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Abstract. We analyze a numerical method for the coupled system of the eddy current equations
in R3 with the Landau-Lifshitz-Gilbert equation in a bounded domain. The unbounded domain
is discretized by means of finite-element/boundary-element coupling. Even though the considered
problem is strongly nonlinear, the numerical approach is constructed such that only two linear systems
per time step have to be solved. We prove unconditional weak convergence (of a subsequence) of
the finite-element solutions towards a weak solution. We establish a priori error estimates if a
sufficiently smooth strong solution exists. Numerical experiments underlining the theoretical results
are presented.
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1. Introduction. This paper deals with the coupling of finite element and
boundary element methods to solve the system of the eddy current equations in the
whole 3D spatial space and the Landau-Lifshitz-Gilbert equation (LLG), the so-called
ELLG system or equations. The system is also called the quasi-static Maxwell-LLG
(MLLG) system.

The LLG is widely considered as a valid model of micromagnetic phenomena
occurring in, e.g., magnetic sensors, recording heads, and magneto-resistive storage
device [21, 24, 31]. Classical results concerning existence and non-uniqueness of solu-
tions can be found in [5, 33]. In a ferro-magnetic material, magnetization is created
or affected by external electro-magnetic fields. It is therefore necessary to augment
the Maxwell system with the LLG, which describes the influence of a ferromagnet; see
e.g. [19, 23, 33]. Existence, regularity and local uniqueness for the MLLG equations
are studied in [18].

Throughout the literature, there are various works on numerical approximation
methods for the LLG, ELLG, and MLLG equations [3, 4, 10, 11, 19, 25, 26] (the list is
not exhausted), and even with the full Maxwell system on bounded domains [7, 8], and
in the whole R3 [17]. Originating from the seminal work [3], the recent works [25, 26]
consider a similar numeric integrator for a bounded domain. While the numerical
integrator of [26] treated LLG and eddy current simultaneously per time step, [25]
adapted an idea of [8] and decoupled the time-steps for LLG and the eddy current
equation. Our approach follows [25].

This work studies the ELLG equations where we consider the electromagnetic
field on the whole R3 and do not need to introduce artificial boundaries. Differ-
ently from [17] where the Faedo-Galerkin method is used to prove existence of weak
solutions, we extend the analysis for the integrator used in [3, 25, 26] to a finite-
element/boundary-element (FEM/BEM) discretization of the eddy current part on
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R3. This is inspired by the FEM/BEM coupling approach designed for the pure
eddy current problem in [13], which allows us to treat unbounded domains without
introducing artificial boundaries. Two approaches are proposed in [13]: the so-called
“magnetic (or H-based) approach” which eliminates the electric field, retaining only
the magnetic field as the unknown in the eddy-current system, and the “electric (or
E-based) approach” which considers a primitive of the electric field as the only un-
known. The coupling of the eddy-current system with the LLG dictates that the first
approach is more appropriate, because this coupling involves the magnetic field in the
LLG equation rather than the electric field; see (1).

The main results of this work are weak convergence of the discrete approximation
towards a weak solution without any condition on the space and time discretization
as well as a priori error estimates under the condition that the exact (strong) solution
is sufficiently smooth. In particular, the first result implies the existence of weak
solutions, whereas the latter shows that the smooth strong solution is unique. To the
best of our knowledge, no such results for the tangent plane scheme have been proved
for the LLG equation. Therefore, we present the proof for this equation in a separate
section, before proving the result for the ELLG system.

As in [1], the proof is facilitated by use of an idea of [9] for the harmonic map
heat (analyzed for LLG in [1]), which avoids the normalization of the solution in each
time-step, and therefore allows us to use a linear update formula. This also enables
us to consider general quasi-uniform triangulations for discretization and removes the
requirement for very shape-regular elements (all dihedral angles smaller than π/2)
present in previous works on this topic.

The remainder of this work is organized as follows. Section 2 introduces the
coupled problem and the notation, presents the numerical algorithm, and states the
main results of this paper. Section 3 is devoted to the proofs of these main results.
Numerical results are presented in Section 4. The final section, the Appendix, contains
the proofs of some rather elementary or well-known results.

2. Model Problem & Main Results.

2.1. The problem. Consider a bounded Lipschitz domain D ⊂ R3 with con-
nected boundary Γ having the outward normal vector n. We define D∗ := R3 \ D,
DT := (0, T ) × D, ΓT := (0, T ) × Γ, D∗T := (0, T ) × D∗, and R3

T := (0, T ) × R3 for
T > 0. For simplicity, we assume that D∗ is simply connected. We start with the
quasi-static approximation of the full Maxwell-LLG system from [33] which reads as

mt − αm×mt = −m×Heff in DT ,(1a)

σE −∇×H = 0 in R3
T ,(1b)

µ0Ht +∇×E = −µ0m̃t in R3
T ,(1c)

div(H + m̃) = 0 in R3
T ,(1d)

div(E) = 0 in D∗T ,(1e)

where m̃ is the zero extension of m to R3 and Heff is the effective field defined
by Heff = Ce∆m + H for some constant Ce > 0. Here the parameter α > 0
and permeability µ0 ≥ 0 are constants, whereas the conductivity σ takes a constant
positive value in D and the zero value in D∗. Equation (1d) is understood in the
distributional sense because there is a jump of m̃ across Γ. Note that Heff contains
only the high order term for simplicity. A refined analysis might also allow us to
include lower order terms (anisotropy, exterior applied field) as done in [14].
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It follows from (1a) that |m| is constant. We follow the usual practice to normal-
ize |m| (and thus the same condition is required for |m0|). The following conditions
are imposed on the solutions of (1):

∂nm = 0 on ΓT ,(2a)

|m| = 1 in DT ,(2b)

m(0, ·) = m0 in D,(2c)

H(0, ·) = H0 in R3,(2d)

|H(t, x)| = O(|x|−1) as |x| → ∞,(2e)

where ∂n denotes the normal derivative. The initial data m0 and H0 satisfy |m0| = 1
in D and

div(H0 + m̃
0
) = 0 in R3.(3)

The condition (2b) together with basic properties of the cross product leads to
the following equivalent formulation of (1a):

αmt +m×mt = Heff − (m ·Heff)m in DT .(4)

Below, we focus on an H-based formulation of the problem. It is possible to
recover E once H and m are known; see (12)

2.2. Function spaces and notations. Before introducing the concept of weak
solutions to problem (1)–(2) we need the following definitions of function spaces. Let
L2(D) := L2(D;R3) and H(curl, D) :=

{
w ∈ L2(D) : ∇ ×w ∈ L2(D)

}
. We define

H1/2(Γ) as the usual trace space of H1(D) and define its dual space H−1/2(Γ) by
extending the L2-inner product on Γ. For convenience we denote

X :=
{

(ξ, ζ) ∈ H(curl, D)×H1/2(Γ) : n× ξ|Γ = n×∇Γζ in the sense of traces
}
.

Recall that n× ξ|Γ is the tangential trace (or twisted tangential trace) of ξ, and ∇Γζ
is the surface gradient of ζ. Their definitions and properties can be found in [15, 16].

Finally, if X is a normed vector space then, for m ≥ 0 and p ∈ N ∪ {∞},
L2(0, T ;X), Hm(0, T ;X), and Wm,p(0, T ;X) denote the usual Lebesgue and Sobolev
spaces of functions defined on (0, T ) and taking values in X.

We finish this subsection with the clarification of the meaning of the cross product
between different mathematical objects. For any vector functions u,v,w we denote

u×∇v :=

(
u× ∂v

∂x1
,u× ∂v

∂x2
,u× ∂v

∂x3

)
, ∇u×∇v :=

3∑
i=1

∂u

∂xi
× ∂v

∂xi

and

(u×∇v) · ∇w :=

3∑
i=1

(
u× ∂v

∂xi

)
· ∂w
∂xi

.

2.3. Weak solutions. A weak formulation for (1a) is well-known, see e.g. [3, 26].
Indeed, by multiplying (4) by φ ∈ C∞(DT ;R3), using integration by parts, we deduce

α〈mt , m×φ〉DT
+〈m×mt , m×φ〉DT

+Ce〈∇m , ∇(m×φ)〉DT
= 〈H , m×φ〉DT

.
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To tackle the eddy current equations on R3, we aim to employ FE/BE coupling
methods. To that end, we employ the magnetic approach from [13], which eventually
results in a variant of the Trifou-discretization of the eddy-current Maxwell equations.

Multiplying (1c) by ξ ∈ C∞(D,R3) satisfying ∇ × ξ = 0 in D∗, integrating
over R3, and using integration by parts, we obtain for almost all t ∈ [0, T ]

µ0〈Ht(t) , ξ〉R3 + 〈E(t) , ∇× ξ〉R3 = −µ0〈mt(t) , ξ〉D.

Using ∇× ξ = 0 in D∗ and (1b) we deduce

µ0〈Ht(t) , ξ〉R3 + σ−1〈∇ ×H(t) , ∇× ξ〉D = −µ0〈mt(t) , ξ〉D.

Since ∇ × H = ∇ × ξ = 0 in D∗ and D∗ is simply connected by definition (a
workaround for non-simply connected D∗ is presented in [22]), there exists ϕ and ζ
such thatH = ∇ϕ and ξ = ∇ζ in D∗. Therefore, the above equation can be rewritten
as

µ0〈Ht(t) , ξ〉D + µ0〈∇ϕt(t) , ∇ζ〉D∗ + σ−1〈∇ ×H(t) , ∇× ξ〉D = −µ0〈mt(t) , ξ〉D.

Since (1d) implies div(H) = 0 in D∗, we have ∆ϕ = 0 in D∗, so that (formally) ∆ϕt =
0 in D∗. Hence integration by parts yields

(5) µ0〈Ht(t) , ξ〉D−µ0〈∂+
n ϕt(t) , ζ〉Γ +σ−1〈∇×H(t) , ∇×ξ〉D = −µ0〈mt(t) , ξ〉D,

where ∂+
n is the exterior Neumann trace operator with the limit taken from D∗.

The advantage of the above formulation is that no integration over the unbounded
domain D∗ is required. The exterior Neumann trace ∂+

n ϕt can be computed from the
exterior Dirichlet trace λ of ϕ by using the Dirichlet-to-Neumann operator S, which
is defined as follows.

Let γ− be the interior Dirichlet trace operator and ∂−n be the interior normal
derivative or Neumann trace operator. (The − sign indicates that the trace is taken
from D.) Recalling the fundamental solution of the Laplacian G(x, y) := 1/(4π|x−y|),
we introduce the following integral operators defined formally on Γ as

V(λ) := γ−V(λ), K(λ) := γ−K(λ) + 1
2 , and W(λ) := −∂−n K(λ),

where, for x /∈ Γ,

V(λ)(x) :=

∫
Γ

G(x, y)λ(y) dsy and K(λ)(x) :=

∫
Γ

∂n(y)G(x, y)λ(y) dsy,

see, e.g., [29] for further details. Moreover, let K′ denote the adjoint operator of K with
respect to the extended L2-inner product. Then the exterior Dirichlet-to-Neumann
map S : H1/2(Γ)→ H−1/2(Γ) can be represented as

(6) S = −V−1(1/2− K).

Another representation is

(7) S = −(1/2− K′)V−1(1/2− K)−W.

Recall that ϕ satisfies H = ∇ϕ in D∗. We can choose ϕ satisfying ϕ(x) =
O(|x|−1) as |x| → ∞. Now if λ = γ+ϕ then λt = γ+ϕt. Since ∆ϕ = ∆ϕt = 0 in D∗,
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and since the exterior Laplace problem has a unique solution we have Sλ = ∂+
n ϕ

and Sλt = ∂+
n ϕt. Hence (5) can be rewritten as

(8) 〈Ht(t) , ξ〉D − 〈Sλt(t) , ζ〉Γ + µ−1
0 σ−1〈∇ ×H(t) , ∇× ξ〉D = −〈mt(t) , ξ〉D.

