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Minimal Stencils for Discretizations of Anisotropic PDEs
Preserving Causality or the Maximum Principle

Jean-Marie Mirebeau∗

April 1, 2016

Abstract

We consider discretizations of anisotropic diffusion and of the anisotropic eikonal equa-
tion, on two dimensional cartesian grids, which preserve their structural properties: the
maximum principle for diffusion, and causality for the eikonal equation. These two PDEs
embed geometric information, in the form of a field of diffusion tensors and of a Riemannian
metric respectively. Common knowledge is that, when these tensors are strongly anisotropic,
monotonous or causal discretizations of these PDEs cannot be strictly local: numerical
schemes need to involve interactions between each point and the elements of a stencil, which
is not limited to its immediate neighbors on the discretization grid. Using tools from discrete
geometry we identify the smallest valid stencils, in the sense of convex hull inclusion. We also
estimate, for a fixed condition number but a random tensor orientation, the worst case and
average case radius of these minimal stencils, which is relevant for numerical error analysis.

1 Introduction

The Partial Differential Equation (PDE) of diffusion obeys an important structural property,
named the maximum principle. Numerical schemes which preserve this structure benefit from
the discrete maximum principle [Cia70], a strong stability guarantee. The eikonal equation is
the PDE formulation of an optimal control problem: to find the shortest exit path from a given
domain. Discretization schemes which preserve its causal structure can be solved in a single pass
using the Fast Marching algorithm [Tsi95, SV01], which has a quasi-linear complexity. Motivation
for structure preservation in the discretization of PDEs is therefore plentiful, and stems from
theoretical as much as practical considerations. In this intention, a variety of numerical schemes
have been developed; for instance and without exhaustivity [MW53, BOZ04, Obe06, Wei98,
FM13] for anisotropic diffusion, and [SV01, AM11, Mir14] for anisotropic eikonal equations.

Non-isotropic PDEs have numerous applications, of which we can only give a glimpse.
Anisotropic diffusion is required in porous media simulation [Dro14], or stochastic control [BOZ04],
but is also fundamental in image processing [Wei98]. The Anisotropic eikonal equation is nat-
urally required for trajectory planning, but is also relevant for seismic imaging [SV03], and
extensively used in medical image segmentation [BC10]. When discretizing PDEs, anisotropy
usually comes with technical difficulties. Indeed, monotone or causal numerical schemes cannot
be strictly local, but need to introduce interactions between each point and a stencil of poten-
tially distant neighbors [SV03, Koc95]. The objective of this paper is to provide a complete
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qualitative and quantitative understanding of this non-locality, in the limited setting of two di-
mensional discretizations on cartesian grids: we identify the smallest stencils, in the sense of
convex hull inclusion, and we sharply estimate their worst case and average radius. Note that
minimal stencils were similarly identified in [BCM15] for the monotone discretization of the two
dimensional Monge-Ampere equation.

We introduce in §1.1 the concept of D-diffusion stencil, where D is a positive definite diffusion
tensor, which allows to discretize anisotropic diffusion PDEs while obeying the maximum prin-
ciple. Likewise, the concept of M -eikonal stencil, where M is a positive definite matrix encoding
the metric structure, allows to discretize anisotropic eikonal PDEs while preserving their causal
structure.

We identify in §1.2 the smallest D-diffusion stencil, and the smallest M -eikonal stencil, in
the sense of convex hull inclusion, see Theorems 1.12 and 1.13. These discretizations turn out
to coincide with numerical schemes previously introduced by the author in [FM13, Mir14], see
Proposition 1.17. We refer to these earlier works for implementation details, extensive numerical
studies, and comparisons with several competing methods.

We present in §1.3 quantitative estimates of the size of the optimal D-diffusion and M -
eikonal stencils, which are identified in the previous subsection §1.2. For a given tensor condition
number κ, the stencil radius strongly depends on the angle θ between the grid axes and the
tensor eigenvectors. Our estimates provide, for a given κ, both the worst and the average stencil
radius w.r.t. θ, see Theorem 1.19.

We briefly discuss in §1.4 the case of PDEs with non-constant coefficients. Indeed the results
of this paper, being strictly local, are for simplicity stated for PDEs with constant coefficients.
We describe problem instances to which our results apply particularly well, and show how The-
orem 1.19 could be the starting point of a numerical error analysis.

Notation: Let 〈f, g〉 and det(f, g) denote respectively the scalar product and the determi-
nant of two vectors f, g ∈ R2. The perpendicular vector f⊥ to f obeys 〈f⊥, g〉 = det(f, g). Let
S2 denote the collection of symmetric 2×2 matrices, and let S+

2 denote the subset of those which
are positive definite. To each D ∈ S+

2 we associate the norm defined for all e ∈ R2 by

‖e‖D :=
√

〈e,De〉. (1)

Let eT (resp. AT) denote the transpose of a vector e (resp. matrix A), and let e⊗e := eeT denote
the tensor product of the vector e ∈ R2 with itself, which is a positive semi-definite matrix. We
denote by Hull(V ) the convex hull of a set V ⊆ R2, and use the shorthand

[x1, · · · , xr] := Hull({x1, · · · , xr}),

for any x1, · · · , xr ∈ R2. We say that some vectors e1, · · · , er ∈ R2 are ordered trigonomet-
rically if they are non-zero, pairwise non-positively collinear, and if the normalized vectors
e1/‖e1‖, · · · , er/‖er‖ are indexed according to the cyclic order on the unit circle. In that case
we say that ei and ei+1 are trigonometrically consecutive within this family of vectors, for any
0 ≤ i < r and with the convention e0 := er. Finally, we denote by Z the collection of elements
of Z2 which have co-prime coordinates

Z := {e ∈ Z2; gcd(e) = 1},

where gcd(e) := gcd(a, b) if e = (a, b) ∈ Z2. Note that (0, 0) /∈ Z.
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1.1 Structure preserving schemes for the Diffusion and Eikonal equations

We introduce in this section discretization schemes for anisotropic diffusion and eikonal PDEs,
based on adequate notions of stencils. We focus on constant PDE coefficients, see §1.4 for a
discussion on non-constant coefficients. This restriction is not limiting since the definitions and
results presented in §1.1, §1.2 and §1.3 are purely local. As mentioned in the introduction, our
main results are limited to discretizations on two dimensional cartesian grids, which take the
form

x0 + hRZ2,

where x0 is an offset, h > 0 a scale, and R a rotation. Without loss of generality, we assume
that these parameters take their canonical values, so that the discretization grid is simply Z2.

The results presented in this subsection are fairly classical, but are nevertheless required to
justify the axioms chosen for the definition of diffusion and eikonal stencils. Classical references
on these topics include [Cia70] on the discrete maximum principle, [Wei98] on anisotropic dif-
fusion in image processing, and [SV03] on anisotropic eikonal equations. The results of this
subsection are established in Appendix A.

Discretization of anisotropic Diffusion. We introduce the concept of D-Diffusion stencil
in Proposition 1.1, show how it leads to a natural discretization of diffusion PDEs in Proposition
1.2, and justify the so-called Non-Negativity axiom by a stability property in Proposition 1.4.
Throughout this section, the diffusion tensor D is given and assumed to be positive definite, but
it could be severely ill conditioned.

Definition 1.1. A D-diffusion stencil, D ∈ S+
2 , is a finitely supported map γ : Z → R obeying:

• Consistency: 1
2

∑
e∈Z γ(e) e⊗ e = D.

• Symmetry: γ(−e) = γ(e) for all e ∈ Z.

• Non-negativity: γ(e) ≥ 0 for all e ∈ Z.

A D-diffusion stencil γ may also be regarded as the finite collection of points supp(γ), together
with the weights γ(e), e ∈ supp(γ). Our next result justifies the Consistency axiom.

Proposition 1.2. Consider a finitely supported γ : Z → R obeying property Symmetry of Defi-
nition 1.1. Then property Consistency is equivalent to each of the following properties:

• Consistency’:
∑

e∈Z γ(e)(u(x+ e)− u(x)) = Tr(D∇2u(x)) for any quadratic u : R2 → R.

• Consistency”: 1
2

∑
e∈Z γ(e)(u(x+ e)− u(x))2 = ‖∇u(x)‖2D for any linear u : R2 → R.

To each finitely supported γ : Z → R we attach the linear operator Lγ defined for all
u : Z2 → R and x ∈ Z2 by

Lγu(x) :=
∑
e∈Z

γ(e)(u(x+ e)− u(x)). (2)

If γ obeys properties Symmetry and Consistency of Definition 1.1, then Lγ is by Proposition
1.2 a natural discretization of Tr(D∇2u) and of div(D∇u). Note that these two differential
operators are identical, as well as their discretizations, since the diffusion tensor D is constant
over the domain. Divergence form and non-divergence form diffusion PDEs differ however, as
well as their discretizations, in the case of a space varying tensor field, see §1.4.
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Observing that Id = e1 ⊗ e1 + e2 ⊗ e2, where (e1, e2) denotes the canonical basis of R2,
we obtain the Id-diffusion stencil defined by γ(±e1) = γ(±e2) = 1 and γ = 0 elsewhere. The
operator (2) associated to this specific stencil is the standard five points discretization of the
Laplace operator ∆.

The maximum principle is a fundamental property of the diffusion PDE: if u ∈ C2(R+×R2)
is bounded and obeys ∂tu = div(D∇u), then for any t ≥ 0 one has

inf
R2

u0 ≤ ut ≤ sup
R2

u0,

where ut : x 7→ u(t, x). Here and after, if u : X → R is a map and c ∈ R is a constant, then
“u ≥ c” stands for “u(x) ≥ c for all x ∈ X”. The next proposition shows that the Non-Negativity
axiom of D-diffusion stencils is equivalent (under a CFL condition) to the discrete maximum
principle for the operator Id+δLγ which is associated to an explicit time step of discretized
diffusion.

Definition 1.3. In the following, an operator is a continuous map from L∞(Z2) to itself. An
operator A obeys the discrete maximum principle iff for all u ∈ L∞(Z2) one has on Z2

inf
Z2

u ≤ Au ≤ sup
Z2

u.

Proposition 1.4. Let γ : Z → R be finitely supported. Then the following are equivalent:

• The weights γ are non-negative.

• There exists δ > 0 such that Id+δLγ obeys the maximum principle.

Assume now that the weights γ are non-negative. Then maximum principle for Id+δLγ is equiva-
lent to the CFL condition 0 ≤ δ

∑
e∈Z γ(e) ≤ 1. In addition the operator (Id−δLγ)

−1, describing
an implicit time step of discretized diffusion, obeys the maximum principle for any δ > 0.

The discrete maximum principle also makes sense for static boundary value problems, without
time evolution. See the discussion in [Cia70] which is based on the concept of M -matrix.

Remark 1.5 (Stencils with support outside of Z). It may seem relevant to consider D-diffusion
stencils γ : Z2\{0} → R, obeying the axioms of Definition 1.1 up to the replacement of Z with the
larger set Z2 \ {0}. Note however that a standard D-diffusion stencil γ̃ : Z → R may then be de-
fined by γ̃(e) :=

∑
λ>0 λ

2γ(λe). In addition γ̃ is preferable to the original γ, since it is supported
on a smaller set in the sense of convex hull inclusion. Indeed e/ gcd(e) ∈ [−e, e] ⊆ Hull(supp(γ))
for any e ∈ supp(γ).

Discretization of Anisotropic Eikonal equations. Given a bounded domain Ω ⊆ R2,
and a positive definite tensor D ∈ S+

2 , one may consider the eikonal equation

∀x ∈ Ω, ‖∇u(x)‖D = 1, ∀x ∈ R2 \ Ω, u(x) = 0. (3)

This PDE is known to admit a unique viscosity solution [CL83], which is the escape time u :
R2 → R+ from the domain Ω, where path length is measured using the metric ‖ · ‖M , with
M := D−1. The reason for the matrix inversion D = M−1 is that the norm ‖ · ‖M is intended for
measuring vectors, whereas the dual norm ‖·‖D is intended for measuring gradients (co-vectors).
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Bellman’s optimality principle, illustrated in Figure 1, expresses that in order to escape the
domain Ω one must first escape any sub-domain V . Hence if x ∈ V ⊆ Ω, then

u(x) = min
y∈∂V

‖x− y‖M + u(y). (4)

The next definition introduces the notion of eikonal stencil, used in Definition 1.7 to mimic
Bellman’s optimality principle at the discrete level.

