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Abstract

We study the trust-region subproblem (TRS) of minimizing a nonconvex quadratic function
over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is
known that the classical TRS and a number of its variants are polynomial-time solvable. In this
paper, we follow a second-order cone (SOC) based approach to derive an exact convex reformu-
lation of the TRS under a structural condition on the conic constraint. Our structural condition
is immediately satisfied when there is no additional conic constraints, and it generalizes several
such conditions studied in the literature. As a result, our study highlights an explicit connection
between the classical nonconvex TRS and smooth convex quadratic minimization, which allows
for the application of cheap iterative methods such as Nesterov’s accelerated gradient descent,
to the TRS. Furthermore, under slightly stronger conditions, we give a low-complexity charac-
terization of the convex hull of the epigraph of the nonconvex quadratic function intersected
with the constraints defining the domain without any additional variables. We also explore the
inclusion of additional hollow constraints to the domain of the TRS, and convexification of the
associated epigraph.

1 Introduction

In this paper, we study the classical trust-region subproblem (TRS) [19] and its polynomial-time
solvable variants given by

Opth := min
y∈Rn

{
h(y) := y>Qy + 2 g>y :

‖y‖ ≤ 1
Ay − b ∈ K

}
, (1)

where ‖y‖ denotes the Euclidean norm of y, A ∈ Rm×n, b ∈ Rm, and K ⊆ Rm is a closed convex
cone. Throughout the paper, we assume that the minimum eigenvalue of Q is negative, that is,
λQ := λmin(Q) < 0 and the domain of the problem is nonempty. Problem (1) is equivalent to the
classical TRS when there are no additional conic constraints, i.e., A = In, b = 0, and K = Rn.
That is, the classical TRS is given by

min
y∈Rn

{
h(y) := y>Qy + 2g>y : ‖y‖ ≤ 1

}
. (2)

The classical TRS is an essential ingredient of trust-region methods that are commonly used
to solve continuous nonconvex optimization problems (see [19, 40, 42] and references therein). In
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each iteration of a trust-region method, a quadratic approximation of the objective function is
built and then optimized over a ball, called trust region, (or intersection of a ball with linear
or conic constraints originating from the original problem) to find the new search point. TRS
and its variants are also encountered in the context of robust optimization under matrix norm or
polyhedral uncertainty (see [6, 9] and references therein), nonlinear optimization problems with
discrete variables [13, 15], least-squares problems [54], constrained eigenvalue problems [25], and
more.

As stated above, the optimization problem in (1) is nonlinear and nonconvex when λQ < 0.
Nevertheless, it is well-known that the semidefinite programming (SDP) relaxation for the classical
TRS is exact, and classical TRS and a number of its variants can be solved in polynomial time via
SDP-based techniques [43, 23] or using specialized nonlinear algorithms, e.g., [27, 37].

Several variants of the classical TRS that enforce additional constraints on the trust region
have been proposed. Among these the most commonly studied is the case when K is taken to be
a nonnegative orthant, i.e., the unit ball is intersected with additional linear constraints modeled
via the polyhedral set {y ∈ Rn : Ay − b ∈ K}. TRS with additional linear inequalities arises in
nonlinear programming and robust optimization (see [14, 33] and references therein) and is studied
in [12, 14, 15, 17, 33, 50, 53] under a variety of assumptions. Specifically, [15, 50] give a tight
semidefinite formulation when there is a single linear constraint a>y ≤ b based on an additional
constraint derived from second-order cone (SOC) based reformulation linearization technique (SOC-
RLT). This approach was extended to two linear constraints in [15, 53] and the tightness of the
SDP relaxation is shown when the linear constraints are parallel. More recently, Burer and Yang
[17] give a tight SDP relaxation with additional SOC-RLT constraints for an arbitrary number of
linear constraints, under the condition that these additional linear inequalities do not intersect on
the interior of the unit ball. We refer the readers to Burer [14] for a recent survey and related
references for the results on tight SDP relaxations associated with these variants. Following a
different approach, Bienstock and Michalka [12] show that TRS with linear inequality constraints
is polynomial-time solvable under the milder condition that the number of faces of the linear
constraints intersecting with the unit ball is polynomially bounded.

TRS with additional conic constraints originate when the trust-region algorithm is applied to
conic constrained optimization problems with nonconvex objective. Most notable example in this
context is the well-known Celis-Dennis-Tapia (CDT) problem [18] where a nonconvex quadratic is
minimized over the intersection of two-ellipsoids. See also Ben-Tal and den Hertog [5] for several
applications of the TRS with additional conic quadratic constraints arising in the context of robust
quadratic programming. Recently, Jeyakumar and Li [33] prove convexity of the joint numerical
range, exactness of the SDP relaxation, and strong Lagrangian duality for the TRS with additional
linear and SOC constraints. A key tool in their analysis is to recast the TRS as a convex quadratic
minimization problem under a dimensionality condition.

Hollow constraints defined by a single ellipsoid [8, 11, 42, 49, 53], several ellipsoids [12, 52] or
arbitrary quadratics constraints [10] have also attracted some attention in the literature. These
approaches are once again either lifted SOC-based or SDP-based convexification schemes or cus-
tomized algorithms. We discuss these further in Section 3.3.