We remark that if ∇Γ denotes the surface gradient operator on Γ then it is well-
known that ∇Γλ = (∇ϕ)|Γ − (∂+

n ϕ)n = H|Γ − (∂+
n ϕ)n; see e.g. [30, Section 3.4].

Hence n×∇Γλ = n×H|Γ.
The above analysis prompts us to define the following weak formulation.

Definition 1. A triple (m,H, λ) satisfying

m ∈ H1(DT ) and mt|ΓT
∈ L2(0, T ;H−1/2(Γ)),

H ∈ L2(0, T ;H(curl, D)) ∩H1(0, T ;L2(D)),

λ ∈ H1(0, T ;H1/2(Γ))

is called a weak solution to (1)–(2) if the following statements hold
1. |m| = 1 almost everywhere in DT ;
2. m(0, ·) = m0, H(0, ·) = H0, and λ(0, ·) = γ+ϕ0 where ϕ0 is a scalar func-

tion satisfies H0 = ∇ϕ0 in D∗ (the assumption (3) ensures the existence
of ϕ0);

3. For all φ ∈ C∞(DT ;R3)

α〈mt , m× φ〉DT
+ 〈m×mt , m× φ〉DT

+ Ce〈∇m , ∇(m× φ)〉DT

= 〈H , m× φ〉DT
;(9a)

4. There holds n×∇Γλ = n×H|Γ in the sense of traces;
5. For ξ ∈ C∞(D;R3) and ζ ∈ C∞(Γ) satisfying n × ξ|Γ = n × ∇Γζ in the

sense of traces

〈Ht , ξ〉DT
− 〈Sλt , ζ〉ΓT

+ σ−1µ−1
0 〈∇ ×H , ∇× ξ〉DT

= −〈mt , ξ〉DT
;

(9b)

6. For almost all t ∈ [0, T ]

‖∇m(t)‖2L2(D) + ‖H(t)‖2H(curl,D) + ‖λ(t)‖2H1/2(Γ)

+‖mt‖2L2(Dt)
+ ‖Ht‖2L2(Dt)

+ ‖λt‖2H1/2(Γt)
≤ C,(10)

where the constant C > 0 is independent of t.
A triple (m,H, λ) is called a strong solution of the ELLG system (1)–(2) if it is

a weak solution and additionally it is sufficiently smooth such that (4) is satisfied in
the strong sense.

Remark 2. A refinement of the arguments in Theorem 5 would allow us to prove
that the weak solutions which appear as limits of the approximations from Algo-
rithm 2.5, are energy dissipative, i.e.,

Ce
2
‖∇m(t)‖2L2(D) + ‖H(t)‖2L2(D) − 〈Sλ(t) , λ(t)〉Γ

≤ Ce
2
‖∇m0‖2L2(D) + ‖H0‖2L2(D) − 〈Sλ(0) , λ(0)〉Γ

for all t ∈ [0, T ]. The proof works along the lines of [1, Theorem 24] or [14, Ap-
pendix A] and is therefore omitted.
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The reason we integrate over [0, T ] in (8) to have (9b) is to facilitate the passing
to the limit in the proof of the main theorem. The following lemma justifies the above
definition.

Lemma 3. Let (m,H,E) be a strong solution of (1)–(2). If ϕ ∈ H(0, T ;H1(D∗))
satisfies ∇ϕ = H|D∗T , and if λ := γ+ϕ, then the triple (m,H|DT

, λ) is a weak solution
in the sense of Definition 1. Conversely, given a weak solution (m,H|DT

, λ) in the
sense of Definition 1, let ϕ be the solution of

(11) ∆ϕ = 0 in D∗, ϕ = λ on Γ, ϕ(x) = O(|x|−1) as |x| → ∞

and define H|D?
T

:= ∇φ as well as E via E = σ−1(∇×H|DT
) in DT and outside of

DT as the solution of

∇×E = −µ0Ht in D∗T ,(12a)

div(E) = 0 in D∗T ,(12b)

n×E|D∗T = n×E|DT
on ΓT .(12c)

If m, H, and E are sufficiently smooth, (m,H,E) is a strong solution of (1)–(2).

Proof. We follow [13]. Assume that (m,H,E) satisfies (1)–(2). Then, Item 1,
Item 2 and Item 6 in Definition 1 hold, noting (3). Item 3, Item 4 and Item 5 also
hold due to the analysis above Definition 1. The converse is also true due to the
well-posedness of (12) as stated in [13, Equation (15)].

Remark 4. The solution ϕ to (11) can be represented as ϕ = (1/2 +K)λ−VSλ.

The next subsection defines the spaces and functions to be used in the approxi-
mation of the weak solution the sense of Definition 1.

2.4. Discrete spaces and functions. For time discretization, we use a uniform
partition 0 ≤ ti ≤ T , i = 0, . . . , N with ti := ik and k := T/N . The spatial
discretization is determined by a (shape) regular triangulation Th of D into compact
tetrahedra τ ∈ Th with diameter hτ/C ≤ h ≤ C|τ |1/3 for some uniform constant
C > 0. Denoting by Nh the set of nodes of Th, we define the following spaces

S1(Th) :=
{
φh ∈ C(D) : φh|τ ∈ P1(τ) for all τ ∈ Th

}
,

Kφh
:=
{
ψh ∈ S1(Th)3 : ψh(z) · φh(z) = 0 for all z ∈ Nh

}
, φh ∈ S1(Th)3,

where P1(τ) is the space of polynomials of degree at most 1 on τ .
For the discretization of (9b), we employ the space ND1(Th) of first order Nédélec

(edge) elements for H and and the space S1(Th|Γ) for λ. Here Th|Γ denotes the re-
striction of the triangulation to the boundary Γ. It follows from Item 4 in Definition 1
that for each t ∈ [0, T ], the pair (H(t), λ(t)) ∈ X . We approximate the space X by

Xh :=
{

(ξ, ζ) ∈ ND1(Th)× S1(Th|Γ) : n×∇Γζ = n× ξ|Γ
}
.

To ensure the condition n × ∇Γζ = n × ξ|Γ, we observe the following. For any ζ ∈
S1(Th|Γ), if e denotes an edge of Th on Γ, then

∫
e
ξ ·τ ds =

∫
e
∇ζ ·τ ds = ζ(z0)−ζ(z1),

where τ is the unit direction vector on e, and z0, z1 are the endpoints of e. Thus,
taking as degrees of freedom all interior edges of Th (i.e.

∫
ei
ξ · τ ds) as well as all

nodes of Th|Γ (i.e. ζ(zi)), we fully determine a function pair (ξ, ζ) ∈ Xh. Due to the
considerations above, it is clear that the above space can be implemented directly
without use of Lagrange multipliers or other extra equations.
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The density properties of the finite element spaces {Xh}h>0 are shown in Subsec-
tion 3.1; see Lemma 10.

Given functions wi
h : D → Rd, d ∈ N, for all i = 0, . . . , N we define for all

t ∈ [ti, ti+1]

whk(t) :=
ti+1 − t

k
wi
h +

t− ti
k

wi+1
h , w−hk(t) := wi

h, w+
hk(t) := wi+1

h .

Moreover, we define

(13) dtw
i+1
h :=

wi+1
h −wi

h

k
for all i = 0, . . . , N − 1.

Finally, we denote by ΠS the usual interpolation operator on S1(Th).We are now
ready to present the algorithm to compute approximate solutions to problem (1)–(2).

2.5. Numerical algorithm. In the sequel, when there is no confusion we use
the same notation H for the restriction of H : R3

T → R3 to the domain DT .

Input: Initial data m0
h ∈ S1(Th)3, (H0

h, λ
0
h) ∈ Xh, and parameter θ ∈ [0, 1].

For i = 0, . . . , N − 1 do:
1. Compute the unique function vih ∈ Kmi

h
satisfying for all φh ∈ Kmi

h

α〈vih , φh〉D + 〈mi
h × vih , φh〉D + Ceθk〈∇vih , ∇φh〉D

= −Ce〈∇mi
h , ∇φh〉D + 〈Hi

h , φh〉D.
(14)

2. Define mi+1
h ∈ S1(Th)3 nodewise by

(15) mi+1
h (z) = mi

h(z) + kvih(z) for all z ∈ Nh.

3. Compute the unique functions (Hi+1
h , λi+1

h ) ∈ Xh satisfying for all (ξh, ζh) ∈
Xh

〈dtHi+1
h , ξh〉D − 〈dtShλ

i+1
h , ζh〉Γ + σ−1µ−1

0 〈∇ ×H
i+1
h , ∇× ξh〉D

= −〈vih , ξh〉D,(16)

where Sh : H1/2(Γ) → S1(Th|Γ) is the discrete Dirichlet-to-Neumann opera-
tor to be defined later.

Output: Approximations (mi
h,H

i
h, λ

i
h) for all i = 0, . . . , N .

The linear formula (15) was introduced in [9] for harmonic map heat flow and
adapted for LLG in [1]. As already observed in [25, 8] (for bounded domains), we note
that the linear systems (14) and (16) are decoupled and can be solved successively.
Equation (16) requires the computation of Shλ for any λ ∈ H1/2(Γ). This is done
by use of the boundary element method. Let µ ∈ H−1/2(Γ) and µh ∈ P0(Th|Γ) be,
respectively, the solution of

Vµ = (K− 1/2)λ and 〈Vµh , νh〉Γ = 〈(K− 1/2)λ , νh〉Γ ∀νh ∈ P0(Th|Γ),(17)

where P0(Th|Γ) is the space of piecewise-constant functions on Th|Γ.
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If the representation (6) of S is used, then Sλ = µ, and we can uniquely de-
fine Shλ by solving

(18) 〈Shλ , ζh〉Γ = 〈µh , ζh〉Γ ∀ζh ∈ S1(Th|Γ).

This is known as the Johnson-Nédélec coupling.
If we use the representation (7) for Sλ then Sλ = (1/2−K′)µ−Wλ. In this case

we can uniquely define Shλ by solving

〈Shλ , ζh〉Γ = 〈(1/2− K′)µh , ζh〉Γ − 〈Wλ , ζh〉Γ ∀ζh ∈ S1(Th|Γ).(19)

This approach yields an (almost) symmetric system and is called symmetric coupling.
In practice, (16) only requires the computation of 〈Shλh , ζh〉Γ for any λh, ζh ∈

S1(Th|Γ). So in the implementation, neither (18) nor (19) has to be solved. It suffices
to solve the second equation in (17) and compute the right-hand side of either (18)
or (19).

It is proved in [6, Appendix A] that symmetric coupling results in a discrete
operator which is uniformly elliptic and continuous:

−〈Shζh , ζh〉Γ ≥ C−1
S ‖ζh‖

2
H1/2(Γ) for all ζh ∈ S1(Th|Γ),

‖Shζ‖2H−1/2(Γ) ≤ CS‖ζ‖2H1/2(Γ) for all ζ ∈ H1/2(Γ),
(20)

for some constant CS > 0 which depends only on Γ. Even though we are convinced
that the proposed algorithm works for both approaches, we are not aware of the
essential ellipticity result of the form (20) for the Johnson-Nédélec approach. Thus,
hereafter, Sh is understood to be defined by the symmetric coupling (19).

2.6. Main results. Before stating the main results, we first state some general
assumptions. Firstly, the weak convergence of approximate solutions requires the
following conditions on h and k, depending on the value of the parameter θ in (14):

(21)


k = o(h2) when 0 ≤ θ < 1/2,

k = o(h) when θ = 1/2,

no condition when 1/2 < θ ≤ 1.