Definition 1.6. An M -eikonal stencil is a finite collection of points e1, · · · , er ∈ Z obeying:

• Ordering: the points are indexed according to the cyclic trigonometric order. Let e0 := er.

• Orientation: det(ei, ei+1) > 0 for all 0 ≤ i < r.

• Acuteness: 〈ei,Mei+1〉 ≥ 0 for all 0 ≤ i < r.

The properties Ordering and Orientation of this definition guarantee that the union of seg-
ments [e0, e1]∪ · · · ∪ [er−1, er] delimits a neighborhood V0 of the origin. The Hopf-Lax operator,
introduced below, mimics the r.h.s. of (4) at the discrete level, on the neighborhood V0 translated
around a point x ∈ Z2 of interest, and denoted by V (x) in Figure 1. Hopf formulas were intro-
duced by Evans [?] as explicit representations of some Hamilton-Jacobi equations with constant
coefficients.

Definition 1.7 (Hopf-Lax operator). Let e1, · · · , er ∈ Z obey the properties Ordering and Ori-
entation of Definition 1.6. Then for any u : Z2 → R and any x ∈ Z2 we define

Λu(x) := min
0≤i<r

min
t∈[0,1]

‖x− yi,t‖M + (1− t)u(yi) + tu(yi+1), (5)

where yi := x+ ei and yi,t := (1− t)yi + tyi+1, for all 0 ≤ i < r and all t ∈ [0, 1].

Semi-Lagrangian schemes [FF02, BR06] for the eikonal equation take the form of a fixed
point problem: find u : Z2 → R such that

∀x ∈ X, u(x) = Λu(x), ∀x ∈ Z2 \X, u(x) = 0, (6)

where the discrete domain X ⊆ Z2 approximates the PDE domain Ω in (3). The eikonal PDE
has a causal structure: denoting by y∗ a point at which the minimum in Bellman’s optimality
principle (4) is attained, the PDE solution satisfies u(x) > u(y∗). The discrete counterpart of
this property, which may or may not hold, is introduced in the next definition.

Definition 1.8. The Hopf-Lax operator (5) has the causality property iff, for any u : Z2 → R
and any x ∈ Z2, one has denoting by 0 ≤ i < r and t ∈ [0, 1] the minimizers in (5)

Λu(x) > u(yi) if t < 1, and Λu(x) > u(yi+1) if t > 0.

Numerical solvers of (6) involve a mutable map u : Z2 → R ∪ {+∞}, initialized by u = 0 on
Z2 \X and u = +∞ on X. They iteratively substitute u(xi) with Λu(xi), an operation referred
to as an Hopf-Lax update [BR06], for some sequence of points (xi)i≥0 in the discrete domain X,
until a convergence criterion is met. The point sequence is fixed a-priori or determined at run
time.

If the causality property holds, then (6) can be efficiently solved using the Fast Marching
algorithm [Tsi95], which is a variant of Dijkstra’s algorithm on graphs, see Figure 1. This method
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Figure 1: From left to right. I: Bellman’s optimality principle (4) expresses that any path
starting from x, and escaping Ω, must intersect ∂V at some point y. II: The discretization of the
eikonal PDE mimics this principle, see (5) and (6). III: The minimum defining Λu(x) is attained
on a facet of ∂V (x), here a segment of endpoints y1, y2. The value of the solution u to (6) at x
is thus sensitive to the values at y1 and y2. IV: The discrete Causality property guarantees that
the solution to (6) obeys u(x) > u(y), whenever the dependency graph features an arrow from x
to y. This is an essential requirement for the fast marching algorithm.

determines the sequence of points (xi)i≥0 at run-time using a priority queue, and guarantees that
the number of Hopf-Lax updates required at any point x ∈ X to reach convergence is bounded
a-priori by the number of elements of its stencil. Without the causality property, alternative
methods must be used [BR06, ?], which are inspired by the Bellman-Ford algorithm on graphs.
They are typically slower and offer no a-priori bound on the number of Hopf-Lax updates required
for each point.

The causality property, which is thus highly desirable from the algorithmic point of view, turns
out to be equivalent to a geometric property of the stencils, as shown in the next proposition.
This proposition can be extended to arbitrary dimension, and to arbitrary norms, which need
not be of the form (1) but may be non-smooth or even asymmetric [SV03, Vla08, Mir13].

Proposition 1.9 (Causality is equivalent to Acuteness [SV03, Vla08]). Under the assumptions
of Definition 1.7, the causality of the Hopf-Lax operator is equivalent to the Acuteness property
of the stencil in Definition 1.6.

Remark 1.10 (Stencils with points outside Z). It may seem relevant to consider an M -eikonal
stencil e1, · · · , er ∈ Z2 \{0} obeying the axioms of Definition 1.6 up to the replacement of Z with
the larger set Z2 \ {0}. Note however that a standard M -eikonal stencil may then be defined by
e1/ gcd(e1), · · · , er/ gcd(er). In addition, the new stencil is preferable since it is supported on a
smaller set in the sense of convex hull inclusion: indeed ei/ gcd(ei) ∈ [0, ei] ⊆ [e1, · · · , er].

1.2 Minimal stencils in the sense of convex hull inclusion

We identify in this section the smallest D-diffusion and M -eikonal stencils in the sense of convex
hull inclusion, see Theorems 1.12 and 1.13, for any D,M ∈ S+

2 . Empirical experience tells
that the most robust and accurate PDE discretizations are typically achieved with the smallest
stencils. Small stencils also limit discretization issues close to the domain boundary, and ease
parallel implementations. In this light, our results characterize the best possible stencils for
the discretization of anisotropic diffusion and anisotropic eikonal equations on cartesian grids
- unless one is looking for discretizations with higher order consistency. The statement of our
results requires the introduction of some elementary notions of lattice geometry, illustrated in
Figures 2 and 3. The results presented in this section are established in §2.
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0

Figure 2: Voronoi cell Vor(M), and unit ball {x ∈ R2; ‖x‖M ≤ 1}, for to two matrices M . Left:
M = Id (non generic case). Right: matrix M with condition number κ = 1.4 and orientation
θ = 0.3 (generic case), i.e. M := Mκ(θ) from Definition 1.18. Voronoi region Vor(M) shown in
gray. Voronoi vectors shown as thick points, strict ones in black, others in gray. Lines (dashed
for non-strict Voronoi vectors) mark the equality 2〈g,Me〉 = ‖e‖2M ; Voronoi facets Vor(M ; e) are
their intersections with the grayed Voronoi region Vor(M).

Definition 1.11. For each matrix M ∈ S+
2 , the Voronoi cell Vor(M), and facets Vor(M ; e),

e ∈ Z2 \ {0}, are defined by

Vor(M) := {p ∈ R2; ∀e ∈ Z2, ‖p‖M ≤ ‖p− e‖M},
Vor(M ; e) := {p ∈ Vor(M); ‖p‖M = ‖p− e‖M}.

An M -Voronoi vector is an element e ∈ Z2 \ {0} such that Vor(M ; e) 6= ∅. It is said strict iff
Vor(M ; e) is not reduced to a point, in which case it is a 1-dimensional segment.

Note that ‖p‖M ≤ ‖p − e‖M if and only if 2〈p,Me〉 ≤ ‖e‖2M , for any p, e ∈ R2. Hence
Vor(M) is an intersection of half-spaces, thus a convex polytope, which has one facet Vor(M ; e)
with exterior normal is Me for each strict M -Voronoi vector e. The next two theorems show
that the smallest D-diffusion and M -eikonal stencils are supported precisely on the set of strict
M -Voronoi vectors, with D := M−1.

Theorem 1.12. For any D ∈ S+
2 , there exists a unique D-diffusion stencil supported on the set

V of strict M -Voronoi vectors, where M := D−1. Furthermore, this stencil is minimal in the
following sense: any other D-diffusion stencil γ satisfies Hull(V ) ⊆ Hull(supp(γ)).

Theorem 1.13. For any M ∈ S+
2 , the set V of strict M -Voronoi vectors, ordered trigonomet-

rically, is an M -eikonal stencil. Furthermore this stencil is minimal in the following sense: any
other M -eikonal stencil e1, · · · , er satisfies Hull(V ) ⊆ Hull({e1, · · · , er}).

The next two definitions distinguish, within the set S+
2 of symmetric positive definite matrices,

an open dense subset of generic matrices, and a complementary subset of exceptional matrices
obeying a geometric property. This allows in Proposition 1.16 to characterize strict M -Voronoi
vectors as the smallest elements of Z w.r.t. the metric ‖ · ‖M , and in Proposition 1.17 to relate
our stencil constructions with earlier works.

Definition 1.14. A basis of Z2 is a pair (f, g) ∈ (Z2)2 such that | det(f, g)| = 1. The basis is
said M -orthogonal, where M ∈ S+

2 , iff 〈f,Mg〉 = 0.

Definition 1.15. A matrix M ∈ S+
2 is said generic iff there exists no M -orthogonal basis of Z2.

Proposition 1.16. The set of strict M -Voronoi vectors, where M ∈ S+
2 , consists of

7



Figure 3: Unit circle {x ∈ R2; ‖x‖M = 1}, and collection of strict M -Voronoi vectors, for
matrices M = Mκ(θ) of varying condition number κ and orientation θ, see Definition 1.18. Left:
κ = 5, θ ∈ [0, π/2]. Right: κ ∈ [1, 16], θ = π/3).

• if M is non-generic: the four smallest elements of Z w.r.t. ‖ · ‖M .

• if M is generic: the six smallest elements of Z w.r.t. ‖ · ‖M .

As far as generic matrices are concerned, the stencil constructions of Theorems 1.12 and 1.13
are not new, but coincide with those of [FM13] for diffusion and [Mir14] for eikonal PDEs. We
refer to these works for convergence results, numerical experiments and comparisons with other
approaches. The stencil constructions of [FM13, Mir14] are based on another tool of lattice
geometry, called obtuse superbases see §2.2, and also make sense in three dimensions. However
no optimality result is known in this latter case.

Proposition 1.17. If M ∈ S+
2 is generic, then the D-diffusion stencil of Theorem 1.12 is the

one presented in [FM13], and the M -eikonal stencil of Theorem 1.13 is the one presented in
[Mir14].

Our D-diffusion stencils are also equivalent to the (two dimensional only) construction of
[BOZ04]. Non-equivalent constructions can be found in [AM11] for M -eikonal stencils, and
[Wei98] for D-diffusion stencils. They are, inevitably, less local and accurate, as exposed by the
comparisons in [FM13, Mir14].

1.3 Average size of minimal stencils

We introduced in §1.1 the concepts of D-diffusion stencil and M -eikonal stencil, and identified
in §1.2 the smallest such stencils in the sense of convex hull inclusion. They turn out to be both
supported on the set of strict M -Voronoi vectors, with M := D−1. Our next result, Theorem
1.19 is a quantitative estimate of the size these stencils, which supplements their qualitative
optimality property. The result presented in this section is established in §3.

Definition 1.18. For each κ ∈ [1,∞[, θ ∈ R, we introduce the positive definite 2× 2 matrix

Mκ(θ) := κ−1 eθ ⊗ eθ + κ e⊥θ ⊗ e⊥θ , with eθ := (cos θ, sin θ). (7)

We denote by Vκ(θ) the collection of all strict Mκ(θ)-Voronoi vectors, and define

Rκ(θ) := max
e∈Vκ(θ)

‖e‖, Sκ(θ) := max
e∈Vκ(θ)

‖e‖Mκ(θ). (8)

We allow ourselves a slight abuse of notation: “eθ” always refers to the unit vector (7) of
direction θ, although at times we introduce families e1, · · · , er of vectors in Z2.

