1 and (5.3). Let v_i be the starting vertex of Q_i for $1 \leq i \leq k$. Then we have

$$\sum_{i=1}^{k} |E(Q_i)| \le |Y| + k \le 4k - 1$$

Consider $i \in [k]$ with $v_i \in A \cup B$. Since each v_i is not in Y, $d_T^-(v_i) \ge \delta^- \ge |A \cup B| + 2k$ and v_i has at least 2k in-neighbors outside $A \cup B$. For each $i \in [k]$ with $v_i \in A \cup B$, we choose v'_i in $N_T^-(v_i) \setminus (A \cup B \cup \{v_1, \ldots, v_k\})$ in the way that v'_i s are all distinct. Let

$$P^{-}(v,i) := \begin{cases} Q_i \cup \{\overrightarrow{v_i'v_i}\} & \text{if } v_i \in A \cup B, \\ Q_i & \text{if } v_i \notin A \cup B. \end{cases}$$

Then the paths $P^{-}(v, 1), \ldots, P^{-}(v, k)$ form a k-fan from $V \setminus (A \cup B)$ to v such that

$$\sum_{i=1}^{k} |E(P^{-}(v,i))| \le k + \sum_{i=1}^{k} |E(Q_i)| \le |Y| + 2k = 5k - 1 \le 70k \log(k+1).$$

This proves Claim 5.1.

Claim 5.2. For each $v \in A \cup B''$, there exists a k-fan $\{P_*^+(v,1), \ldots, P_*^+(v,k)\}$ from v to $V \setminus (A \cup B'')$ such that $\sum_{i=1}^k |E(P_*^+(v,i))| \le 98k \log(k+1)$.

Proof of Claim 5.2. Note that we have

$$|A \cup B''| \stackrel{(A1)}{\leq} \sum_{i=1}^{3k-1} (\frac{5}{2} \log(d_i^+ + 1) + 2) + |B''|$$

$$\stackrel{(5.2),(B5)}{\leq} (3k-1)(\frac{5}{2} \log(\delta^+ + 1) + 2) + (3k-1)(5\log(k) + 31)$$
(5.6)

To prove Claim 5.2, we consider the following two cases.

Case 1. $\delta^+ \le 100k^2$.

Since T is strongly k-connected, there exists $\{P_*^+(v,1),\ldots,P_*^+(v,k)\}$, a k-fan from v to $V \setminus (A \cup B'')$ by Fact 1 and (5.3). Since $P_*^+(v,1),\ldots,P_*^+(v,k)$ contains at most k vertices outside $A \cup B''$ and $\delta^+ \leq 100k^2$, we have

$$\sum_{i=1}^{3k-1} |E(P^+_*(v,i))| \le |A \cup B''| + k \stackrel{(5.6)}{\le} 98k \log(k+1)$$

Case 2. $\delta^+ \ge 100k^2$.

In this case, we have

$$|A \cup B''| + 2k \stackrel{(5.6)}{<} (3k-1)(\frac{5}{2}\log(\delta^+ + 1) + 2) + (3k-1)(5\log(k) + 31) + 2k \le \delta^+$$

If $v \notin X$, then $d_T^+(v) \ge \delta^+ \ge |A \cup B''| + 2k$. So we can find k paths Q'_1, \ldots, Q'_k of length 1 from v to $V \setminus (A \cup B'')$. Let $P_*^+(v, 1), \ldots, P_*^+(v, k)$ be those paths of length 1. Then $\sum_{i=1}^k |E(P_*^+(v, i))| \le k \le 98k \log(k+1)$.

If $v \in X$, then we find a k-fan $\{Q'_1, \ldots, Q'_k\}$ from v to $V \setminus X$ by Fact 1 and (5.3). Then because all vertices of Q'_i except the last vertex belong to X, we have $\sum_{i=1}^k |E(Q'_i)| \le |X| + k$. Let u'_i be the end vertex of Q'_i , for $1 \le i \le k$. Consider $i \in [k]$ with $u'_i \in A \cup B''$. Since $u'_i \notin X$ and $d^+_T(u'_i) \ge \delta^+ \ge |A \cup B''| + 2k$, u'_i has at least 2k out-neighbors in $V \setminus (A \cup B'')$, we can choose $u''_i \in N^+_T(u'_i) \setminus (A \cup B'' \cup \{u'_1, \ldots, u'_k\})$ such that u''_i s are distinct. We let

$$P^+_*(v,i) := \begin{cases} Q'_i \cup \{\overrightarrow{u'_i u'_i}\} & \text{if } u'_i \in A \cup B'', \\ Q'_i & \text{if } u'_i \notin A \cup B''. \end{cases}$$

Then we have a k-fan $\{P_*^+(v,1),\ldots,P_*^+(v,k)\}$ from v to $V \setminus (A \cup B'')$ such that

$$\sum_{i=1}^{k} |E(P_*^+(v,i))| \le \sum_{i=1}^{k} |E(Q_i')| + k \le |X| + 2k = 5k - 1 \le 98k \log(k+1).$$

This proves Claim 5.2.