Some supporting lemmas which have their own interests do not require any condition
when θ = 1/2. For those results, a slightly different condition is required, namely

(22)

{
k = o(h2) when 0 ≤ θ < 1/2,

no condition when 1/2 ≤ θ ≤ 1.

The initial data are assumed to satisfy

sup
h>0

(
‖m0

h‖H1(D) + ‖H0
h‖H(curl,D) + ‖λ0

h‖H1/2(Γ)

)
<∞,

lim
h→0
‖m0

h −m0‖L2(D) = 0.
(23)

The following three theorems state the main results of this paper. The first
theorem proves existence of weak solutions. The second theorem establishes a priori
error estimates for the pure LLG case of (1a), i.e., Heff = Ce∆m and there is no
coupling with the eddy current equations (1b)–(1d). The third theorem provides a
priori error estimates for the ELLG system.
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Theorem 5 (Existence of solutions). Under the assumptions (21) and (23), the
problem (1)–(2) has a solution (m,H, λ) in the sense of Definition 1.

Theorem 6 (Error estimates for LLG). Let

m ∈W 2,∞(0, T ;H1(D)
)
∩W 1,∞(0, T ;W1,∞(D) ∩H2(D)

)
denote a strong solution of (1a) and (2a)–(2c) with Heff = Ce∆m. Then for θ >
1/2 (where θ is the parameter in (14)) and for all h, k satisfying 0 < h, k ≤ 1 and
k ≤ α/(2Ce), the following statements hold

max
0≤i≤N

‖m(ti)−mi
h‖H1(D) ≤ Cconv

(
‖m0 −m0

h‖H1(D) + h+ k
)

(24)

and

‖m−mhk‖L2(0,T ;H1(D)) ≤ Cconv

(
‖m0 −m0

h‖H1(D) + h+ k
)
.(25)

The constant Cconv > 0 depends only on the regularity of m, the shape regularity
of Th, and the values of α and θ. Moreover, the strong solution m is unique and
coincides with the weak solution from Theorem 5.

Theorem 7 (Error estimates for for ELLG). Let (m,H, λ) be a strong solution
of ELLG (in the sense of Definition 1) with the following properties

m ∈W 2,∞(0, T ;H1(D)
)
∩W 1,∞(0, T ;W1,∞(D) ∩H2(D)

)
,

H ∈W 2,∞(0, T ;H2(D)) ∩ L∞(DT ),

λ ∈W 1,∞(0, T ;H1(Γ)) such that Sλt ∈ L∞(0, T ;H1/2
pw (Γ)),

where H
1/2
pw (Γ) is defined piecewise on each smooth part of Γ. Then for θ > 1/2 and

for all h, k satisfying 0 < h, k ≤ 1/2 and k ≤ α/(2Ce), there hold

max
0≤i≤N

(
‖m(ti)−mi

h‖2H1(D) + ‖H(ti)−Hi
h‖2L2(D)

+ ‖λ(ti)− λih‖2H1/2(Γ) + k‖∇ × (H(ti)−Hi
h)‖2L2(D)

)
≤ Cconv

(
‖m0 −m0

h‖2H1(D) + ‖λ0 − λ0
h‖2H1/2(Γ)

+ k‖∇ × (H0 −H0
h)‖2L2(D) + h2 + k2

)
(26)

and

‖m−mhk‖2L2(0,T ;H1(D)) + ‖(H −Hhk, λ− λhk)‖2L2(0,T ;X )

≤ Cconv

(
‖m0 −m0

h‖2H1(D) + ‖H0 −H0
h‖2L2(D)

+ k‖(H0 −H0
h, λ

0 − λ0
h)‖2X + h2 + k2

)
.

(27)

Particularly, the strong solution (m,H, λ) is unique and coincides with the weak
solution from Theorem 5. The constant Cconv > 0 depends only on the smoothness of
m, H, λ, and on the shape regularity of Th.

Remark 8. It is possible to replace the assumption m(t) ∈ W1,∞(D) in Theo-
rems 6–7 by ∇m(t) ∈ L4(D) and m(t) ∈ L∞(D). This, however, results in a reduced
rate of convergence

√
k instead of k; see Remark 22 for further discussion.
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Remark 9. Little is known about the regularity of the solutions of (1) in 3D;
see [18]. However, for the 2D case of D being the flat torus R2/Z2, Theorem 5.2 in [31]
states the existence of arbitrarily smooth local solutions of the full MLLG system, given
that ‖∇m0‖L2(D) and the initial values of the Maxwell system are sufficiently small.
Since the eddy-current equations are a particular simplification of Maxwell’s equations,
this strongly endorses the assumption that also for the 3D case of the ELLG equations
there exist arbitrarily smooth local solutions.

3. Proof of the main results.

3.1. Some lemmas. In this subsection we prove all important lemmas which
are directly related to the proofs of the main results. The first lemma proves density
properties of the discrete spaces.

Lemma 10. Provided that the meshes {Th}h>0 are regular, the union
⋃
h>0 Xh is

dense in X . There exists an interpolation operator ΠX := (ΠX ,D,ΠX ,Γ) :
(
H2(D) ×

H2(Γ)
)
∩ X → Xh which satisfies

‖(1−ΠX )(ξ, ζ)‖H(curl,D)×H1/2(Γ) ≤ CXh(‖ξ‖H2(D) + h1/2‖ζ‖H2(Γ)),(28)

where CX > 0 depends only on D, Γ, and the shape regularity of Th.

Proof. The interpolation operator ΠX := (ΠX ,D,ΠX ,Γ) :
(
H2(D)×H2(Γ)

)
∩X →

Xh is constructed as follows. The interior degrees of freedom (edges) of ΠX (ξ, ζ) are
equal to the interior degrees of freedom of ΠNDξ ∈ ND1(Th), where ΠND is the usual
interpolation operator onto ND1(Th). The degrees of freedom of ΠX (ξ, ζ) which lie
on Γ (nodes) are equal to ΠSζ. By the definition of Xh, this fully determines ΠX .
Particularly, since n× ξ|Γ = n×∇Γζ, there holds ΠNDξ|Γ = ΠX ,Γ(ξ, ζ). Hence, the
interpolation error can be bounded by

‖(1−ΠX )(ξ, ζ)‖H(curl,D)×H1/2(Γ) ≤ ‖(1−ΠND)ξ‖H(curl,D) + ‖(1−ΠS)ζ‖H1/2(Γ)

. h(‖ξ‖H2(D) + h1/2‖ζ‖H2(Γ)).

Since
(
H2(D)×H2(Γ)

)
∩ X is dense in X , this concludes the proof.

The following lemma gives an equivalent form to (9b) and shows that Algo-
rithm 2.5 is well-defined.

Lemma 11. Let a(·, ·) : X×X → R, ah(·, ·) : Xh×Xh → R, and b(·, ·) : H(curl, D)×
H(curl, D)→ R be bilinear forms defined by

a(A,B) := 〈ψ , ξ〉D − 〈Sη , ζ〉Γ,
ah(Ah, Bh) := 〈ψh , ξh〉D − 〈Shηh , ζh〉Γ,

b(ψ, ξ) := σ−1µ−1
0 〈∇ ×ψ , ∇× ξ〉D,

for all ψ, ξ ∈ H(curl, D), A := (ψ, η), B := (ξ, ζ) ∈ X , Ah = (ψh, ηh), Bh =
(ξh, ζh) ∈ Xh. Then

1. The bilinear forms satisfy, for all A = (ψ, η) ∈ X and Ah = (ψh, ηh) ∈ Xh,

a(A,A) ≥ Cell

(
‖ψ‖2L2(D) + ‖η‖2H1/2(Γ)

)
,

ah(Ah, Ah) ≥ Cell

(
‖ψh‖2L2(D) + ‖ηh‖2H1/2(Γ)

)
,

b(ψ,ψ) ≥ Cell‖∇ ×ψ‖2L2(D).

(29)
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2. Equation (9b) is equivalent to

(30)

∫ T

0

a(At(t), B) dt+

∫ T

0

b(H(t), ξ) dt = −〈mt , ξ〉DT

for all B = (ξ, ζ) ∈ X , where A = (H, λ).
3. Equation (16) is of the form

ah(dtA
i+1
h , Bh) + b(Hi+1

h , ξh) = −〈vih , ξh〉Γ(31)

where Ai+1
h := (Hi+1

h , λi+1
h ) and Bh := (ξh, ζh).

4. Algorithm 2.5 is well-defined in the sense that (14) and (16) have unique
solutions.

5. The norm

‖Bh‖2h := ‖ξh‖2L2(D) − 〈Shζh , ζh〉Γ ∀Bh = (ξh, ζh) ∈ Xh,(32)

is equivalent to the graph norm of L2(D)×H1/2(Γ) uniformly in h.

Proof. The unique solvability of (16) follows immediately from the continuity and
ellipticity of the bilinear forms ah(·, ·) and b(·, ·).

The unique solvability of (14) follows from the positive definiteness of the left-
hand side, the linearity of the right-hand side, and the finite space dimension. The
ellipticity (20) shows the norm equivalence in the final statement.

The following lemma establishes an energy bound for the discrete solutions.

Lemma 12. Under the assumptions (22) and (23), there holds for all k < 2α and
j = 1, . . . , N

j−1∑
i=0

(
‖Hi+1

h −Hi
h‖2L2(D) + ‖λi+1

h − λih‖2H1/2(Γ)

)
+ k

j−1∑
i=0

‖∇ ×Hi+1
h ‖

2
L2(D) + ‖Hj

h‖
2
H(curl,D) + ‖λjh‖

2
H1/2(Γ)

+ ‖∇mj
h‖

2
L2(D) + max{2θ − 1, 0}k2

j−1∑
i=0

‖∇vih‖2L2(D) + k

j−1∑
i=0

‖vih‖2L2(D)

+ k

j−1∑
i=0

(‖dtHi+1
h ‖

2
L2(D) + ‖dtλi+1

h ‖
2
H1/2(Γ))

+

j−1∑
i=0

‖∇ × (Hi+1
h −Hi

h)‖2L2(D) ≤ Cener.

(33)

Proof. Choosing Bh = Ai+1
h in (31) and multiplying the resulting equation by k

we obtain

(34) ah(Ai+1
h −Aih, Ai+1

h )+kb(Hi+1
h ,Hi+1

h ) = −k〈vih , H
i
h〉D−k〈vih , H

i+1
h −Hi

h〉D.

Following the lines of [25, Lemma 5.2] using the definition of ah(·, ·) and (20), we end
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up with

ah(Ai+1
h −Aih, Ai+1

h ) + kb(Hi+1
h ,Hi+1

h ) +
Ce
2

(
‖∇mi+1

h ‖
2
L2(D) − ‖∇m

i
h‖2L2(D)

)
+ (θ − 1/2)k2Ce‖∇vih‖2L2(D) + (α− ε/2)k‖vih‖2L2(D)

≤ k

2ε
ah(Ai+1

h −Aih, Ai+1
h −Aih).