The radius of M -diffusion stencils is measured in (8) using two different norms: the “extrin-
sic” euclidean norm (8, left), and the “intrinsic” ‖ · ‖Mκ(θ)-norm (8, right) which is tied to the

8
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Figure 4: Plots of Rκ(θ) (left) and Sκ(θ) (right), for κ ∈ {10, 50}, as a function of θ ∈ [0, π/2],
see Definition 1.18. Logarithmic scale.

anisotropic geometry embedded in the PDE. Several plots of Rκ(θ) and Sκ(θ), as a function
of θ ∈ [0, π/2[ and for a fixed κ, are shown in Figure 4. The dependence of Rκ(θ) and Sκ(θ)
on the variable θ is highly irregular, and reflects how well the slope tan θ is approximated by
rationals with small denominator. Both radii measures Rκ and Sκ have their relevance and mer-
its, as discussed in Appendix B of [Mir14] with an heuristic analysis of the accuracy of several
discretizations of the eikonal PDE.

The maximum condition number κ, of the tensor field associated to an anisotropic PDE, is
generally well known: it is problem data, reflecting a continuous model. In contrast we regard
the angle θ, between the cartesian grid axes and the tensor eigenvectors, as a random quantity
uniformly distributed in [0, π[. In other words the preferred directions of the grid and of the PDE
are viewed as independent of each other. Our main result, Theorem 1.19 illustrated in Figure 5,
is thus devoted to the estimation of averaged quantities w.r.t. the angular variable θ, namely the
Lp([0, π[)-norms of Rκ and Sκ. The uniform equivalence of two expressions, w.r.t. the parameter
κ, is denoted as follows:

A(κ) ≈ B(κ) ⇔ ∃C, c > 0, ∀κ ≥ 1, cB(κ) ≤ A(κ) ≤ CB(κ). (9)

Theorem 1.19. For any p ∈ [1,∞] one has uniformly in κ (Lp norms are on the interval [0, π[)

‖Rκ‖Lp ≈ κ
1
2 ‖Sκ‖Lp , ‖Sκ‖Lp ≈


κ

1
2
− 1

p if p > 2,

(lnκ)
1
2 if p = 2,

1 if p < 2.

In applications, κ = 10 is already a pronounced anisotropy, and κ = 100 is presumably the
most degenerate anisotropy that can conceivably be handled with the proposed discretizations
of the diffusion and eikonal PDEs. More specialized approaches are recommended for stronger
anisotropies, such as asymptotic preserving formulations [?]. Nevertheless Theorem 1.19 is a
good indicator of the effective spread of our diffusion stencils, since the asymptotic behavior is
quickly attained as shown in Figure 5.

1.4 PDEs with non-constant coefficients

We shortly discuss some PDE models interest, which are intrinsically anisotropic, often dis-
cretized on cartesian grids, and thus directly benefit from the results obtained in this paper.

Divergence form anisotropic diffusion. Let Ω ⊆ R2 be a bounded domain, and let
D : Ω → S+

2 be a continuous field of diffusion tensors. Let h > 0 be a discretization scale, and
let Ωh := Ω∩hZ2 be the discretization grid. The elliptic energy ED associated to D has a natural

9
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Figure 5: Left: Lp([0, π[) norms of Rκ and Sκ, as a function of κ ∈ [1, 100] for different exponents
p ∈ [1,∞]. The behavior for p < 2 (dashed) and p > 2 is significantly different, see Theorem
1.19. Right: Tail distribution of Rκ and Sκ. Log-log scale.

discretization Eh. For u : Ω → R

ED(u) :=

ˆ
Ω
‖∇u(x)‖2D(x)dx, Eh(u) :=

1

2

∑
x∈Ωh

∑
e∈Z

γD(x)(u(x+ he)− u(x))2.

We denoted by γD : Z → R, where D ∈ S+
2 , the minimal D-diffusion stencil of Theorem

1.12. The contributions to Eh involving the evaluation of u outside Ω should be omitted for
Neumann boundary conditions, or included by extending u as 0 on R2 \Ω for Dirichlet boundary
conditions. Taking the gradient flow of ED (resp. Eh) w.r.t. the L2 metric, one obtains the
divergence form diffusion ∂tu(t, x) = div(D(x)∇u(t, x)) (resp. a natural discretization of this
PDE obeying the maximum principle). Before discussing specific applications, we illustrate the
relevance of Theorem 1.19 through an heuristic accuracy analysis. By a fourth order Taylor
expansion of u close to x, we obtain

1

2h2

∑
e∈V

γD(u(x+ he)− u(x))2 = ‖∇u(x)‖2D + h2
∑
e∈V

γDΛ(e, e, e, e) +O(h4), (10)

with the four-linear tensor Λ = 1
2∇

2u(x)⊗∇2u(x) +∇u(x)⊗∇3u(x). The second order O(h2)
contribution is thus bounded by the three term product,

∑
e∈Z

γD(e)‖Λ‖‖e‖4 ≤ ‖Λ‖

(∑
e∈Z

γD(e)‖e‖2
)(

max
e∈supp(γD)

‖e‖2
)

= ‖Λ‖Tr(D)r(D)2.

involving a contribution ‖Λ‖ of the PDE solution regularity, a contribution Tr(D) of the PDE
data, and a contribution r(D)2 from the scheme, where r(D) := max{‖e‖; e ∈ supp(γD)} is the
radius of the stencil support. Therefore, the difference between the elliptic energy ED and its
discretization Eh is bounded by

|ED(u)− Eh(u)| ≤

∣∣∣∣∣∣
ˆ
Ω
‖∇u(x)‖2D(x)dx− h2

∑
x∈Ωh

‖∇u(x)‖2D(x)

∣∣∣∣∣∣
+ h2

(
max
x∈Ω

‖Λ(x)‖‖D(x)‖
)h2

∑
x∈Ωh

r(D(x))2

+ o(h2).

The first contribution, a quadrature error, is scheme independent and expected to be O(h2) (at
least on square domains, for which the boundary representation is exact). The second contribu-
tion, an O(h2) discretization error, is proportional to the average squared stencil radius. This
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shows the relevance of the estimate ‖Rκ‖L2 ≈
√
κ lnκ obtained in Theorem 1.19. Note that the

worst case stencil radius is significantly larger: ‖Rκ‖L∞ ≈ κ .
Non-linear anisotropic diffusion PDEs take the form ∂tu(t, x) = div(Du(t, x)∇u(t, x)), with a

solution dependent tensor field Du. They play an important role in image processing, being used
for image deblurring, sharpening, compression, . . . see [Wei96] for an overview. From a practical
point of view, the PDE non-linearity merely requires to update the diffusion tensor field every
few time steps. Our D-diffusion stencils are used to solve numerically non-linear anisotropic
diffusion PDEs in [FM13]. Note that our results are irrelevant for non-linear isotropic diffusion,
such as the Perona-Malik model1 with diffusion tensors Du(t, x) := Id /(1 + ‖∇u(t, x)‖).

We end this paragraph by mentioning a celebrated model of the first layer of the visual
cortex [Pet03] as the three dimensional manifold V1 := R2×P1, where P1 denotes [0, π[ equipped
with periodic boundary conditions. This manifold is equipped with a degenerate hypo-elliptic
diffusion operator, which can be approximated using a strongly anisotropic diffusion tensor field:
for all (x0, x1, θ) ∈ V1, denoting by κ � 1 a large parameter

D(x0, x1, θ) =

 eθ ⊗ eθ+
κ−2e⊥θ ⊗ e⊥θ

1

 =

(
(κMκ(θ))

−1

1

)
.

The two-dimensional discretization scheme proposed in this paper for anisotropic diffusion easily
extend to this case, thanks to the block diagonal structure. This model fits Theorem 1.19 par-
ticularly well, since the condition number κ is fixed, and all directions θ are equally represented.

Non-Divergence form diffusion. Monotone second-order differential operators can, under
mild assumptions, be expressed in Hamilton-Jacobi-Bellman (HJB) form as infs and sups of linear
non-divergence form diffusion operators. Denoting by A and B two parameter spaces, and by
D : A × B → S+

2 a family of diffusion tensors, the continuous operator and its discretization
read:

inf
a∈A

sup
b∈B

Tr(D(a, b)∇2u(x)), inf
a∈A

sup
b∈B

∑
e∈Z

γD(a,b)(e)
u(x+ he)− u(x)

h2
.

This strategy is applied in [BOZ04] to the HJB equation of stochastic control. See also [BCM15]
for a monotone and consistent discretization of the Monge-Ampere operator, which fits in this
setting thanks to the identity det(∇2u) = inf{Tr(D∇2u); D ∈ S+

2 ,detD = 1}. Note that the
constraint det(D) = 1 includes diffusion tensors D ∈ S+

2 of arbitrary condition number, in all
orientations.

Anisotropic Eikonal equations. Anisotropic eikonal equations allow to estimate rieman-
nian distances, and compute the associated shortest paths. Anisotropy is particularly useful
in applications to image segmentation, where it is used to guide the shortest paths along one
dimensional structures of interest, such as blood vessels or organ boundaries [CCM14].

Strongly anisotropic riemannian metrics can also be used to approximate degenerate, sub-
riemannian geometries. For instance, the Reed-Shepp car model is posed on the manifold R2×P1,
where again P1 denotes [0, π[ equipped with periodic boundary conditions. This model involves
a degenerate metric which can be approximated as follows: for all (x0, x1, θ) ∈ R2×P1, denoting
by κ � 1 a large parameter

M(x0, x1, θ) =

 eθ ⊗ eθ+
κ2e⊥θ ⊗ e⊥θ

1

 =

(
κMκ(θ)

1

)
.

1Note that the Perona-Malik model is often incorrectly referred to as “anisotropic diffusion”, despite the fact
that its diffusion tensors are proportional to the identity matrix. See [Wei96] for a discussion on terminology.
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Figure 6: Unit ball {e ∈ R2; ‖e‖M ≤ 1} and collection of strict M -Voronoi vectors; same graphic
after a linear change of coordinates by M

1
2 . Left: diagonal matrix, Right: generic matrix. The

angles of trigonometrically consecutive strict M -Voronoi vectors f, g are acute after the change
of coordinates, as expected since 〈f,Mg〉 ≥ 0 by Corollary 2.3.

The two-dimensional numerical scheme proposed in this paper for anisotropic eikonal equations
easily extends to this model, thanks to the block diagonal structure of the metric. See [SBD+15]
for an application to blood vessel segmentation. This model fits Theorem 1.19 particularly well,
since the condition number is fixed, and all anisotropy orientations are equally represented.

2 Correctness and minimality of Voronoi based stencils

We establish in this section the results announced in §1.2. Specifically, Theorem 1.13 is proved
in §2.1, Proposition 1.16 in §2.2, and Theorem 1.12 in §2.3. The results of each subsection are
used in the following subsection, and in particular Theorem 1.13 is used to prove Theorem 1.12.
The statement of Proposition 1.17 on eikonal stencils (resp. diffusion stencils) is proved in §2.2
(resp. §2.3). We denote by Cone(f, g) the convex cone spanned by two vectors f, g ∈ R2.

2.1 Correctness and minimality of eikonal stencils

We establish in Corollary 2.3 the correctness part of Theorem 1.13: strict M -Voronoi vectors,
when ordered trigonometrically, do define an M -eikonal stencil. The rest of Theorem 1.13 is
established in Proposition 2.6. Two preliminary lemmas are required.

Lemma 2.1. All M -Voronoi vectors belong to the set Z, for all M ∈ S+
2 .

Proof. Any element of Z2 \ {0} can be written under the form λe, where λ is a positive integer
and e ∈ Z. If λ > 1, then for any p ∈ R2 we obtain

‖e− p‖2 = 1

λ
‖λe− p‖2 +

(
1− 1

λ

)
‖p‖2 − (λ− 1)‖e‖2 < max{‖λe− p‖, ‖p‖2},

which shows that Vor(M ;λe) = ∅, hence that λe is not a Voronoi vector.

Lemma 2.2. Let f, g be M -Voronoi vectors such that Vor(M ; f)∩Vor(M ; g) 6= ∅, where M ∈ S+
2 .

Then 〈f,Mg〉 ≥ 0.

Proof. Consider x ∈ Vor(M ; f) ∩ Vor(M ; g). Then ‖x− (f + g)‖M ≥ ‖x− f‖M = ‖x− g‖M =
‖x‖M . Thus, as announced

0 ≤ ‖x− (f + g)‖2M − ‖x− f‖2M − ‖x− g‖2M + ‖x‖2M = 2〈f,Mg〉.

Corollary 2.3. For any M ∈ S+
2 , the collection of strict M -Voronoi vectors (e1, · · · , er), ordered

trigonometrically, defines an M -eikonal stencil.

