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CONNECTION BETWEEN MP AND DPP FOR STOCHASTIC
RECURSIVE OPTIMAL CONTROL PROBLEMS: VISCOSITY
SOLUTION FRAMEWORK IN GENERAL CASE

TIANYANG NIE*, JINGTAO SHI', AND ZHEN WU

Abstract. This paper deals with a stochastic recursive optimal control problem, where the dif-
fusion coefficient depends on the control variable and the control domain is not necessarily convex.
We focus on the connection between the general maximum principle and the dynamic programming
principle for such control problem without the assumption that the value is smooth enough, the
set inclusions among the sub- and super-jets of the value function and the first-order and second-
order adjoint processes as well as the generalized Hamiltonian function are established. Moreover,
by comparing these results with the classical ones in Yong and Zhou [Stochastic Controls: Hamil-
tonian Systems and HJB Equations, Springer-Verlag, New York, 1999, it is natural to obtain the
first- and second-order adjoint equations of Hu [Direct method on stochastic mazimum principle for
optimization with recursive utilities, (arXw:1507.03567v1 [math.OC], 18 Jul. 2015].
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1. Introduction. There are usually two ways to study optimal control prob-
lems: Pontryagin’s mazimum principle (MP) and Bellman’s dynamic programming
principle (DPP), involving the adjoint variable v, the Hamiltonian function H, and
the value function V', respectively. The classical result on the connection between
the MP and the DPP for the deterministic optimal control problem can be seen in
Fleming and Rishel [I0], which is known as (t) = =V, (¢,Z(t)) and Vi(¢t,Z(t)) =
H(t,z(t),u(t),y(t)), where @ is the optimal control and Z is the optimal state. Since
the value function V' is not always smooth, some non-smooth versions of the classical
result were studied by using non-smooth analysis and generalized derivatives. An at-
tempt to relate the MP and the DPP without assuming the smoothness of the value
function was first made by Barron and Jessen [I], where the viscosity solution was
used to derive the MP from the DPP. Within the framework of viscosity solution,
Zhou [35] showed that

Dy~ V(t,2(t) C {-v(t)} € DyFV(t,a(t),

. 1.1
DrV(LEW) © (30,80, 600} < DivVa),

where D1V, DLFV denote the first-order sub- and super-jets of V' in the z-variable,
and D; V, D;'V denote the sub- and super-jets of V in the t-variable, respectively.
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2 Connection between MP and DPP for SROCP

For stochastic optimal control problems, the classical result on the connection
between the MP and the DPP (see Bensoussan [2] and Yong and Zhou [33]), is
known as p(t) = —V.(t,Z(1)),q(t) = —Vaa(t,z(t))o(t,2(t),u(t)), and Vi(t,z(t)) =
G(t, z(t), u(t), = Vi(t,Z(t)), —Vaz (t, Z(t))) involving an adjoint process pair (p,q) and
a generalized Hamiltonian function GG, where o is the diffusion coefficient. Within the
framework of viscosity solution, Zhou [36] [37] showed that

{=p(t)} x [=P(t),00) C DFFV(t,3(t)),
D7V (t,2(t) € {-p(t)} x (—o0,=P(t)], (1.2)
[H(t, 2(t), ult)), 00) C Dy V (1, 2(t)),

where P is the second-order adjoint process (see Peng [19]), the function H(t,z,u)
equals to G(t, z, u, p(t), P(t))+tr{o(t,z,u) " [q¢(t)—P(t)o(t,Z(t), u(t))] }, the notations
D2~V (resp. D>*V) and D,V denote the second-order sub- (resp. super-) jets of
V in the z-variable, and the right super-jet of V' in the ¢-variable, respectively.

In this paper, we consider one kind of stochastic recursive optimal control prob-
lem, where the cost functional is described by the solution to a backward stochastic
differential equation (BSDE) of the following form

—dy(t) = f(t,y(t), 2(t))dt — z(t)dW (t), t € [0,T],
y(T) =¢,

where the terminal condition £ is given in advance. Linear BSDE was introduced by
Bismut [3], to represent the adjoint equation when applying the MP to solve stochastic
optimal control problems. Pardoux and Peng [I§] first studied the adapted solution
for the general nonlinear BSDE. Independently, BSDE was involved in Duffie and
Epstein [8] from economic background, and they presented a stochastic differential
formulation of recursive utility which is an extension of the standard additive utility
with the instantaneous utility depending not only on the instantaneous consumption
rate but also on the future utility. Stochastic recursive optimal control problems have
found important applications in mathematical economics, mathematical finance and
engineering (see El Karoui, Peng and Quenez [9], Wang and Wu [27], etc).

For stochastic recursive optimal control problems, Peng [2]] first obtained a local
maximum principle when the control domain is convex, by representing the adjoint
equation as a forward-backward stochastic differential equation (FBSDE). Then Xu
[31] studied the non-convex control domain case in which the diffusion coefficient
does not depends on the control variable. Wu [29] established a general maximum
principle for a controlled forward-backward stochastic system where the control do-
main is non-convex and the diffusion coefficient contains the control variable. The idea
of [29] is transferring the original control problem to an equivalent problem with state
constraint by understanding the term z appearing in the BSDEs as a control variable.
For more general case, the reader is referred to Yong [32]. Recently, Hu [I4] obtained
also a general maximum principle for the stochastic recursive optimal control problem,
by introducing new and general first- and second-order adjoint equations which are
both BSDEs. The result of [14, 29] [32], especially [14], solves a long-standing open
problem of Peng [23] in stochastic control theory, which motivates us to study the
connection between this general MP and the DPP. The DPP for stochastic recursive
optimal control problems have been solved by Peng [20] (see also Peng [22]), and he
proved that the value function is the viscosity solution to a generalized Hamilton-
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Jacobi-Bellman (HIB) equation. For further research, the readers are referred to Wu
and Yu [30], Buckdahn and Nie [6] and the references therein.

Concerning the connection between the MP and the DPP for stochastic recursive
optimal control problems, Shi [24] first studied (see also Shi and Yu [26]) its local
form when the control domain is convex and the value function is smooth. The main
result is

(), u(t)) + Vi(t, z(t)) x (1.3)
t

where (p*, ¢*, k*) is a triple of adjoint processes and f is the generator of the controlled
BSDE. Shi [24] also showed that

Vi(t,z(t)) = G(t, z(t), =V (t,z(t), =V (t,z(t)), — Vo (t, Z(t)), ﬁ(t)), (1.4)

where G is the generalized Hamiltonian function of Peng [22].

However, the above connections (I3]) and (L4) require the smoothness of the
value function which does not hold in general, see Example 3.1 of the current paper.
This is a major deficiency and important gap of [24] [26]. This paper will bridge this
gap by employing the notions of sub- and super-jets evoked in the viscosity solutions.
Moreover, in this paper we study the general case in which the control domain could
be non-convex. When the domain of the control is convex, in Nie, Shi and Wu [I7]
which is the first part of our work we have established the connection between the
adjoint process triple (p*, ¢*, k*) in the MP and the first-order sub- (resp. super-) jets
of the value function V (s, X*%%(s)), which is

Dy =V (s, X"5%(s)) € {p"(s)q" ()™} € Dy V (s, X""(s)). (1.5)

As the second part, in the current paper, we study the non-smooth version of
the connection between the MP and the DPP for the stochastic recursive optimal
control problem with non-convex control domain. We emphasize that in such case
we should also study the connection between the second-order sub- and super-jets
of the value function and the second-order adjoint process, which is rather difficult.
The contributions of this paper are as follows. Firstly, instead of using the adjoint
equations of [21I] which are FBSDEs, we obtain another form of (LH) by using the
first-order adjoint equation of [14] which are BSDEs. This is a counterpart of the
classical (non-recursive) result of [33]. Secondly, the connection between the second-
order adjoint equation of [14] and the second-order sub- (resp. super-) jets of the
value function V' in the z-variable is obtained. See Theorem Bl and Theorem
Thirdly, the connection between the right super-differential of the value function V'
in the t-variable and a new H;-function is derived, where #; is although different to
the Hamiltonian function H in the MP of [I4], but by comparing it with the one in
the non-recursive case (see [33]), one can see that it is indeed a natural form when
extending the classical one of [33] to the recursive case. See Theorem B3 Finally, we
also discuss our results from the point view of deriving the MP of [14] directly from
the DPP of [20] in smooth case. See Corollary B35

Different from the results of [36] [37] for non-recursive stochastic optimal control
problems, the recursive structure given by the BSDE arises enormous difficulties for
establishing our main results: Theorem 3.1 and Theorem 3.2. In fact, the additional
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term Z appeared in the BSDE is useful to establish the wellposdness of the BSDE,
however it will become a major obstacle when studying the control problems. Since
we only have the square estimate for Z from the BSDE theory, i.e. we only have

P
the estimate for E (fOT |Z5|2ds) , but | Z4|? can not be changed to |Z,|?>*¢, for € > 0.

This feature makes the classical Taylor expansion arguments in [306] 37, [I7] fail. We
establish our main theorems by introducing the variation to ¥ and Z motivated by
[14], this is entirely new comparing with [36] B7]. On the other hand, we mention that
from the classical results, one may consider that the first order adjoint equation should
coincide with the first order derivative of the value function, and the second order
adjoint equation should come from the second order derivative of the value function.
Then, it should also work in the stochastic recursive optimal control problems, i.e.
Theorem 3.1 and Theorem 3.2 holds. From this point of view, one can obtain the
adjoint equations which are introduced by [14]. Moreover, conversely, the proof of
Theorem 3.1 also gives the illumination for how to construct the variation to Y and
Z when proving the general maximum principle. See Section 4 for the details.

Let us mention that it is very important to study the connection between the MP
and the DPP for stochastic recursive optimal control problems, because of its valuable
applications in mathematical finance and stochastic control theory. For example, on
the one hand, in mathematical finance the connection (between the MP and the DPP)
can explain well the meaning of the shadow price, see pp. 254 in [33]. The results
obtained in the current paper can help us to understand the shadow price better in
the framework of recursive utility. On the other hand, the connection between the
MP and the DPP indeed reveals the relationship between the solutions to the adjoint
equations and that to the HJB equation. As well known, the adjoint equations are
usually fully-coupled FBSDEs which are very hard to solve in general. The relationship
between the adjoint processes and the solution to the HJB equation give us a heuristic
method, to obtain the solutions to the adjoint equations by the corresponding HJB
equation which can be solved analytically or numerically. Moreover, as shown in
Corollary B0 such connection also allows us to obtain the MP (which is difficult for
the general case and is just solved recently) from the DPP (which have been solved
since 1992 by Peng [20]). These relations are also helpful to find the candidate optimal
controls (see Remark 3.1) and to establish the stochastic verification theorem. All the
above important issues motivate us to study the connection between the MP and the
DPP for the general stochastic recursive optimal control problems in this paper.