Now we prove Claim 5.3 by using Claim 5.2.

Claim 5.3. For any vertex $v \in A \cup B$, there exists a k-fan $\{P^+(v,1),\ldots,P^+(v,k)\}$ from v to $V \setminus (A \cup B)$ with $\sum_{i=1}^k |E(P^+(v,i))| \le 100k \log(k+1)$.

Proof of Claim 5.3. We first use Claim 5.2 to find a k-fan from v to $V \setminus (A \cup B'')$ such that $\sum_{i=1}^{k} |E(P_*^+(v,i))| \leq 98k \log(k+1)$. Let u_i be the last vertex in $P_*^+(v,i)$ and let $U := \{u_1, \ldots, u_k\}$. Then for each $i \in [k]$ all vertices in $P_*^+(v,i)$ except u_i belong to $A \cup B''$, and u_i is either in $V \setminus (A \cup B)$ or in $B \setminus B''$. For each i with $u_i \in B \setminus B''$, let ℓ_i be the index such that $u_i \in B_{\ell_i}$. Then we can partition [k] into four sets I_1, I_2, I_3 and I_4 as follows.

For $i \in I_1$, we have $|B_{\ell_i}| \ge 18k + 80$, $u_i \in B \setminus B''$ and $u_i \notin B'_{\ell_i}$, for $i \in I_2$, we have $|B_{\ell_i}| \ge 18k + 80$, $u_i \in B \setminus B''$ and $u_i \in B'_{\ell_i}$, for $i \in I_3$, we have $|B_{\ell_i}| < 18k + 80$ and $u_i \in B \setminus B''$, for $i \in I_4$, we have $u_i \notin A \cup B$.

First, consider $i \in I_1 \cup I_2$. Since $|B_{\ell_i}| \ge 18k + 80$, (B1) implies that

$$d_{\ell_i}^- \ge 2^{\frac{2}{5}(|B_{\ell_i}|-2)} - 1 \ge 2^{7k+30}.$$
(5.7)

For any $u \in B'_{\ell_i}$ we have

$$|N_{T}^{+}(u) \setminus (A \cup B)| \geq \left| N_{T}^{+}(u) \setminus (A \cup \bigcup_{p=1}^{\ell_{i}} B_{p}) \right| - \left| \bigcup_{p=\ell_{i}+1}^{3k-1} B_{p} \right|$$

$$\stackrel{(B4)}{\geq} 8(d_{\ell_{i}}^{-})^{1/7} - 1 - \left| \bigcup_{p=\ell_{i}+1}^{3k-1} B_{p} \right|$$

$$\stackrel{(5.7)}{\geq} (3k-1)(\frac{5}{2}\log(d_{\ell_{i}}^{-}+1)+2) + 3k - \left| \bigcup_{p=\ell_{i}+1}^{3k-1} B_{p} \right|$$

$$\stackrel{(B1),(5.2)}{\geq} 3k. \tag{5.8}$$

Here, we get the third inequality since $8x^{1/7} - 1 \ge (3k - 1)(\frac{5}{2}\log(x + 1) + 2) + 3k$ holds for $x \ge 2^{7k+30}$ and $k \ge 2$. Thus any vertex $u \in B'_{\ell_i}$ has at least 3k out-neighbors in $V \setminus (A \cup B)$.

For $i \in I_1$, (B4) implies that $|B'_{\ell_i}| \ge |B_{\ell_i}|/5 - 13 \ge 3k$ and (B6) implies that $B'_{\ell_i} \subseteq N_T^+(u_i)$. From this we obtain $|(N_T^+(u_i) \cap B'_{\ell_i}) \setminus U| = |B'_{\ell_i} \setminus U| \ge 3k - k \ge 2k$. Thus we can choose a set $W = \{w_i : i \in I_1\}$ of $|I_1|$ distinct vertices such that $w_i \in N_T^+(u_i) \cap (B'_{\ell_i} \setminus U)$. Again, (5.8) implies that

$$|N_T^+(w_i) \setminus (A \cup B \cup U \cup W)| \ge k,$$

so we can further choose a set $W' = \{w'_i : i \in I_1\}$ of $|I_1|$ distinct vertices such that $w'_i \in N_T^+(w_i) \setminus (A \cup B \cup U \cup W)$.

Now we consider $i \in I_2$. In this case $u_i \in B'_{\ell_i}$ and (5.8) imply that

$$|N_T^+(u_i) \setminus (A \cup B \cup U \cup W \cup W')| \ge 2k - 2|I_1| \ge |I_2|,$$

so we can further choose a set $W^* = \{w_i^* : i \in I_2\}$ of $|I_2|$ distinct vertices such that $w_i^* \in N_T^+(u_i) \setminus (A \cup B \cup U \cup W \cup W')$.