12



Proof. By Lemma 2.1, M -Voronoi vectors belongs to Z as required. The sets Vor(M ; ei), 1 ≤
i ≤ r, are the faces of the convex polytope Vor(M), ordered trigonometrically. The exterior
normal to Vor(M ; ei) is Mei, hence 0 < det(Mei,Mei+1) = det(M) det(ei, ei+1) as required
(Orientation), for all 1 ≤ i ≤ r. Since two consecutive faces have non-empty intersection, one
has 〈ei,Mei+1〉 by Lemma 2.2, as required also (Acuteness), which concludes the proof.

Our next objective is to establish the minimality property of the M -eikonal stencils of The-
orem 1.13. For that purpose, achieved in Proposition 2.6, two preliminary results are required.
Recall that [p1, · · · , pn] := Hull({p1, · · · , pn}) for any p1, · · · , pn ∈ R2.

Lemma 2.4. Let f, g ∈ Z2 be such that |det(f, g)| > 1. Then the triangle [0, f, g] contains a
point e ∈ Z distinct from its vertices.

Proof. Since |det(f, g)| > 1, the map (α, β) ∈ Z2 7→ αf + βg ∈ Z2 is not surjective. Hence there
exists (α, β) ∈ Q2, at least one of them non-integer, such that αf + βg ∈ Z2. Up to replacing
(α, β) with (α − m,β − n), for some (m,n) ∈ Z2, we may assume that α, β ∈ [0, 1]. Up to
replacing (α, β) with (1−α, 1−β), we may assume that α+β ≤ 1. The point e := αf +βg ∈ Z2

thus belongs to T and is distinct from its vertices. This establishes the announced result, unless
gcd(e) > 1, in which case we can consider e/ gcd(e).

Corollary 2.5. Let (e1, · · · , er) be an M -eikonal stencil. Then there exists another M -eikonal
stencil (e′1, · · · , e′r′) such that [e′1, · · · , e′r′ ] ⊆ [e1, · · · , er] and det(e′i, e

′
i+1) = 1 for all 0 ≤ i < r′.

Proof. Define (e′1, · · · , e′r′) by ordering trigonometrically the elements of [e1, · · · , er] ∩ Z. By
construction, the points e1, · · · , er are among e′1, · · · , e′r′ , hence for any 0 ≤ i < r′ there exists 0 ≤
j < r such that the vectors ej , e′i, e

′
i+1, ej+1 are in trigonometric order. This implies 〈e′i,Me′i+1〉 >

0 (Acuteness) and det(e′i, e
′
i+1) > 0 (Orientation) as required. By construction, the triangle

[0, e′i, e
′
i+1] contains no point of Z aside from its vertices, hence |det(e′i, e′i+1)| ≤ 1 by Lemma 2.4,

thus det(e′i, e
′
i+1) = 1 as announced since this determinant is a positive integer.

Proposition 2.6. Let M ∈ S+
2 , and let (e1, · · · , er) be an M -eikonal stencil. Then all strict

M -Voronoi vectors belong to [e1, · · · , er].

Proof. Let e be a strict M -Voronoi vector, and let f = ei and g = ei+1 be trigonometrically
consecutive elements of the M -eikonal stencil (e1, · · · , er) such that e ∈ Cone(f, g). Then e =
αf + βg for some α, β ∈ R+. By Corollary 2.5 we can assume without loss of generality that
det(f, g) = 1, thus the vectors (f, g) form a basis of Z2, hence α, β ∈ Z. Since e ∈ Z, one has
gcd(α, β) = 1. Assuming for contradiction that α ≥ 1 and β ≥ 1 we obtain for any p ∈ R2

α‖p− f‖2 + β‖p− g‖2 = (α+ β)‖p‖2 − 2〈αf + βg, p〉+ α‖f‖2 + β‖g‖2

= (α+ β − 1)‖p‖2 + ‖p− e‖2 − 2αβ〈f, g〉.

Since αβ〈f, g〉 ≥ 0, and since α + β = (α + β − 1) + 1, it follows that min{‖p− f‖, ‖p− g‖} ≤
max{‖p‖, ‖p − e‖}. Choosing p in the relative interior of Vor(M ; e), so that the elements of Z2

closest to p are precisely 0 and e, we obtain a contradiction. Thus (α, β) equals (1, 0) or (0, 1),
therefore e equals f or g, which shows as announced that the Voronoi vector e belongs to the
stencil convex hull [e1, · · · , er].
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2.2 Description of strict M-Voronoi vectors

In this section, we introduce the concept of superbase of the lattice Z2. This allows us to establish
the correspondence between the M -eikonal stencil of Theorem 1.13 and the one constructed in
[Mir14], as announced in Proposition 1.17. We also characterize strict M -Voronoi vectors as the
smallest elements of Z w.r.t. ‖ · ‖M , as announced in Proposition 1.16.

Definition 2.7. A superbase of Z2 is a triplet (e0, e1, e2) such that (e1, e2) is a basis of Z2 and
e0 + e1 + e2 = 0. It is said M -obtuse, where M ∈ S+

2 , iff 〈ei,Mej〉 ≤ 0 for all 0 ≤ i < j ≤ 2.

It is known that for each M ∈ S+
2 there exists at least one M -obtuse superbase. Interestingly,

a similar property holds in dimension 3, but not in dimension 4 or higher. The proof is construc-
tive, and follows from the analysis of an algorithm by Selling [Sel74]. Obtuse superbases are an
important tool in lattice classification [CS92]. They are also at the foundation of the M -eikonal
stencil of [Mir14], described in Proposition 2.8 (ii), and of the D-diffusion stencil of [FM13],
defined in Corollary 2.11. The proof of the following proposition is left as an easy exercise.

Proposition 2.8. (i) Let M ∈ S+
2 be non-generic, and let (e1, e2) be an M -orthogonal basis,

sorted so that det(e1, e2) = 1. Then (e1, e2,−e1,−e2) is an M -eikonal stencil.

(ii) Let M ∈ S+
2 , and let (e0, e1, e2) be an M -obtuse superbase, sorted so that det(e1, e2) = 1.

Then (e0,−e2, e1,−e0, e2,−e1) is an M -eikonal stencil.

Proposition 2.9. Let M ∈ S+
2 be non-generic and let n = 4 (resp. generic and let n = 6).

Then the set of strict M -Voronoi vectors precisely consists of the n members (f1, · · · , fn) of the
M -eikonal stencil constructed in Proposition 2.8.

Proof. We first observe that, if (e1, e2) is a basis of Z2 (resp. (e0, e1, e2) is a superbase), then
[e1, e2,−e1,−e2]∩Z = {e1, e2,−e1,−e2} (resp. [e0,−e2, e1,−e0, e2,−e1]∩Z = {e0,−e2, e1,−e0,
e2,−e1}. Indeed, by linear invariance, it suffices to check the case where e1 = (1, 0) and e2 = (0, 1)
(resp. and e0 = (−1,−1)), which is obvious.

By Theorem 1.13, strict M -Voronoi vectors form an eikonal stencil, which is minimal for
convex hull inclusion hence must be a subset of [f1, · · · , fn]. Thus the set V of M -Voronoi
vectors is included in [f1, · · · , fn] ∩ Z = {f1, · · · , fn}. Since 〈fi−1,Mfi+1〉 < 0 for all 0 ≤ i < n,
and in view of the Acuteness property of the M -eikonal stencil built of the strict M -Voronoi
vectors, this inclusion is an equality, which concludes the proof.

We finally characterize strict M -Voronoi vectors as announced in Proposition 1.16.

Proof of Proposition 1.16. Let f1, · · · , fn be the M -eikonal stencil of Proposition 2.8, which by
Proposition 2.9 is also the set of strict M -Voronoi vectors. Let e ∈ Z \ {f1, · · · , fn}, and let
0 ≤ i < n be such that e ∈ Cone(f, g) with f := fi and g := fi+1. Then e = αf + βf
for some coefficients α, β which must be integer (since (f, g) is a basis), non-negative (since
e ∈ Cone(f, g)), co-prime (since e ∈ Z), and obey |α| + |β| > 1 (since e /∈ {f, g}). Thus α ≥ 1
and β ≥ 1, and therefore ‖e‖M ≥ ‖αf + βg‖M ≥ ‖f + g‖M since 〈f,Mg〉 ≥ 0.

In the non-generic case, this implies ‖e‖M ≥ ‖e1+ e2‖M =
√
‖e1‖2M + ‖e2‖2M > max{‖e1‖M ,

‖e2‖M}, where (e1, e2) is an M -orthogonal basis. In the generic case this implies ‖e‖M ≥ ‖ei −
ej‖M for some 0 ≤ i < j ≤ 2, where (e0, e1, e2) is an M -obtuse superbase. Since 〈ei,Mej〉 < 0,
we obtain ‖e‖M ≥ ‖ei − ej‖M > max{‖ei‖M , ‖ej‖M , ‖ei + ej‖M} = max{‖e0‖M , ‖e1‖M , ‖e2‖M}.
We have proved in both cases that ‖e‖M > max{‖f1‖M , · · · , ‖fn‖M} for all e ∈ Z\{f1, · · · , fn},
which concludes the proof.
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2.3 Correctness and minimality of diffusion stencils

We establish in Corollary 2.11 that there exists a D-diffusion stencil supported on the set of
strict M -Voronoi vectors, as announced in Theorem 1.12. Its minimality, in the sense of convex
hull inclusion, is established in Corollary 2.13. Our first step is an elementary algebraic lemma.

Proposition 2.10. Let (ei)2i=0 be a superbase. Then (e⊥i ⊗ e⊥i )
2
i=0 is a basis of S2, and for any

D ∈ S2 one has
D = −

∑
0≤i≤2

〈ei+1, Dei+2〉 e⊥i ⊗ e⊥i . (11)

Proof. For any i, j ∈ {0, 1, 2}, one has denoting by δij the Kronecker symbol

〈ej , e⊥i ⊗ e⊥i ej〉 = 〈e⊥i , ej〉2 = det(ei, ej)
2 = 1− δij .

Therefore denoting by D̃ the r.h.s. of (11) we obtain for any 0 ≤ j ≤ 2

〈ej , D̃ej〉 = −〈ej , Dej+1〉 − 〈ej−1, Dej〉 = −〈ej+1 + ej−1, Dej〉 = 〈ej , Dej〉.

In particular 0 = 〈e1, (D− D̃)e1〉 = 〈e2, (D− D̃)e2〉 = 〈(e1+e2), (D− D̃)(e1+e2)〉. Since (e1, e2)
is a basis, this implies D = D̃ as announced. As a result the three element family (e⊥i ⊗ e⊥i )

2
i=0

generates the three dimensional space S2, hence it is a basis.

The next corollary describes the D-diffusion stencil used in [FM13], and shows that it is
supported on strict M -Voronoi vectors, with M := D−1, as announced in Theorem 1.12.

Corollary 2.11. Let (e0, e1, e2) be a D-obtuse superbase. Then defining γ : Z → R by γ(±e⊥i ) :=
−〈ei+1, Dei+2〉, 0 ≤ i ≤ 2, and γ = 0 on Z \ {±e⊥0 ,±e⊥1 ,±e⊥2 }, we obtain the unique D-diffusion
stencil which is supported on the set of strict M -Voronoi vectors, with M := D−1.

Proof that γ defines a D-diffusion stencil. Since (e0, e1, e2) is a superbase one has {±e⊥1 ,±e⊥2 ,±e⊥3 } ⊆
Z, hence that γ : Z → R is well defined. Since it is D-obtuse one has 〈ei+1, Dei+2〉 ≤ 0, hence γ
is non-negative. By Proposition 2.10, this function γ defines a D-diffusion stencil.

Proof that γ is supported on the set of strict M -Voronoi vectors. For any f, g ∈ Z2 one has

〈f,Dg〉 = 〈f⊥,Mg⊥〉/ det(M).

Hence {e⊥0 , e⊥1 , e⊥2 } is an M -obtuse superbase, and therefore (e⊥0 ,−e⊥2 , e
⊥
1 ,−e⊥0 , e

⊥
2 ,−e⊥1 ) is an

M -eikonal stencil by Proposition 2.8. By Proposition 2.6 all strict M -Voronoi vectors belong to
[e⊥0 ,−e⊥2 , e

⊥
1 ,−e⊥0 , e

⊥
2 ,−e⊥1 ] ∩ Z = {e⊥0 ,−e⊥2 , e

⊥
1 ,−e⊥0 , e

⊥
2 ,−e⊥1 } ⊇ supp(γ).