The rest of this paper is organized as follows. In Section 2, we state our problem
and give some preliminary results about the MP and the DPP. Section 3 exhibits the
main results of this paper, specially we give the connections between the value function
and the adjoint processes within the framework of viscosity solution; we derive the
general first and second order adjoint equations; we prove the general MP from the
DPP by using the results of this paper. We also give several interesting examples to
explain the related results. Section 4 devotes to the proof of the main results. Finally,
in Section 5, we give the concluding remarks.

In this paper, R" denotes the n-dimensional Euclidean space with scalar product
(-,-) and norm | - |, 8" denotes the n x n symmetric matrix space, D f, D?f denotes
the gradient and the Hessian matrix of the differentiable function f respectively, T
appearing as superscript denotes the transpose of a matrix, and C' > 0 denotes a
generic constant which may take different values in different places.
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2. Problem Statement and Preliminaries. Let T' > 0 be finite and U C R*
be nonempty. Givent € [0,T), we denote U™ [t, T'] the set of all 5-tuples (Q, F, P, W (-);
u(+)) satisfying the following conditions: (i) (2, F,P) is a complete probability space;
(if) {W(s)}s>¢ is a one-dimensional standard Brownian motion defined on (2, F, P)
over [t,T] (with W (t) =0, a.s.), and F! = o{W(r);t <r < s} augmented by all the
P-null sets in F; (iii) w : [t,T] x Q@ — U is an {F!}>,-adapted process on (Q, F,P).

We write (Q, F,P,W(-);u(-)) € U"[t,T], but occasionally we will write only
u(-) € UP[t, T if no ambiguity exists. We denote by L?(£2, FL; R"™) the space of all R"-
valued Ft-measurable random variables ¢ such that E[|¢]?] < oo, S%([t, T]; R™) de-
notes the space of all R"-valued Fl-adapted process ¢(-) such that E[ sup,< . |¢(s)[?]
< 00, and L%([t, T]; R™) denotes the space of all R"-valued F!-adapted processes (-)
such that E[LT [1(s)|?ds] < oc.

For any (t,z) € [0,T) x R™, we consider the state X®%%(-) € R™ given by the
following controlled stochastic differential equation (SDE):

dXB7(s) = b(s, XP"(s),u(s))ds + o (s, X" (s), u(s))dW (s), s € [t,T], 2.1)
XHEU(t) = 7. '
Here b: [0, T]xR"xU — R",0: [0,T]x R"x U — R"™ are given functions satisfying

(H1) b and o are uniformly continuous in (s,z,u), Lipschitz continuous and linear
growth in z.

For any (t,x) € [0,T) x R™ and given u(-) € U"[t,T], under (H1), SDE (ZI]) has
a unique solution X () € SZ([t, T]; R™) (see [33]). We refer to such u(-) € U*[t, T
as an admissible control and (X®®%(-),u(-)) as an admissible pair.

Next, we introduce the following controlled BSDE coupled with (ZT)):

—dY""(s) = f(s, XET(s), YU (s), 257 (s), u(s))ds
— Zb"(8)dW (s), s € [t, T, (2.2)
YT = (X (D),

where f: [0, T]x R"XRxRxU — R and ¢ : R® — R are given functions satisfying

(H2) f and ¢ are uniformly continuous in (s, z,y, z, u), Lipschitz continuous in (z, y, z)
and linear growth in x.

LEMMA 2.1. ([18,[22]) Let (H1), (H2) hold. For given (t,z) € [0,T)xR™, u(-) €
UYL, T], and Xt%4(-) € SL([t,T);R") is the unique solution to (2Z1)). Then BSDE
(Z2) admits a unique solution (YH%u(.), Zb%4(.)) € S%([t,T);R) x L%([t,T; R).

Moreover, the following estimate holds:

E [ sup [Y"7(s) ‘2

t<s<T

7] < cE[lo(x () +/t £ (5, X7(5),0,0, u(s)) [*ds

fﬁ} .

Remark 2.1 The wellposedness of BSDE can be established in the case that
f is quadratic growth in Z and with bounded or unbounded terminal condition,
see Kobylanski [16], Briand and Hu [, 5] and the reference therein. For stochastic
non-recursive optimal control problems related to BSDEs with quadratic growth, the
reader is referred to Fuhrman, Hu and Tessitore [I1], for example. However, to our
best knowledge, until now there are no works on stochastic recursive control problems
whose cost functional is given by quadratic BSDEs. Concerning the assumptions of
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the coefficients on =, we mention that polynomial growth of f and ¢ on z is enough
to obtain the wellposedness of BSDE, and continuity assumption of f and ¢ on z
is sufficient to show that the value function is a viscosity solution to HJB equation.
When proving the uniqueness of the viscosity solution to HJB equation, usually f
and ¢ are assumed to be Lipschitz on z. The readers are referred to Wu and Yu [30],
Buckdahn and Nie [6] and the references therein. In our paper, in order to focus on
our problems at hand and also to make the notations easier, we prefer to keep using
the standard Lipschitz assumption for the coefficients on (z,y, z).
Given u(-) € U™ [t, T], we introduce the cost functional as

J(t, s u(-)) == =Y"5%(s) |4, (t,x) €[0,T) x R™ (2.3)

and our stochastic recursive optimal control problem is the following.
Problem (SROCP). For given (¢,z) € [0,7) x R", to minimize (Z3) subject
to ZI)~@2) over U™ [t, T].
We define the value function
V(t,z) = inf J(t,z;u(r)), (t,x) €10,T) x R"™,
(ta)i= o Jasue), (o) € 0.7) -
V(T,z) = —¢(x), ze€R"

Any a(-) € U™[t,T] achieves the above infimum is called an optimal control, and
the corresponding solution triple (Xt®%(.), Yb#it(.) Zb#u(.)) is called an optimal
trajectory. We refer to (XH®%(.), Y@t (.) Zb#iu(.) 4(.)) as an optimal quadruple.
Remark 2.2 Since the functions b, o, f and g are all deterministic, from Propo-
sition 5.1 of [22], we know that under (H1), (H2), the cost functional (23] is deter-
ministic. Thus our definition (Z4]) is meaningful.
We introduce the following generalized HJB equation:

—v(t, ) + sup G(t,z, —v(t, x), —v. (t, ), =V (t, ), u) =0, (¢t,z) € [0,T) x R",
uelU
o(T,z) = —¢(x), YxeR",
(2.5)
where the generalized Hamiltonian function G : [0,T] x R" x R x R" x 8" x U —» R
is defined as

G(t7 x? r7 p7 A7 u) = <Ao—(t7 x7 U)7 0(t7 x7 u)> + <p7 b(t7 x7 u)> + f(t7 x? r7 O-(t7 x7 U)Tp7 u)'
(2.6)
We introduce the following definition of the viscosity solution to HJB equation

3), which can be found in Crandall, Ishii and Lions [7].

DEFINITION 2.2. ([7]) (i) A function v € C([0,T] x R™) is called a viscosity sub-

(resp. super-) solution to (28) if v(T,x) < —¢(x) (resp. v(T,x) > —¢p(x)), for all
x € R", and for any ¢ € CY2([0,T] x R™) such that v — ¢ attains a local mazimum
(resp. minmum) at (t,x) € [0,T) x R™, we have

N —

- @t(t; I) =+ sup G(tv €, —U(t, I)a _wm(ta I)a — Pz (tv .I), ’LL) < 0
uelU

(resp. — pi(t, x) + sup G(t, x,—v(t,x), —os(t, ), —Pza (t, x), u) >0).
uelU

(ii) A function v € C([0,T] x R™) is called a viscosity solution to (Z4) if it is both a
viscosity subsolution and viscosity supersolution to (Z.1).
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Remark 2.3 The viscosity solution to HIJB equation (ZI) can be equivalently
defined in the language of sub- and super-jets, see [T [33].

PROPOSITION 2.3. ([22]) Let (H1), (H2) hold. Let V(-,-) be defined by (24).
Then for any t € [0,T] and z, 2’ € R", we have

(i) |[V(t,x) =V (t,2")| < Clz —2'|, (i) |V(t,z)] < C(1+|z|). (2.7)

Moreover, V (-,-) is the unique viscosity solution to (Z1).
To conveniently state the maximum principle, for given (¢,z) € [0,T) x R", we
rewrite the equations ([27)) and ([Z2]) as the following controlled FBSDE:

dX"" " (s) = b(s, X7 (s), u(s))ds + o (s, X" (s), u(s))dW (s),
—dY"" M (s) = f(s, XDT(s), YU (s), 207 (s)u(s))ds — ZDT " (s)dW (s), s € [t, T,
XU = @, YEUN(T) = $(XPT(T)).
(2.8)
Moreover, we introduce the following assumption as in [I4]. Recall that Df, D?f
denotes, respectively, the gradient and the Hessian matrix of the differentiable function
f with respect to the variable (z,y, z).

(H3) The functions b, o, ¢ and f are twice continuously differentiable in (x,y, 2), the
derivatives by, byz, Os, Ors, Guy Gue, Df and D?f are continuous in (s,z,y,z,u) and
uniformly bounded. Moreover, there exists a modulus of continuity @ : [0, o] — [0, o0
for ¢ = byy,Ops,Pue and 1 = D?f, such that for arbitrary s € [0,7T], u € U,
1,72 € R", y1,92,21,22 € R,

lo(s, w1, u) — (s, z2,u)| <@(|l21 — 22]),
[U(s, 1,1, 21,u) — (s, x2, Y2, 22, w)| <W(|z1 — 22| + |y1 — 2| + |21 — 22]).

Let (Xt@@(.), Yhat(.) Z6@%(.) 4(-)) be an optimal quadruple. For given (¢, ) €
[0,T) x R™, we introduce the following first- and second-order adjoint equation ([14])

—dp(s) = {Fy()p() + [-(9)72() T +bi() T Ip(s) + F-()a(s)
+72(5) Ta(s) + F(s) pds — q(s)dW (s), s € [1.T], (29)
P(T) = 6u(X7(D)),

—dP(s) {fy(S) () + [f=(8)F2(s) " +bals) "] P(s) + P(s)[f2(5)Fa(5) + ba(s)]
+:(5) " P()7a(s) + f2(5)Q(s) + 2 ()" Q) + Q(5)T2(8) + ba(s) " p(s)
+0a2a(s) " [f=(s)p(s) +a(s)] + [Im,p(S)ﬁw(S)Tp(S)+q(5)}D2f(8)

P(T) = ¢ua(X"7(T)),

=

i 7(2.10
(s),uls)),0(s) = als, X5(s), uls)), f(s) :

respectively. Here b(s) := b(s, X%
(s)), and similar notations are used for all their

Fs, XP55(s), YE55(s), Z57%(s),u
derivatives, and p(s) = (p'(5),p%(s), -+, p"(5)) T, baa(s) Tp(s) = P 1p( )b (),
and for 6'11( )T [f=(s)p(s) + q(s)] similarly. The term [Lnxn,p(s ) 2(s) T (S)—I—q( )]

(s
denotes the n x (n + 2)-matrix combining I,,x,, p(s) and &.(s) " p(s) + q(s). Notic-
ing that D2f is a (n + 2) X (n + 2)-matrix, thus the term [, xn,p(s), 52 (s) "p(s) +

a(8)]| D2 f(5)[Lnxn,p(s), 52 (s) "p(s) + q(s)]—r is well defined.
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By (H3), it is easy to verify that the above BSDEs admit the unique solu-
tion (p(-),q(-)) € SZ([t,T;R") x LE([t,T];R") and (P(-),Q()) € SE([t. T];S") x
L%([t, T); S™), respectively.