Summing over i from 0 to j− 1 and (for the first term on the left-hand side) applying
Abel’s summation by parts formula we derive as in [25, Lemma 5.2]

j−1∑
i=0

(
‖Hi+1

h −Hi
h‖2L2(D) + ‖λi+1

h − λih‖2H1/2(Γ)

)
+ k

j−1∑
i=0

‖∇ ×Hi+1
h ‖

2
L2(D) + ‖Hj

h‖
2
L2(D)

+ ‖λjh‖
2
H1/2(Γ) + ‖∇mj

h‖
2
L2(D)

+ (2θ − 1)k2

j−1∑
i=0

‖∇vih‖2L2(D) + k

j−1∑
i=0

‖vih‖2L2(D)

≤ C
(
‖∇m0

h‖2L2(D) + ‖H0
h‖2L2(D) + ‖λ0

h‖2H1/2(Γ)

)
≤ C,

(35)

where in the last step we used (23). It remains to consider the last three terms on
the left-hand side of (33). Again, we consider (31) and select Bh = dtA

i+1
h to obtain

after multiplication by 2k

2kah(dtA
i+1
h , dtA

i+1
h ) + 2b(Hi+1

h ,Hi+1
h −Hi

h)

= −2k〈vih , dtH
i+1
h 〉D ≤ k‖v

i
h‖2L2(D) + k‖dtHi+1

h ‖
2
L2(D),

so that, noting (35) and (29),

k

j−1∑
i=0

(
‖dtHi+1

h ‖
2
L2(D) + ‖dtλi+1

h ‖
2
H1/2(Γ)

)
+ 2

j−1∑
i=0

b(Hi+1
h ,Hi+1

h −Hi
h)

. k

j−1∑
i=0

‖vih‖2L2(D) ≤ C.

(36)

Using Abel’s summation by parts formula as in [25, Lemma 5.2] for the second sum
on the left-hand side, and noting the ellipticity of the bilinear form b(·, ·) and (23),
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we obtain together with (35)

j−1∑
i=0

(‖Hi+1
h −Hi

h‖2L2(D) + ‖λi+1
h − λih‖2H1/2(Γ))

+ k

j−1∑
i=0

‖∇ ×Hi+1
h ‖

2
L2(D) + ‖Hj

h‖
2
H(curl,D) + ‖λjh‖

2
H1/2(Γ) + ‖∇mj

h‖
2
L2(D)

+ (2θ − 1)k2

j−1∑
i=0

‖∇vih‖2L2(D) + k

j−1∑
i=0

‖vih‖2L2(D)

(37)

+ k

j−1∑
i=0

(‖dtHi+1
h ‖

2
L2(D) + ‖dtλi+1

h ‖
2
H1/2(Γ)) +

j−1∑
i=0

‖∇ × (Hi+1
h −Hi

h)‖2L2(D) ≤ C.

Clearly, if 1/2 ≤ θ ≤ 1 then (37) yields (33). If 0 ≤ θ < 1/2, we argue as in [25,
Remark 6] to conclude the proof.

Collecting the above results we obtain the following equations satisfied by the
discrete functions defined from mi

h, Hi
h, λih, and vih.

Lemma 13. Let m−hk, A±hk := (H±hk, λ
±
hk), and v−hk be defined from mi

h, Hi
h, λih,

and vih as described in Subsection 2.4. Then

α〈v−hk , φhk〉DT
+ 〈(m−hk × v

−
hk) , φhk〉DT

+ Ceθk〈∇v−hk , ∇φhk〉DT

= −Ce〈∇m−hk , ∇φhk〉DT
+ 〈H−hk , φhk〉DT

(38a)

and with ∂t denoting time derivative

∫ T

0

ah(∂tAhk(t), Bh) dt+

∫ T

0

b(H+
hk(t), ξh) dt = −〈v−hk , ξh〉DT

(38b)

for all φhk and Bh := (ξh, ζh) satisfying φhk(t, ·) ∈ Kmi
h

for t ∈ [ti, ti+1) and Bh ∈
Xh.

Proof. The lemma is a direct consequence of (14) and (31).

In the following lemma, we state some auxiliary results, already proved in [1].

Lemma 14. There holds∣∣∣‖mj
h‖

2
L2(D) − ‖m

0
h‖2L2(D)

∣∣∣ ≤ CkCener,(39)

as well as

(40) ‖m±hk‖L2(0,T ;H1(D)) ≤ T‖m±hk‖L∞(0,T ;H1(D)) ≤ CCener,

where C > 0 depends only on the shape regularity of Th and T .

Proof. The estimate (39) follows analogously to [1, Proposition 9]. The esti-
mate (40) then follows from (23), (33), and (39).

The next lemma shows that the functions defined in the above lemma form sequences
which have convergent subsequences.
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Lemma 15. Assume that the assumptions (22) and (23) hold. As h, k → 0, the
following limits exist up to extraction of subsequences (all limits hold for the same
subsequence)

mhk ⇀m in H1(DT ),(41a)

m±hk ⇀m in L2(0, T ;H1(D)),(41b)

m±hk →m in L2(DT ),(41c)

(Hhk, λhk) ⇀ (H, λ) in L2(0, T ;X ),(41d)

(H±hk, λ
±
hk) ⇀ (H, λ) in L2(0, T ;X ),(41e)

(Hhk, λhk) ⇀ (H, λ) in H1(0, T ;L2(D)×H1/2(Γ)),(41f)

v−hk ⇀mt in L2(DT ),(41g)

for certain functions m, H, and λ satisfying m ∈ H1(DT ), H ∈ H1(0, T ;L2(D)),
and (H, λ) ∈ L2(0, T ;X ). Here ⇀ denotes the weak convergence and → denotes the
strong convergence in the relevant space.

Moreover, if the assumption (23) holds then there holds additionally |m| = 1
almost everywhere in DT .

Proof. The proof works analogously to [1] and is therefore omitted.

We also need the following strong convergence property.

Lemma 16. Under the assumptions (21) and (23) there holds

(42) ‖m−hk −m‖L2(0,T ;H1/2(D)) → 0 as h, k → 0.

Proof. It follows from the triangle inequality and the definitions of mhk and m−hk
that

‖m−hk −m‖
2
L2(0,T ;H1/2(D))

. ‖m−hk −mhk‖2L2(0,T ;H1/2(D)) + ‖mhk −m‖2L2(0,T ;H1/2(D))

≤
N−1∑
i=0

k3‖vih‖2H1/2(D) + ‖mhk −m‖2L2(0,T ;H1/2(D))

≤
N−1∑
i=0

k3‖vih‖2H1(D) + ‖mhk −m‖2L2(0,T ;H1/2(D)).

The second term on the right-hand side converges to zero due to (41a) and the compact
embedding of

H1(DT ) ' {v |v ∈ L2(0, T ;H1(D)), vt ∈ L2(0, T ;L2(D))}

into L2(0, T ;H1/2(D)); see [27, Theorem 5.1]. For the first term on the right-hand

side, when θ > 1/2, (33) implies
∑N−1
i=0 k3‖vih‖2H1(D) . k → 0. When 0 ≤ θ ≤ 1/2, a

standard inverse inequality, (33) and (21) yield

N−1∑
i=0

k3‖vih‖2H1(D) .
N−1∑
i=0

h−2k3‖vih‖2L2(D) . h−2k2 → 0,

completing the proof of the lemma.
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The following lemma involving the L2-norm of the cross product of two vector-
valued functions will be used when passing to the limit of equation (38a).

Lemma 17. There exists a constant Csob > 0 which depends only on D such that

‖w1/2 ×w1‖L2(D) ≤ Csob‖w1/2‖H1/2(D)‖w1‖H1(D)(43a)

‖w0 ×w1/2‖H̃−1(D) ≤ Csob‖w0‖L2(D)‖w1/2‖H1/2(D),(43b)

for all w0 ∈ L2(D), w1/2 ∈ H1/2(D), and all w1 ∈ H1(D).

Proof. It is shown in [2, Theorem 5.4, Part I] that the embedding ι : H1(D) →
L6(D) is continuous. Obviously, the identity ι : L2(D)→ L2(D) is continuous. By real
interpolation, we find that ι : [L2(D),H1(D)]1/2 → [L2(D),L6(D)]1/2 is continuous.

Well-known results in interpolation theory show [L2(D),H1(D)]1/2 = H1/2(D) and
[L2(D),L6(D)]1/2 = L3(D) with equivalent norms; see e.g. [12, Theorem 5.2.1]. By
using Hölder’s inequality, we deduce

‖w0 ×w1‖L2(D) ≤ ‖w0‖L3(D)‖w1‖L6(D) . ‖w0‖H1/2(D)‖w1‖H1(D)

proving (43a).
For the second statement, there holds with the well-known identity

(44) a · (b× c) = b · (c× a) = c · (a× b) ∀a, b, c ∈ R3

that

‖w0 ×w1/2‖H̃−1(D) = sup
w1∈H1(D)\{0}

〈w0 ×w1/2 , w1〉D
‖w1‖H1(D)

≤ sup
w1∈H1(D)\{0}

‖w0‖L2(D)‖w1/2 ×w1‖L2(D)

‖w1‖H1(D)
.

The estimate (43a) concludes the proof.

Finally, to pass to the limit in equation (38b) we need the following result.

Lemma 18. For any sequence {λh} ⊂ H1/2(Γ) and any function λ ∈ H1/2(Γ), if

(45) lim
h→0
〈λh , ν〉Γ = 〈λ , ν〉Γ ∀ν ∈ H−1/2(Γ)

then

(46) lim
h→0
〈Shλh , ζ〉Γ = 〈Sλ , ζ〉Γ ∀ζ ∈ H1/2(Γ).

Proof. Let µ and µh be defined by (17) with λ in the second equation replaced
by λh. Then (recalling that Costabel’s symmetric coupling is used) Sλ and Shλh are
defined via µ and µh by (7) and (19), respectively, namely, Sλ = (1/2−K′)µ−Wλ and
〈Shλh , ζh〉Γ = 〈(1/2− K′)µh , ζh〉Γ − 〈Wλh , ζh〉Γ for all ζh ∈ S1(Th|Γ). For any ζ ∈
H1/2(Γ), let {ζh} be a sequence in S1(Th|Γ) satisfying limh→0 ‖ζh − ζ‖H1/2(Γ) = 0.
By using the triangle inequality and the above representations of Sλ and Shλh we
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deduce∣∣〈Shλh , ζ〉 − 〈Sλ , ζ〉Γ
∣∣ ≤ ∣∣〈Shλh −Sλ , ζh〉Γ

∣∣+
∣∣〈Shλh −Sλ , ζ − ζh〉Γ

∣∣
≤
∣∣〈( 1

2 − K′)(µh − µ) , ζh〉Γ
∣∣+
∣∣〈W(λh − λ) , ζh〉Γ

∣∣
+
∣∣〈Shλh −Sλ , ζ − ζh〉Γ

∣∣
≤
∣∣〈( 1

2 − K′)(µh − µ) , ζh〉Γ
∣∣+
∣∣〈W(λh − λ) , ζ〉Γ

∣∣
+
∣∣〈W(λh − λ) , ζh − ζ〉Γ

∣∣+
∣∣〈Shλh −Sλ , ζ − ζh〉Γ

∣∣.(47)

The second term on the right-hand side of (47) goes to zero as h → 0 due to (45)
and the self-adjointness of W. The third term converges to zero due to the strong
convergence ζh → ζ in H1/2(Γ) and the boundedness of {λh} in H1/2(Γ), which is a
consequence of (45) and the Banach-Steinhaus Theorem. The last term tends to zero
due to the convergence of {ζh} and the boundedness of {Shλh}; see (20). Hence (46)
is proved if we prove

(48) lim
h→0
〈(1/2− K′)(µh − µ) , ζh〉Γ = 0.

This, however, follows from standard convergence arguments in boundary element
methods and concludes the proof.

3.2. Further lemmas for the proofs of Theorems 6 and 7. In this section,
we prove all necessary results for the proof of the a priori error estimates.

Lemma 19. Recall the operators S and Sh defined in (7) and (19). Given λ such

that Sλ ∈ H1/2
− (Γ), there holds

sup
ξh∈S1(Th|Γ)\{0}

〈Sλ−Shλ , ξh〉Γ
‖ξh‖H1/2(Γ)

≤ CSh‖Sλ‖H1/2
pw (Γ)

.(49)

Proof. By definition of µh in (17) as the Galerkin approximation of µ = Sλ, there
holds by standard arguments

‖µ− µh‖H−1/2(Γ) . h‖µ‖
H

1/2
pw (Γ)

.