Now we consider $i \in I_3$. In this case, u_i belongs to $B_{\ell_i} \setminus B''_{\ell_i}$. Thus

$$\begin{aligned} \left| N_{T}^{+}(u_{i}') \setminus (A \cup B) \right| &\geq \left| N_{T}^{+}(u_{i}') \setminus (A \cup \bigcup_{p=1}^{\ell_{i}} B_{p}) \right| - \left| \bigcup_{p=\ell_{i}+1}^{3k-1} B_{p} \right| \\ \stackrel{(B1),(B5)}{\geq} &1000k^{2} - \sum_{p=\ell_{i}+1}^{3k-1} \left(\frac{5}{2} \log(d_{p}^{-} + 1) + 2 \right) \\ \stackrel{(5.2)}{\geq} &1000k^{2} - (3k-1)(\frac{5}{2} \log(d_{\ell_{i}}^{-} + 1) + 2) \\ \stackrel{(B1)}{\geq} &1000k^{2} - 5(3k-1)|B_{\ell_{i}}| \\ \geq &1000k^{2} - 5(3k-1)(18k+80) \geq 5k \geq |I_{3}| + 4k. \end{aligned}$$

Thus we can choose a set $W^{**} := \{w_i^{**} : i \in I_3\}$ of $|I_3|$ distinct vertices such that $w_i^{**} \in N_T^+(u_i) \setminus (A \cup B \cup U \cup W \cup W' \cup W^*)$. Note that U, W, W', W^*, W^{**} are pairwise disjoint sets by construction. For $i \in [k]$, let $P^+(v, i)$ be a path from v to $V \setminus (A \cup B)$ as follows.

$$E(P^{+}(v,i)) := \begin{cases} E(P_{*}^{+}(v,i)) \cup \{\overrightarrow{u_{i}w_{i}}, \overrightarrow{w_{i}w_{i}'}\} & \text{if } i \in I_{1}, \\ E(P_{*}^{+}(v,i)) \cup \{\overrightarrow{u_{i}w_{i}^{*}}\} & \text{if } i \in I_{2}, \\ E(P_{*}^{+}(v,i)) \cup \{\overrightarrow{u_{i}w_{i}^{**}}\} & \text{if } i \in I_{3}, \\ E(P_{*}^{+}(v,i)) & \text{if } i \in I_{4}. \end{cases}$$

We claim that $\{P^+(v,i)\}_{i=1}^k$ is a k-fan from v to $V \setminus (A \cup B)$, and the sum of lengths is small. Indeed, for any $i \in [k]$, $P^+(v,i)$ is a path from v to $V \setminus (A \cup B)$. Note that paths $\{V(P^+(v,i))\}_{i=1}^k$ form a k-fan since the paths $\{V(P^+_*(v,i)) \setminus \{v\}\}_{i=1}^k$ are pairwise-disjoint, and U, W, W', W^*, W^{**} are pairwise disjoint. Moreover,

$$\sum_{i=1}^{k} |E(P^{+}(v,i))| = \sum_{i=1}^{k} |E(P^{+}_{*}(v,i))| + 2|I_{1}| + |I_{2}| + |I_{3}| \le 98k \log(k+1) + 2k \le 100k \log(k+1).$$

This proves Claim 5.3.

Recall that V_1, V'_1 and E_0 are defined in (5.4) and note that we have $\{a_{i_1}, \ldots, a_{i_k}, b_{j_1}, \ldots, b_{j_k}\} \subseteq V_1$. Now we will find a set of arcs E_1 as in the following claim.

Claim 5.4. There exist a set of arcs $E_1 \subseteq E(T)$ and a set of vertices $V_2 \subseteq V \setminus (A \cup B)$ satisfying the following.

- $(E1)_1 |E_1| \le k|V_1| + (k-1)|V_1'| + 680k^2 \log(k+1) \text{ and } |V_2| \le 8k^2.$
- (E1)₂ For any set $S \subseteq V(T)$ of size k-1 and a vertex $v \in (V_1 \cup V'_1) \setminus S$, we can find a path Pin T-S from v to V_2 such that $E(P) \subseteq E_0 \cup E_1$.
- (E1)₃ For any set $S \subseteq V(T)$ of size k-1 and a vertex $v \in (V_1 \cup V'_1) \setminus S$, we can find a path Pin T-S from V_2 to v such that $E(P) \subseteq E_0 \cup E_1$.

Proof of Claim 5.4. We apply Lemma 3.4 to $T[V_1]$ with parameters 0, k corresponding to s, k, respectively. Then we obtain an ordering σ_1 of V_1 with a $(\sigma_1, k, 2k-1)$ -good digraph $D_1 \subseteq T[V_1]$ such that $|E(D_1)| \leq k|V_1| - k$. We also consider a digraph $T[V'_1] - E_0$. Since $\delta(T[V'_1] - E_0) \geq |V'_1| - 3$, we can apply Lemma 3.4 to $T[V'_1] - E_0$ with parameters 2, (k-1) corresponding to s, k, respectively. Then we obtain an ordering σ'_1 of V'_1 and a $(\sigma'_1, k-1, 2k-1)$ -good digraph $D'_1 \subseteq T[V'_1] - E_0$ with $|E(D'_1)| \leq (k-1)|V'_1| + (k-1)$. Here, it is important to take $(\sigma'_1, k-1, 2k-1)$ -good subgraph of $T[V'_1] - E_0$ instead of $(\sigma'_1, k, 2k-1)$ -good subgraph of $T[V'_1] - k$ which is too much for our purpose.