ProrosITION 2.4. ([T})]) Let (H1), (H2), (H3) hold and (t,xz) € [0,T) x
R"™ be fived. Suppose that u(-) is an optimal control for Problem (SROCP),
(Xb@u(), yheu(.), Z650 () is the optimal trajectory, and (p(-), q(+)), (P(-), Q(+)) sat-
isfy (Z9) and (210), respectively. Then

H(s, X170(s), Y70 (s), 270 (s), uls), p(s), q(s), P(s))
: u

=max H(s, X2(s), Y (s), 207 (s), u, p(s), 4(s), P(s)),

(2.11)

a.e. s € [t,T],P-a.s., where the Hamiltonian function H : [0,T] x R* X R x R x U x
R” x R™ x 8" — R is defined as

H(t7 x? y7 27 u7p7 q7 P) = f(t7 x? y7 z —"_ <p7 0(t7 x? u) - 0(t7 j? ,U’)>7 u) —"_ <p7 b(t7 x? u)>

+{q,0(t,z,u)) + %<P(a(t, x,u) —o(t,x,u)),o(t,z,u) —o(t,z, ﬁ)>
(2.12)

Remark 2.4 Notice that Proposition 241 is proved by [I4] in its strong formula-
tion. However, as pointed out in [33], since for the maximum principle only necessary
conditions of optimality are concerned, an optimal quadruple is given as a starting
point (no matter whether in the strong or weak formulation, here we mention that
the strong/weak formulation concerns on the structure of the control variable, not on
the strong/weak solution of SDEs, for more details, see Chapter 2, Section 4 in [33]),
and all the results are valid for this given optimal quadruple on the probability space
it attached to.

Remark 2.5 In fact, the first-order adjoint equation (29) can be derived by
comparing the result in [33] with the result in [I7] which using the adjoint FBSDE
of [21], for more details see Theorem and Remark 3.3. Moreover, under some
conditions we can also obtain the second-order adjoint equation (ZI0) by comparing
the results between the recursive case and the non-recursive case, see Corollary 3.4
Finally, using the relationship established in the next section, we can prove Proposition
24 directly from the DPP of [20], see Corollary B3

3. Main Results.

3.1. Differentials in the spatial variable. In this subsection, we extend (L3)
to the case with non-convex control domain and non-smooth value function.

Let us recall the notions of the second-order super- and sub-jets in the spatial
variable z, see [7,[33]. For v € C([0,T] x R™) and (¢,2) € [0,T] x R™, we define

D2 Vu(t, &) = {(p, P) € xR" x 8"|o(t,x) < o(t, &) + (p, — &)
+ %(m —#)TP@—2)+ollz— %), asz — i),

(3.1)
D2 u(t, &) = {(p, P) € xR" x §"|v(t,x) > v(t, &) + (p,x — &)
+ %(a: —#)TP(x - 2) + oz — &]?), asz — 3:}

THEOREM 3.1. Let (H1), (H2), (H3) hold, (t,x) € [0,T) x R™ be fized. Sup-
pose that @(-) is an optimal control for Problem (RSOCP), V(-,-) is the value
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function, and (XH%50(.), YH50 (), Z6%%(.)) is the optimal trajectory. Let (p(-),q(+)) €
the first- and second-order adjoint equations (2.9), (Z10), respectively. Then

{=p(s)} x [-P(s),00) € DIV (s, X""%(s)), (3.2)
D27V (s, X"™%(s)) C {—p(s)} x (—o00,—P(s)], for all s € [t,T],P-a.s. '

We postpone the proof of Theorem 3.1 to the next section. Let us first give some
remarks, examples and corollaries.

Remark 3.1 Theorem B.1] also provides a possible method to find the candidate
optimal controls. With the stochastic verification theorem of Zhang [34], we can
solve the original Problem (RSOCP) as the following steps. Step 1, solve the
corresponding HIJB equation (Z3)) to find its unique viscosity solution. Step 2, choose

a(-) € U™ [t, T] such that (32) holds, which is a candidate optimal control. We first
calculate the lower bound and super bound of first-component of D24V (s, X*%i%(5s))
and the lower bound of the second-component of D?*V (s, X*%%(s)). Then using
the comparison theorem of BSDEs, by comparing adjoint equations (Z9) and (210)
with such bounds respectively, we can find some candidate optimal controls with the
help of (82). Step 3, apply the stochastic verification theorem to verify the optimal
control. The following is an example to show the above solving process.

Example 3.1 Let us now consider the following controlled SDE (n = 1):

{ dX b5 (s) [X”“ + X (s)u(s)|ds + X5 (s)u(s)dW (s), s € [¢,T],

Xt x; u(t) —
(3.3)
with U = [-1,0] U[1,2]. The cost functional is defined by 23] with
—dY" U (s) = —Z8 (s u(s)ds — Z8T(s)dW (s), s € [t, T, (3.4)
Yt,z;u(T) _ Xt,z;u(T)' :
The corresponding generalized HJB equation reads as
1
sup { - §Um(t, z)2?u? 4+ uv, (t, 1)z — uv,(t, :v)x}
ucU
—vu(t,x) — vy (t,z)x =0, (t,z) € [0,T) x R", (3.5)
o(T,z) = —x, forallz e R"
It is easy to verify that, the viscosity solution to ([B.3)) is given by
—et~ Ty, ifx <0,
Vit z) = { —el =ty ifx >0, (3.6)

which obviously satisfying ([2.7). Thus, by the uniqueness of the viscosity solution,
V' coincides with the value function. Moreover, the first- and second order adjoint
equation are

{ [ )+ p(s) + ﬂ(s)p(s)] ds — q(s)dW (s),
(T)

. (3.7)
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~dP() = [ + 2+ 20(s)P(s) ~ H)Qe) s — QAW (),
P(T) = 0. '

respectively. Note that (P(s),Q(s)) =0, for any a(-) € U™ [t, T].

Let us first consider the case that x # 0. Suppose that the optimal control is
a(-). If z < 0, from the comparison theorem of SDEs, we have X%%(s) < 0, for all
s € [t,T]. Then V (s, X1%%(s)) = —es~T X1%%(s), which yields that

D2HV (s, X0%U(s)) = {—e* T} x [0,00), forall s € [t,T].

From relation ([B.2)), we should have p(s) = =7, for all s € [¢t,7]. Consequently
q(s) =0 and u(s) = —1 or 2 for all s € [¢,T]. This tell us that the candidate optimal
control is @(s) = —1 or 2. Conversely, using the stochastic verification theorem in [26]
(which works also for the non-convex control domain since their proof mainly depends
on Proposition 23]), one can find the optimal control is indeed u(s) = —1 or 2, then
the unique solution to [B.7) is (p(s), q(s)) = (e*~7T,0), for s € [t, T]. Thus [@.2)) holds.

If x > 0, from the comparison theorem of SDEs, we have X%%%(s) > 0, for all
s € [t,T]. Then V (s, Xt%%(s)) = —eT =5 Xti%(s), which yields that

D2V (s, X0%U(s)) = {—eT 7%} x [0,00), for all s € [t,T].

From relation (32, we should have p(s) = e~ for all s € [t, T], which means that
p(s) = e =% solves uniquely @17). Consequently ¢(s) =0, u(s) =0 or 1 for s € [t,T).
This tell us that the candidate optimal control is @(s) = 0 or 1. Similarly as above,
using the stochastic verification theorem, one can find the optimal control is @(s) =0
or 1. Then the unique solution to @7 is (p(s),q(s)) = (eT*,0) and B2) holds.

Now let us consider that the initial state z = 0. We have X®*%(.) = 0 for any
u € U [t,T). From (B0), we have

D7V (s, X"®U%s)) =0, D>TV(s, X"%%(s)) = [—eT 7% —e*"T] x [0, 00).

An optimal control @(-) should keep that ([B:2]) holds where (p(s), ¢(s)) and (P(s), Q(s))
solves respectively (B.7) and B8). Thus we should have e5=7 =: pi(s) < p(s) <
pa(s) := =% and P(s) < Py(s) := 0. On the one hand, since P(s) = 0 for any (),
thus any @(-) can make sure that P(s) < P;(s). On the other hand, it is obvious that
—dp1(s) = —p1(s)ds — 0dW (s), p1(T) = 1, then comparing this with (31 and using
the comparison theorem of BSDESs, to make sure p;(s) < p(s), it is sufficient to have
—(u(s))? +1+1u(s) > —1 which always holds for u(-) € U = [-1,0][1, 2]. Similarly,
—dpa(s) = pa(s)ds — 0dW (s), p2(T) = 1, then comparing this with (377) and using
the comparison theorem of BSDEs, to make sure p(s) < pa(s), it is sufficient to have
—(u(s))? + 1+ @(s) < 1 which always holds for u(-) € U = [-1,0][1, 2]. Therefore,
any u(-) € U"[t,T] is a candidate optimal control.

Conversely, it can be verified that (X®*%(.), %(-)) = (0,%(-)) is an optimal pair
(one can check easily that when & = 0, the cost functional is always zero no mater
what the control is). Moreover, using comparison theorem of BSDEs and U =
[-1,0]U[1,2], the same as above we can show that e5~7 < p(s) < eT~%, for any
u(-) € U"[t, T]. Noticing that P(s) =0 for any u(-) € U™[t,T]. Thus B.2) holds.

Remark 3.2 Concerning that (X%%%(-),a(-)) = (0, @(-)) is an optimal pair when
x = 0, one can also check it by the stochastic verification theorem of [34] with test
function p(z) = —z. We mention that the non-smooth version of stochastic verifica-
tion theorem for the non-recursive optimal control problem was first studied in Zhou,
Yong and Li [38], and was correctly proved in Gozzi, Swiech and Zhou [12} [13).