Hence, there holds with the mapping properties of K′

〈Sλ−Shλ , ξh〉Γ = 〈(1/2− K′)(µ− µh) , ξh〉Γ . h‖µ‖
H

1/2
pw (Γ)

‖ξh‖H1/2(Γ).

This concludes the proof.

The next lemma proves that the time derivative of the exact solution, namely mt(ti),
can be approximated in the discrete tangent space Kmi

h
in such a way that the error

can be controlled by the error in the approximation of m(ti) by mi
h.

Lemma 20. Assume the following regularity of the strong solution m of (1):

Creg := ‖m‖W 1,∞(0,T ;H2(D)) + ‖m‖W 1,∞(0,T ;W1,∞(D)) <∞.

For any i = 1, . . . , N let Pih : H1(D) → Kmi
h

denote the orthogonal projection onto
Kmi

h
. Then

‖mt(ti)− Pihmt(ti)‖H1(D) ≤ CP
(
h+ ‖m(ti)−mi

h‖H1(D)

)
,

where CP > 0 depends only on Creg and the shape regularity of Th.
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Proof. We fix i ∈ {1, . . . , N}. Due to the well-known result

‖mt(ti)− Pihmt(ti)‖H1(D) = inf
w∈K

mi
h

‖mt(ti)−w‖H1(D)

and the estimate (recalling the definition of the interpolation ΠS in Subsection 2.4)

‖mt(ti)−w‖H1(D) ≤ ‖mt(ti)−ΠSmt(ti)‖H1(D) + ‖ΠSmt(ti)−w‖H1(D)

≤ Creg h+ ‖ΠSmt(ti)−w‖H1(D) ∀w ∈ Kmi
h
,

it suffices to prove that

(50) inf
w∈K

mi
h

‖ΠSmt(ti)−w‖H1(D) . h+ ‖m(ti)−mi
h‖H1(D),

where the constant depends only on Creg and the shape regularity of Th.
To this end we first note that the assumption on the regularity of the exact

solution m implies that after a modification on a set of measure zero, we can assume
that m is continuous in DT . Hence

|m(ti, x)| = 1 and mt(ti, x) ·m(ti, x) = 0 ∀x ∈ D.

Thus by using the elementary identity

a× (b× c) = (a · c)b− (a · b)c ∀a, b, c ∈ R3

it can be easily shown that

(51) ΠSmt(ti, z) = mt(ti, z) = Rizm(ti, z)

where, for any z ∈ Nh, the mapping Riz : R3 → R3 is defined by

Riza = −a×
(
m(ti, z)×mt(ti, z)

)
∀a ∈ R3.

We note that this mapping has the following properties

(52) Riza · a = 0 and |Riza| ≤ |mt(ti, z)| |a| ∀a ∈ R3.

Next, prompted by (51) and (52) in order to prove (50) we define w ∈ S1(Th) by

(53) w(z) = Rizm
i
h(z) ∀z ∈ Nh.

Then w ∈ Kmi
h

and we can estimate ‖ΠSmt(ti)−w‖2H1(D) by

‖ΠSmt(ti)−w‖2H1(D) =
∑
T∈Th

‖ΠSmt(ti)−w‖2H1(T )

.
∑
T∈Th

‖ΠSmt(ti)−w −wT ‖2H1(T ) +
∑
T∈Th

‖wT ‖2H1(T )

where wT is polynomial of degree 1 on T defined by

(54) wT (z) = Riz
(
m(ti, zT )−mi

h(zT )
)
∀z ∈ Nh ∩ T.

Here, zT is the node in T satisfying

(55) |m(ti, zT )−mi
h(zT )| ≤ |m(ti, z)−mi

h(z)| ∀z ∈ Nh ∩ T.
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Thus, (50) is proved if we prove

(56)
∑
T∈Th

‖ΠSmt(ti)−w −wT ‖2H1(T ) . h+ ‖m(ti)−mi
h‖H1(D)

and

(57)
∑
T∈Th

‖wT ‖2H1(T ) . ‖m(ti)−mi
h‖H1(D).

To prove (56) we denote A :=
∑
T∈Th ‖ΠSmt(ti) − w − wT ‖2H1(T ) and use a

standard inverse estimate and the equivalence [26, Lemma 3.2] to have

A . h−2
∑
T∈Th

‖ΠSmt(ti)−w −wT ‖2L2(T )

' h
∑
T∈Th

∑
z∈Nh∩T

∣∣ΠSmt(ti, z)−w(z)−wT (z)
∣∣2.

This together with (51)–(54) and the regularity assumption of m yields

A . h
∑
T∈Th

∑
z∈Nh∩T

∣∣∣Riz(m(ti, z)−mi
h(z)−m(ti, zT ) +mi

h(zT )
)∣∣∣2

. h
∑
T∈Th

∑
z∈Nh∩T

∣∣m(ti, z)−mi
h(z)−m(ti, zT ) +mi

h(zT )
∣∣2

= h
∑
T∈Th

∑
z∈Nh∩T

∣∣(ΠSm(ti, z)−mi
h(z)

)
−
(
ΠSm(ti, zT )−mi

h(zT )
)∣∣2 .

Since ΠSm−mi
h is polynomial of degree 1 on T , Lemma 28 in the Appendix gives

A .
∑
T∈Th

‖∇
(
ΠSm(ti)−mi

h

)
‖2L2(T ) = ‖∇

(
ΠSm(ti)−mi

h

)
‖2L2(D)

≤ ‖ΠSm(ti)−mi
h‖2H1(D).

By using the triangle inequality and the approximation property of the interpolation
operator ΠS , noting that m ∈ L∞(0, T ;H2(D)), we obtain (56).

It remains to prove (57). Denoting ϕ(z) = m(ti, z) −mi
h(z) for z ∈ Nh ∩ T , it

follows successively from [26, Lemma 3.2], Lemma 28, (54) and (52) that

‖wT ‖2H1(T ) ' h
3
∑

z∈Nh∩T
|wT (z)|2 + h

∑
z∈Nh∩T

|wT (z)−wT (zT )|2

= h3
∑

z∈Nh∩T
|Rizϕ(zT )|2 + h

∑
z∈Nh∩T

∣∣(Riz −RizT )ϕ(zT )
∣∣2

. h3
∑

z∈Nh∩T
|ϕ(zT )|2 + h

∑
z∈Nh∩T

∣∣(Riz −RizT )ϕ(zT )
∣∣2 .(58)

For the term in the last sum on the right-hand side, we use the triangle inequality
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and the regularity of m to obtain∣∣(Riz −RizT )ϕ(zT )
∣∣2 ≤ |ϕ(zT )|2 |m(ti, z)×mt(ti, z)−m(ti, zT )×mt(ti, zT )|2

. |ϕ(zT )|2|m(ti, z)|2|mt(ti, z)−mt(ti, zT )|2

+ |ϕ(zT )|2|mt(ti, zT )|2
(
|m(ti, z)−m(ti, zT )|2

. |ϕ(zT )|2
(
|mt(ti, z)−mt(ti, zT )|2 + |m(ti, z)−m(ti, zT )|2

)
. h2|ϕ(zT )|2,

where in the last step we used also Taylor’s Theorem and |z − zT | ≤ h, noting
that ∇m ∈ L∞(DT ) and ∇mt ∈ L∞(DT ). Therefore, (58), (55) and [26, Lemma 3.2]
imply

‖wT ‖2H1(T ) . h3
∑

z∈Nh∩T
|ϕ(zT )|2 ≤ h3

∑
z∈Nh∩T

|ϕ(z)|2 ' ‖m(ti)−mi
h‖2L2(T ).

Summing over T ∈ Th we obtain (57), completing the proof of the lemma.

The following lemma shows that for the pure LLG equation, mt(ti) solves the
same equation as vih, up to an error term.

Lemma 21. Let m denote a strong solution of (1a), (2a)–(2c) which satisfies
∇m ∈ L∞(DT ) and mt ∈ L∞(0, T ;H2(D)). Then, for i = 0, . . . , N there holds

α〈mt(ti) , φh〉D + 〈(m(ti)×mt(ti)) , φh〉D + Ceθk〈∇mt(ti) , ∇φh〉D
= −Ce〈∇m(ti) , ∇φh〉D +R(φh) ∀φh ∈ Kmi

h
,(59)

where

(60) |R(φh)| ≤ CR

(
h+ θk + ‖m(ti)−mi

h‖L2(D)

)
‖φh‖L2(D).

Here, the constant CR > 0 depends only on the regularity assumptions on m and the
shape regularity of Th.

Proof. Note that |m| = 1 implies (m · ∆m) = −|∇m|2. Recalling that (1a) is
equivalent to (4), this identity and (4) give, for all φh ∈ Kmi

h
,

α〈mt(ti) , φh〉D + 〈(m(ti)×mt(ti)) , φh〉D
= Ce〈∆m(ti) , φh〉D + Ce〈|∇m(ti)|2m(ti) , φh〉D
= −Ce〈∇m(ti) , ∇φh〉D + Ce〈|∇m(ti)|2m(ti) , φh〉D(61)

where in the last step we used (2a) and integration by parts. Hence (59) holds with

(62) R(φh) := Ceθk〈∇mt(ti) , ∇φh〉D + Ce〈|∇m(ti)|2m(ti) , φh〉D.

It remains to show (60). The condition (2a) implies ∂nmt = 0 on ΓT , and thus the
first term on the right-hand side of (62) can be estimated as

Ceθk|〈∇mt(ti) , ∇φh〉D| . θk‖∆mt(ti)‖L2(D)‖φh‖L2(D) . θk‖φh‖L2(D),(63)

where in the last step we used the fact that mt ∈ L∞(0, T ;H2(D)). The second term
on the right-hand side of (62) can be estimated as∣∣〈|∇m(ti)|2m(ti) , φh〉D

∣∣ ≤ ‖∇m‖2L∞(DT )‖m(ti) · φh‖L1(D)

. ‖
(
m(ti)−mi

h

)
· φh‖L1(D) + ‖mi

h · φh‖L1(D).

. ‖m(ti)−mi
h‖L2(D)‖φh‖L2(D) + ‖mi

h · φh‖L1(D).(64)
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Since mi
h · φh is a quadratic function on each T ∈ Th which vanishes at every node

in T , the semi-norm ‖D2(mi
h ·φh)‖L1(T ) is a norm, where D2 is the partial derivative

operator of order 2. If T̂ is the reference element, then a scaling argument and norm
equivalence on finite dimensional spaces give

‖mi
h · φh‖L1(D) =

∑
T∈Th

‖mi
h · φh‖L1(T ) ' h3

∑
T∈Th

‖m̂i
h · φ̂h‖L1(T̂ )

' h3
∑
T∈Th

‖D2(m̂
i
h · φ̂h)‖L1(T̂ ) ' h

2
∑
T∈Th

‖D2(mi
h · φh)‖L1(T ).(65)

Let ∂i, i = 1, 2, 3, denote the directional derivatives in R3. Since mi
h and φh are

polynomials of degree 1 on T , there holds

|∂i∂j(mi
h · φh)| = |∂i((∂jmi

h) · φh +mi
h · (∂jφh))|

= |(∂jmi
h) · (∂iφh) + (∂im

i
h) · (∂jφh)| ≤ 2|∇mi

h||∇φh|,

implying |D2(mi
h · φh)| . |∇mi

h||∇φh|. This and (65) yield

‖mi
h · φh‖L1(D) . h2

∑
T∈Th

‖|∇mi
h||∇φh|‖L1(T ) = h2‖|∇mi

h||∇φh|‖L1(D)

≤ h2‖∇mi
h‖L2(D)‖∇φh‖L2(D) . h‖φh‖L2(D),(66)

where in the last step we used the energy bound (33), and a standard inverse esti-
mate. Estimate (60) now follows from (62)–(64) and (66), completing the proof of the
lemma.