While the SDP reformulations of the classical TRS and its variants can be solved using interior-
point methods in polynomial time [2, 39], this approach is not practical because the worst-case
complexity of these methods for solving SDPs is a relatively large polynomial and there exist faster
methods. That said, the classical TRS is closely connected to eigenvalue problems. In the specific
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case of classical TRS where the objective is convex, i.e., whenQ is positive semidefinite, this problem
becomes simply the minimization of a smooth convex function over the Euclidean ball, and thus
it can be solved efficiently via iterative first-order methods (FOMs) such as Nesterov’s accelerated
gradient descent algorithm [38]. Moreover, in the nonconvex case with λQ < 0, when the problem
is purely quadratic, i.e., when g = 0 as well, the classical TRS reduces to finding the minimum
eigenvalue of Q. This can be approximated efficiently via the Lanczos method [26, Chapter 10.1]
in practice. When g 6= 0, even though the classical TRS is no longer equivalent to an eigenvalue
problem and these methods cannot be applied directly, this observation has led to the development
of efficient, matrix-free algorithms that are based solely on matrix-vector products. The dual-based
algorithms of [37], [43] and [48], the generalized Lanczos trust-region method of [27], and the recent
developments of [1, 21, 22, 28, 29, 44] are examples of such iterative algorithms. More recently, for
TRS with a single additional linear constraint, the papers [45, 46, 47] explore strong Lagrangian
duality, and derive numerically efficient algorithms from this. In most cases, these algorithms for
classical TRS and its variants are presented together with their convergence proofs. Nevertheless,
to the best of our knowledge, the theoretical runtime evaluation of these algorithms lacks formal
guarantees with the exception of recent work [29] (done in a probabilistic fashion). In addition, in
most of these iterative methods, numerical difficulties are reported in the so-called ‘hard case’ [37],
when the linear component vector g is nearly orthogonal to the eigenspace of the smallest eigenvalue
of Q. In many cases, the lack of provable worst-case convergence bounds for the classical TRS is
attributed to the hard case. As a result, most research on specific algorithms for the classical TRS
thus far focuses on addressing this issue.

Recently, Hazan and Koren [29] suggested a linear-time algorithm for approximately solving
the classical TRS within a given tolerance ε on the objective value. Their approach relies on an
efficient, linear-time solver for a specific SDP relaxation of a feasibility version of the classical TRS
and reduces the classical TRS into a series of eigenvalue computations. Specifically, they exploit
the special structure of the dual problem, a one-dimensional problem for which bisection techniques
can be applied, to avoid using interior-point solvers. Each dual step of their algorithm requires a

single approximate maximal eigenvalue computation which takes O
(
N
√

Γ√
ε

log
(
n
δ log (Γ/ε)

))
time

to achieve an ε-accurate estimate with probability at least 1− δ/ log (Γ/ε), where N is the number
of nonzero entries in Q, Γ := max {2(‖Q‖+ ‖g‖), 1}, and ‖Q‖ stands for the spectral norm of the
matrix Q, i.e., the maximum absolute eigenvalue. Their overall algorithm converges in O

(
log
(

Γ
ε

))
iterations. Then a primal solution is recovered by solving a small linear program formed by the
dual iterates. Finally, they provide an efficient and accurate rounding procedure for converting the
SDP solution into a feasible solution to the classical TRS. Consequently, their approach does not
require the use of interior-point SDP solvers and bypasses the difficulties noted for the hard case of
the classical TRS. The overall complexity (elementary arithmetic operations) of their approach is

O

(
N

√
Γ log (Γ/ε)√

ε
log

(
n

δ
log

(
Γ

ε

)))
.

Thus, their approach runs in time linear in the number of nonzero entries of the input and it can
exploit data sparsity.

These algorithmic developments for TRS have been complemented with research on convex
hull characterization of sets associated with TRS. In this respect, [14] presents a nice summary
of such results given for the lifted SDP representations. The epigraph of TRS is closely related
to convex hulls of sets defined as the intersection of convex and nonconvex quadratics. Such sets
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cover two-term disjunctions applied to an SOC or its cross-sections arising in the context of Mixed
Integer Conic Programming or reverse convex constraints based on ellipsoids, and thus have been
studied under a variety of assumptions (see Burer and Kılınç-Karzan [16] and references therein).
In particular, nonconvex sets obtained from the intersection of a second-order-cone representable
(SOCr) cone and a nonconvex cone defined by a single homogeneous quadratic, and possibly an
affine hyperplane were studied in [16]. For such sets, under several easy-to-verify conditions, [16]
suggests a simple, computable convex relaxation where the nonconvex cone is replaced by an ad-
ditional SOCr cone, and identifies several stronger conditions guaranteeing the tightness of these
relaxations, in terms of giving the associated closed conic hulls and closed convex hulls of these
sets. These conditions have been further verified in many specific cases, and it was shown in [16]
that the classical TRS can be solved via the optimization of two SOC-based programs. Similar
convex hull descriptions of a single SOC or its cross-section intersected with a general nonconvex
quadratic are also studied recently in [36] under different assumptions.