Tianyang NIE, Jingtao SHI, Zhen WU 11

THEOREM 3.2. Let (H1), (H2), (H3) hold and (t,z) € [0,T)xR™ be fixed. Sup-
pose that u(-) is an optimal control for Problem (SROCP), and (X1%4(.), Yot (.),
ZHu () is the optimal trajectory. Let (p*(-),q*(-), k*(-)) € S%([0, T]; R™) x S%([0, T');
R) x L%([0,T]; R™) satisfy the following first-order adjoint FBSDE ([21)])

—dp*(s) = [ba(5) P () = fuls) T q" (s) + Gu(s)k™(5)] ds — k* (s)dW (s),
dg*(s) = fy(s)q*(s)ds + f-(s)g"(s)dW (s), s € [t,T], (3.9)
p*(T) = = (X"59(T))g*(T), q*(t) =1,
then
Dy V (s, X55%(s)) € {p*(s)q" ()71} € DV (s, X0(s)), (3.10)

for all s € [t,T],P-a.s., where V(-,-) is the value function defined by (2-7)).

Remark 3.3 This result has been proved in [I7] with the convex control domain.
By comparing Theorem BJ] with Theorem B.2] it is not hard to guess that p(s) =
—p*(s)g*(s)~t, which is in fact true as shown in the following proof. This means that
the first-order adjoint equation ([29]) introduced by [14] can be derived directly from
the adjoint FBSDE of [21]. Conversely, if we can show that p(s) = —p*(s)g*(s)~!,
then Theorem is indeed a special case of Theorem Bl if we only consider the
first-order case. Let us give the detailed proof as follows.

Proof of Theorem[32 We only need to prove that p(s) = —p*(s)q*( )~1, for all
€ [t,T]. In fact, from [B.9), we obtain ¢*(s) = exp{ftS fy(r)ydr — & 7| f-(r)[2dr +
N2 (T)dW(T)}. Thus applying Ité’s formula to p*(s)q*(s)~!, we get
d{p*(s)q"(s)"'} = { = fy(s)"(s)a"(5) " = bu(s) "D (s)a" (5) ™"
F 1P ()0 ()7 = () R ()07 ()" = L)k ()0 () + Fuls) s
+q"(s) 7 [k (5) = p* () () T ]dW (s).
Let p(s) = —p*(s)a*(s) ™", a(s) = —¢*(s) ' [k*(s) — p"(5)f=(5) "], we have
—dp(s) = {fy(S)P(S) + f2(5)0(5) Tp(s) + ba(s) "p(s) + fa(s)
+ ()7 a(s) + fuls) bds — als)aw ()

Rl

—
VA

~—

Comparing this with ([23) and noticing that p(T) = —p*(T)q*(T) " = ¢, (XH4(T)),
we get p(s) = p(s) = —p*(s)¢*(s)~! from the uniqueness of the solution to BSDE
@3). The proof is complete. O

3.2. Differentials in the time variable. In this subsection, we extend (L))
to the case with non-convex control domain and non-smooth value function.

Let us recall the notion of the right super- and sub-jets in the time variable ¢, see
[33]. For v € C([0,T] x R™), and (£,2) € [0,T] x R", we define

Diito(d @) i= {a € R|o(t,2) < v(f, &) + q(t = ) + (|t — {]), as ¢ L1}, o)
Dii v(d.#) = {a € Rlo(t,2) > v(E, &) + alt — ) + ol|t — i), as ¢ L E}. '
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THEOREM 3.3. Let (H1), (H2), (H3) hold and (t,z) € [0,T)xR™ be fixed. Sup-
pose that u(-) is an optimal control for Problem (RSOCP), and (X1%8(.), Yot (.),
Zbw(.)) ds the optimal state. Let (p(-),q(")) € S%([t,T);R") x L%([t,T);R") and
(P(),Q(") € S%([t,T); 8™) x L%([t,T]; S™) satisfy the first- and second-order adjoint
equation (Z29) and (ZI0), respectively. Let V (-,-) be the value function. Then

[Hy (s, XP5%(s),u(s)),00) C DtlfV(s,Xt’m;ﬂ(s)), a.e.s€[t,T],P-a.s., (3.12)

D%;_V(s,)_(t’w*ﬁ(s)) C (= o0, Hi(s, X" %(s),u(s))], ae. s€[t,T],P-as., (3.13)
where Hy : [0,T] x R" x U — R is defined as

Ha(t,z,u) = H(t,z,—V(t,2),5(t) p(t),p(t),q(t), P(t),u) — %tr{&(t)TP(t)o‘r(t)}
= f(t,z,—V(t,z),0(t,z,u) p(t),u) + (p(t) b(t, z,u))
+ (q(t) = P(t)a(t,z,u),o(t, z, u) >+ (P o(t,z,u), ot z,u))
=G(t,z,—V(t,z),p(t), P(t),u) + {q(t) — P(t)o(t,z,u),o(t,z,u)).
We postpone the proof of Theorem [3.3] to the next section.

(3.14)

Remark 3.4 Similar to the classical result (see pp. 267 in [33]), in Theorem
we only have the right super- (resp. sub-) jets and it can not be extended to the
two-sided super- (sub-) jets. This is due to the adaptiveness requirement.

Example 3.1 (continued) Consider the problem in Example 3.1 again. From
B4), we have for z =0,

Dy V (s, X175 (s)) = [0,00), Dy V(s, X" (s)) = (~00,0].

Since for arbitrary %(-) we have X*%%(s) = 0 and ¢(s) = P(s) = Q(s) = 0 for all
s € [t,T], which implies that H1(s, X"%%(s),u(s)) = 0, s € [t,T]. Thus BI2) and
BI3) hold. For < 0, we have

Dy V (s, X070 (s) = [Vi(s, X175 (s)), 00) = [-e* T X57(s), 00),
and
DI V{5, X=55(5)) = (=00, Va(s, X*5%(s))] = (—o0, —e*TX%(s)]
Since now u(s) = —1 or 2, p(s) = e*~ 1, q(s) = P(s) = Q(s) = 0 for all s € [t, T], thus
Hi(s, X" (s), a(s)) = p(s)[ X7 (s) + XD7(s)a(s)] — X7 (s)p(s)(a(s))?
— T X(g).
Thus I2) and 3I3) hold. For x > 0, we have
Dyt V (s, X570 (s)) = [Vi(s, X47(s)), 00) = [T XH(s), 00),

—~

and
DI V(5 452(0) = (220 (0 X0 = (a0, 2514
Since now (s) =0 or 1, p(s) = ,q(s) = P(s) =Q(s) =0 for s € [t,T], thus
Ha(s, X""0(s),a(s)) = p(s )[Xt“( ) + X5 (s)a(s)] — X5 (s)p(s) (a(s))?
— TSt g),
Thus BI2) and 3I3) hold.
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3.3. Smooth Case. In this subsection, we will give the smooth version of The-
orem B.I] and Theorem Different from [24] [26], here the control domain can be
non-convex. It is also worth to emphasize that we can derive the first- and second-
order adjoint equations (29), (ZI0) of [14] directly, see Remark 3.6.

COROLLARY 3.4. Let (H1), (H2), (H3) hold and (t,x) € [0,T) x R™ be fized.
Suppose that u(-) is an optimal control for Problem (SROCP), and (Xbmsu(),
yt@a (), Z6%U(.)) is the optimal trajectory. If V(-,-) € C12([0,T] x R™), then

V(s X057(s)

= G(s, X""(s), =V (s, X"""(s)), = Va(s, X""(5)), —Vaa(s X”“( ), u(s))
= maxG( t o u(s) _V(Sa Xt,m;ﬁ(s)), —Vm(S, Xt,m;ﬁ(s)), _me( b (S)) )

uelyU
(3.15)
a.e.s € [t,T),P-a.s., where G is defined as (Z8). Moreover, if V(-,-) € C13([0,T] x
R™) and Viz(-,-) is continuous, then

{p(s) = — Vs, XP(s)), for alls € [t,T], P-a.s., (3.16)

q(s) = — Ve (s, X55%(5))a (), a.e. s €[t,T], P-as.,
where (p(+), q(+)) satisfy (Z3). Furthermore, if V(-,-) € CY4([0, T] xR") and Vips (-, -)

is continuous, then
Ve (s, X55%(s5)) > P(s), for all s € [t,T], P-a.s., (3.17)
where (P(-),Q(+)) satisfies (Z10).

Remark 3.5 Comparing BI6) with ([[3]), similar to the non-smooth case, we
can obtain also that

{p(S) = —p"(s)q*(s)7", (3.18)

q(s) = —q"(s) " [k*(s) = p"(s)f=(s) "]

This relation also reveals the connection between (p,¢) (solution to BSDE ([Z3)) of

[14] with (p*, ¢*, k*) (solution to FBSDE (3.9))) of [21].

Proof of Corollary[34 For fixed ¢t € [0,T"), by the backward semigroup property
of [22], since a(-) is the optimal control, we obtain —V(s, X"*%(s)) = Y"*%(s),s €
[t, T] which satisfies BSDE ([2:2). Applying It6’s formula to V (s, X»*%(s)), we have

dV (s, X15%(s)) = [Vi(s, X"5%(s)) + (Vi (s, X"5%(s)), b(s))
+ %tr(&(s)TVm(s X1(5))5(s)) ] ds + Vi (s, X7%(s)) "6 (s)dW (s).

Comparing this with BSDE ([22)), we conclude that

Va(s, X055 (5)) + (Vi (s, X059(s)), b > % 10(6(5) T Vi (5, X577 (5))a (5))
= f(s) = f(s, X""%(s), Y""%(s), 24" (s),u(s)), for all s € [t,T], P-a.s.,
Va(s, X4%8(s)) Ta(s) = —Z5%4(s), a.e.s € [t,T],P-a.s.