Now we define W_1^- and W_1^+ as follows.

$$W_1^- := \sigma_1(1, 2k - 1) \cup \sigma_1'(1, 2k - 1) \text{ and } W_1^+ := \sigma_1(|V_1| - 2k + 1, |V_1|) \cup \sigma_1'(|V_1'| - 2k + 1, |V_1'|)$$

This gives

$$|W_1^-|, |W_1^+| \le 4k - 2. \tag{5.9}$$

For each vertex $u \in W_1^-$ we use Claim 5.1 to obtain a k-fan $\{P^-(u, 1), \ldots, P^-(u, k)\}$ in T from $V \setminus (A \cup B)$ to u with

$$\sum_{i=1}^{k} |E(P^{-}(u,i))| \le 70k \log(k+1).$$
(5.10)

For each vertex $u \in W_1^+$, we use Claim 5.3 to obtain a k-fan $\{P^+(u, 1), \ldots, P^+(u, k)\}$ in T from u to $V \setminus (A \cup B)$ with

$$\sum_{i=1}^{k} |E(P^+(u,i))| \le 100k \log(k+1).$$
(5.11)

Let

$$E_1 := E(D_1) \cup E(D_1') \cup \bigcup_{u \in W_1^-, i \in [k]} E(P^-(u, i)) \cup \bigcup_{u \in W_1^+, i \in [k]} E(P^+(u, i)),$$
(5.12)

$$V_2 := V(E_1) \setminus (V_1 \cup V_1').$$

Since $V_1 \cup V'_1 = A \cup B$, every vertex in V_2 is either one of the last vertices of $P^+(u,i)$ for some $i \in [k]$ and $u \in W_1^+$ or one of the first vertex of $P^-(u,i)$ for some $i \in [k]$ and $u \in W_1^-$. Thus we have $|V_2| \leq k(|W_1^+| + |W_1^-|) \stackrel{(5.9)}{\leq} 8k^2$. Moreover,

$$|E_1| \stackrel{(5.10),(5.11)}{\leq} |E(D_1)| + |E(D_2)| + 70k \log(k+1)|W_1^-| + 100k \log(k+1)|W_1^+|$$

$$\stackrel{(5.9)}{\leq} k|V_1| + (k-1)|V_1'| + 680k^2 \log(k+1).$$

This proves $(E1)_1$. To prove $(E1)_2$, let S be a set of k-1 vertices in V and let v be a vertex with $v \in (V_1 \cup V'_1) \setminus S$. We consider the following two cases.

Case 1. $v \in V_1$.

By Claim 3.1 and the fact that D_1 is $(\sigma_1, k, 2k - 1)$ -good, we can find a path P' from v to a vertex $u \in W_1^+$ in T - S such that $E(P') \subseteq E_1$. Also $P^+(u, 1), \ldots, P^+(u, k)$ are disjoint paths except the common starting vertex $u \notin S$, thus there exists $j \in [k]$ such that $P^+(u, j)$ does not intersect with S. Then $E(P') \cup E(P^+(u, j))$ contains a path P in T - S from v to V_2 with $E(P) \subseteq E_1$.

Case 2. $v \in V'_1$.

Assume $\sigma'_1 = (v'_1, \ldots, v'_{|V'_1|})$. We consider the maximum index *i* such that there is a path P'from *v* to v'_i in $D'_1 - S$. If $i \ge |V'_1| - 2k + 2$, then we have $v'_i \in W_1^+$ and we can choose $j \in [k]$ such that $P^+(v'_i, j)$ does not intersect with *S*. Then $E(P') \cup E(P^+(v'_i, j))$ contains a path *P* in T - S from *v* to V_2 with $E(P) \subseteq E_1$. If $i < |V'_1| - 2k + 2$, then the maximality of *i* implies $N^+_{D'_1}(v'_i) \subseteq S$ by (D1) and the fact that D'_1 is $(\sigma'_1, k - 1, 2k - 1)$ -good. Since

$$k-1 \stackrel{(D2)}{\leq} |N_{D'_1}^+(v'_i)| \leq |S| = k-1,$$

we have

$$S = N_{D_1'}^+(v_i'). (5.13)$$

By (5.4) and the fact that $v'_i \in V'_1$, there exists $s \in [k]$ such that $v'_i \in V^{\text{int}}(P_s)$. We let P'' be the sub-path of P_s from v'_i to b_{j_s} . Since P_s is backwards-transitive, every vertex in V(P'') belongs to $N_T^-(v'_i)$ except the first vertex v'_i and the second vertex, say u', of P''. Since $\overrightarrow{v'_i u'} \in E(P_s) \subseteq E_0$ and $D'_1 \subseteq T[V'_1] - E_0$, we obtain $\overrightarrow{v'_i u'} \notin E(D'_1)$. Thus $u' \notin N^+_{D'_1}(v'_i)$. This with the fact that $V(P'') \subseteq N^-_T(v'_i) \cup \{v'_i, u'\}$ implies that

$$V(P'') \cap S \subseteq (N_T^-(v_i') \cup \{v_i', u'\}) \cap S \stackrel{(5.13)}{=} (N_T^-(v_i') \cup \{v_i', u'\}) \cap N_{D_1'}^+(v_i') = \emptyset.$$