If M is generic, then by Proposition 2.9 there are six strict M -Voronoi vectors, and the
result is proved. If M is non-generic, then there are only four strict M -Voronoi vectors, which
are the members of an M -orthogonal basis - w.l.o.g. (e⊥1 , e

⊥
2 ) - and their opposites. Observe

now that γ(e⊥0 ) = −〈e⊥1 , De⊥2 〉 = −〈e⊥1 ,Me⊥2 〉/ det(M) = 0. Thus γ(±e⊥0 ) = 0 and therefore
γ is supported on the set {±e⊥1 ,±e⊥2 } of strict M -Voronoi vectors. Finally, uniqueness follows
from the Symmetry axiom of D-Diffusion stencils, and from Proposition 2.10 which states that
(e⊥i ⊗ e⊥i )

2
i=0 is a basis of S2.

We show in Corollary 2.13 that the support of a D-diffusion stencil, ordered trigonomet-
rically, defines an M -diffusion stencil, with M = D−1. The minimality of the collection of
strict M -Voronoi vectors as a D-diffusion stencil, announced in Theorem 1.12, thus follows from
its minimality as an M -eikonal stencil, established in §2.1. Note that, in contrast with the
two-dimensional setting studied in this paper, the three-dimensional D-diffusion and M -eikonal
stencils of [FM13, Mir14] are distinct, and in particular they do not have the same number of
vertices. We denote S1 := {z ∈ R2; ‖z‖ = 1}.
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Lemma 2.12. Let γ : S1 → R be symmetric and non-negative, i.e. γ(−e) = γ(e) ≥ 0 for all
e ∈ S1. Assume that γ is supported on a finite set V ⊆ S1, and that

∑
e∈V γ(e)e⊗ e = Id. Then

any trigonometrically consecutive f, g ∈ V satisfy 〈f, g〉 ≥ 0.

Proof. We claim that for any ξ ∈ S1 there exists e ∈ V such that 〈ξ, e〉 ≥ 1/
√
2. Indeed, since V

is symmetric, we obtain otherwise 〈ξ, e〉2 < 1/2 for all e ∈ V , but this implies the contradiction

1 = ‖ξ‖2 =
∑
e∈V

γ(e) 〈e, ξ〉2 <
∑
e∈V

γ(e)

2
=

1

2
Tr

(∑
e∈V

γ(e) e⊗ e

)
=

1

2
Tr(Id) = 1.

Let f, g ∈ V be trigonometrically consecutive, and let ξ := (f + g)/‖f + g‖. By construction
〈ξ, f〉 = 〈ξ, g〉 ≥ 〈ξ, e〉 for all e ∈ V . Thus 1/

√
2 ≤ 〈ξ, f〉 = 〈ξ, g〉 by the above. Therefore the

angle between f and g is at most 2 arccos(1/
√
2) = π/2, which concludes the proof.

Corollary 2.13. Let M ∈ S+
2 and let D := M−1. Then the support of any D-diffusion stencil,

ordered trigonometrically, defines an M -eikonal stencil. Therefore its convex hull contains all
strict M -Voronoi vectors.

Proof. Let γ : Z → R be the D-diffusion stencil, and let A be an invertible matrix of positive
determinant such that M = ATA. Apply Lemma 2.12 to γ̃ : S1 → R defined by γ̃(Ae/‖Ae‖) =
1
2γ(e)‖Ae‖

2 for all e ∈ Z. Then 0 ≤ 〈Af,Ag〉 = 〈f,Mg〉/(‖f‖2M‖g‖2M ) for any trigonometrically
consecutive f, g ∈ supp(γ), thus 〈f,Mg〉 ≥ 0. One has det(f, g) ≥ 0 since the set supp(γ) is
symmetric, hence det(f, g) > 0 since otherwise f, g ∈ Z would be opposite, in contradiction with
〈f,Mg〉 ≥ 0. As announced, we recognize an M -eikonal stencil. Finally, the convex hull of an
M -eikonal stencil contains all strict M -Voronoi vectors by Proposition 2.6.

3 Average norm of Voronoi vectors

We estimate the norm of Mκ(θ)-Voronoi vectors, as announced in Theorem 1.19, for a fixed
condition number κ2, but in the Lp([0, π[) sense w.r.t. the anisotropy orientation θ. This type of
result belongs to the well established field of lattice geometry, dating back to Lagrange [?]. Lattice
geometry is currently the object of an important research activity, motivated by the numerous
applications of the LLL algorithm [?] in particular in the field of cryptography. Nevertheless,
the rather elementary Theorem 1.19 is original (to the author’s knowledge), for the following
reasons:

(a) Research on lattice geometry is mainly focused on high dimensions.

(b) For many applications of current interest, such as cryptography, it is natural to assume that
the lattice Gram matrix M has integer coefficients, in contrast with the present setting where
M = Mκ(θ).

(c) The proposed random lattice model, which can be reformulated as Λ = DRZd with D

diagonal of eigenvalues κ±
1
2 and R a random rotation, differs from classical [?] studies.

(d) The proposed result intertwines two mutually “singular” norms: the euclidean norm and the
anisotropic ‖ · ‖M norm. Indeed we estimate the euclidean norm of M -Voronoi vectors. In
contrast, research in lattice geometry most commonly focuses on a single norm.
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3.1 Reduced basis of a lattice

We introduce the concept of Minkowski basis [Ngu04], and use it to describe the set of M -
Voronoi vectors and to derive uniform bounds on their norms. To each M ∈ S+

2 we associate an
‖ · ‖M -shortest non-zero vector e1(M) ∈ Z2, and an ‖ · ‖M -shortest linearly independent vector
e2(M) ∈ Z2

e1(M) ∈ argmin
e∈Z2\{0}

‖e‖M , e2(M) ∈ argmin
f∈Z2\e1(M)Z

‖f‖M . (12)

The vectors e1(M) and e2(M) are uniquely determined, up to a change of sign, for all matrices
M except for a Lebesgue negligible set. For non-generic matrices, an arbitrary minimizer is
selected. In applications, the vectors (13) can be computed via Lagrange’s algorithm [Ngu04], a
generalization of Euclid’s gcd algorithm. The next lemma shows that the two vectors (12) form
a basis of Z2, often referred to as a Minkowski reduced basis [Ngu04].

Proposition 3.1. For any M ∈ S+
2 , the Minkowski vectors e1(M), e2(M) form a basis of Z2.

Proof. Let e1 := e1(M) and e2 := e2(M). One has gcd(e1) = gcd(e2) = 1, since otherwise
the vector ei/ gcd(ei) would violate the minimality property of ei, i ∈ {1, 2}, see (12). Since
e2 ∈ Z2 \ e1Z and gcd(e1) = 1, the vectors e1, e2 are not collinear, hence det(e1, e2) 6= 0. Assume
for contradiction that |det(e1, e2)| > 1 and, by Lemma 2.4, consider an element e ∈ Z2 of
the triangle [0, e1, e2] distinct from its vertices: e = αe1 + βe2, α, β ≥ 0, α + β ≤ 1. Since
gcd(e1) = gcd(e2) = 1, the vector e does not lie on an edge [0, ei], i ∈ {1, 2}. Hence by
the triangular inequality, which is strict since e1, e2 are not collinear and α, β are positive, we
obtain ‖e‖M < α‖e1‖M + β‖e2‖M ≤ ‖e2‖M . This contradicts the minimality of ‖e2‖M , hence
|det(e1, e2)| = 1 which concludes the proof.

The following lemma upper bounds the orthogonality defect of a Minkowski reduced basis.
See [Ngu04] for extensions of this result to higher dimension.

Lemma 3.2. Let M ∈ S+
2 and let e1 := e1(M) and e2 := e2(M). Then 2|〈e1,Me2〉| ≤ ‖e1‖2.

Proof. By construction ‖e2‖2M ≤ ‖e2 + e1‖2M , and ‖e2‖2M ≤ ‖e1 − e2‖2M . The result follows.

Our next lemma describes the collection of strict M -Voronoi vectors, in terms of Minkowski’s
shortest vectors (12).

Proposition 3.3. Let M ∈ S+
2 and ei := ei(M), i ∈ {1, 2}. The strict M -Voronoi vectors are:

(i) if 〈e1,Me2〉 = 0 then {±e1,±e2}.

(ii) if 〈e1,Me2〉 < 0 then {±e0,±e1,±e2}, with e0 := −(e1 + e2). In addition 〈e0,Me1〉 < 0
and 〈e0,Me2〉 < 0. (In the case 〈e1,Me2〉 > 0, replace e2 with its opposite.)

Proof. If M is non-generic, then strict Voronoi vectors are the four smallest elements of Z by
Proposition 1.16, hence they are precisely {±e1,±e2} by construction (12). Furthermore strict
Voronoi vectors feature an M -orthogonal basis by Proposition 2.9, hence case (i) holds.

If M -is generic, then 〈e1,Me2〉 6= 0 hence 〈e1,Me2〉 < 0 up to replacing e2 with −e2. By
Lemma 3.2 we obtain 〈e0,Me1〉 = −〈e2,Me1〉 − ‖e1‖2M < 0 and 〈e0,Me2〉 = −〈e1,Me2〉 −
‖e2‖2M < 0, with e0 := −(e1 + e2). This shows that (e0, e1, e2) is an M -obtuse superbase, and
case (ii) holds by Proposition 2.9.
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Figure 7: Minkowski minima λκ
1 , λκ

2 , and radii of Minkowski’s vectors rκ1 , rκ2 . Logarithmic scale.

Our objective, in Theorem 1.19, is to estimate the radius of the set of strict M -Voronoi
vectors. In light of the previous lemma, we introduce for M ∈ S+

2 , i ∈ {1, 2}, the norms

λi(M) := ‖ei(M)‖M , ri(M) := ‖ei(M)‖. (13)

The scalars λi(M) are called the Minkowski minima, and depend continuously on the matrix
M ∈ S+

2 , in contrast with ri(M) and ei(M) which take discrete values. Minkowski minima are
tied together by Minkowski’s second theorem [?], a fundamental result of lattice geometry stating
that:

2 ≤ π√
detM

λ1(M)λ2(M) ≤ 4. (14)

For each κ ≥ 1, θ ∈ R, i ∈ {1, 2}, we denote by eκi (θ), λ
κ
i (θ), r

κ
i (θ), the vectors (12) and their

norms (13) attached to the matrix Mκ(θ), defined in (7). Inequality (14) rewrites as

2/π ≤ λκ
1(θ)λ

κ
2(θ) ≤ 4/π. (15)

This explains the approximate vertical symmetry in the plot of λκ
1 , λκ

2 , Figure 7 (left, log scale).
We denote by �(f, g) ∈ [0, π/2] the unoriented angle between two vectors f, g ∈ R2 \ {0},
considered up to a change of sign:

�(f, g) := arccos

(
|〈f, g〉|
‖f‖‖g‖

)
∈ [0, π/2]. (16)

Let e ∈ R2 \ {0}, let θ ∈ R, and let ϕ = �(e, eθ) where eθ := (cos θ, sin θ). Then

‖e‖2Mκ(θ)
= ‖e‖2(κ sin2 ϕ+ κ−1 cos2 ϕ), hence κ−

1
2 ‖e‖ ≤ ‖e‖Mκ(θ) ≤ κ

1
2 ‖e‖. (17)

Lemma 3.4 (Uniform bounds on Minkowski’s vectors). For any κ ∈ [1,∞[, and any θ ∈ R
(omitting the argument θ for readability)

λκ
1 ∈ [κ−

1
2 , c1] λκ

2 ∈ [c2, κ
1
2 ],

rκ1 ∈ [1, c1κ
1
2 ] rκ2 ∈ [1, κ],

where c1 := 2/
√
π, c2 :=

√
2/π.