(3.19)
It follows from (BI9) that the first equality of (BI3]) holds. Moreover, since V(-,-) €
C12([0,T] x R™), it is the classical solution to (ZH), thus using Proposition 23 we
obtain the second equality of (BIH).
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On the other hand, by (Z3) and BI0), it follows that for all x € R,
0= —Vi(s Xt@;a(s))
+ G (s, XP5%(s), =V (s, XD5%(s)), = Vu (s, X5(s)), = Vaa (s, X"7%(s)), u(s))
> —Vi(s,z) + G(s, x, =V (s,x), =Vi(s, ), = Viz(s, ), a(s))

(3.20)
Consequently, if V(-,-) € C*3([0,T] x R™), then for all s € [t, T],
i{ —Vi(s,2) + G(s, 2z, =V (s, x), = Va(s,x), = Vaa(s, x) ﬁ(s))} =0
ax ) 3 3 ) ) ) ) 3 3 m:Xt,iE;ﬁ(s) )
(3.21)

which is the first-order maximum condition. Furthermore, if V(-,-) € C**([0,T] x
R™), the following second-order maximum condition holds: For all s € [t, T,

82

Va0 + Gls,m~Vi(s.2). Vi (3.2), ~Vi(s.2). () }

) <0,
=Xt (s)
(3.22)

On the one hand, B2])) yields that (recall [24)) for all s € [t,T],
0= —Viu(s, X5%(8)) = Viu(s, X555 (s))b(8) — ba(s) T Vi (s, X5 (s))

- %tr(a(s)—rvmmm(sv Xt,m;ﬁ(s))a.(s)) - 61 (S)TV11(87 Xt,w;ﬁ(s))a_(s) + fm(S)

— fy($)Va(s, X“7(5)) = f2(s) [Vau (s, X1())a (5) + 70 (s) T Varls, X050(s))],
(3.23)
where tr(&Tme(T) = (tr(_T((Vx)l)m&),--- ( ( ) I&))T, with ((Vm)l,

(V)™ )T = V,. Applying Itd’s formula to V, (s, X©%%(s)), using ([3:23)) and the
fact that Vi, (+,) is continuous we get

— dVy (s, X""(s)) = {Ew(S)TVw(SaXt’I;ﬁ(S)) +0a(5) " Vaa(s, X"7%(5))0 (s) = fuls)

- Jy()Vals, XU550(8)) + F2(3) [V (s, XU57(8))0(5) + 00 (5) Va5, X17%(s)] s
— Vaz (5, X555 (8)) 7 (s)dW (5).
Note that V solves (ZH), thus V,(T,X"%%(T)) = —¢,(X»"%(T)). Then by the

uniqueness of the solutions to (29, we obtain (BI0]).
Moreover, (3:22)) yields that, for any s € [t, T,

Viwa (5, X"7(5)) + Viaa (s, X"7(8))b(s) + 5 [0(5) " Vewaa(s, X7 (s))a (s)]
> —Vaa(s, X"77(5))ba(s) = ba(5) " Vaa(5, X7 (s)) = fy () Vaa (s, X7 (s))
— F(9)72(5) Vaa (s, K0(5)) — Fo(s)Vaals, X5(5))0 )
— 52(8) Vi (s, X" (5))52(5) — Vawa (s, X" (5))5(5)Fx(s)
= J2(5)Vawa(s, X"7%(5))3(5) = 62(5) " Varwa (5, X"
 Baa(5) Va5, X5(s)) — Gan(s) o (5)Vals, X257 (s
+ [Lnscn, =V (s, X175 (5)), =00 (s) Vi (s, X" (5)) = Vaa (s, X" (s))a ()| D*  (s)
NInxn, =Va(s, X"7%(s)), —52(8) Vi (s, X2"(5)) = Viu (s, Xt'”;a(s))ﬁ(s)}T.

N)IH

\/\-/

S

) -
)
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In the above and sequel, the notations of partial derivatives have their own definitions
which we will not clarify on by one, for the limit of the space (for simplicity, the readers
can verify the calculus just using n = 1, i.e. x is one dimensional).

Applying Itd’s formula to V. (s, X5*%(s)), we obtain

dVpe (s, X15%(s)) = {Vms(s, XBT(8)) 4 Vipga (5, X555 (5))b(s)
2 [55) Va5, K75(5))a(5)] s = Vi (5, X075(5)) T ()W ().
Define P(s) = —Viu(s, X1%%(5)), Q(8) = —Viza(s, XH%%(s))7(s), we have

—dP(3) ={Varals, X“55(5)) + Varals, X5%(s)b(s)
+ % 5(5) " Vaaaa (s, XT(s))5(s)] }ds — Q(s)dW (s).

From ([3.24) and the continuity of V.. (-,

(3.25)

as well as (B.I6), we have

& (S)Tvmx(s,Xt’””*ﬁ(s))ff(s)]
(5)[F=(5)52(s) + b (5)] + G2(s) " P(5)7(5)
+ [2(8)Q(s) + 3a(s) " Q(s) + Q(5)u(5) + baa(s) (s )+0m( )" [F=(s)p(s)
+q()] + [Tnxns p(5),52(5) ' P(s) + 4(5)] D* F(5) [Tuxn, p(5), 72 (5) "p(s) + ()] -
Note that P(T) = P(T) = — Voo (T, XH%4(T)) = ¢ (XH%%(T)). Using above rela-
tion, one can check the condition (condition (13) of Hu and Peng [15]) of the com-

parison theorem for the matrix-valued BSDEs (2I0) and ([3:23]) holds, thus we obtain
@BI1). The proof is complete. O

Remark 3.6 From the above proof, we can observe that if the second-order
derivative of (B22) at x = X“%%(s) equals to zero, then we have —V,, (s, X»%%(s)) =
P(s), for all s € [t,T],P-a.s. The following example is in this case.

Example 3.2 Consider the following controlled SDE (n = 1):

Vara (5, X7 (5)) + Vaaw (5, X7 ())b(s
> Jy(s)P(s) + [[(5)52(s) " +ba(s) "] P

)
g
(s) +P
b

by _
{d))(( mu((ji ; zzf(s)ds +u(s)dW (s), s € [t,T), (3.26)
with U = [-3, —=2] |1, 2]. The cost functional is defined as ([23]) with
v (s) = { L uls)h X0 ()2 u(s)th X5 (s) — fu(s)]? — u(s)
— 7055 (s) bds — 25 (8)dW (s), s € [1,T), (3.27)

Y5#(T) = Inch X 5*%(T),

where chz := (e + e~*) and thz = e —¢__ Then the HJB equation (23) writes

et4e— T

1 1
— v (t, ) + sup {—51)11(1%, z)u® + §|uthx|2 — uthz — v, (t, 2)u — u? — u} =0,
uelU

(t,2) € [0,T] x R",
v(T,x) = —Inchx, for all z € R",
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which admits a unique solution V(¢,2) = —Inchz. One can check that Vi(t,z) = 0,
Vi(t,x) = —thz and V. (t,z) = —(chx) 2
Let @(-) be an optimal control, then the first-order adjoint equation writes

~dp(s) = {[5(s) thE(5) (X ()2 — () DX (s))
- q(s)}ds —q(s)dW(s), seltT], (3.28)
p(T) = thX""%(T)),
which, by Ito’s formula, admits a unique solution (p(s), q(s)) = (thX"%%(s), u(s)
(chX®%%(s))~2). Therefore [BI0) holds. Now let us focus on the second order adjoint
equation

{ —dP(s) = g(s,)_(t’x;ﬁ(s),@( ), (s ))ds —Q(s)dW (s), se€lt,T],
2

- (3.29)
P(T) = (hX=55(T))~

where g(s, , Q(s),u) := (cha)~*[2u? — » 2_” e — @6*21] — Q(s), which, by again
Ito’s formula, admits a unique solution (P(s), Q(s)) = ((chX"*¥(s)) ™2, —2u(s)

(chXti(s)) ~2¢h Xt (s))

On the other hand, from [3:22), if we define F(s,y) := (s,y)+G(s,y,—
— Vy(s,9), —Vyy(s,y), u(s)) which reduces to F(s,y) = ——|u( )2 = al(s), and thus
F,(s,y) = 0,F,,(s,y) = 0, for any (s,y) € [0, T] x R™. Therefore (B:EZI) should
hold with the equahty In fact, recalling that V,.(t,2) = —(chz)™? and P(s) =

(chXt%%(s))~2, ([BI7) holds indeed with the equality.

We observe that the above arguments do not use the exact form of the optimal
control. By applying the stochastic verification theorem in [26], we obtain that the
optimal control is @(s) = —2.

Remark 3.7 We point out that the strict inequality —V,., (s, X®*%(s)) > P(s)
happens if the inequality in (3:22)) holds strictly. Specially, as in the following example
when n = 1, this is due to the strict comparison theorem of scalar BSDEs, see [22].

Example 3.3 Consider the following controlled SDE (n = 1):

{dXt’””“(s) = 2u(s)ds + u(s)dW(s), s € [t,T], (3.30)
XHTU(t) =,
with U = [—1,1] U[2,4]. The cost functional is defined as (23] with
—av(s) = { L u(s)th X ()2 — LX) — Ju(s) P
— 755 (s) bds — 27 ()dW (s), s € [1,T), (3.31)

Y5#(T) = Inch X 5*4(T),

Then the HIB equation ([2.35]) writes

1 1
sup { — U (t, 2)u? — vy (t, 2)u + = |Juthz|? — u2}
uely 2 2

1
ve(t, ) — §|th:1c|2 =0, (t,x) €[0,7] x R",
v(T,z) = —Inchz, for allz € R",
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which admits a unique solution V' (¢,z) = — Inchz. Moreover, by applying the stochas-
tic verification theorem in [26], we obtain that u(s) = thX %% (s).
The adjoint equations are

—dp(s) = { X" (s) (b X" (5) "2 [(0(5)) — 1] = q(s) }ds
—q(s)dW(s), se€lt,T], (3.32)
p(T) = thX"5(T)),

and

{—dP( s) = g1(s, X"7%(s), Q(s), u(s))ds — Q(s)dW (s), s € [t, T}, (3.33)

P(T) = (chX"™(T))~2,

where g1 (s,z,Q(s),u) := [(chz)™* — 2(thz)?(chz) 2] (u® — 1) — Q(s). Applying Ito’s
formula and using (s) = thX""%(s), we obtain that (p(s),q(s)) = (thX " (s),
(chX®™%(s))~2thX "% (s)) is the unique solution to ([B:32).

Now let us focus on (EBEI) From (3:22), if we define Fﬁs,y) = —Vs(s,y) +
G(s,y, =V (s,y), =Vy(s,y) — Vyy(s,y),u(s)) which reduces to F(s,y) = —i(thy)? —
2(thX"®%(s))% + thy - thX”ﬁ(s) We can verify that F,(s, X®%%(s)) = 0, and
Fyy(s, Xt%0(s)) = (chX“”“( )~ < 0. Next, since —V,,(t,x) = (chz

(s

note P(s) := (chX“%%(s))~2 Q(s) := —2u(s )(ChX“”“( ))~2thX%*%(s). Applying
Tto’s formula to P(:), we have
—dP(s) =g ( Xhoit(g ),ﬁ(s))ds — Q(s)dW(s), se€lt,T],
{ P(T) = (chX"“"(T))~2,
where ga(s, ,u) = (chz) *[2u® + #e% + #e_%ﬂ. We can check di-

rectly that for a(s) = thX 5 %(s), ga(s, X1%8(s), u(s)) — g1 (s, X1%(s), Q(s),u(s)) =
(chXt%%(s))~* > 0, and the strictly comparison theorem for scalar BSDEs yields
that —V. (s, X4%%(s)) = (chX"%%(s))~2 = P(s) > P(s).

The above arguments are based on the fact that we know the optimal pair
(Xt™U(s),u(s)) satisfies u(s) = thX*®¥%(s). Now we will show that this relation
can be found directly from (BI0) as a candidate optimal control. In fact, the op-
timal control u(-) should keep that [BI6) holds where (p(-),q(:)) and (P(:),Q(-))
solves [(.32) and ([3.33) respectively. Thus we should have p(s) = thX»%%(s) and
P(s) < (chX®®%(s))~2. Applying Ito’s formula to p(s) := thX"%%(s), we have

—dp(s) = §(s, X" (s), a(s))ds — 4(s)dW (s),

where §(s) := u(s)(chX*%%(s))~2 and §(s, z,u) := u?(chx) 2thz — 2u(chz)~2. This
should coincides with BSDE ([B.32)). Thus ¢(s) = ¢(s ) and
(@))% — 1 [the - (cha) 2] — gls) = [((5))? (cha)2tha — 2(5)(che) ] |,_geaqeys

which yields that @(s) = thX**%(s). Moreover, we know that for @(s) = thX**%(s),
P(s) = (chX"%%(s))~2 > P(s) holds. Thus u(s) = thX"®%(s) keeps that ([B.I0)
holds. Then it is a candidate optimal control.