In this paper, as opposed to the previous specialized algorithms or approaches that work in a
lifted space, e.g., SDP-based relaxations, we follow an SOC-based approach in the original space
of variables to solve the classical TRS and its variants with conic constraints (1) or hollows. That
is, under easy-to-verify conditions, we derive tight SOC-based convex reformulations and convex
hull characterizations of sets associated with the TRS with additional conic constraints (1). Our
contributions can be summarized as follows.

(i) In Section 2, we study an SOC-based convex relaxation of (1) in the original space of variables
obtained by simply replacing the nonconvex objective function h(y) in (1) with the convex
objective f(y) := y> (Q− λQIn) y + 2 g>y + λQ. We prove tightness of this relaxation under
an easily checkable structural condition on the additional conic constraints Ay − b ∈ K (see
Theorem 4). For classical TRS our convex relaxation is immediately tight without any con-
dition. In the case of nontrivial conic constraints Ay − b ∈ K in (1), the conditions ensuring
tightness of our convex relaxation can be somewhat stringent. We discuss these issues and
relation of our condition to the existing ones from the literature in Section 2.2.

(ii) Due to the fact that our convex relaxation/reformulation works in the original space of vari-
ables and thus preserves the domain, it is immediately amenable to work with existing iterative
FOMs; we discuss the associated complexity results in Section 2.3. In particular, our convex
relaxation/reformulation can be built via a single minimum eigenvalue computation. In the
case of classical TRS, it can then solved by minimizing a smooth convex quadratic over the
unit ball via Nesterov’s accelerated gradient descent algorithm [38]. Thus, with probability
1− δ, our approach solves the classical TRS to accuracy ε in running time

O

(
N

(√
‖Q‖√
ε

log
(n
δ

)
+

√
‖Q‖√
ε

))
.

(iii) Finally, in Section 3, we study exact and explicit SOC-based convex hull results for the
epigraph of the TRS given by

X :=


[
y
t

]
∈ Rn+1 :

‖y‖ ≤ 1
Ay − b ∈ K
h(y) ≤ t

 .
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In Theorem 13, under a slightly stronger condition, we provide an explicit characterization of
convex hull of X in the space of original variables.

We also examine the inclusion of additional hollow constraints y ∈ R = Rn \ P to the TRS
in Section 3.3. In particular, these developments immediately lead to convex reformulations
for several variants of TRS, including interval-bounded TRS (see [8, 11, 42, 49, 53]), and thus
have algorithmic implications.

From a convex reformulation perspective, the papers [23], [33], [16], [5], and [35] are closely
related to our approach. To handle the hard case in classical TRS, Fortin and Wolkowicz [23]
discusses a shift of the matrix Q, which results in the same SOC-based convex reformulation as
ours. Nevertheless, [23] solves the resulting problem using a modification of the SDP-based Rendl-
Wolkowicz algorithm [43]. Their approach requires a case-by-case analysis to handle the hard
case and lacks formal convergence guarantees. In contrast to such an approach, we propose using
Nesterov’s algorithm [38], which is not only oblivious to the hard case and thus does not requires a
case-by-case analysis, but also provides formal convergence guarantees. Jeyakumar and Li [33] study
TRS with additional linear and conic-quadratic constraints. They obtain a convex reformulation
via a similar shift in the Q matrix under a certain dimensionality condition on the additional
constraints. We show that the conditions from [33] imply our structural condition and we provide
an example where our condition is satisfied but the ones in [33] are not. Burer and Kılınç-Karzan [16]
also give a scheme to solve the classical TRS via SOC programming. The scheme suggested in [16]
is in a lifted space with one additional variable and requires solving two related SOC optimization
problems. In contrast, our convex reformulation is in the space of original variables and requires
solving only a single minimization problem. Ben-Tal and den Hertog [5] study a different SOC-
based convex reformulation in a lifted space of the TRS and its variants under a simultaneously
diagonalizable assumption. However, this relaxation requires a full eigenvalue decomposition of
the matrix Q as opposed to our relaxation which only needs a maximum eigenvalue computation.
Based on the same convex reformulation as in [5], Locatelli [35] studies the TRS with additional
linear constraints under a structural condition on the constraints derived from a KKT system.
We show that in the case of additional linear constraints, our geometric condition is equivalent
to the structural condition used in [35] (see Lemma 8). To the best of our knowledge, the KKT
based derivations of conditions in [35] are not extended to the conic case, yet our condition handles
additional conic constraints generalizing the one from [35] and highlights the features of underlying
geometry.