Thus P'' does not intersect with S. Since $b_{j_s} \in V_1$, Case 1 implies that there exists a path P^* from b_{j_s} to V_2 in $T[V \setminus S]$ with $E(P^*) \subseteq E_1$. Then $E(P') \cup E(P'') \cup E(P^*)$ contains a path P in T - S from v to V_2 with $E(P) \subseteq E_0 \cup E_1$. Thus we have (E1)₂. We can prove (E1)₃ in a similar way. This proves Claim 5.4.

Claim 5.5. There exist a set of arcs $E_2 \subseteq E(T)$ and two sets $W_2^+, W_2^- \subseteq V_2$ satisfying the following.

- $(E2)_1 |E_2| \le k|V_2| k \text{ and } |W_2^+|, |W_2^-| \le 2k 1.$
- (E2)₂ For a set $S \subseteq V(T)$ of size k-1 and a vertex $v \in V_2 \setminus S$, there exists a path P in T-Sfrom v to W_2^+ with $E(P) \subseteq E_2$.
- (E2)₃ For a set $S \subseteq V(T)$ of size k-1 and a vertex $v \in V_2 \setminus S$, there exists a path P in T-Sfrom W_2^- to v with $E(P) \subseteq E_2$.

Proof of Claim 5.5. We apply Lemma 3.4 to $T[V_2]$ with parameters 0, k corresponding to s, k, respectively. Then we obtain an ordering σ_2 of V_2 and a $(\sigma_2, k, 2k-1)$ -good digraph $D_2 \subseteq T[V_2]$ such that $|E(D_2)| \leq k|V_2| - k$. Let

$$E_2 := E(D_2), \ W_2^- := \sigma_1(1, 2k - 1) \text{ and } W_2^+ := \sigma_1(|V_2| - 2k + 2, |V_2|),$$

then we have $|E_2| = |E(D_2)| \le k|V_2| - k$ and $|W_2^-|, |W_2^+| \le 2k - 1$. Hence we have $(E2)_1$. Since D_2 is $(\sigma_2, k, 2k - 1)$ -good, Claim 3.1 implies that for any set S of k - 1 vertices in V and a vertex $v \in V_2 \setminus S$, we can find a path P in T - S from v to W_2^+ and a path P' in T - S from W_2^- to v such that $E(P), E(P') \subseteq E_2$, proving $(E2)_2$ and $(E2)_3$.

Now we define V_3, V_4 as follows.

$$V_3 := \bigcup_{i=1}^k V^{\text{int}}(P_i) \setminus (V_1' \cup V_2) \text{ and } V_4 := V \setminus (V_1 \cup V_1' \cup V_2 \cup V_3).$$
(5.14)

Claim 5.6. There exist a set of arcs $E_3 \subseteq E(T)$ and two sets $W_3^+, W_3^- \subseteq V_3$ satisfying the following.

- $(E3)_1 |E_3| \le (k-1)|V_3| + (k-1) \text{ and } |W_3^+|, |W_3^-| \le 2k-1.$
- (E3)₂ For a set $S \subseteq V(T)$ of size k-1 and a vertex $v \in V_3 \setminus S$, there exists a path P in T-Sfrom v to $W_3^+ \cup V_1$ with $E(P) \subseteq E_0 \cup E_3$.
- (E3)₃ For a set $S \subseteq V(T)$ of size k-1 and a vertex $v \in V_3 \setminus S$, there exists a path P in T-Sfrom $W_3^- \cup V_1$ to v with $E(P) \subseteq E_0 \cup E_3$.

Proof of Claim 5.6. Consider a digraph $T[V_3] - E_0$. Note that $\delta(T[V_3] - E_0) \ge |V_3| - 3$. Apply Lemma 3.4 to $T[V_3] - E_0$ with parameters 2, k - 1 corresponding to s, k, respectively. Then we obtain an ordering $\sigma_3 = (v_1, \ldots, v_{|V_3|})$ and a $(\sigma_3, k - 1, 2k - 1)$ -good digraph $D_3 \subseteq T[V_3] - E_0$ with $|E(D_3)| \le (k-1)|V_3| + (k-1)$. Here, it is important to take $(\sigma_3, k - 1, 2k - 1)$ -good subgraph of $T[V_3] - E_0$ instead of $(\sigma_3, k, 2k - 1)$ -good subgraph of $T[V_3]$, otherwise we would get $|E(D_3)| \le k|V_3| - k$ instead of $(E3)_1$.