Under the assumption that the value function is smooth enough, the following
result tells us that the MP can be derived from the DPP, which is an important issue
in stochastic control theory.
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COROLLARY 3.5. Let (H1), (H2), (H3) hold and (t,x) € [0,T) x R™ be
fized.  Suppose that u(-) is an admissible control for Problem (SROCP), and
(XBmu () Yhot (), Z635%(.)) is the corresponding state. Let G, H be defined by (2.4),
(Z212), respectively, and (p(+),q(+)), (P(:),Q(")) satisfy (229) and (Z10) respectively.
If the value function V (-,-) is smooth enough and its derivatives are continuous, and
G(s, X" (s), =V (s, X" (s)),

— Vi (s, X555(5)), —Viu (s, X058 (s)), ﬁ(s))

:gleaé(G(S,Xt’m;ﬁ(S),—V(S,Xt’w;a(s)),—Vx(S,Xt’w;a(S)), —Viw (s, XP5%(s)), u),

(3.34)
a.e.s € [t,T],P-a.s. Then

H(s, XE030(s), V550(s), 255 (s), (s), p(s), a(5), P(5))
= ma H(s, X1 (5), V150 (s), Z0(5), u, p(5), (5), P(s)), a.e.s € [t,T], Peas

(3.35)

Proof. By the stochastic verification theorem in [26], from (B34)) we know that
@(+) is an optimal control. Moreover, from (26) and (334, we have

Noting that p(s) = =V, (s, X*%%(s)), thus for all u € U, a.e.s € [t,T], P-a.s

+ £ (5, X570 (s), =V (s, X"7(s)), 6 (s) "p(s), u(s))

> (p(s),b(s, X" %(s),u)) + %<P(s)a(s, XP5%(s),u),0(s, X5 (s),u))
+ f (s, X5 (s), =V (s, XB"%(s)), — (s X“”“( ))o(s, XH5%(s),u), u)
S((P(3) + Va5, X55(5))) (5, X

where P(-) satisfies ZI0). From the definition of H; in BI4), we get for all u €
U, a.e.s € [t,T], P-a.s.,
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Then, noting that g(s) = — V. (s, X1%%(s))5(s), we have
5, X170 (s), a(s)) — Hals, X" (s), u)

(
%<(P(s) + Vo (s, Xt’z;ﬂ(s))) (6(5) — (s, XHTU(s), u)),&(s) — (s, XP"U(s), u)>

>0, forallueU, aesceltT], P-a.s.

Hi

2_

The last inequality holds due to (BI1). Noticing that from BI6) and (3I9) we have
ZbmU(s) = o(s,x,u)p(s), thus [B30) is valid by applying that @(-) achieves the same
maximum value in #; and H. The proof is complete. [

Remark 3.8 From the above proof, one can check that if P(s) = —V,,(s, X©%%(s)),
from ([B35]) we can obtain (8:34). This means that the DPP can be derived by the MP.
Moreover, noticing that ([8:34)) is a necessary and sufficient condition for the optimal
control, thus the maximum principle [(35) together with P(s) = —V,.(s, X?%%(s))
is also a sufficient condition for the optimal control. We mention that the maximum
principle ([333)) is a necessary condition for the optimal control, but one can give lots
of examples to show that P(s) = —V,, (s, X""%(s)) is not a necessary condition for
the optimal control. Finally, let us stress that P(s) = —V,.(s, X*®%(s)) plays the
similar role as the additional convex/concave conditions such that maximum principle
is a sufficient condition for the optimal control, see [26] [33].

4. Proof of the Main Results.

4.1. Proof of Theorem 3.1. We split the proof into several steps.

Step 1. Variational equation for SDE. )
Fix an s € [,T]. For any ! € R"™, denote by X% i%(.) the solution to the
following SDE on [s, T1:

X5 () = g 4 / b, X577 (), t(a))dor + / oo, X573 (q), a(o))dW ().
’ ) (4.1)
It is clear that [@I) can be regarded as an SDE on (Q,F,{F!},>¢, P(:|Fl)(w)) for
P-a.s.w, where P(-|F!)(w) is the regular conditional probability given F! defined on

(€, F). For any s < r < T, set X(r) := X** i%(r) — Xt#5%(;), Thus by a standard
argument, we have for any integer k > 1,

IE{ sup ’X(T)’%‘}ﬂ < Clzt — X5%(s5)|?%, P-a.s. (4.2)
s<r<T

Now we write the equation for X(-) as

{ (r) = [ba( )+ e1(r)]dr + [3.(r) X (r) + e2(r)|dW (r), 7 € [5,T), 43)
X(s) = 2t )_( (s),
and
dX(r) = [bs(r)X(r) + %X(T)TBM(T)X(T) +es(r)]dr
(4.4)

+ [Ga(r) X (r) + %X(T)Tﬁm(r)f((r) +eq(r)]dW (r),r € [s, T,
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where
/01 (r, XP5(r) 4+ 0X (r), u(r)) — by (r)] X (r)do),
- /01 (2 (r, X555 (r) + 0X (r), 0(r)) — 0 ()] X (1)),
:/01 )T [baa(r, X557 () 4+ 0X (1), 4(r)) — b (r)] X (r)d6,
e :/0 (1= 0)X(r) " [owa(r, XO7(r) + 0X (r), 6(r)) = G (r)] X (r)db.

and X (1) Goe (X (1) = (X() TG, ()X (@), X @, (X)) for o = b,o.
Step 2. Estimates of remainder terms of SDE.
For any integer k£ > 1, we have

_ T

E / leg (r |2kdr‘]:t} = o(|x 1—Xt’w;ﬁ(s)|2k), P-a.s.,
- ST N B

E / lea(r)PHar| 7] = of|2* — X454(9)?), Pas.

- T
B[ [ anlfar| 7] = o’ - X)), Pas.

T
E / |E4(T)|kd7"]‘—£} = 0(|:1c1 —)_(t’z;ﬂ(sﬂ%), P-a.s.

—J s
Here E[J;T |<€1(7‘)|2de}]:;’} = o(|z! — Xt*%(5)|?*), P-a.s., means that for P-a.s. w
fixed, IE[J;T |51(r)|2kdr‘]:§} (w) = o]zt — XB*%(s,w)|?*), where o(-) is almost surely
a deterministic function under the regular conditional probability P(-|F!)(w). More-
over, o(|z! — X1%%(s,w)|?¥) depends only on the size of [z! — X"%%(s, w)|, and it is
independent of z'. Such notation has similar meaning for other estimates in (3] as
well as in the sequel of the paper.

To prove (@A), by the continuity and uniformly boundedness of b, b,y 0y, O
and dominated convergence theorem as well as ([{2]), we have
1
7]y

E[/é lex(r 2kdr|]-‘] /T E /1 ‘bz(T,Xt,z;ﬂ(r) +0X(r),a(r)) _l‘)z(r)|4kd9

AE[Ixer

Thus the first equality in (£3) holds, and similar for the second one. Moreover, from
the modulus continuity of b,,, we have
1
a1y

| / Cestar| 2] < / 5] / Jbuar, XE55(r) + 6 (7), 8(r) — B ()
{Efor

the third equality in (@3] holds, and the fourth one can be proved similarly.

]} dr = o(|z" — X"""(s)[**), P-a.s.

]} dr = o(|z" — X"™"(s)[**), P-a.s.,

Step 8. Duality relation.
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Applying Ito’s formula to (p(-), X(-)), by @3, &F), we have
d(p(r), X(r)) = [ = (X(r), £y (r)p(r) + fo(r)ao(r) "p(r) + fo(r)a(r) + fu(r))
A (1)) + 2 {a(r), X (1) 22a (1) X ()
(r))]dr + [ X(r)) + {p(r), 5. (r) X (r)
(

4.6
€4 (), X( o
X(r) " Guu ()X (r)) + (p(r),e4(r))]dW (r), 7 € [s,T].

(q
)]

Setting A(r) := X (r)X ()T and applying It6’s formula to tr{P(-)A(:)}, using (ZI0),
we obtain

) Gaa(r) [ (r)p(r) + q(r)] + P(r)es(r) — A(r)
X [Lnxn, p(r), 52(r) " p(r) + a(r)] D F(1) [Tnxn, p(r), 52(r) ' p(r) +a(r)] " + Q(T)€6(7“)}d7“

+tr{ A)Q(r) + P(r)A(r)aa(r) " + P(r)au(r)A(r) + P(r)eo(r) }aW (1), 7 € [5,T].
(4.7)

|
N
=
=
T
—
3
=
O
=
3
=
|
b
=
3
=
=
g
8
—
3
4|
i
=
3
=
|
N
=
3
=

where

By @8) and @), for Y (r) := (p(r), X (1)) + 1(P(r)X (r), X (r)), we obtain

dY (r) = C(r)dr + Z(r)dW (r), r € [s, T, (4.8)

2(r) = (), X)) + (p(r),02() X () + 5 X() 32a ()X () + (p(r), 2a(r)
+ 5 ARQE) + PE)AMGL(r) | + P()oa(n)AG) + P(res(r)},
Cr) = = (X(0), Jy(r)p(r) + o (r)7e(r) Tp(r) + Fo(r)a(r) + o)) + (p(r), s(r)

+ (), ea(r)) + e = ZAG) () P(r) = A (D) P(r)

AN E(NQE) — 5A0NT2(r) | J-(rIp(r) + 5 P(r)es(r) + 5Q()e6(r)

A1) [Inxen, p(r), 52(r) " p(r) + a(r) [ D* F(r) [Lnscn, p(r), 32 (r) " p(r) + a(r)] T}-

|
N N =

Step 4. Variational equation for 1BSDE. )
For the above 21 € R, recall X% i%(.) is given by (@) and denote by (Y% i%(.),
Z%'3%(.)) the solution to the following BSDE on [s, T):

T
Yys:® ;ﬁ(,r) — (b(Xs,w ;ﬁ(T)) _|_/ f(O[,XS’I ;ﬁ(a),ys,m ;ﬁa),ZS7I ;ﬁ(a),ﬂ(oz))doz

T -
—/ 7% ) dW (@),
' (4.9)
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and similarly @3) is a BSDE on (Q, F, {F}r>¢, P(-|FL)(w)) for P-a.s.w.
For any s <r < T, set