Remark 22. It is noted that the assumption ∇m ∈ L∞(DT ) can be replaced by
∇m ∈ L∞(0, T ;L4(D)) to obtain a weaker bound

|R(φh)| . θk‖φh‖L2(D) +
(
h+ ‖m(ti)−mi

h‖H1(D)

)
‖φh‖H1(D).

This can be done by use of the continuous embedding H1(D)→ L4(D) in (64) and ob-
vious modifications in the remainder of the proof. With straightforward modifications,
the proof of Lemma 23 is still valid to prove a weaker estimate with k instead of k2 on
the right-hand side of (67). This eventually results in a reduced rate of convergence√
k in Theorem 6. Analogous arguments hold true for the corresponding results in

Theorem 7.

As a consequence of the above lemma, we can estimate the approximation of
mt(ti) by vih as follows.

Lemma 23. Under the assumptions of Lemmas 20 and 21 there holds, with 1/2 <
θ ≤ 1,

α

Ce
‖mt(ti)− vih‖2L2(D) + k‖∇mt(ti)−∇vih‖2L2(D)

+ 2〈∇m(ti)−∇mi
h , ∇mt(ti)−∇vih〉

≤ Cm
(
h2 + k2 + ‖m(ti)−mi

h‖2H1(D)

)
.

(67)

Proof. Subtracting (14) from (59) we obtain

α〈mt(ti)− vih , φh〉D + Ceθk〈∇mt(ti)−∇vih , ∇φh〉D
+Ce〈∇m(ti)−∇mi

h , ∇φh〉D
= 〈mi

h × vih −m(ti)×mt(ti) , φh〉D +R(φh), φh ∈ Kmi
h
.
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Using the above equation, writing φ := mt(ti) − vih and referring to the left-hand
side of (67) we try to estimate

α‖φ‖2L2(D) + Ceθk‖∇φ‖2L2(D) + Ce〈∇m(ti)−∇mi
h , ∇φ〉

= α
(
‖φ‖2L2(D) − 〈φ , φh〉D

)
+ Ceθk

(
‖∇φ‖2L2(D) − 〈∇φ , ∇φh〉D

)
+ Ce〈∇m(ti)−∇mi

h , ∇φ−∇φh〉
+ 〈mi

h × vih −m(ti)×mt(ti) , φh〉D +R(φh)

=: T1 + · · ·+ T5.

(68)

Choosing φh = Pihmt(ti) − vih ∈ Kmi
h

where Pih is defined in Lemma 20, we deduce
from that lemma that

|T1| . ‖φ‖L2(D)‖φ− φh‖L2(D)

. ‖φ‖L2(D)

(
h+ ‖m(ti)−mi

h‖H1(D)

)
,

|T2| . k‖∇φ‖L2(D)‖∇φ−∇φh‖L2(D)

. k‖∇φ‖L2(D)

(
h+ ‖m(ti)−mi

h‖H1(D)

)
,

|T3| . ‖∇m(ti)−∇mi
h‖L2(D)‖∇φ−∇φh‖L2(D)

. ‖∇m(ti)−∇mi
h‖L2(D)

(
h+ ‖m(ti)−mi

h‖H1(D)

)
. h2 + ‖m(ti)−mi

h‖2H1(D).

(69)

For the term T4 since 〈mi
h×φ , φ〉D = 0 implies 〈mi

h×vih , φ〉D = 〈mi
h×mt(ti) , φ〉D

we deduce, with the help of Lemma 20 again,

|T4| ≤ |〈mi
h × vih −m(ti)×mt(ti) , φh − φ〉D|

+ |〈mi
h × vih −m(ti)×mt(ti) , φ〉D|

= |〈mi
h × vih −m(ti)×mt(ti) , φh − φ〉D|+ |〈(mi

h −m(ti))×mt(ti) , φ〉D|
. ‖mi

h × vih −m(ti)×mt(ti)‖H̃−1(D)‖φ− φh‖H1(D)

+ ‖mi
h −m(ti)‖L2(D)‖φ‖L2(D)

. ‖mi
h × vih −m(ti)×mt(ti)‖H̃−1(D)

(
h+ ‖m(ti)−mi

h‖H1(D)

)
+ ‖mi

h −m(ti)‖L2(D)‖φ‖L2(D).

Lemma 17 implies

‖mi
h × vih −m(ti)×mt(ti)‖H̃−1(D)

≤ ‖mi
h × (vih −mt(ti))‖H̃−1(D) + ‖(mi

h −m(ti))×mt(ti)‖H̃−1(D)

. ‖mi
h‖H1(D)‖mt(ti)− vih‖L2(D) + ‖mt(ti)‖L2(D)‖m(ti)−mi

h‖H1(D)

. ‖φ‖L2(D) + ‖m(ti)−mi
h‖H1(D),

where in the last step we used the regularity of mt and the bound (39) and (33).
Therefore

|T4| .
(
‖φ‖L2(D) + ‖m(ti)−mi

h‖H1(D)

)(
h+ ‖m(ti)−mi

h‖H1(D)

)
. ‖φ‖L2(D)

(
h+ ‖m(ti)−mi

h‖H1(D)

)
+ h2 + ‖m(ti)−mi

h‖2H1(D).(70)
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Finally, for T5, Lemma 21, the triangle inequality, and Lemma 20 give

|T5| .
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)
‖φh‖L2(D)

.
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)
‖φ‖L2(D)

+
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)(
h+ ‖m(ti)−mi

h‖H1(D)

)
.
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)
‖φ‖L2(D) + h2 + k2 + ‖m(ti)−mi

h‖2H1(D).(71)

Altogether, (68)–(71) yield, for any ε > 0,

α

Ce
‖φ‖2L2(D) + θk‖∇φ‖2L2(D) + 〈∇m(ti)−∇mi

h , ∇φ〉

.
(
‖φ‖L2(D) + k‖∇φ‖L2(D)

)(
h+ k + ‖m(ti)−mi

h‖H1(D)

)
+ h2 + k2

+ ‖m(ti)−mi
h‖2H1(D)

≤ ε‖φ‖2L2(D) + εk2‖∇φ‖2L2(D) + (1 + ε−1)
(
h2 + k2 + ‖m(ti)−mi

h‖2H1(D)

)
.

The required estimate (67) is obtained for ε = min{α/(2Ce), θ − 1/2}.
Three more lemmas are required for the proof of Theorem 7. Analogously to

Lemma 21 we show that for the ELLG system, mt(ti) solves the same equation
as vih, up to an error term.

Lemma 24. Let (m,H, λ) denote a strong solution of ELLG which satisfies

m ∈ L∞(0, T ;W1,∞(D)),

mt ∈ L∞(0, T ;H2(D)),

H ∈ L∞(DT ).

Then, for i = 0, . . . , N there holds

α〈mt(ti) , φh〉D + 〈(m(ti)×mt(ti)) , φh〉D + Ceθk〈∇mt(ti) , ∇φh〉D
= −Ce〈∇m(ti) , ∇φh〉D + 〈H(ti) , φh〉D + R̃(φh) ∀φh ∈ Kmi

h
,(72)

where

(73) |R̃(φh)| ≤ CR̃

(
h+ θk + ‖m(ti)−mi

h‖L2(D)

)
‖φh‖L2(D).

Here, the constant CR̃ > 0 depends only on the regularity of m and H, and the shape
regularity of Th.

Proof. The proof is similar to that of Lemma 21. Instead of (61) we now have

α〈mt(ti) , φh〉D + 〈(m(ti)×mt(ti)) , φh〉D
= −Ce〈∇m(ti) , ∇φh〉D + Ce〈|∇m(ti)|2m(ti) , φh〉D

+ 〈H(ti) , φh〉D − 〈(m(ti) ·H(ti))m(ti) , φh〉D,

and thus
R̃(φh) := R(φh)− 〈(m(ti) ·H(ti))m(ti) , φh〉D,

where R(φh) is given in (62). Therefore, it suffices to estimate the term 〈(m(ti) ·
H(ti))m(ti) , φh〉D. Since

|〈(m(ti) ·H(ti))m(ti) , φh〉D| ≤ ‖m‖L∞(DT )‖H‖L∞(DT )‖m(ti) · φh‖L1(D),

the proof follows exactly the same way as that of Lemma 21; cf. (64). Thus we
prove (73).
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We will establish a recurrence estimate for the eddy current part of the solution.
We first introduce

(74) ei := ΠNDH(ti)−Hi
h, fi := ΠSλ(ti)− λih, and Ei := (ei, fi),

where ΠND denotes the usual interpolation operator onto ND1(Th).

Lemma 25. Let (m,H, λ) be a strong solution of ELLG which satisfies

m ∈W 1,∞(0, T ;L2(D)) ∩W1,∞(DT ),

H ∈ L∞(0, T ;H2(D)) ∩W 1,∞(0, T ;H1(D)) ∩W 2,∞(0, T ;L2(D)),

λ ∈W 1,∞(0, T ;H1(Γ)) such that Sλt ∈ L∞(0, T ;H1/2
pw (Γ)).

Then for all k ∈ (0, 1/2] and i ∈ {1, . . . , N − 1} there holds

‖Ei+1‖2h +
k

2
‖∇ × ei+1‖2L2(D)

≤ (1 + 2k)‖Ei‖2h + CHk
(
‖mt(ti)− vih‖2L2(D) + h2 + k2

)
(75)

where the constant CH > 0 depends only on the smoothness of H, λ, and on the
shape-regularity of Th.

Proof. Recalling equation (31) and in view of (74), we will establish a similar
equation for ΠNDH(ti). With A := (H, λ) and Ah := (ΠNDH,ΠSλ) ∈ Xh, it
follows from (9b) that

ah(∂tAh(t), Bh) + b(ΠNDH(t), ξh)

= −〈mt(t) , ξh〉D − ah(∂t(A−Ah)(t), Bh) + b((1−ΠND)H(t), ξh)

+ 〈(S−Sh)λt(t) , ζh〉Γ
=: −〈mt(t) , ξh〉D +R0(A(t), Bh) ∀Bh = (ξh, ζh) ∈ Xh.

The continuity of ah(·, ·) and b(·, ·), the approximation properties of ΠND and ΠS ,
and (20), (49) give

|R0(A(t), Bh)|
. ‖(1−ΠND)Ht(t)‖L2(D)‖ξh‖L2(D) + ‖(1−ΠS)λt(t)‖H1/2(Γ)‖ζh‖H1/2(Γ)

+ ‖(1−ΠND)H(t)‖H(curl,D)‖ξh‖L2(D) + h‖Sλt(t)‖H1/2
pw (Γ)

‖ζh‖H1/2(Γ)

. h
(
‖Ht(t)‖H1(D) + ‖H(t)‖H2(D) + ‖Sλt(t)‖H1/2

pw (Γ)

)
‖B‖X .

The regularity assumptions on H and λ yield

|R0(A(t), Bh)| . h‖Bh‖X .(76)

Recalling definition (13) and using Taylor’s Theorem, we have

dtAh(ti+1) = ∂tAh(ti) + ri,

where ri is the remainder (in the integral form) of the Taylor expansion which satisfies
‖ri‖L2(D)×H1/2(Γ) . k(‖Htt‖L∞(0,T ;L2(D)) +‖λtt‖L∞(0,T ;H1/2(Γ)). Therefore, Proof 16
and (76) imply for all Bh = (ξh, ζh) ∈ Xh

ah(dtAh(ti+1), Bh) + b(ΠNDH(ti), ξh) = −〈mt(ti) , ξh〉D +R1(A(ti), Bh),(77)
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where R1(A(ti), Bh) := R0(A(ti), Bh)− ah(ri, Bh) so that

|R1(A(ti), Bh)| . (h+ k(‖Htt‖L∞(0,T ;L2(D)) + ‖λtt‖L∞(0,T ;H1/2(Γ)))‖Bh‖X
. (h+ k)‖Bh‖X ,(78)

where we used the uniform continuity of ah(·, ·) in h obtained from (20). Subtract-
ing (31) from (77) and setting Bh = Ei+1 yield

ah(dtEi+1,Ei+1) + b(ei+1, ei+1) = 〈vih −mt(ti) , ei+1〉D +R1(A(ti),Ei+1).