On the algorithmic side, our transformation of the TRS (1) is mainly based on the mini-
mum eigenvalue of Q, which can be computed to accuracy ε > 0 with probability 1 − δ in

O
(
N
√
‖Q‖ log(n/δ)/

√
ε
)

arithmetic operations using the Lanczos method (see [34, Section 4]

and [29, Section 5]), where N is the number of nonzero entries in Q. Due to the fact that f(y)
is a convex quadratic function, our convex relaxation/reformulation for (1) can simply be cast as
a conic optimization problem. Specifically, when there are no additional constraints, this exact
convex reformulation becomes minimizing a smooth convex function over the Euclidean ball, and
thus it is readily amenable to efficient FOMs. For this class of convex problems, given a desired
accuracy of ε, a classical FOM, Nesterov’s accelerated gradient descent algorithm [38], involves only
elementary operations such as addition, multiplication, and matrix-vector product computations

and achieves the optimal iteration complexity of O
(√
‖Q‖/

√
ε
)

. Note when the problem is convex

(when Q is positive semidefinite), the same complexity guarantees can be obtained by applying
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Nesterov’s accelerated gradient descent [38] to the problem. Thus, our approach can be seen as an
analog of the latter algorithm to the general nonconvex case. This is the first-time that such an
observation is made that the classical TRS problem can be solved by a single minimum eigenvalue
computation and Nesterov’s accelerated gradient descent [38]. Moreover, our analysis highlights
the connection between the TRS and eigenvalue problems, and in fact demonstrates that, up to
constant factors, the complexity of solving the classical TRS is no worse than solving a minimum
eigenvalue problem. This was empirically observed in [43, Section 5] and our analysis provides a
theoretical justification for it.

Convexification-based approaches such as ours and [5, 8, 29, 33, 35] work directly with convex
formulations and provide a uniform treatment of the problem and thus bypass the so-called ‘hard
case’. Moreover, the resulting convex formulations are then amenable to iterative FOMs from
convex optimization literature which only require matrix-vector product type operations. To the
best of our knowledge, iterative algorithms for SDP-based relaxations of the TRS have not been
studied in the literature with the exception of Hazan and Koren [29]. As compared to the approach
in [29], we believe our approach is straightforward, easy to implement, and achieves a slightly better
convergence guarantee in the worst case. In particular, our approach directly solves the TRS, as
opposed to only solving a feasibility version of the TRS; thus we save an extra logarithmic factor.
While [29] relies on repeatedly calling a minimum eigenvalue, our approach, as well as that of
Jeyakumar and Li [33], work with an SOC-based reformulation of the problem in the original space
and requires only a single minimum eigenvalue computation. The convex reformulations given
by Ben-Tal and Teboulle [8] or the one studied in Ben-Tal and den Hertog [5] and Locatelli [35]
requires a full eigenvalue decomposition which is more expensive, i.e., O(n3) time. Moreover, these
reformulations from [5, 8, 35] involve additional variables and constraints, and thus FOMs applied
to these entail more complicated and expensive projection operations.

Efficient algorithms to solve convex reformulation of TRS (1) in the original space of variables
is particularly advantageous in the context of solving robust convex quadratic programs (QPs).
Robust convex QPs with ellipsoidal uncertainty are known to have close connections with the TRS
(see [5]). The function f(x, u) underlying a robust convex quadratic constraint supu∈U f(x, u) ≤ 0
is convex in both the decision variable x and the uncertainty u, highlighting the nonconvexity
of the problem. Yet, a convex reformulation of such a robust constraint in the original space of
variables allows us to recast it as supu∈U f̃(x, u) ≤ 0, where f̃(x, u) is convex-concave in x and
u, demonstrating its hidden convexity. Recently, in [30] an efficient online iterative framework is
introduced to solve robust convex optimization problems which bypasses the burden of taking robust
counterparts. When specialized to robust convex QPs, each iteration of this online framework
requires handling each robust constraint independently and making a simple iteration towards
solving the associated TRSs as opposed to completely solving the TRSs. Then efficient online
FOMs capable of solving the TRS in the original space of variables becomes a key component of
such an approach to solve robust convex QPs.

Our convex hull results on the epigraph of the TRS are inspired by the recent work of Burer
and Kılınç-Karzan [16] on convex hulls of general quadratic cones. While the SOC-based convex
hull results in [16] are applicable to many problems, including the epigraph set associated with the
classical TRS, we present a much more direct analysis specialized for TRS. There are two main
benefits of our approach. First, the approach outlined in [16] for solving classical TRS requires the
assumption that the optimal value is nonpositive. While this is not an issue for the classical TRS
since its optimal value is always negative under the assumption of λQ < 0, with the existence of
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additional constraints, this may no longer be true for (1). In contrast, our direct analysis does not
rely on any nonpositivity assumptions of the objective value, and hence we are able to extend our
results to include additional conic constraints. Second, our direct analysis of the TRS allows us to
bypass verifying several conditions from [16] and to work directly with a single structural condition
on additional conic constraints which is always satisfied in the case of the classical TRS.

Several papers [3, 4, 33] exploit convexity results on the joint numerical range of quadratic
mappings to explore strong duality properties of the TRS and its variants. These convexity results
are based on Yakubovich’s S-lemma [24] and Dines [20], see also the survey by Pólik and Terlaky
[41] for a more detailed discussion. While these results as well as ours both analyze sets associated
with the TRS, the actual sets in question are quite different. In the context of the TRS, the joint
numerical range is a set of the form{

[h(y); ‖y‖2; Ay − b] : y ∈ Rn
}
⊆ Rm+2.

Under certain conditions, this set is shown to be convex. In contrast, we study the epigraphical set
X, which is nonconvex if h(y) is, and we give its convex hull description in the original space of
variables.