Proof. First line. Since λκ
1 ≤ λκ

2 by construction, and c22 ≤ λκ
1λ

κ
2 ≤ c21 by (15), we obtain λκ

1 ≤ c1
and λκ

2 ≥ c2. By minimality (13) of ‖eκ2‖Mκ , and since at least one of the two independent vectors
(1, 0) or (0, 1) is non-collinear with eκ1 , one has λκ

2 = ‖eκ2‖Mκ ≤ max{‖(1, 0)‖Mκ , ‖(0, 1)‖Mκ} ≤
κ

1
2 max{‖(1, 0)‖, ‖(0, 1)‖} = κ

1
2 as announced. The lower bound for λκ

1 is shown below.
Second line. One has 1 ≤ ‖eκ1‖ =: rκ1 since eκ1 ∈ Z2 \ {0}, and likewise rκ2 ≥ 1. From (17,

right) we obtain λ1
κ ≥ κ−

1
2 rκ1 ≥ κ−

1
2 which completes the first line, and rκ1 ≤ κ

1
2λκ

1 ≤ c1κ
1
2 and

rκ2 ≤ κ
1
2λκ

2 ≤ κ which concludes the proof.
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Corollary 3.5. With the notations of Lemma 3.4, one has for κ ≥ c21

1

2
Rκ ≤ max{rκ1 , rκ2} ≤ Rκ,

1

2
Sκ ≤ λκ

2 ≤ Sκ, (18)

Rκ ∈ [1, 2κ], Sκ ∈ [c2, 2κ
1
2 ].

Proof. By Proposition 3.3, one has max{rκ1 , rκ2} ≤ Rκ ≤ max{rκ1 , rκ2 , rκ1 + rκ2} ≤ 2max{rκ1 , rκ2},
as announced in (18, left). Proceeding likewise with Sκ, λ

κ
1 , λ

κ
2 , and observing that λκ

1 ≤ λκ
2 by

construction (12), we obtain (18, right). The announced uniform bounds on Rκ, Sk, follow from
those of Lemma 3.4.

We introduce a set Z, which collects one representative vector for each rational direction in
the plane

Z := {e ∈ Z2; gcd(e) = 1, e � (0, 0) lexicographically}.

For any e ∈ Z2 \{0}, the line eR intersects Z at a single point. Note also that {−1, 1}×Z → Z :
(ε, e) 7→ εe is clearly a bijection, where Z is defined in (1). Up to changing their sign, we assume
from this point that Minkowski’s vectors ei(M), i ∈ {1, 2}, M ∈ S+

2 , belong to Z. We end this
subsection by estimating a sum, over pairs of co-prime integers, which repeatedly appears in the
sequel.

Proposition 3.6. One has

lim
r→∞

Σ(r)

r
=

6

π
, where Σ(r) :=

∑
e∈Z, ‖e‖≤r

1

‖e‖
.

In particular, there exists 0 < c ≤ C < ∞ such that cr ≤ Σ(r) ≤ Cr for all r ≥ 1.

Proof. Denote by p(r) the the relative density of points with co-prime coordinates in the ball of
radius r:

p(r) :=
1

πr2
#{e ∈ Z2; 0 < ‖e‖ ≤ r, gcd(e) = 1}.

It is well known [HW79] that p(r) → 1/ζ(2) = 6/π2 as r → ∞. The announced result then
follows from the observations

1

‖e‖
=

ˆ r

‖e‖

1

s2
ds+

1

r
, hence

2Σ(r)

πr
=

1

r

ˆ r

0
p(s)ds+ p(r) =

2

ζ(2)
+ o(1).

3.2 Probabilistic estimate of the Minkowksi minima

We estimate the cumulative distribution of λκ
1 , seen as a random variable of θ ∈ [0, π[, for a

fixed κ ≥ 1, see Figure 9. The tail distribution of λκ
2 is then inferred using Minkowski’s second

theorem (14). For that purpose we introduce the following angular sectors, illustrated on Figure
8 (left): for each κ ≥ 1, e ∈ Z, α > 0

Φκ
e (α) :=

{
θ ∈ [0, π[; sin�(e, eθ) ≤

α

‖e‖
√
κ

}
. (19)

Lemma 3.7. Let κ ≥ 1, let e ∈ Z, let θ ∈ [0, π[ and let c > 0. We have the implications:

‖e‖Mκ(θ) ≤ c ⇒
(
θ ∈ Φκ

e (c) and ‖e‖ ≤ c
√
κ
)

⇒ ‖e‖Mκ(θ) ≤ c
√
2.
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Figure 8: Left: representation of the sets Φκ
e (1/2), with e ∈ Z and ‖e‖ ≤

√
κ, defined in (19).

Right: sets Θκ
e defined in (23) below. In this representation, we show in black the convex hull of

each vector e and of the corresponding angular sector on the circle of radius κ.

Proof. First implication. If ‖e‖Mκ(θ) ≤ c then from (17, left), neglecting the contribution of
κ−1 cos2(ϕ), we obtain θ ∈ Φκ

e (c). From (17, right) we get ‖e‖ ≤ c
√
κ.

Second implication. Using again (17, left), we obtain:

‖e‖2Mκ(θ)
≤ ‖e‖2

(
κ

(
c

‖e‖
√
κ

)2

+ κ−1

)
= c2 + ‖e‖2κ−1 ≤ 2c2.

Corollary 3.8. For any κ ≥ 1, and any λ ≥ κ−
1
2 , one has with λ′ := λ/

√
2⋃

e∈Z
‖e‖≤λ′√κ

Φκ
e (λ

′) ⊆ {θ ∈ [0, π[; λκ
1(θ) ≤ λ} ⊆

⋃
e∈Z

‖e‖≤λ
√
κ

Φκ
e (λ). (20)

Proof. The right implication in Lemma 3.7, with c = λ′ = λ/
√
2, yields the first inclusion, since

λκ
1(θ) ≤ ‖e‖Mκ(θ). The left implication in Lemma 3.7, with c = λ, yields the second inclusion.

We estimate in Proposition 3.10 the distribution function P (λκ
1 ≤ λ). The main ingredient of

the proof is that, under suitable assumptions, the union appearing in (20, left) is of disjoint sets.
Probabilities considered here and in the following are for a uniformly distributed angle θ ∈ [0, π[.
We recall that for any ϕ ∈]0, π/2] one has

2

π
ϕ ≤ sinϕ < ϕ. (21)

Denote by |E| the Lebesgue measure of a set E ⊆ R. Using (21) we obtain for any e ∈ Z, κ ≥ 1
and α ≤ 1, denoting σ := α

‖e‖
√
κ

2α

‖e‖
√
κ
≤ |Φκ

e (α)| = |[− arcsinσ, arcsinσ]| = 2arcsinσ ≤ πα

‖e‖
√
κ
. (22)

Lemma 3.9. Let f, g be distinct elements of Z such that such that max{‖f‖, ‖g‖} ≤ c
√
κ, where

c = 1/π and κ ≥ 1. Then Φκ
f (1) ∩ Φκ

g (1) = ∅.

Proof. Since f, g are distinct elements of Z, they are not collinear. Hence det(f, g) 6= 0, and
therefore |det(f, g)| ≥ 1 since this determinant is a positive integer. Thus

�(f, g) > sin�(f, g) =
|det(f, g)|
‖f‖‖g‖

≥ 1

‖f‖‖g‖
.
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Figure 9: Cumulative distributions of λκ
1 , rκ1 , and tail distributions of λκ

2 , rκ2 . Log-log scales.

Assuming that θ ∈ Φκ
f (1) ∩ Φκ

g (1), we obtain using (21) the contradiction

�(f, g) ≤ �(f, eθ) + �(eθ, g) ≤
π

2
(sin�(f, eθ) + sin�(eθ, g))

≤ π

2

(
1

‖f‖
√
κ
+

1

‖g‖
√
κ

)
≤ πc

‖f‖‖g‖
.

Proposition 3.10 (Cumulative distribution of λκ
1). There exists constants C, c > 0 such that:

for all κ ≥ 1, and all λ ∈ [Cκ−
1
2 , c], one has cλ2 ≤ P (λκ

1 ≤ λ) ≤ Cλ2.

Proof. Let c0 be the constant of Lemma 3.9, and let λ′ := λ/
√
2. For λ′ ≤ c0, the left term of

(20) is a disjoint union, by Lemma 3.9. Hence we obtain successively, using (22) in the second
line, and introducing Σ of Proposition 3.6 in the third∑

e∈Z
‖e‖≤λ′√κ

|Φκ
e (λ

′)| ≤ πP (λκ
1 ≤ λ) ≤

∑
e∈Z

‖e‖≤λ
√
κ

|Φκ
e (λ)|,

∑
e∈Z

‖e‖≤λ′√κ

2λ′

‖e‖
√
κ

≤ πP (λκ
1 ≤ λ) ≤

∑
e∈Z

‖e‖≤λ
√
κ

πλ

‖e‖
√
κ
,

2
λ′
√
κ
Σ(λ′√κ) ≤ πP (λκ

1 ≤ λ) ≤ π
λ√
κ
Σ(λ

√
κ).

Assume in addition that λ′√κ ≥ 1. Then denoting by c1, C1 the constants of Proposition 3.6

c1λ
2 = 2

λ′
√
κ
c1λ

′√κ ≤ πP (λκ
1 ≤ λ) ≤ π

λ√
κ
C1λ

√
κ = πC1λ

2.

This concludes the proof, with c = min{c0
√
2, c1/π} and C = max{

√
2, C1}.

Corollary 3.11 (Tail distribution of λκ
2). There exists constants C, c > 0 such that: for any

κ ≥ 1, and any λ ∈ [C, cκ
1
2 ] one has cλ−2 ≤ P (λκ

2 ≥ λ) ≤ Cλ−2.

Proof. The result follows from Proposition 3.10, and from (15) which implies for any λ > 0:

P (λκ
1 ≤ 2/(λπ)) ≤ P (λκ

2 ≥ λ) ≤ P (λκ
1 ≤ 4/(λπ)).

3.3 Euclidean norm of Minkowski’s shortest vector

We estimate the distribution of the euclidean norm rκ1 (θ) of Minkowski’s vector eκ1(θ) ∈ Z, which
is defined in (12) as the shortest vector with respect to the anisotropic norm ‖ · ‖Mκ(θ). For that
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purpose, we need to precisely identify this vector, hence we introduce for each κ ≥ 1, e ∈ Z, the
set

Θκ
e := {θ ∈ [0, π[; e = eκ1(θ)}, (23)

Our first two lemmas compare Θκ
e with the angular sector Φκ

e (c) introduced in (19).

Lemma 3.12. Let κ ≥ 1, e ∈ Z, and C = 2/
√
π. Then Θκ

e ⊆ Φκ
e (C), and

(
Θκ

e 6= ∅ ⇒ ‖e‖ ≤ Cκ
1
2

)
.

Proof. Using successively (i) the definition of Θκ
e , (ii) the uniform bound on λκ

1(θ) obtained in
Lemma 3.4, for which C = c1, and (iii) Lemma 3.7 (left implication) we obtain the implications

θ ∈ Θκ
e ⇒

(
‖e‖Mκ(θ) = λκ

1(θ)
)
⇒
(
‖e‖Mκ(θ) ≤ C

)
⇒
(
θ ∈ Φκ

e (C) and ‖e‖ ≤ C
√
κ
)
.

This establishes the announced inclusion and bound on ‖e‖.

Lemma 3.13. Let κ ≥ 1, e ∈ Z, and c < 1/(π
√
2). If ‖e‖ ≤ c

√
κ then Θκ

e ⊇ Φκ
e (c).

Proof. Let θ ∈ Φκ
e (c), and M := Mκ(θ). By Lemma 3.7 (right implication) one has ‖e‖M ≤ c

√
2.

Let e′ ∈ Z \ {e}, and let c0 := 1/π be the constant from Lemma 3.9. If ‖e′‖ ≥ c0
√
κ, then

‖e′‖M ≥ κ−
1
2 ‖e′‖ ≥ c0 > c

√
2 ≥ ‖e‖M . On the other hand, if ‖e′‖ ≤ c0

√
κ, then Φκ

e (1)∩Φκ
e′(1) =

∅ by Lemma 3.9. Thus θ /∈ Φκ
e′(1) and therefore ‖e′‖M ≥ 1 > c

√
2 ≥ ‖e‖M by Lemma 3.7 (left

implication). We have shown that ‖e‖M < ‖e′‖M for any e′ ∈ Z \ {e}. Thus e = e1(M) = eκ1(θ),
in other words θ ∈ Θκ

e as announced.