Multiplying the above equation by k and using the ellipticity properties of ah(·, ·),
b(·, ·), and the Cauchy-Schwarz inequality, and recalling definition (32) of the h-norm,
we deduce

‖Ei+1‖2h + k‖∇ × ei+1)‖2L2(D)

≤ ‖Ei‖h‖Ei+1‖h + k‖vih −mt(ti)‖L2(D)‖ei+1‖L2(D) + Ck(h+ k)‖Ei+1‖X ,

for some constant C > 0 which does not depend on h or k. With Young’s inequality,
this implies

‖Ei+1‖2h + k‖∇ × ei+1‖2L2(D)

≤ 1

2
‖Ei‖2h +

1

2
‖Ei+1‖2h +

k

2

CS

(CS − 1)
‖vih −mt(ti)‖2L2(D)

+
k

2

CS − 1

CS
‖ei+1‖2L2(D) +

k

2CS
‖Ei+1‖2X +

kCS

2
C2(h+ k)2.

(79)

Note that

k

2

(CS − 1

CS
‖ei+1‖2L2(D) +

1

CS
‖Ei+1‖2X

)
=
k

2

(
‖ei+1‖2L2(D) +

1

CS
‖∇ × ei+1‖2L2(D) +

1

CS
‖fi‖2H1/2(Γ)

)
≤ k

2

(
‖ei+1‖2L2(D) +

1

CS
‖∇ × ei+1‖2L2(D) − 〈Shfi , fi〉Γ

)
≤ k

2
‖Ei+1‖2h +

k

2CS
‖∇ × ei+1‖2L2(D).

Hence (79) yields (after multiplying by 2)

(1− k)‖Ei+1‖2h + k(2− 1

CS
)‖∇ × ei+1‖2L2(D)

≤ ‖Ei‖2h +
kCS

CS − 1
‖vih −mt(ti)‖2L2(D) + kCSC

2(h+ k)2.

Dividing by 1− k, using the fact that 1 ≤ 1/(1− k) ≤ 1 + 2k ≤ 2 (since 0 < k ≤ 1/2),
and noting that CS ≥ 1, we obtain the desired estimate (75), concluding the proof.

Similarly to Lemma 23 we now prove the following lemma for the ELLG system.

Lemma 26. Let (m,H, λ) be a strong solution of ELLG which satisfies

m ∈W 2,∞(0, T ;H1(D)
)
∩W 1,∞(0, T ;W1,∞(D) ∩H2(D)

)
,

H ∈ L∞(0, T ;H2(D) ∩ L∞(D)) ∩W 2,∞(0, T ;L2(D)).
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Then, for 1/2 < θ ≤ 1, we have

α

Ce
‖mt(ti)− vih‖2L2(D) + k‖∇mt(ti)−∇vih‖2L2(D)

+ 2〈∇m(ti)−∇mi
h , ∇mt(ti)−∇vih〉

≤ CH
(
h2 + k2 + ‖m(ti)−mi

h‖2H1(D) + ‖H(ti)−Hi
h‖2L2(D)

)
.

Proof. The proof follows that of Lemma 23. Subtracting (14) from (72) and
putting φ := mt(ti)− vih we obtain for φh := Pihmt(ti)− vih ∈ Kmi

h

α〈φ , φh〉D + Ceθk〈∇φ , ∇φh〉D + Ce〈∇m(ti)−∇mi
h , ∇φh〉D

= 〈mi
h × vih −m(ti)×mt(ti) , φh〉D + 〈H(ti)−Hi

h , φh〉D + R̃(φh).

Similarly to (68) we now have

α‖φ‖2L2(D) + Ceθk‖∇φ‖2L2(D) + Ce〈∇(m(ti)−mi
h) , ∇φ〉D

= T1 + · · ·+ T4 + T̃5 + T̃6,

where T1, . . . , T4 are defined as in (68) whereas

T̃5 := 〈H(ti)−Hi
h , φh〉D and T̃6 := R̃(φh).

Estimates for T1, . . . , T4 have been carried out in the proof of Lemma 23. For T̃5 we
have

|T̃5| ≤ ‖H(ti)−Hi
h‖L2(D)‖φh‖L2(D)

. ‖H(ti)−Hi
h‖L2(D)‖φ‖L2(D) + ‖H(ti)−Hi

h‖L2(D)

(
h+ ‖m(ti)−mi

h‖L2(D)

)
. ‖H(ti)−Hi

h‖L2(D)‖φ‖L2(D) + h2 + ‖H(ti)−Hi
h‖2L2(D)

+ ‖m(ti)−mi
h‖2L2(D),

where we used the triangle inequality and invoked Lemma 20 to estimate ‖φ −
φh‖L2(D). Finally, for T̃6 we use (73), the triangle inequality, and Lemma 20 to
obtain

|T̃6| .
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)
‖φh‖L2(D)

.
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)
‖φ‖L2(D)

+
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)(
h+ ‖m(ti)−mi

h‖H1(D)

)
. h2 + k2 + ‖m(ti)−mi

h‖2H1(D) +
(
h+ k + ‖m(ti)−mi

h‖L2(D)

)
‖φ‖L2(D).

The proof finishes in exactly the same manner as that of Lemma 23.

3.3. Proof of Theorem 5. We are now ready to prove that the problem (1)–(2)
has a weak solution.

Proof. We recall from (41a)–(41g) that m ∈ H1(DT ), (H, λ) ∈ L2(0, T ;X ) and
H ∈ H1(0, T ;L2(D)). By virtue of Lemma 11 it suffices to prove that (m,H, λ)
satisfies (9a) and (30).

Let φ ∈ C∞(DT ) and B := (ξ, ζ) ∈ L2(0, T ;X ). On the one hand, we define the
test function φhk := ΠS(m−hk ×φ) as the usual interpolant of m−hk ×φ into S1(Th)3.
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By definition, φhk(t, ·) ∈ Kmj
h

for all t ∈ [tj , tj+1). On the other hand, it follows from

Lemma 10 that there exists Bh := (ξh, ζh) ∈ Xh converging to B ∈ X . Equation (38)
hold with these test functions. The main idea of the proof is to pass to the limit
in (38a) and (38b) to obtain (9a) and (30), respectively.

In order to prove that (38a) implies (9a) we need to prove that as h, k → 0

〈v−hk , φhk〉DT
→ 〈mt , m× φ〉DT

,(80a)

〈m−hk × v
−
hk , φhk〉DT

→ 〈m×mt , m× φ〉DT
,(80b)

k〈∇v−hk , ∇φhk〉DT
→ 0,(80c)

〈∇m−hk , ∇φhk〉DT
→ 〈∇m , ∇(m× φ)〉DT

,(80d)

〈H−hk , φhk〉DT
→ 〈H , m× φ〉DT

.(80e)

The proof has been carried out in [1, 3, 25] and is therefore omitted.
Next, recalling that Bh → B in X we prove that (38b) implies (30) by proving

〈∂tHhk , ξh〉DT
→ 〈Ht , ξ〉DT

,(81a)

〈Sh∂tλhk , ζh〉ΓT
→ 〈Sλt , ζ〉ΓT

,(81b)

〈∇ ×H+
hk , ∇× ξh〉DT

→ 〈∇×H , ∇× ξ〉DT
,(81c)

〈v−hk , ξh〉DT
→ 〈v , ξ〉DT

.(81d)

The proof is similar to that of (80) (where we use Lemma 18 for the proof of (81b))
and is therefore omitted.

Passing to the limit in (38a)–(38b) and using properties (80)–(81) prove Items 3
and 5 of Definition 1.

Finally, we obtain m(0, ·) = m0, H(0, ·) = H0, and λ(0, ·) = λ0 from the
weak convergence and the continuity of the trace operator. This and |m| = 1 yield

Statements (1)–(2) of Definition 1. To obtain (4), note that ∇Γ : H1/2(Γ)→ H−1/2
⊥ (Γ)

and n × (n × (·)) : H(curl, D) → H−1/2
⊥ (Γ) are bounded linear operators; see [16,

Section 4.2] for exact definition of the spaces and the result. Weak convergence then
proves Item 4 of Definition 1. Estimate (10) follows by weak lower-semicontinuity and
the energy bound (33). This completes the proof of the theorem.

3.4. Proof of Theorem 6. In this subsection we invoke Lemmas 20, 21, and 23
to prove a priori error estimates for the pure LLG equation.

Proof. It follows from Taylor’s Theorem, (15), and Young’s inequality that

‖m(ti+1)−mi+1
h ‖

2
H1(D)

≤ (1 + k)‖m(ti) + kmt(ti)− (mi
h + kvih)‖2H1(D)

+ (1 + k−1)
k4

4
‖mtt‖2L∞(0,T ;H1(D))

≤ (1 + k)‖m(ti)−mi
h‖2H1(D) + (1 + k)k2‖mt(ti)− vih‖2H1(D)

+ 2k(1 + k)〈m(ti)−mi
h , mt(ti)− vih〉D

+ 2k(1 + k)〈∇m(ti)−∇mi
h , ∇mt(ti)−∇vih〉D

+ k3‖m‖2W 2,∞(0,T ;H1(D)),

(82)
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recalling that 0 < k ≤ 1. The third term on the right-hand side is estimated as∣∣2k(1 + k)〈m(ti)−mi
h , mt(ti)− vih〉D

∣∣ ≤ δ−1k(1 + k)‖m(ti)−mi
h‖2L2(D)

+ δk(1 + k)‖mt(ti)− vih‖2L2(D),

for any δ > 0, so that (82) becomes

‖m(ti+1)−mi+1
h ‖

2
H1(D)

≤ (1 + k)(1 + δ−1k)‖m(ti)−mi
h‖2H1(D)

+ k(1 + k)
(

(k + δ)‖mt(ti)− vih‖2L2(D) + k‖∇mt(ti)−∇vih‖2L2(D)

+ 2〈∇m(ti)−∇mi
h , ∇mt(ti)−∇vih〉D

)
+ k3‖m‖2W 2,∞(0,T ;H1(D)).

(83)

Due to the assumption k < α/(2Ce) we can choose δ = α/(2Ce) such that k+δ ≤ α/Ce
and use (67) to deduce

‖m(ti+1)−mi+1
h ‖

2
H1(D)

≤ (1 + k)(1 + δ−1k)‖m(ti)−mi
h‖2H1(D)

+ 2kCm
(
h2 + k2 + ‖m(ti)−mi

h‖2H1(D)

)
+ k3‖m‖2W 2,∞(0,T ;H1(D))

=
(
1 + (1 + δ−1 + 2Cm)k + δ−1k2

)
‖m(ti)−mi

h‖2H1(D)

+ 2kCm(h2 + k2) + k3‖m‖2W 2,∞(0,T ;H1(D)).