Notation. We use Matlab notation to denote vectors and matrices. Given a matrix, A ∈
Rm×n, we let Null(A) and Range(A) denote its nullspace and range. Furthermore, we denote
the minimum eigenvalue of a symmetric matrix Q as λQ := λmin(Q) and we let In be the n × n
identify matrix. For a given symmetric matrix Q, the notation Q � 0 (Q � 0) corresponds to
the requirement that Q is positive semidefinite (positive definite). Given a vector ξ ∈ Rn, Diag(ξ)
corresponds to an n× n diagonal matrix with its diagonal equal to ξ. For a set S ⊆ Rn, we define
int(S), relint(S),bd(S),Ext(S),Rec(S), conv(S), conv(S), cone(S) and cone(S) to be the interior,
relative interior, boundary, set of extreme points, recession cone, convex hull, closed convex hull,
conic hull, and closed conic hull of S respectively. For a cone K ⊆ Rn, we denote its dual cone by
K∗.

2 Tight Low-Complexity Convex Reformulation of the TRS

In this section, we first present an exact SOC-based convex reformulation for the classical TRS and
extend this reformulation to the TRS with additional conic constraints (1) under an appropriate
condition. We then compare and relate our condition to handle conic constraints to other condi-
tions studied in the literature. Finally, we explore algorithmic aspects of solving our SOC-based
reformulation.

2.1 Convex Reformulation

We start with the following simple observation, which we present without proof.

Observation 1. Let C ⊂ Rn be some bounded domain and h : C → R be a (possibly nonconvex)
function such that h has no local minimum on int(C). Then any optimal solution y∗ of the program

min
y
{h(y) : y ∈ C}

must be on bd(C).

We next observe that when our domain C is defined by (possibly nonconvex) constraints cj(y) ≤
0, we can obtain relaxations of the nonconvex program in Observation 1 by simply aggregating these
constraints with appropriate weights.
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Lemma 2. Let C ⊆ Rn be a given set, cj(y) : C → R for j = 1, . . . ,m be given functions.
Suppose h(y) is a given function and fj(y) are functions on the domain C := {y : cj(y) ≤ 0, ∀j =
1, . . . ,m} ∩ C such that fj(y) = h(y) − αjcj(y) for some αj ≤ 0. Let F (y) := maxj=1,...,m fj(y).
Then

Opth := min
y
{h(y) : y ∈ C} ≥ min

y
{F (y) : y ∈ C} =: Optf .

Moreover, Opth = Optf if and only if there exists an optimal solution y∗ to the problem on the
right-hand side satisfying αjcj(y

∗) = 0 for some j ∈ {1, . . . ,m}.

Proof. First, we note that for any y ∈ C, we have αjcj(y) ≥ 0 since αj ≤ 0, and thus for all
j ∈ {1, . . . ,m}, fj(y) = h(y)− αj cj(y) ≤ h(y). This establishes Opth ≥ Optf .

Let y∗ be an optimal solution to miny {F (y) : y ∈ C} for which αjcj(y
∗) = 0 for some j. Then

we have F (y∗) = fj(y
∗) = h(y∗), which implies that y∗ is also optimal to Opth. Now consider

the case where every optimal solution y∗ ∈ arg miny {F (y) : y ∈ C} satisfies αjcj(y
∗) > 0 for all

j. Note that for any y ∈ C satisfying αjcj(y) > 0 for all j, we have F (y) < h(y). Thus, for such
optimal solutions y∗, we have F (y∗) < h(y∗), and for any other non-optimal solution y ∈ C, we
have F (y∗) < F (y) ≤ h(y), which implies Optf < Opth.

Let us now turn our attention back to the TRS (1). Henceforth, we define h(y) := y>Qy+2g>y
to be our nonconvex quadratic objective function, where Q is some symmetric matrix with λQ < 0.
It is easy to see that on any bounded domain C, h(y) has no local minimum on int(C). Hence, Ob-
servation 1 points out the important role of the boundary of the domain {y : ‖y‖ ≤ 1, Ay − b ∈ K}
to the TRS (1).

A possible convex relaxation for (1) suggested by Lemma 2 is that we embed the conic constraints
Ay − b ∈ K into the ground set C and aggregate the constraint ‖y‖ ≤ 1 with weight α = λQ to
obtain the objective function

f(y) := h(y) + λQ(1− ‖y‖2) = y>(Q− λQIn)y + 2g>y + λQ. (3)

Note Q− λQIn � 0, and thus the function f(y) is convex, and clearly is also an underestimator of
h(y), hence minimizing f(y) over our domain is still a convex relaxation. Lemma 2 then gives us
a precise characterization for when the convex relaxation using f(y) is tight.

Corollary 3. Suppose λQ < 0. Consider the convex relaxation for problem (1) given by

Optf = min
y

{
f(y) :

‖y‖ ≤ 1
Ay − b ∈ K

}
, (4)

where f(y) is defined in (3). This convex relaxation is tight if and only if there exists an optimal
solution y∗ to (4) such that ‖y∗‖ = 1.