Our next proposition estimate the distribution of rκ1 . Strictly speaking this is not needed for
the proof of Theorem 1.19, but we provide for completeness the argument.

Proposition 3.14 (Cumulative distribution of rκ1 ). There exists C, c > 0 such that for any κ ≥ 1

and any λ ∈ [κ−
1
2 , c], one has cλ ≤ P (rκ1 ≤ λ

√
κ) ≤ Cλ.

Proof. Note that for any fixed κ ≥ 1, the sets Θκ
e , e ∈ Z are pairwise disjoint. Denoting by C0

and c0 the constants of Lemmas 3.12 and 3.13 respectively, one thus has for λ ≤ c0∑
e∈Z

‖e‖≤λ
√
κ

|Φκ
e (c0)| ≤

∑
e∈Z

‖e‖≤λ
√
κ

|Θκ
e | = πP (rκ1 ≤ λ

√
κ) ≤

∑
e∈Z

‖e‖≤λ
√
κ

|Φκ
e (C0)|

Using (22) for the first line, and denoting by c1, C1 the constants of Proposition 3.6 for the second
line, we conclude that when λ

√
κ ≥ 1∑

e∈Z
‖e‖≤λ

√
κ

2c0
‖e‖

√
κ
≤ πP (rκ1 ≤ λ

√
κ) ≤

∑
e∈Z

‖e‖≤λ
√
κ

πC0

‖e‖
√
κ
.

2c0c1λ ≤ 2c0
Σ(λ

√
κ)√

κ
≤ πP (rκ1 ≤ λ

√
κ) ≤ πC0

Σ(λ
√
κ)√

κ
≤ πC0C1λ.

3.4 Euclidean norm of Minkowski’s second shortest vector

We estimate the tail distribution of the euclidean norm rκ2 (θ) of Minkowski’s vector eκ2(θ), the
second shortest vector with respect to the anisotropic norm ‖ · ‖Mκ(θ). The upper bound for the
tail distribution of rκ2 directly follows from the one obtained in Corollary 3.11 for λκ

2 , as shown
in the next lemma.
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Lemma 3.15 (Tail distribution of rκ2 . Upper bound). There exists C, c > 0 such that for any
κ ≥ 1 and any λ ∈ [C, cκ

1
2 ], one has P (rκ2 ≥ λ

√
κ) ≤ Cλ−2.

Proof. By (17, right) one has rκ2 (θ) = ‖eκ2(θ)‖ ≤
√
κ‖eκ2(θ)‖Mκ(θ) = λκ

2(θ)
√
κ, for any κ ≥ 1,

θ ∈ R. Hence denoting by C, c > 0 the constants of Corollary 3.11 we obtain P (rκ2 ≥ λ
√
κ) ≤

P (λκ
2 ≥ λ) ≤ Cλ−2, for all λ ∈ [Cκ

1
2 , c].

Note that the estimate of the tail distribution P (rκ2 ≥ µ) obtained in Lemma 3.15 is limited
to µ ∈ [C

√
κ, cκ], whereas by Lemma 3.4 the radius rκ2 may take values in the larger interval

[1, κ]. This estimate is nevertheless sufficient for our purposes; the regime in which it applies is
shown in the grayed region in Figure 9.

In order to estimate rκ2 from below, we tie it to rκ1 , a strategy similar to the one used for the
Minkowski minima λκ

1 and λκ
2 in §3.2. For any α ∈ R we abusively denote α+Z := {α+z; z ∈ Z}

Lemma 3.16. Let M ∈ S+
2 , let e, f ∈ Rd \ {0}, let α ∈ R, and let k be a minimizer ‖f − ke‖M

in α+ Z. Then |k|+ 1
2 ≥ |〈e,Mf〉|/‖e‖2M .

Proof. Up to a linear change of coordinates, we may assume that M = Id. On the whole real
line R, the minimizer of λ(l) := ‖f − le‖2 = ‖f‖2 − 2l〈e, f〉 + l2‖e‖2 is l∗ := 〈f, e〉/‖e‖2. Since
λ(l∗ + δ) = λ(l∗) + δ2‖e‖2 for any δ ∈ R, we find that k is the (an) element of (α+Z) closest to
l∗. Thus |k − l∗| ≤ 1

2 , which concludes the proof.

Corollary 3.17. Let κ ≥ 1 and θ ∈ R. Let us denote e1 := eκ1(θ), M := Mκ(θ), and

µκ(θ) :=
|〈e1,Me⊥1 〉|
‖e1‖2M‖e1‖2

.

Then rκ2 (θ) ≥ rκ1 (θ)(µκ(θ)− 1/2).

Proof. Let f := e⊥1 /‖e1‖2, let e2 := eκ2(θ), and let us note that | det(e1, e2)| = 1 = det(e1, f). Up
to replacing f with −f we may thus assume that det(e1, e2−f) = 0. Therefore there exists α ∈ R
such that e2 = f −αe1. For any k ∈ R one has (f − ke1 ∈ Z2 iff k ∈ α+Z). By minimality (12)
of ‖e2‖M among elements of Z2 non-collinear with e1, we thus have ‖f − ke1‖M ≥ ‖f − αe1‖M
for any k ∈ α+ Z. By Lemma 3.16

|α|+ 1

2
≥ |〈e1,Mf〉|/‖e1‖2M = µκ(θ).

Finally, rκ2 (θ) = ‖e2‖ = ‖f − αe1‖ ≥ |α|‖e1‖, since 〈e1, f〉 = 0, which concludes the proof.

Note that µκ(θ) vanishes precisely when eκ1(θ) is an eigenvector of Mκ(θ). We study in
Lemma 3.18 the angular sectors where in contrast µκ(θ) is large. This implies in Corollary 3.19
a lower bound on the tail distribution of rκ2 , which is the counterpart of Lemma 3.15.

Lemma 3.18. Let κ ≥
√
2, let λ ∈ [C, κ

1
2 ], and let e ∈ Z be such that λ‖e‖ ≤ c

√
κ, where we

denoted C = 2 and c = 1/8. Then∣∣∣∣{θ ∈ Θκ
e ; µκ(θ) ≥

λ
√
κ

‖e‖

}∣∣∣∣ ≥ c

‖e‖λ
√
κ
. (24)
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Proof. Let κ, λ, e be as in the lemma statement. Let θ ∈ [0, π[, let M := Mκ(θ), and let
ϕ = �(eθ, e). We define, and estimate using (17), the scalar

µ :=
|〈e,Me⊥〉|
‖e‖2M‖e‖2

= ‖e‖−2 (κ− 1
κ) cosϕ sinϕ

κ sin2 ϕ+ 1
κ cos2 ϕ

= ‖e‖−2 (κ2 − 1)

κ2 tanϕ+ cotanϕ
. (25)

One has the equivalence

µ ≥ λ
√
κ

‖e‖
⇔ κ2 − 1

‖e‖2
× ‖e‖

λ
√
κ
≥ κ2 tanϕ+ cotanϕ. (26)

Observe that κ2−1 ≥ κ2/2, simplify powers of κ and ‖e‖, and bound above the sum in the r.h.s.
by twice its largest element. Then (26) is the consequence of the equivalent conditions.

κ
3
2

2λ‖e‖
≥ 2max{κ2 tanϕ, cotanϕ} ⇔ tanϕ ∈

[
4λ‖e‖
κ

3
2

,
1

4λ‖e‖κ
1
2

]
=

[
1

ρκ
,
ρ

κ

]
, (27)

where we introduced the ratio ρ :=
√
κ

4λ‖e‖ = 2c
√
κ

λ‖e‖ ≥ 2. We assume that condition (27) holds and
observe that since λ ≥ 2

sinϕ ≤ tanϕ ≤ 2c

λ‖e‖
√
κ
≤ c

‖e‖
√
κ
,

thus θ ∈ Φκ
e (c). By Lemma 3.13, and the assumption ‖e‖ ≤ c

√
κ, we have Φκ

e (c) ⊆ Θκ
e . Thus

θ ∈ Θκ
e , which implies e = eκ1(θ), and µ = µκ(θ). Denoting by I the interval (27), the measure

(24) is thus at least

| tan−1(I)|+ | tan−1(−I)| ≥ 2
1

κ

(
ρ− 1

ρ

)
× (tan−1)′

(ρ
κ

)
≥ ρ

2κ

We used fact that ρ ≥ 2, so that ρ− 1
ρ ≥ ρ/2. In addition ρ

κ = 2c
λ‖e‖

√
κ
≤ c, since λ ≥ 2, ‖e‖ ≥ 1

and κ ≥ 1, hence (tan−1)′(ρ/κ) ≥ 1/(1 + c2) ≥ 1/2. This concludes the proof.

Corollary 3.19 (Tail distribution of rκ2 . Lower bound). There exists 0 < c ≤ C < ∞ such that
for any κ ≥ 1, and any λ ∈ [C, cκ

1
2 ], one has P (rκ2 ≥ λ

√
κ) ≥ cλ−2.

Proof. Let c0, C0 be the constants of Lemma 3.18, let κ, λ, e, satisfy the conditions of its
statement, and let θ be in the set (24). Then

µκ(θ) ≥
λ
√
κ

‖e‖
≥ λ2

c0
≥ 1, thus µκ(θ)−

1

2
≥ 1

2
µκ(θ) ≥

λ
√
κ

2‖e‖
.

Therefore, using Corollary 3.17 and since rκ1 (θ) = ‖e‖

rκ2 (θ) ≥ ‖e‖(µκ(θ)− 1/2) ≥ 1

2
λ
√
κ. (28)

Denoting by c1 and Σ the constant and function from Proposition 3.6, we conclude assuming
λ ≤ c0

√
κ for the last inequality

P (rκ2 (θ) ≥
1

2
λ
√
κ) ≥

∑
e∈Z

λ‖e‖≤c0
√
κ

|{θ ∈ Θκ
e ; µκ(θ) ≥

λ
√
κ

‖e‖
}|

≥
∑
e∈Z

λ‖e‖≤c0
√
κ

c0
‖e‖λ

√
κ
=

c0
λ
√
κ
Σ(c0λ

−1√κ) ≥ c20c1λ
−2.
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3.5 Moments of the Voronoi radii

We conclude in this section the proof of Theorem 1.19, we estimate the moments of the euclidean
radius Rκ(θ) and intrinsic radius Sκ(θ) of the set of strict Mκ(θ)-Voronoi vectors. As usual θ is
regarded as a random variable uniformly distributed over θ ∈ [0, π[, and the the parameter κ ≥ 1
is fixed. Our first step is to estimate the tail distributions of Rκ and Sκ.

Proposition 3.20. There exists C, c > 0 such that for all κ ≥ 1, and all λ ∈ [C, cκ
1
2 ], one has

cλ−2 ≤ P (Sκ ≥ λ) ≤ Cλ−2, cλ−2 ≤ P (Rκ ≥ λκ
1
2 ) ≤ Cλ−2.

Proof. For readability, we omit the argument θ ∈ [0, π[ of the functions involved. The estimate
for Sκ immediately follows from the equivalence Sκ/2 ≤ λκ

2 ≤ Sκ, see Corollary 3.5, and from
the estimate of the tail distribution of λκ

2 obtained in Corollary 3.11. Regarding Rκ we have
Rκ/2 ≤ max{rκ1 , rκ2} ≤ Rκ, but rκ1 ∈ [1, c1κ

1
2 ] by Lemma 3.4. Hence, assuming C > 2c1, we

obtain for λ ≥ C the implications

Rκ ≥ λκ
1
2 ⇒ max{rκ1 , rκ2} ≥ 1

2
λκ

1
2 > c1κ

1
2 ≥ rκ1 ⇒ max{rκ1 , rκ2} = rκ2 ⇒ Rκ/2 ≤ rκ2 ≤ Rκ.

The announced estimate for P (Rκ ≥ λκ
1
2 ) then follows from the estimates of the tail distribution

of rκ2 obtained in Lemma 3.15 and Corollary 3.19.

Proposition 3.20 implies in particular that P (Sκ ≥ cκ
1
2 ) > 0 for all κ ≥ (C/c)2, but we also

know that Sκ ≤ 2κ
1
2 by Corollary 3.5. Hence ‖Sκ‖L∞([0,π[) ≈ κ

1
2 as announced in Theorem 1.19.