Applying Lemma 29 (in the Appendix below) with ai := ‖m(ti) −mi
h‖2H1(D), bi :=

(1 + δ−1 + 2Cm)k + δ−1k2, and ci := k
(
2Cm(h2 + k2) + k2‖m‖2W 2,∞(0,T ;H1(D))

)
, we

deduce

‖m(tj)−mj
h‖

2
H1(D)

. etj
(
‖m(0)−m0

h‖2H1(D) + tj
(
2Cm(h2 + k2) + k2‖m‖2W 2,∞(0,T ;H1(D))

))
. ‖m0 −m0

h‖2H1(D) + h2 + k2,

proving (24).
To prove (25) we first note that

‖m−mhk‖2L2(0,T ;H1(D))

=

N−1∑
i=0

∫ ti+1

ti

(
‖ ti+1 − t

k

(
m(t)−mi

h

)
+
t− ti
k

(
m(t)−mi+1

h

)
‖2H1(D)

)
dt

.
N−1∑
i=0

∫ ti+1

ti

(
‖m(t)−mi

h‖2H1(D) + ‖m(t)−mi+1
h ‖

2
H1(D)

)
dt

. max
0≤i≤N

‖m(ti)−mi
h‖2H1(D) + k2‖mt‖2L∞(0,T ;H1(D)),

(84)

where in the last step we used Taylor’s Theorem. The uniqueness of the strong
solution m follows from (25) and the fact that the mhk are uniquely determined by
Algorithm 2.5. With the weak convergence proved in Theorem 5, we obtain that this
weak solution coincides with m. This concludes the proof.
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Remark 27. Since

‖m−mhk‖2H1(DT ) =

∫ T

0

(
‖m(t)−mhk(t)‖2H1(D) + ‖mt(t)− ∂tmhk(t)‖2L2(D)

)
dt

.
N−1∑
i=0

∫ ti+1

ti

(
‖m(t)−mi

h‖2H1(D) + ‖m(t)−mi+1
h ‖

2
H1(D)

+ ‖mt(t)− vih‖2L2(D)

)
dt

. max
0≤i≤N

‖m(ti)−mj
h‖

2
H1(D) + max

0≤i≤N
‖mt(ti)− vih‖2L2(D)

+ k2‖mt‖2L∞(0,T ;H1(D)) + k2‖mtt‖2L∞(0,T ;L2(D)),

by using (67) for the second term on the right-hand side and using Young’s inequal-
ity 2ab ≤ ka2 + k−1b2 for the inner product in (67), we obtain a weaker convergence
in the H1(DT )-norm, namely

‖m−mhk‖H1(DT ) ≤ Cconvk
−1/2

(
‖m0 −m0

h‖H1(D) + h+ k
)
,

provided that hk−1/2 → 0 when h, k → 0.

3.5. Proof of Theorem 7. This section bootstraps the results of the previous
section to include the full ELLG system into the analysis.

Proof. Similarly to the proof of Theorem 6, we derive (83) with δ = α/(4Ce).
Multiplying (75) by β = α/(4CeCH) and adding the resulting equation to (83) yields

‖m(ti+1)−mi+1
h ‖

2
H1(D) + β‖Ei+1‖2h + β

k

2
‖∇ × ei+1‖2L2(D)

≤ (1 + k)(1 + δ−1k)‖m(ti)−mi
h‖2H1(D)

+ k(1 + k)
(

(k + δ + βCH)‖mt(ti)− vih‖2L2(D) + k‖∇mt(ti)−∇vih‖2L2(D)

+ 2〈∇m(ti)−∇mi
h , ∇mt(ti)−∇vih〉D

)
+ k3‖m‖2W 2,∞(0,T ;H1(D))

+ (1 + 2k)β‖Ei‖2h + βCHk(h2 + k2).

The assumption k ≤ α/(2Ce), see Theorem 7, implies k + δ + βCH ≤ α/Ce. By
invoking Lemma 26 we infer

‖m(ti+1)−mi+1
h ‖

2
H1(D) + β‖Ei+1‖2h + β

k

2
‖∇ × ei+1‖2L2(D)

≤ (1 + k)(1 + δ−1k)‖m(ti)−mi
h‖2H1(D)

+ k(1 + k)CH

(
h2 + k2 + ‖m(ti)−mi

h‖2H1(D) + ‖H(ti)−Hi
h‖2L2(D)

)
+ k3‖m‖2W 2,∞(0,T ;H1(D)) + (1 + 2k)β‖Ei‖2h + βCHk(h2 + k2)

=
(
1 + (1 + δ−1 + CH)k + (δ−1 + CH)k2

)
‖m(ti)−mi

h‖2H1(D)

+ k(1 + k)CH‖H(ti)−Hi
h‖2L2(D) + (1 + 2k)β‖Ei‖2h

+ k3‖m‖2W 2,∞(0,T ;H1(D)) + kCH(1 + k + β)(h2 + k2).(85)

The approximation properties of ΠND and the regularity of H imply

‖H(ti)−Hi
h‖2L2(D) . ‖Ei‖2L2(D) + h2,
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where the hidden constant depends only on the shape regularity of Th and on the
regularity of H. Hence, we obtain from (85)

‖m(ti+1)−mi+1
h ‖

2
H1(D) + β‖Ei+1‖2h + β

k

2
‖∇ × ei+1‖2L2(D)

≤ (1 + Ccombk)‖m(ti)−mi
h‖2H1(D) + (1 + Ck)β‖Ei‖2h

+ k3‖m‖2W 2,∞(0,T ;H1(D)) + kC(h2 + k2),

where Ccomb := 1 + 2δ−1 + 2CH and for some constant C > 0 which is independent
of k, h and i. Hence, we find a constant C̃comb > 0 such that

‖m(ti+1)−mi+1
h ‖

2
H1(D) + β‖Ei+1‖2h + β

k

2
‖∇ × ei+1‖2L2(D)

≤ (1 + C̃combk)
(
‖m(ti)−mi

h‖2H1(D) + β‖Ei‖2h
)

+ kC̃comb

(
h2 + k2

)
.(86)

Applying Lemma 29 (in the Appendix below) with ai := ‖m(ti+1) −mi+1
h ‖2H1(D) +

β‖Ei+1‖2h + β k2‖∇ × ei+1‖2L2(D), bi = C̃combk, and ci = kC̃comb(h2 + k2) we deduce,
for all i = 0, . . . , N ,

‖m(ti+1)−mi+1
h ‖

2
H1(D) + ‖Ei+1‖2h + k‖∇ × ei+1‖2L2(D)

. ‖m0 −m0
h‖2H1(D) + ‖E0‖2h + k‖∇ × e0‖2L2(D) + Ccomb(h2 + k2).

(87)

Since ∣∣‖∇ × (H(ti)−Hi
h)‖2L2(D) − ‖∇× ei‖

2
L2(D)

∣∣ . h2,∣∣‖(H(ti)−Hi
h, λ(ti)− λih)‖2X − ‖Ei‖2X

∣∣ . h2,
(88)

(which is a result of the approximation properties of ΠND and ΠS and the regularity
assumptions on H and λ) estimate (26) follows immediately.

To prove (27) it suffices to estimate the term with k factor on the left-hand side of
that inequality because the other terms can be estimated in exactly the same manner
as in the proof of Theorem 6. By using Taylor’s Theorem and (88) we deduce

‖∇ × (H −Hhk)‖2L2(DT ) .
N∑
i=1

(
k‖∇ × (H(ti+1)−Hi+1

h )‖2L2(D) + CHk
3
)

.
N∑
i=1

k‖∇ × ei+1‖2L2(D) + h2 + k2,(89)

where CH := ‖H‖2W 1,∞(0,T ;H(curl,D)). On the other hand, it follows from (86) that

k‖∇ × ei+1‖2L2(D)

.
(
‖m(ti)−mi

h‖2H1(D) − ‖m(ti+1)−mi+1
h ‖

2
H1(D)

)
+ k‖m(ti)−mi

h‖2H1(D)

+ β
(
‖Ei‖2h − ‖Ei+1‖2h

)
+ k‖Ei‖2h + k(h2 + k2),
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which then implies by using telescoping series, (87), and (88)

N∑
i=1

k‖∇ × ei+1‖2L2(D) . ‖m
00−m0

h‖2H1(D) + ‖E0‖2h

+ max
0≤i≤N

(
‖m(ti)−mi

h‖2H1(D) + ‖Ei‖2h
)

+ h2 + k2

. ‖m0 −m0
h‖2H1(D) + ‖H0 −H0

h‖2L2(D) + ‖λ0 − λ0
h‖2H1/2(Γ)

+ max
0≤i≤N

(
‖m(ti)−mi

h‖2H1(D) + ‖H(ti)−Hi
h‖2L2(D)

+ ‖λ(ti)− λih‖2H1/2(Γ)

)
+ h2 + k2.

The required result now follows from (89) and (26). Uniqueness is also obtained as in
the proof of Theorem 6, completing the proof the theorem.

4. Numerical experiments. The following numerical experiments are carried
out by use of the FEM toolbox FEniCS [28] (fenicsproject.org) and the BEM
toolbox BEM++ [32] (bempp.org). We use GMRES to solve the linear systems and
blockwise diagonal scaling as preconditioners.

The values of the constants in these examples are taken from the standard problem
#1 proposed by the Micromagnetic Modelling Activity Group at the National Insti-
tute of Standards and Technology [20]. As domain serves the unit cube D = [0, 1]3

with initial conditions

m0(x1, x2, x3) :=

{
(0, 0,−1) for d(x) ≥ 1/4,

(2Ax1, 2Ax2, A
2 − d(x))/(A2 + d(x)) for d(x) < 1/4,

where d(x) := |x1 − 0.5|2 + |x2 − 0.5|2 and A := (1− 2
√
d(x))4/4 and

H0 =

{
(0, 0, 3) in D,

(0, 0, 3)−m0 in D∗.

We choose the constants

α = 0.5, σ =

{
1 in D,

0 in D∗,
µ0 = 1.25667× 10−6, Ce =

2.6× 10−11

µ0 6.4× 1011
.

4.1. Example 1. For time and space discretisation of DT := [0, 5] × D, we
apply a uniform partition in space (h = 0.1) and time (k = 0.002). Figure 1 plots the
corresponding energies over time. Figure 2 shows a series of magnetisations m(ti) at
certain times ti ∈ [0, 5]. Figure 3 shows that same for the magnetic field H(ti).

4.2. Example 2. We use uniform time and space discretisation of the domain
DT := [0, 0.1] × D to partition [0, 0.1] into 1/k time intervals for k ∈ {0.001, 0.002,
0.004, 0.008, 0.016} and D into O(N3) tetrahedra for N ∈ {5, 10, 15, 20, 25}. Figure 4
shows convergence rates with respect to the space discretisation and Figure 5 with
respect to the time discretization. Since the exact solution is unknown, we use the
finest computed approximation as a reference solution. The convergence plots reveal
that the space discretization error dominates the time discretization error by far. The
expected convergence rate O(k) can be observed in Figure 5 which underlines the



THE EDDY CURRENT–LLG EQUATIONS 31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

e
n
e
rg

y

menergy

henergy

sum

Fig. 1. Plot of ‖∇mhk(t)‖L2(D) and ‖Hhk(t)‖H(curl,D) over the time.

theoretical results of Theorem 7. It is less clear in Figure 4 if there is a convergence of
order O(h). Preconditioners, a topic of further study, are required for implementation
with larger values of N .

Appendix. Below, we state some well-known results.

Lemma 28. Given Th, there exists a constant Cnorm > 0 which depends solely on
the shape regularity of Th such that

C−1
norm‖∇w‖L2(D) ≤

(
h
∑
T∈Th

∑
z∈Nh∩T

|w(z)−w(zT )|2
)1/2

≤ Cnorm‖∇w‖L2(D)

for all w ∈ S1(Th) and some arbitrary choice of nodes zT ∈ Nh ∩ T for all T ∈ Th.

Proof. The proof follows from scaling arguments.

Lemma 29. If {ai}, {bi}, {ci} are sequences of non-negative numbers satisfying

ai+1 ≤ (1 + bi)ai + ci for all i ∈ N0

then for all j ∈ N0 there holds

aj ≤ exp
( j−1∑
i=0

bi
)(
a0 +

j−1∑
i=0

ci
)
.

Proof. The lemma can be easily shown by induction.
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