Because Q − λQIn is not full rank, when g is not orthogonal to Null(Q − λQIn), it is easy
to see that the function f(y) has no local minima on the interior of our domain. Then by
Observation 1, the optimal solutions to (4) lie on bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}). When g is
orthogonal to Null(Q − λQIn), then we can add d ∈ Null(Q − λQIn) to any point y without
changing the objective f(y + d), hence there will always exist an optimal solution of (4) on
bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}). However, f(y) = h(y) if and only if ‖y‖ = 1, but f(y) may not be
equal to h(y) on all of bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}). More precisely, we will have f(y) < h(y)
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for y ∈ bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}) ∩ {y : ‖y‖ < 1}, so if all minima of f(y) lie on this set, the
convex relaxation (4) will not be tight. Therefore, we next state a sufficient condition that ensures
that there is always an optimal solution of (4) on the boundary of the unit ball.

Condition 2.1. There exists a vector d 6= 0 such that Qd = λQd, Ad ∈ K and g>d ≤ 0.

Theorem 4. Suppose that λQ < 0 and that Condition 2.1 holds for the TRS given in (1). Then
the convex relaxation given by (4) is tight.

Proof. Let y∗ be an optimum solution for (4). If ‖y∗‖ = 1, then from Corollary 3, the result follows
immediately. Hence, we assume ‖y∗‖ < 1.

Let d 6= 0 be the vector from Condition 2.1, thus Qd = λQd, Ad ∈ K and g>d ≤ 0. Then for
any ε > 0, A(y∗ + εd) − b = (Ay∗ − b) + εAd ∈ K because K is a convex cone and Ad ∈ K by
assumption. Because ‖y∗‖ < 1, we may increase ε until ‖y∗+ εd‖ = 1 and the vector y∗+ εd is still
feasible. Note (Q− λQIn)d = 0, so for any ε > 0,

f(y∗ + εd) = f(y∗) + 2(g>d)ε ≤ f(y∗).

If g>d < 0, this violates optimality of y∗ since ε > 0, thus g>d = 0. Then the vector y∗ + εd is an
alternative optimum solution to (4) satisfying ‖y∗+ εd‖ = 1. Hence, the tightness of the relaxation
(4) follows from Corollary 3.

Remark 2.1. From the definition of λQ, Condition 2.1 is immediately satisfied for the classical
TRS (2) without additional conic constraints, i.e., when A = In, b = 0, and K = Rn. ♦

Consequently, in the case of classical TRS, Remark 2.1 implies the following specialization of
Theorem 4.

Theorem 5. When λQ < 0, a tight convex relaxation of classical TRS (2) is given by

Optf = min
y

{
f(y) := y>(Q− λQIn)y + 2g>y + λQ : ‖y‖ ≤ 1

}
. (5)

Remark 2.2. In order to handle a particular ‘hard case’ of classical TRS, Fortin and Wolkowicz [23]
introduce and analyze the convex reformulation (5) (see [23, Lemma 2.3] and [23, Section 7]). We
believe (5) can be of more use than stated in [23]. In particular, by re-analyzing (2), we are able
to both

(i) improve on the previously best-known theoretical convergence rate guarantees for solving the
classical TRS (see Remark 2.9 in Section 2.3), and

(ii) establish the tightness of the convex reformulation (4) for TRS with conic constraints under
appropriate conditions (see Theorem 4) and also for TRS with hollow constraints covering
interval-bounded TRS (see [8, 11, 42, 49, 53]), under a condition well-studied in the literature
(see Corollary 18 and Theorem 17).

♦
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2.2 Discussion of Condition 2.1 and Related Conditions from the Literature

For TRS with conic constraints (1), Condition 2.1 is related to and generalizes many other conditions
examined in the literature.

A result similar to Theorem 4 was implicitly proven by Jeyakumar and Li [33] under a dimen-
sionality condition for the case of linear and conic quadratic constraints. We state the linear version
of their condition below; the conic quadratic one is very similar.

Condition 2.2. Consider the case of nonnegative orthant, i.e., K = Rm+ . Suppose that the system
of linear inequalities, i.e., the constraint Ay − b ∈ K satisfies the requirement that dim (Null(Q −
λQIn)) ≥ n− dim (Null(A)) + 1.

Lemma 6. Condition 2.1 generalizes the dimensionality condition of Jeyakumar and Li [33], i.e.,
Condition 2.2, stated for linear and conic quadratic constraints.

Proof. Suppose Condition 2.2 holds. Then

dim (Null(A)) + dim (Null(Q− λQIn)) ≥ n+ 1;

thus, there must exist d 6= 0 which is in the intersection Null(A) ∩ Null(Q − λQIn). That is,
Qd = λQd and Ad = 0 ∈ Rm+ = K. If g>d ≤ 0, then Condition 2.1 holds with the vector d. If
g>d > 0, then Condition 2.1 holds with the vector d′ = −d.

Jeyakumar and Li [33] demonstrates that Condition 2.2 is satisfied in a number of cases related
to the robust least squares and robust SOC programming problems. As a consequence of Lemma 6,
our Condition 2.1 is satisfied in these cases as well. That said, Condition 2.1 is more general than
Condition 2.2 as demonstrated by the following example.