For a finite exponent p ∈ [1,∞[, one has

1

π
‖Sκ‖pLp([0,π[) =

1

π

ˆ π

0
Sp
κ(θ)dθ = p

ˆ ∞

0
P (Sκ ≥ λ)λp−1dλ (29)

In view of the uniform bounds Sκ ∈ [c2, 2κ
1
2 ] obtained in Corollary 3.5, and of the estimates of

Proposition 3.20 which hold over a range [C, cκ
1
2 ], we cut the integration range ]0,∞[ of (29,

right) into four sub-intervals. Assuming without loss of generality that c2 ≤ C, c ≤ 2, and
κ ≥ (C/c)2

I1 :=]0, C[, I2 := [C, cκ
1
2 [, I3 := [cκ

1
2 , 2κ

1
2 [, I4 := [2κ

1
2 ,∞[.

Interval I4 does contribute to the integral (29). Since I1 is bounded independently of κ, its con-
tribution to (29) also is. Since the tail distribution P (Sκ ≥ λ) is decreasing in λ, the contribution
to (29) of I3 = [cκ

1
2 , 2κ

1
2 [= [λ−, λ+[ is bounded by

ˆ λ+

λ−

P (Sκ ≥ λ)λp−1dλ ≤ P (Sκ ≥ λ−)λ
p−1
+ (λ+ − λ−) ≤ Cλ−2

− λp
+ = Cc−22pκ

p
2
−1.

Finally, and most importantly, the contribution of I2 is

p

ˆ cκ
1
2

C
P (Sκ ≥ λ)λp−1dλ ≈

ˆ cκ
1
2

C
λp−3dλ ≈


1 if p < 2,

lnκ if p = 2,

κ
p
2
−1 if p > 2,

for sufficiently large κ, with equivalence constants (9) depending only on p. This implies the
estimate on ‖Sκ‖Lp([0,π[) announced in Theorem 1.19. The case of ‖Rκ‖Lp([0,π[) is analogous.
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A Discretizations of anisotropic PDEs based on stencils

We establish in this appendix the results announced in §1.1, on the consistency of numerical
schemes based on D-diffusion and M -eikonal stencils, and their structure preservation properties.
These results are fairly classical, but the proofs are provided for completeness. Results of similar
nature can be found in [Wei96] for diffusion with a focus on image processing, [Cia70] for static
diffusion problems, or [SV03, Vla08] for eikonal equations. Note also the restriction to two
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dimensional discretizations on cartesian grids is not necessary, and that in both cases extensions
to arbitrary dimensional discretizations on unstructured point sets can easily be formulated.

A.1 Diffusion stencils

We first establish that the Consistency axiom of D-diffusion stencils, is indeed equivalent to the
consistency of two discretizations of ‖∇u(x)‖2D and Tr(∇2u(x)) respectively.

Proof of proposition 1.2, on property Consistency. Consider a finitely supported γ : Z → R
obeying property Symmetry of Definition 1.1, and define D :=

∑
e∈Z γ(e)e ⊗ e. Consider also

the linear and quadratic functions defined for all x ∈ R2 by

u1(x) := C + 〈L, x〉, u2(x) := C + 〈L, x〉+ 1

2
〈x,Qx〉,

where C ∈ R, L ∈ R2 and Q ∈ S2. Then by elementary linear algebra we obtain∑
e∈Z

γ(e)(u1(x+ e)− u1(x))
2 =

∑
e∈Z

γ(e)〈L, e〉2 =
∑
e∈Z

γ(e)〈L, e⊗ eL〉 = 2〈L,DL〉.

Similarly, using the symmetry of the weights,

2
∑
e∈Z

γ(e)(u2(x+ e)− u2(x)) =
∑
e∈Z

γ(e) (u(x+ e)− 2u(x) + u(x− e))

=
∑
e∈Z

γ(e)〈e,Qe〉 =
∑
e∈Z

γ(e)Tr(e⊗ eQ) = 2Tr(DQ).

Thus the Consistency axiom implies properties Consistency’ and Consistency”. Conversely, ob-
serving that the quadratic form L ∈ R2 7→ 〈L,DL〉 (resp. the linear form Q ∈ S2 7→ Tr(DQ))
uniquely determines the matrix D ∈ S2, we obtain that Consistency’ (resp. Consistency”) implies
Consistency, which concludes the proof.

Our next objective is to establish Proposition 1.4 on the stability of the explicit and implicit
time steps for anisotropic diffusion. A definition and two intermediate results are required. In
this paper, the term operator always refers to a continuous map from L∞(Z2) to itself, and the
maximum principle is understood in the sense of Definition 1.3.

Definition A.1. An operator L preserves constants iff Lu = u for any identically constant
u ∈ L∞(Z2). An operator L is non-negative iff u ≥ 0 ⇒ Lu ≥ 0 for any u ∈ L∞(Z2).

Lemma A.2. A linear operator obeys the maximum principle iff it is non-negative and preserves
constants.

Proof. Denote by B this operator, and by u an arbitrary element of L∞(Z2). Sups and Infs are
taken over the set Z2.

Proof of implication ⇒. If u is constant, then from inf u ≤ Bu ≤ supu we obtain Bu = u. If
u is non-negative, then from Bu ≥ inf u ≥ 0 we obtain that Bu is non-negative.

Proof of implication ⇐. For any u ∈ L∞(Z2), on obtains 0 ≤ B(u− inf u) = Bu− inf u, and
likewise 0 ≤ B(supu− u) = supu−Bu, thus inf u ≤ Bu ≤ supu as announced.

The next corollary is a states a simple necessary and sufficient condition for the maximum
principle for linear and translation invariant operators.
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Corollary A.3 (Stability criterion). Consider η ∈ L1(Z2), and the operator defined by Aηu(x) :=∑
e∈Z2 η(e)u(x+ e). Then Aη obeys the maximum principle iff η ≥ 0 and

∑
e∈Z2 η(e) = 1.

Proof. The non-negativity of Aη is clearly equivalent to η ≥ 0, and the fact that it preserves
constants to

∑
e∈Z2 η(e) = 1.

Finally we establish Proposition 1.4. For that purpose we separate the claims on the explicit
diffusion time step Id+δLγ and the implicit one (Id−δLγ)

−1.

Proof of Proposition 1.4, on explicit diffusion. Let γ : Z → R be finitely supported, and let
δ > 0. Observing that

(Id+δLγ)u(x) =

(
1− δ

∑
e∈Z

γ(e)

)
u(x) +

∑
e∈Z

γ(e)u(x+ e),

and applying Lemma A.3 we obtain the equivalence of the two points of Proposition 1.4, as well
as the optimality of the CFL condition 0 ≤ δ

∑
e∈Z γ(e) ≤ 1.

Proof of Proposition 1.4, on implicit diffusion. Let γ : Z → R be finitely supported and non-
negative, and let δ > 0. Consider the operator defined for u : Z2 → R and x ∈ Z2 by

Au(x) := λ
∑
e∈Z

γ(e)u(x+ e), where λ :=

(
1 + δ

∑
e∈Z

γ(e)

)−1

.

Then A is non-negative: Au ≥ 0 if u ≥ 0, and A is strictly Lipschitz in the L∞ norm: ‖Au‖∞ ≤
(1− λ)‖u‖∞. As a result, the operator associated to the implicit time step

B := (Id−δLγ)
−1 = λ(Id−A)−1 = λ

∑
k≥0

Ak

is well defined in L∞(Z2) and non-negative. In addition the operator (Id−δLγ)
−1 preserves

constants, since its inverse does, hence it obeys the maximum principle by Lemma A.2.

A.2 Eikonal stencils

We provide for completeness the proof Proposition 1.9, stating that the causality property of the
Hopf-Lax update operator is equivalent to a geometrical acuteness property of the stencils. We
mostly follow the steps of the appendix of [SV03].

Lemma A.4. Let N ∈ S+
2 . Then the following are equivalent:

(i) N has non-negative entries.

(ii) Nξ has positive entries whenever ξ ∈ R2 has positive entries.

Proof. Proof that (i) ⇒ (ii). Since N has non-negative coefficients, the product Nξ also has.
Observing that N has positive diagonal entries, since it is positive definite, we obtain that Nξ
has positive entries. Proof that (ii) ⇒ (i). Let 1 ≤ i ≤ 2. Choosing ξ = (ε, · · · , ε, 1, ε, · · · , ε),
where the coefficient 1 is in the i-th position, and letting ε → 0, we obtain that the i-th column
of N is non-negative. The result follows.
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Lemma A.5. Let N ∈ S+
2 , and for all u ∈ R2 let

λN (u) := min
ξ∈Ξ

‖ξ‖N + 〈ξ, u〉, (30)

where Ξ := {ξ ∈ R2
+; 〈ξ,1〉 = 1} and 1 := (1, 1) ∈ R2. Then the following are equivalent:

(i) the matrix N has non-negative entries.

(ii) for any u ∈ R2 and any i ∈ {1, 2}, such that the minimizer in (30) obeys ξi > 0, one has
λN (u) > ui.

Proof. Note that the quantity λN (u) is defined as the minimum (30) of a strictly convex func-
tional on a compact interval, hence the minimizer exists and is unique. Let u ∈ R2, and let
us assume that the minimizer ξ in (30) has positive entries. By the Kuhn-Tucker optimality
conditions, there exists λ ∈ R such that

λ1 = Nξ/‖ξ‖N + u. (31)

Taking the scalar product with ξ we obtain

λ = λ〈1, ξ〉 = 〈ξ,Nξ〉/‖ξ‖N + 〈ξ, u〉 = ‖ξ‖N + 〈ξ, u〉 = λN (u).

Thus combining the last two equations

λN (u)1− u = Nξ/‖ξ‖N . (32)

Proof that (i) ⇒ (ii). The announced result is clear if the minimizer ξ in (30) equals (1, 0)
or (0, 1), hence as above we can assume that ξ has positive entries. By assumption N has non-
negative entries, hence Nξ has positive entries by Lemma A.4, thus also λN (u)1 − u by (32),
which concludes the proof of this implication.

Proof that not (i) ⇒ not (ii). Assume that N has a negative entry. By Lemma A.4 there exists
ξ with positive entries such that Nξ has at least one non-positive entry. Up to multiplication
by a positive constant, we may assume that ξ ∈ Ξ. Let u := −Nξ/‖ξ‖N . Since (30) is the
optimization of a strictly convex functional over a convex set, its minimizer is characterized by
the first order Kuhn-Tucker condition (31). Hence λ = λN (u) = 0 and as announced we obtain
not (ii).

Proof of Proposition 1.9, Acuteness is equivalent to Causality. By construction, one has

Λu(x) = min
0≤i<r

λNi(u(yi), u(yi+1)), where Ni :=

(
〈ei,Mei〉 〈ei,Mei+1〉
〈ei,Mei+1〉 〈ei+1,Mei+1〉

)
,

and yi := x + ei. The matrices Ni, 0 ≤ i < r, are positive definite by construction, and the
Acuteness geometric property is equivalent to the non-negativity of their coefficients. The first
implication Acuteness ⇒ Causality, is thus a direct consequence of Lemma A.5.

Proof that not Acuteness ⇒ not Causality. Without loss of generality, we may assume
that 〈e0,Me1〉 < 0, hence that N0 has one negative entry. Choose u(y0) and u(y1) so as to
contradict point (ii) of Lemma A.5, in other words such that defining λ := λN0(u(y0), u(y1)) one
has λ < max{u(y0), u(y1)} and the associated minimizer ξ0 = (1 − t0, t0) for (30) has positive
entries. Note also that λ < min{‖e0‖M + u(y0), ‖e0‖M + u(y0)}, since these values correspond
to t = 0 and t = 1.

For any 0 ≤ i < r, one has λNi(u(yi), u(yi+1)) ≥ min{u(yi), u(yi+1)}, and λNi(u(yi), u(yi+1)) →
‖ei‖M + u(yi) as u(yi+1) → ∞. Hence choosing u(yi) sufficiently large, for all i /∈ {0, 1}, we
obtain Λu(x) = λ, this minimum being attained solely for i = 0 and t = t0. This contradicts the
causality property, and concludes the proof.
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