Y(r) = Y550 (r) = Y (r), Z(r) = 25 5(r) — Z(r). (4.10)

Thus by [@8) and [@3), we get

A(Y(r) = V50 (r)) = =[C(r) + f(r, X5 55(r), Y 0 (), 25 5 (r), a(r)
— (X (r), YIS (), 2550 (), a(r) ] dr + [Z(r) — 2550 ()] dW (),
) (4.11)
-y YT / 1-0)X ¢>M(X”“( )+ 60X (T))
X

— ¢au(X"7(T))]

By the modulus continuity of ¢,,, we have

E[|Y/(T) - V'=%(T)||F] < {E[(/Ol |0 (XP5(T) + 0X(T))

IR

~ Gaa (X)) ) FIV = oot - X (s)), Pras

Noting ([@I0), we have

o, Xo50(r), Y0, 750500 () — [, XE20 (), VA0 (), 255 (), (1))

" (
= L) - ¥ w‘ﬂm) + ) (Z0) = 2577(0) + Fol) X (r)
()Y <(r)7¥ 2F()X ()T,

where

B0 = [ 50X £ X0, P50 + V0 407 () - T50),
285 (r) + Z(r) + 0(Z(r) = Z2875(r)), a(r)) do,

for) = /01 Fo(r, X750 () + X (), Y550 () 4 Y () + 0(Y () = Y20 (),
Z80(r) 4 Z(r) + 0(Z(r) — Z5%%(r)), a(r)) d6,

1 1 A A
D*f(r) := / / )\D2 f(r, X550 () + XX (r), YO55(r) + MY (1),
o Jo

Z55 () 4+ \OZ(r), u(r)) dAd6.
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Using the definition of ¥ () and Z(r), we obtain

Y(s) = V"5 (s) = of|' — X""(s)[*) + / { () (Y (r) = Y""(r))
+ F(r)(Z(r) = ZV0 () + (X () T, Y (r), Z(F)]D? F () [X () T, Y (), Z(r)] "
_ %u{X(r)X(r)T[.rnxmp(r)d(r) () + a()] D*F () [Tnxcm, p(r), 5 (F)p(r) + q(r)] T

+ Oy (r)}}dr - /ST [Z(r) = Z55%(r)]dW (r), P-a.s.,

(4.12)
where

Ci(r) = <p( ), e3(r)) + (a(r), a(r)) + f(r)(p(r), a(r))
+ tr{P (r) + Q(r)es(r) + f2(r)P(r)es(r) }-
Denoting the n + 2-dimensional random vectors

M(r):=[X(r)",Y(r), Z(r)], N(r) = [X ()", X(r) "p(r), X (") T (32(r) "p(r)+q(r)],
we obtain that

— — — — T ~ ~ — —
Y (s) — YE¥U(s) = 0(|331 - Xt’w;”(s)|2) + / {fy(r) (Y(r) - Yt’w;“(r))
+ £ () (Z(r) = Z555(r)) + C1(r) + M(r)D? f(r)M (r) " (4.13)
T ~ — —
- %N(T)DQf(T)N(T‘)T}}dT‘ - /S (Z(r) = ZV"%(r)]dW (r), P-a.s.

Step 5. Estimates of remainder terms of BSDEs.
Noting that

M()D F()M(r)T — SNGID TN = M) D Fr)M ()T
~ NP NG + NP NG~ INED FrNG)T
= 1) D f()TI(r) + N(r) [ D () — 5 D*Fr)| N ()T

where TI(r) := M(r) — N(r). We have
E| /T\C1 (r) ydr)2
o] / IT1(r) D £( \dr)
s[( [ ve )[DQf( )~ 3 D) N )T
Indeed, by the boundedness of f., we have

5[( [ lewlar)’ 7] < cr[( [ tp.zampar)’

—i—CIEK/T <q(r),s4(r)>dr>2 J +CE[(/T <p(7a)754(7‘)>d7,)2

S S

]-'1 = o(jz! — Xt=T(s)[4), P-a.s.,

S

z] =o(|z! — Xt®%(s)[Y), P-a.s.,

dr) ’

]—ﬂ = o]z} — XtT(s)|4), P-a.s.
(4.14)

]-'51

F]
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+CE[(/Ttr{P(T)E5(r)}dr)2 S] —i—CIEK/STtr{Q(r)Eg(r)}dT)2

S

+CE|( /ST () P(r)eo(r) yar)

In the sequel, by (@A), we have

]

f;} L4 Lot I+ Iy + Is + Is.

T
I SCIE{ sup |p(7°)‘2/ les(r)|?dr

s<r<T

=o(|lz! — Xt=U(s)|Y), P-a.s.,

S} < CIE[/ST les(r)|2dr

and similar for I3; by Holder’s inequality, we get

IQ<CE/ |a(r ‘dr/ lea(r)|2dr

IE / les(r)[*dr .7-'; } = o(|z" — XB"(s)[Y), P-a.s.;

from the definition of e5(r) and [@2l), (£3), we obtain

Y

ft <C’ /‘q |dr

A 2 T
I < CEL?:ET ‘P(T)X(T’)| / (|€1(r)|2 + |€2(r)|2 + |62(r)|4)d7”

]-'51

Bl

< C{E[ sup }X(T)}S

s<r<T

]:4 }i{E{/ST (Jex(r)P? + [e2(r)* + |52(7”)|4)4dr

= o(|z*t — Xb%9(s)[Y), P-a.s.;

7}

from the definition of eg(r) and ([@2]), (L), we obtain

F]
s<r<T
<cfe] g, o ]} (B[ oo )

C{E:SgggTW(r)I“fﬁ:}é{E(/ Q(r) 2dr) /|€2 () Pdr)
)=}

I; < CE| swp |X(r)|*( / ' Q)ea(r)ldr)”
7|

IN

(e}

i Y
C{E x|\ F Ve / d
<] g, XOT|R]{E|( [ etre)
=o(|z"t — Xt"%(s)|Y), P-a.s.;

finally the inequality for I can be proved similarly. Combining the above estimates,
we obtain that the first equality of (ZI4]) holds.
For the second one, since

= [Opxn, Y (r) = X(r) "p(r), Z(r) = X (r) " (G4(r) " p(r) + q(r))]
1 1

§<P(T)X(T)7 X(r), 5(p(r); X(r) 520 (r) X (r)) + (p(r), ea(r))



Tianyang NIE, Jingtao SHI, Zhen WU 25

then by the definitions of £4(r), e¢(r), the boundedness of 5, Tz, D? f, and the square-
integrability of P(-), Q(:), we obtain

! < cE| /|H |dr)

X (POPR +1QE)E + p(P) + o) Pleatr)? + [PE)Ples(r)?)]dr)”

/ |T1(r) D2 f(r)T1 |dr)

ssl([]

s

SC]EK/T (1%

S

]

f;]

(PR + QI + p(r)?)]dr)’

4 +olat — Xt (s)|)

<o(E[ s [X0)["7])* +olla! - XH=5 (o)) = offa? — K45 (s)[%), Pras

s<r<T

Thus the second equality of (ZI4]) follows. Finally, we prove the third one. We get

/T N [D21 ) - 1D2f(r)]N(r)T]dr)2

]
<CE / K02 (14 ) + [0 (90(r) + a2 | B2 1) — 2 D270 |ar)”
}';5]
ZDE(( 0 P +lan P52 - Sp2mar)

=)

f;]

SCE[SSSBET|X(T)| (/ (1+|p(r))? +|q(r)|2)‘52f(r)—%D2f(r)’dr>2

)"

<c(e] g, 50l

IN

C(E[ sup |X | ’]—'t]) ( [(/;T (1+|p(r)|2+|q(r)|2)2dr)4

s<r<T
T 1 _ 4 1
E[/ |D2f(r) — 5D2f(r)|2dr) S])“, P-a.s.
Since p(-),¢(-) are square-integrable, by the definition of D? f, Y and Z and the
modulus continuity of D2 f, we obtain the third equality of ([@I4]).

By (@13), I4) and Lemma 2.1, we have

!17(5) _pte(e) < CE[(/T |C1(r \dr)
~ SNOID*FIN() Jar)’

7l +cE| / 2p(r)M )T

Fi] +olla’ = X477(s)|") < ofe’ = X (5)[Y), Pras.
(4.15)

Step 6. Completion of the proof.

We call z' € R"™ a rational vector if all its coordinate are rational numbers. Since
the set of all rational vectors x! € R™ is countable, we can find a subset Qo C Q with
P(Q0) = 1 such that for any wy € Qo,

V(s, X" (s,w0)) = =Y """(s, wo), @2, (@) @3), @12), @13), @149,
([@IR) are satisfied for any rational vector z', (€, F, P(-|FL)(wo), W(-) — W(s);
u(-))|is,77) €U"[s,T], and sup [[p(r, wo)| + | P(r,wo)|] < oo.

The first relation of the above is obtained by the DPP (see Theorem 5.4 of [22]). Let
wo € N be fixed, then for any rational vector #! € R", by ([I5), we have

Y (s,w0) — YE5%(s,w0) = o|z! — X¥%(s,wp)[?), for all s € [t,T]. (4.16)
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By the definition of Y (-), we have
YO (s, wo) = V5 (s,00) = (p(s,wo) ! — X (s,w0))
+ %<P(s,w0)xl — X570 (s, wy), xt — Xt’w;ﬁ(s,o.)o» + o(|9c1 — )_(t’w*ﬁ(s,wo)ﬁ),
for all s € [t,T]. Thus
V(s,zt) = V(s, X050(s,w0)) < Y5 (s, wp) + Y% (s, wp)
= — (p(s,w0), &" — X" (s,00)) — %<P(va0)xl = X5 (s,w0), &t — X (s,00))

+o(jzt — XU (s,wp)|?), for all s € [t,T).
(4.17)
Note that the term o(|z! — X%%%(s,wp)|?) in the above depends only on the size of
|zt — X H%%(s,wp)|, and it is independent of 1. Therefore, by the continuity of V (s, -),
we see that (1) holds for all z! € R™ (for more details see [36]), which by definition
BI) proves

{—p(s)} x [-P(s),00) € D2V (s, X"*"(s)), forall s € [t,T], P-a.s.

Finally, fix an w € € such that (ZI7) holds for any z' € R". For any (p, P) e
D%~V (s, X1®%(s)), by definition (3] we have

V(s,xl) — V(s, Xt%%(s))

0 < liminf {

a1l Xtwu(s) |I1 — Xt,m;ﬁ(s)|
(. = X'70() + H(Pa! = X))t = X0(s))
ot = XEw(s)
A 1__jzﬁmﬂ
< liminf {— (p(s) + 5,2 - (s))
2l X 1w () |$1 _ Xt,m,u(s)l
_H(P) + P) ' = X)), 0! — X))
ot = XE ()|

Then, it is necessary that
p=—p(s), P<—P(s), forallsel[t,T], P-a.s.
Thus, ([B2]) holds. The proof is complete. [

4.2. Proof of Theorem 3.3. For any s € (t,T), take 7 € (s,T]. Denote by
XX () the solution to the following SDE on [r, T:

XX () = KB () 4 / b(0, XX (9), w(6))do
T T (4.18)
+ / o (6, XX 6 (0) a(6))dW (6).