Example 7. For the problem data given by

Q =

[
1 0
0 −1

]
, g =

[
1
0

]
, A =

[
1 −1
−1 −1

]
, b =

1

2

[
1
1

]
, K = R2

+,

Condition 2.1 is satisfied with d = [0;−1], but Condition 2.2 is not. ♦

Ben-Tal and den Hertog [5] and Locatelli [35] study a different SOC-based convex relaxation of
(1) given in a lifted space when Q is a diagonal matrix and the additional constraints are linear,
i.e., K = Rm+ . Let Q = Diag({q1, . . . , qn}); then this reformulation is given by

min
y,z


n∑
i=1

qizi + 2g>y :
y2
i ≤ zi, i = 1, . . . , n∑n
i=1 zi ≤ 1

Ay ≥ b

 . (6)

It was established in [5] that for the classical TRS this convex reformulation is tight. Tightness of
this relaxation for the TRS with additional linear constraints is studied in [35] under the following
condition:

Condition 2.3. Denote Q = Diag({q1, . . . , qn}) and J = {j : qj = λQ}. Also, define AJ to be the
matrix composed of columns of A which correspond to the indices in J , and define gJ analogously.
For all ε > 0, there exists hε with ‖hε‖ ≤ ε such that {µ ≥ 0 : A>J µ+ gJ + hε = 0} = ∅.

10



Lemma 8. When Q is diagonal and K = Rm+ , Conditions 2.1 and 2.3 are equivalent.

Proof. It is shown in [35, Proposition 3.3] that Condition 2.3 is equivalent to the program maxŷ∈R|J|{−g>J ŷ :
AJ ŷ ≤ 0} being unbounded above or having multiple optima. In the former case, there must exist
an extreme ray d̂ 6= 0 for which g>J d̂ < 0 and AJ d̂ ≤ 0. Setting d to be the vector consisting

of d̂ in the J entries and 0 otherwise gives us Qd = λQd, Ad ≤ 0 and g>d < 0, which satisfies
Condition 2.1. In the latter case, we know that the zero vector is always a solution with objective
value 0, so having multiple optima means there exists d̂ 6= 0 such that Aj d̂ ≤ 0 and g>J d̂ = 0. Then
a similar argument follows to show that Condition 2.1 holds.

Conversely, if Condition 2.1 holds, because Q is diagonal, the vector d given must have zeros
everywhere except for entries in J . If g>d < 0, then the program above is unbounded, but if
g>d = 0, then the program above has multiple optima since we can add d to any optimal solution.
Thus, Condition 2.3 holds.

Remark 2.3. Condition 2.1 is equivalent to the conic program

min
d

{
g>d : (Q− λQIn)d = 0, Ad ∈ K

}
being unbounded below or having multiple optimal solutions. This follows from an extension of
the proof of Lemma 8 to the conic case. ♦

Remark 2.4. Despite Condition 2.1 and Condition 2.3 being equivalent when K = Rm+ , there are
two major distinctions between our convex reformulation (4) and the one from [5, 35]. First, in
order to diagonalize the matrix Q in TRS and hence form the convex reformulation of [5, 35], one
needs to perform a full eigenvalue decomposition, which takes approximately O(n3) time and is more
expensive than computing only the minimum eigenvalue (approximately O(n2) time) that is needed
by our convex reformulation. Second, our convex reformulation (4) works in the original space of
variables and thus preserves the nice structure of the domain, yet (6) introduces new variables
z1, . . . , zn. Preserving the nice structure of the original convex domain becomes important when
FOMs are applied to a convex reformulation of TRS. We discuss this issue in the case of classical
TRS in Section 2.3. ♦

Remark 2.5. In contrast to the results given in [33] and [35], Theorem 4 holds for general conic con-
straints when Condition 2.1 holds. Note that such general conic constraints can represent a variety
of convex restrictions, and in particular, they may include positive semidefiniteness requirements.
♦

We next present an example to illustrate that when Condition 2.1 is violated, we may not
be able to give the exact convex reformulation. Moreover, a slight modification of this example
demonstrates further that Condition 2.1 is not necessary for giving the exact convex reformulation.

Example 9. Suppose we are given the problem data:

Q =

[
1 0
0 −2

]
, g =

[
−3
0

]
, A =

[
0 1
0 −1

]
, b =

1

2

[
1
1

]
, K = R2

+.

Then Condition 2.1 is violated. To see this, note that any d satisfying Qd = λQd is of the form
d = [0; d2]. However, Ad = [d2;−d2], so if d2 6= 0, Ad 6∈ K = R2

+. For this problem data,
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h(y) = y2
1 − 2y2

2 − 3y1 and f(y) = 3y2
1 − 3y1 − 2. It is easy to compute the minimizers of f(y) over

the unit ball to be the line y1 = 1/2, with value −11/4. The constraints Ay − b ∈ K are equivalent
to −1/2 ≤ y2 ≤ 1/2.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a) h(y) ≤ −11/4 = Optf

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(b) h(y) ≤ (1− 6
√
3)/2 = Opth

Figure 1: Contour plots of h(y) over the feasible set.