Let

 $E_3 := E(D_3), \ W_3^- := \sigma_3(1, 2k - 1) \ \text{and} \ W_3^+ := \sigma_3(|V_3| - 2k + 2, |V_3|).$

This verifies $(E3)_1$. To verify $(E3)_2$, we consider a set $S \subseteq V(T)$ with k-1 vertices and a vertex $v \in V_3 \setminus S$. Then we consider a path P' in $D_3 - S$ with $E(P') \subseteq E(D_3)$ from v to v_i which maximizes i. If $i \geq |V_3| - 2k + 2$, then $v_i \in W_3^+$ and we are done. If $i < |V_3| - 2k + 2$, the maximality of i implies $N_{D_3}^+(v_i) \subseteq S$ by (D1) and the fact that D_3 is $(\sigma, k - 1, 2k - 1)$ -good. Since

$$k-1 \stackrel{(D2)}{\leq} |N_{D_3}^+(v_i)| \leq |S| = k-1,$$

we have $S = N_{D_3}^+(v_i)$. Because $v_i \in V_3$, by (5.14) there exists $s \in [3k-1]$ such that $v_i \in V^{\text{int}}(P_s)$. We let P'' be the sub-path of P_s from v_i to b_{j_s} . Since P_s is backwards-transitive, every vertex in V(P'') should be in $N_T^-(v_i)$ except v_i and the second vertex, say u', of P''. Since $\overrightarrow{v_i u'} \in E_0$ and $E(D_3) \subseteq T[V_3] - E_0, u' \notin N_{D_3}^+(v_i)$. Thus

$$V(P'') \cap S \subseteq (N_T^-(v_i) \cup \{v_i, u'\}) \cap N_{D_2}^+(v_i) = \emptyset.$$

Thus P'' does not intersect with S. So $E(P') \cup E(P'')$ contains a path P in T - S from v to V_1 with $E(P) \subseteq E_0 \cup E_3$. This proves (E3)₂. We can prove (E3)₃ in a similar way. This proves Claim 5.6.

Claim 5.7. There exist a set of arcs $E_4 \subseteq A(T)$ and two sets $W_4^+, W_4^- \subseteq V_4$ satisfying the following.

- $(E4)_1 |E_4| \le k|V_4| k \text{ and } |W_4^+|, |W_4^-| \le 2k 1.$
- (E4)₂ For a set $S \subseteq V(T)$ of size k-1 and a vertex $v \in V_4 \setminus S$, there exists a path P in T-S from v to W_4^+ with $E(P) \subseteq E_4$.
- (E4)₃ For a set $S \subseteq V(T)$ of size k-1 and a vertex $v \in V_4 \setminus S$, there exists a path P in T-Sfrom W_4^- to v with $E(P) \subseteq E_4$.

Proof of Claim 5.7. We apply Lemma 3.4 to $T[V_4]$ with parameters 0, k corresponding to s, k, respectively. Then we obtain an ordering σ_4 and a $(\sigma_4, k, 2k - 1)$ -good digraph $D_4 \subseteq T[V_4]$ with $|E(D_4)| \leq k|V_4| - k$. Let

$$E_4 := E(D_4), \ W_4^+ := \sigma_4(|V_4| - 2k + 2, |V_4|) \text{ and } W_4^- := \sigma_4(1, 2k - 1),$$

then we have $|E_4| = |E(D_4)| \le k|V_4| - k$, $|W_4^-| \le 2k - 1$ and $|W_4^+| \le 2k - 1$. Hence (E4)₁ holds. By Claim 3.1, for any $S \subseteq V(T)$ of k - 1 vertices and $v \in V_4 \setminus S$, we can find a path P in $T[V_4] \setminus S$ from v to W_4^+ and a path P' in $T[V_4] \setminus S$ from W_4^- to v. This proves (E4)₂ and (E4)₃. This proves Claim 5.7.

We define W^+ and W^- as follows.

$$W^+ := W_2^+ \cup W_3^+ \cup W_4^+$$
 and $W^- := W_2^- \cup W_3^- \cup W_4^-$.

Note that $W^+, W^- \subseteq V \setminus (A \cup B)$. Thus A in-dominates W^+ and B out-dominates W^- . Now we take E_5 as follows to make connections from W^+ to $\{a_{i_1}, \ldots, a_{i_k}\}$ and from $\{b_{j_1}, \ldots, b_{j_k}\}$ to W^- .

Claim 5.8. There exists a set of arcs $E_5 \subseteq E(T)$ satisfying the following.

- $(E5)_1 |E_5| \le 81k^2$
- (E5)₂ For $t \in [k]$, a vertex $v \in W^+$ and a set $S \subseteq V(T) \setminus \{a_{i_t}, v\}$ of at most k-1 vertices, there exists a path P(v, t) in T S from v to a_{i_t} such that $E(P(v, t)) \subseteq E_5$.
- (E5)₃ For $t \in [k]$, a vertex $v \in W^-$ and a set $S \subseteq V(T) \setminus \{b_{j_t}, v\}$ of at most k-1 vertices, there exists a path Q(v,t) in T-S from b_{j_t} to v such that $E(Q(v,t)) \subseteq E_5$.