Set &, (r) := X7X"""®)a(p) - Xtaiu(p) < < T. We have the following estimate
for any integer k > 1:

E[ sup |§T(r)|2k’]-"ﬂ < C|xXtm(r) — XPu(s)[*) Poas.

T<r<T
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Taking E(-|F!) on both sides, by a standard argument we obtain

E[ sup |§T(r)|2k‘]-"§} < COr —sf*, P-as. (4.19)

T<r<T

The process &, (+) satisfies the following variational equations:

{ dgr( ) = I(T){}( ) + 57'1( )]dr‘ + [UCE( )gr(r) + 572(7)]dW(7°)7 re [Ta T],

/T dr—/ r)dW (r),

467 (1) = {Be(r)Er (1) + 560 () B (PG (1) + <s(r) }dr
{006 () + 26 0) 2P () + £0alr) }AW (), 7 € [, T,
&(r)=— /T b(r)dr — ’ a(r)ydw(r),

(4.20)
and

(4.21)

where

1
er(r) = /0 [bm(r, XEEU(p) + 06 (r), a(r)) — bw(r)]ST(r)dﬁ,
era(r) := /0 [UI(T,Xt’z;ﬂ(T) + 0, (r),a(r)) — 6z(r)]§7.(r)d9,

er3(r) := /O (1= 0)&: ()" [baa(r, X475 (r) + 067 (r), @(r)) — bua(r)] & (r)d),

1
era(r) := /0 (1- 9)§T(T)T [am(r, XU 406, (), a(r)) — 69096(7")} & (r)do.

Similar to the proof of (X)), using [IJ) we have, P-a.s.,
/ ler1(1)2*dr| 77| < of|r = sf") / lera(r)Pdr| 7| < of|r — 8",

/ lers(r)] dr|]-"t ) < of|T — s|¥) / lera(r)] dr|]-"t ) < o(|T — s|7).
o o (4.22)
Denote by (Y7X"""()a(y zm X" (9):u(.)) the solution to the following BSDE
E23) on (. F {F1} 2, P(|F)) for r € [1,T]:
vi,xziu . vi,xziu = T vi,xziu =
YT () = (X O 4 [, X O ),
vi,riu - vit,xiu = ) T v i, ziu - (4'23)
YA (), 2 X (), d(«)) da —/ ZT XTI (o) dW (@),

T

For any 7 < r < T, set YT(T) = <p(7°),§T(T)> + %<P(T)§T(T),§T(T)>. Applying
Ito’s formula, we get

dY,(r) = Co(r)dr + Z.(r)dW (r), r € [, T). (4.24)
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where

Cr(r) i= —(&(r), fu(r)p(r) + fo(r)a, (r)p(r) + f2(r)a(r) + fa(r)) + (p(r),x(r))
+(a(r), () + 1] — 56 &M [RIPE) + 200l ()P(r)
+ [2(N)Q(r) + 52a(r) = (1)p(r) + [Inxn, p(r), &2 (r)p(r) + a(r)]
D2 () L p(r), 72 (P)p(r) + 4(r)] | + S Pr)ens(r) + 3 Q()ers(r) ),

2
22(r) 1= (a(r), 6 (1)) + (p(r), 53 ()6 () + 560 (1) Faa ()6 (1)) + (p(r), era(1)
+ 5t {s (1) Q) + P& (& () o (1) + P12 (1 (- ()
+ P(r)ero(r) },

and

+era(r)é-(r) 1o, (r) + era(r)era(r) T
ere(r) =& (T)E-,—Q(T)T + st(r)fT(r)T.

Define Y, (r) := Y™X"""ht () — Y (1), Z, (r) := 275" &) — Z(r). Similar to
the Steps 4, 5 in the proof of Theorem 3.1, we have

{ er5(r) == §T(T)571(T)T +er1(r)ér (T)T +02(r)ér (7")57'2(7")T

V2 () = Y550(r)|* < ofjr — s[?), P-a.s. (4.25)

Note that (Q, F,P(|FL), W(:) =W (7);u(-)|jr,1)) € U"[r,T],P-a.s. Thus by the
definition of the value function V', we have

V(r, Xt%%(s)) < —y X" S8 (7)) Plas.
Taking E(-|F!) on both sides and noting that X’t’z?ﬂ( ) is Fl-measurable, we have
V(r, Xt50(s)) <E[ - Y5O (0)| FLL Peas. (4.26)

By the DPP of [22], choose a common subset g C Q with P(£) = 1 such that for
any wg € (g, the following holds:

V(s, X" (s,wp)) = =Y (s,wp), and [EI9), @E2D), (E26) are satisfied for any
rational T > s, (Q, F,P(:|FL)(wo), W(-) — W(s);u(-))|js,71) € U"[s,T], and
sup [Ip(r,wo)| + | P(r,wo)]] < oo.

s<r<

Let wo € Qq be fixed, then for any rational number 7 > s, by ([£25) we have
V(r, X170 (s,w0)) = Vs, X057(s,w0) < B[ = Y75 O (1) 4 7057 ()| F] (wo)
< B[y O () 4 P () - P(r) 4 ()] 7 )

E[ — (p(r). &(1)) ~ 5(P(r)6s (7). (7)) | F2)(w0) + of| = 5]

+E[ - YY" (1) + Y55 ()| FL] (wo

E|

9
F)dr — (7). (7))~ S{P(r (7). (7)) F

~

| o) + ol = 5.
(4.27)
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Now let us estimate the terms on the right-hand side of (£27)). To this end, we
first note that for any ¢(-), ¢(-), ¥ (-) € L%([0,T]; R™), we have

E[</T <>dr/: p(r)ar )| 7] o)

(e[l [ o]} B ]| [ etrar?| 7]}
<T—s>{ / E[lolr) 1] ol [ B[0P F i} = oflr = o),
ast s, forae. selt,T), and

EK/ dr/ B(r)dW ( )> }(wo)

|/ rydr|?| \/¢ Jaw ()| 7] o)}
=9 [ Bl ] e dr/ () 2| 72] o)} = ol )

as 7 | s, fora.e. s € [t,T). Each last equality in the above two inequalities holds,
since the sets of right Lebesgue points possess full Lebesgue measures for integrable
functions and s + F! is right continuous in s. Thus by (@20) and (Z3), we have

[N

IN

IN

IN

E(p(7). & (1| 7] (0) = E[(p(5). & (1) + () — p(5). & (P 7] )
—5[(p). [ #rsar— [ otnaw) + < / ( (r)p(r) + Fy(P)p(r)
+ L)L (0plr) + L00a0) + 07 0)a(r) + ) ar+ [ a(r)
_/:b(r)dr— STU(r)dW(r)> i](wo)
=B (o). [ 1)~ [ (a0 7] o) + ol 5]
) ’ (4.28)
Similarly, by (@21 and (ZI0), we have
E[6- ()" P& ()] F) (o) = E[&-(1)T P()6c(7) + & () (P(r) — P())&- ()] 7] (o)

. ()T (P(r) —
:E[(— /ST b(r)dr — /ST 5(r)dW(r))TP(s)(— /ST b(r)dr — /ST 6(r)dW(r))

+ (—/:I_J(r)dr— STﬁ(r)dW(r))T[—/ST [fy(r) f=(8)Ta (s) + ba (8)] P(r)
+ P(r) [f2(r)Fa(r) + ba(r )] +%( VP (r)Ga(r) + f-(r)Q(r) + &, (NQ(r) + Q(r)Fa(r)
+ 0., (r)p(r) + G4u(r) [ f=(r 4(r)] + [Txn, p(r), 5. (r)p(r) + q(r)| D* f(r)
[ p(r), 03 (P)p(r) + ()] 7 ) dr + / Q(s)dms)](_ / br)dr

_/ST(r(r)dW(r)) 2] (o) :E[[tr{a—(r) P(r)a(r)}dr|F

] (wo) + of|7 — s|).
(4.29)
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It follows from ([@27)), (I28)) and (29, that for any rational 7 € (s,T] and at w = wy,
V(X055 (5) = Vs, X(s) < B[ [+ (plo), [ Bryar)

+ /T (q(r),a(r))dr — % /T tr{&(r)TP(r)ﬁ(T)}d’r‘]:;] +o(|T —s|)
= (1 — s)H1(s, X""%(s),u(s)) + o(|T — s).

(4.30)

By definition ([BI1]), we obtain that ([B.12]) holds for any (not only rational numbers)
7 € (s,T]. Finally, fix an w € Q such that [30) holds for any 7 € (s,T]. Then for
any ¢ € Di_’;V(s, Xt#:U(s)), by definition (BI1) and [@30) we have

V(r, Xt5(s)) — V(s, X4"4(s)) — 4(7 — 5) }

0 < liminf {
Tls

T — s
S S GACE Xbri(s), a(s)) = §)(r — s)
= Tls f{ ] }

Then, it is necessary that ¢ < H; (s, X"%%(s),u(s)). Thus, .I3) holds. The proof is
complete. [

5. Concluding Remarks. This paper is the general extension of our companion
paper [I7]. In this paper, we have established a non-smooth version of the connection
between the maximum principle and dynamic programming principle, for the stochas-
tic recursive control problem when the control domain is non-convex and the diffu-
sion coefficient depends on the control variable. By employing the viscosity solution of
[7,133], the connection is now interpreted as four set inclusions. The first one is between
the super-jet D2V (s, Xt%%(s)) and {—p(s)} x[~P(s), 00), the second one is between
the sub-jet D>~V (s, X®*%(s)) and {—p(s)} x (—oo, —P(s)], the third one is between
the right super-jet DTV (s, X4%%(s)) and [H; (s, X1*5%(s), a(s)), 00), and the fourth
one is between the right sub-jet Dtlj:V(s, Xb#8(s)) and (—oo, Hy(s, X%%(s), u(s))].
These new results have not only extended the classical one in [24] by eliminating the
smoothness assumption on the value function, but also generalized the result obtained
in [I7] both to the second-order case and to the case with non-convex control domain.

Stochastic verification theorem of forward-backward controlled systems for viscos-
ity solutions has been proved by [34]. Based on this, we can derive the MP directly
from DPP as the non-smooth version of Corollary 3.6. We have finished this topic and
the result will appear elsewhere. Other extensions of the results in this paper to the
jump-diffusion case (see Shi and Wu [25]) and to the fully coupled forward-backward
controlled stochastic systems (see Wu [28], Yong [32]), will be considered in the near
future.

Acknowledgment. The author thanks the associate editor and two anonymous
referees for their careful reading of the previous version of the paper.
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