Proof of Claim 5.8. By (A2) and (A3), for each $u \in W^+$ and $s \in [3k-1]$ there exists $c_{u,s} \in N_T^+(u) \cap A_s$ such that $c_{u,s} = a_s$ or $a_s \in N_T^+(c_{u,s})$. Let

$$P(u,s) := \begin{cases} (u, c_{u,s}, a_s) & \text{if } c_{u,s} \neq a_s, \\ (u, a_s) & \text{otherwise.} \end{cases}$$

Similarly, for $u \in W^-$ and $s \in [3k-1]$, there is a path Q(u,s) from b_s to u with length at most 2 lying entirely in $B_s \cup \{u\}$. Let

$$E_5 := E(T[A_{\operatorname{sink}}]) \cup E(T[B_{\operatorname{source}}]) \cup \bigcup_{u \in W^+} \bigcup_{s=1}^{3k-1} E(P(u,s)) \cup \bigcup_{u \in W^-} \bigcup_{s=1}^{3k-1} E(Q(u,s)).$$

Then we have

$$|E_{5}| \leq |E(T[A_{\text{sink}}])| + |E(T[B_{\text{source}}])| + \sum_{u \in W^{+}} \sum_{s=1}^{3k-1} |E(P(u,s))| + \sum_{u \in W^{-}} \sum_{s=1}^{3k-1} |E(Q(u,s))| \\ \leq \binom{3k-1}{2} + \binom{3k-1}{2} + (6k-2)|W^{+}| + (6k-2)|W^{-}| \leq 81k^{2}.$$

We get the final inequality from $(E2)_1$, $(E3)_1$ and $(E4)_1$. To verify $(E5)_2$, consider a set S of k-1 vertices and an index $t \in [k]$ such that $a_{i_t} \notin S$ and a vertex $v \in W^+ \setminus S$. Recall that a_{i_t} has at least k in-neighbors in A_{sink} as defined before Claim 5.1. This together with the fact that A_1, \ldots, A_{3k-1} are pairwise disjoint implies that there exists an index $s \in [3k-1]$ such that $a_s \in N_T^-(a_{i_t})$ and $A_s \cap S = \emptyset$. Then $P(v, s) \cup \overrightarrow{a_s a_{i_t}}$ contains a path P from v to a_{i_t} , where P does not intersect with S because P is contained in $A_s \cup \{v\} \cup \{a_{i_t}\}$. Also $E(P) \subseteq E_5$, this proves $(E5)_2$. We can also prove $(E5)_3$ similarly. This proves Claim 5.8.

Now we define the desired spanning strongly k-connected digraph $D \subseteq T$. Let

V(D) := V(T) and $E(D) := E_0 \cup E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5.$

Because $\bigcup_{s=1}^{k} V^{\text{int}}(P_s) \subseteq V'_1 \cup V_2 \cup V_3$, we have $|E_0| \leq |V'_1| + |V_2| + |V_3| - k$. By (E1)₁, (E2)₁, (E3)₁, (E4)₁ and (E5)₁ we have

$$\begin{aligned} |E(D)| &\leq |E_0| + |E_1| + |E_2| + |E_3| + |E_4| + |E_5| \\ &\leq (|V_1'| + |V_2| + |V_3| - k) + (k|V_1| + (k-1)|V_1'| + 680k^2\log(k+1)) + (k|V_2| - k) \\ &+ ((k-1)|V_3| + (k-1)) + (k|V_4| - k) + 81k^2 \\ &\leq k(|V_1| + |V_1'| + |V_2| + |V_3| + |V_4|) + |V_2| + 740k^2\log(k+1) \\ &\stackrel{(E1)_1}{\leq} k|V| + 750k^2\log(k+1) \end{aligned}$$

since $680k^2 \log(k+1) + 81k^2 \le 740k^2 \log(k+1)$ for $k \ge 2$.

Now it suffices to show that D is strongly k-connected. For any set $S \subseteq V(T)$ of k-1 vertices and any two distinct vertices $u, v \in V(T) \setminus S$, we claim that there is a path from u to v in D-S. First of all, since P_1, \ldots, P_k are vertex-disjoint there exists $t \in [k]$ such that $V(P_t) \cap S = \emptyset$. We find a path P in D-S from u to $u' \in W^+$ as follows.

Case 1. $u \in V_2 \cup V_4$. There exists a path P in D - S from u to $u' \in W^+$ by (E2)₂ and (E4)₂.

Case 2. $u \in V_1 \cup V'_1$.

By (E1)₂, there is a path Q in D-S from u to a vertex $u_0 \in V_2$. Also (E2)₂ implies that there is a path Q' in D-S from u_0 to $u' \in W^+$. Thus $E(Q) \cup E(Q')$ contains a path P in D-S from u to $u' \in W^+$.

Case 3. $u \in V_3$. By (E3)₂, there is a path R in D - S from u to a vertex $u_0 \in W^+ \cup V_1$. If $u_0 \in W^+$, then let $u' = u_0$ and P := R. Otherwise, there is a path R' in D - S from u_0 to $u' \in W^+$ by Case 2. Thus $E(R) \cup E(R')$ contains a path P in D - S from u to $u' \in W^+$.

Similarly, there is a path Q in D - S from a vertex $v' \in W^-$ to v. By Claim 5.8, there is a path P(u',t) in D - S from u' to a_{i_t} , and a path Q(v',t) in D - S from b_{j_t} to v'. Thus $E(P) \cup E(P(u',t)) \cup E(P_t) \cup E(Q(v',t)) \cup E(Q)$ contains a path in D - S from u to v. This proves that D is strongly k-connected. \Box

Algorithmic aspect of Theorem 1.3. The proof of Theorem 1.3 is trivially algorithmic up to the following three optimization problems: finding a k-fan from a fixed vertex to a set with minimum total length, finding a maximum matching in a bipartite graph, and finding k vertex-disjoint paths between two sets with minimum total length. These optimization problems can be solved in polynomial-time on n = |V(T)| by standard application of algorithms finding maximum-flows and minimum cost flows of digraphs (see [1, Chapter 7,8 and 9]). Note that when we apply Lemma 3.4, we use Claim 3.3 to find the ordering σ and a subgraph D in polynomial time on n. With these tools, the proof itself immediately gives a polynomial-time algorithm to find the desired digraph D as in Theorem 1.3.

6. Acknowledgement

We are grateful to Deryk Osthus for a careful reading and helpful comments. We thank the referees for a thorough reading and valuable suggestions.

References

- R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications. *Prentice-Hall, Inc.*, 1993.
- J. Bang-Jensen, Problems and conjectures concerning connectivity, paths, trees and cycles in tournament-like digraphs, *Discrete Math.* 309 (2009), 5655–5667.
- [3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer Verlag, London, 2000.
- [4] J. Bang-Jensen, G. Gutin and A. Yeo, A polynomial algorithm for the Hamiltonian cycle problem in semicomplete multipartite digraphs, *Journal of Graph Theory* 29 (1998), 111–132.
- [5] J. Bang-Jensen, J. Huang and A. Yeo, Strongly connected spanning subgraphs with the minimum number of arcs in quasi-transitive digraphs, SIAM J. Disc. Math. 16 (2003), 335–343.
- [6] J. Bang-Jensen, J. Huang and A. Yeo, Spanning k-arc-strong subdigraphs with few arcs in k-arc-strong tournaments, J. Graph Theory 46 (2004), 265–284.
- [7] P. Hajnal, Partition of graphs with condition on the connectivity and minimum degree, Combinatorica 3 (1983), 95–99.
- [8] J. Kim, D. Kühn and D. Osthus, Bipartitions of highly connected tournaments, SIAM J. Disc. Math. 30 (2016), 895–911.
- [9] D. Kühn, J. Lapinskas, D. Osthus and V. Patel, Proof of a conjecture of Thomassen on Hamilton cycles in highly connected tournaments, Proc. London Math. Soc. 109 (2014), 733–762.
- [10] D. Kühn, D. Osthus and T. Townsend, Proof of a tournament partition conjecture and an application to 1-factors with prescribed cycle lengths, *Combinatorica* 36 (2015), 451–469.
- [11] Y. Manoussakis, A linear-time algorithm for finding Hamiltonian cycles in tournaments. Disc. Appl. Math. 36 (1992), 199–201.
- [12] A. Pokrovskiy, Highly linked tournaments, J. Combinatorial Theory B 115 (2015), 339–347.
- [13] A. Pokrovskiy, Edge disjoint Hamiltonian cycles in highly connected tournaments, Int. Math. Res. Not. 2 (2017), 429–467.
- [14] C. Thomassen, Configurations in graphs of large minimum degree, connectivity, or chromatic number, Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985), vol. 555 of Ann. New York Acad. Sci., New York, 1989, 402–412.
- [15] C. Thomassen, Graph decomposition with constraints on the connectivity and minimum degree, J. Graph Theory 7 (1983), 165–167.

(Dong Yeap Kang) DEPARTMENT OF MATHEMATICAL SCIENCES, KAIST, 291 DAEHAK-RO YUSEONG-GU DAEJEON, 305-701 SOUTH KOREA

(Jaehoon Kim) School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

(Younjin Kim) INSTITUTE OF MATHEMATICAL SCIENCES, EWHA WOMANS UNIVERSITY, SEOUL, SOUTH KOREA

(Geewon Suh) School of Electrical Engineering, KAIST, 291 Daehak-ro Yuseong-gu Daejeon, 305-701 South Korea

E-mail address: dynamical@kaist.ac.kr E-mail address: kimjs@bham.ac.uk, mutualteon@gmail.com E-mail address: younjinkim@ewha.ac.kr E-mail address: gwsuh91@kaist.ac.kr