Figure 1 shows that the minimizers of h(y) over just the unit ball ‖y‖ ≤ 1 lie on the boundary
at y = [1/2;±

√
3/2]. Due to the linear constraints −1/2 ≤ y2 ≤ 1/2, these points are cut off from

the feasible region. As a result, any minimizer of f(y) (i.e., the line y1 = 1/2) inside the feasible
region has norm strictly less than 1. Then by Corollary 3, the relaxation (4) is not tight.

Finally, note that if we were to change our linear constraints to −0.9 ≤ y2 ≤ 0.9, then our
relaxation would be tight, while Condition 2.1 would still not be satisfied. However, for both cases in
this example, the SDP relaxation of [50, 53, 15] strengthened with additional SOC-RLT inequalities
is tight. ♦

A variant of Condition 2.1 is instrumental in giving exact convex hull characterization of the
sets associated with the TRS (1). We discuss these further in Section 3.

2.3 Complexity of Solving Our Convex Reformulations

In this section, we explore the complexity of solving our convex relaxation/reformulation of TRS
via FOMs. Our convex relaxation/reformulation of TRS (4) and its variants have the same domain
as their original nonconvex counterparts (1) and thus are solvable via interior point methods and
standard software as long as the cone K has an explicit barrier function. However, because the
standard polynomial-time interior point methods have expensive iterations in terms of their depen-
dence on the problem dimension, here we mainly focus on FOMs with cheap iterations. We next
discuss the complexity of solving our convex reformulation of the classical TRS given by (2) via
Nesterov’s accelerated gradient descent algorithm [38], an optimal FOM for this class of problems.
Once again, the main distinction between solving (4) as opposed to (5) via FOMs lies in how the
projection onto the respective domain is handled. That is, whenever efficient projection onto the
original domain is present, our discussion below will remain applicable to the conic case (4) as well.

The reformulation (5) of classical TRS (2) (or the convex relaxation (4) of TRS (1)) is an
SOC program (convex program) and can easily be built whenever λQ is available to us. Moreover,

12



computing λQ, the minimum eigenvalue of Q, itself is a TRS with no linear term because

λQ = min
y

{
y>Qy : ‖y‖ ≤ 1

}
.

There exist many efficient algorithms for computing the minimum eigenvalue of a symmetric matrix
Q. One such algorithm that is effective for large sparse matrices is the Lanczos method [26, Chapter
10]. Implemented with a random start, this method enjoys the following probabilistic convergence
guarantee (see [34, Section 4] and [29, Section 5]): with probability at least 1−δ, the Lanczos method

correctly estimates λQ to within ε-accuracy in O
(√
‖Q‖ log(n/δ)/

√
ε
)

iterations. Furthermore,

each iteration requires only matrix-vector products, and hence takes O(N) time, where N is the
number of nonzero entries in Q. Consequently, with probability at least 1 − δ, the randomized

Lanczos method estimates λQ to within ε-accuracy in time O
(
N
√
‖Q‖ log(n/δ)/

√
ε
)

.

Given λQ, problem (5) is simply minimizing a smooth convex quadratic function f(y) with
smoothness parameter 2(λmax(Q) − λQ) ≤ 4‖Q‖ over the unit ball. Therefore, this problem can
be efficiently solved using Nesterov’s accelerated gradient descent algorithm [38], which obtains an

ε-accurate solution in O
(√
‖Q‖/

√
ε
)

iterations. This is the optimal rate for FOMs for solving

this class of problems. The major computational burden in each iteration in these FOMs is the
evaluation of the gradient of f(y), which involves simply a matrix-vector product, and hence each
iteration costs O(N) time. The only other main operation in each iteration of Nesterov’s algorithm
applied to this problem is the projection onto the Euclidean ball, and this can be done in O(n)
time. Consequently, Nesterov’s algorithm [38] applied to the optimization problem in our convex

reformulation (5) of the classical TRS runs in time O
(
N
√
‖Q‖/

√
ε
)

.

Thus, taking into account the complexity of computing λQ to build our convex reformulation
(5) and using Nesterov’s algorithm [38], we establish the following upper bound on the worst case
number of elementary operations needed:

Theorem 10. With probability 1−δ, a solution ȳ to the classical TRS (2) satisfying h(ȳ)−h(y) ≤ ε
for all y in the unit ball can be found in time

O

(
N

(√
‖Q‖√
ε

log
(n
δ

)
+

√
‖Q‖√
ε

))
= O

(
N

√
‖Q‖√
ε

log
(n
δ

))
(7)

using randomized Lanczos method to compute λQ and Nesterov’s algorithm [38].

Remark 2.6. This discussion shows that the classical TRS decomposes into two special TRS prob-
lems: one without a linear term, i.e., g = 0, making it a pure minimum eigenvalue problem, and
the other one with a convex quadratic objective function. This once again highlights the connec-
tion between the TRS and eigenvalue problems, and in fact demonstrates that, up to constant
factors, the complexity of solving the classical TRS is no worse than solving a minimum eigenvalue
problem because the complexity in Theorem 10 is essentially determined by the complexity of com-
puting minimum eigenvalue of a matrix. Rendl and Wolkowicz [43, Section 5] have empirically
observed this connection between complexity of solving classical TRS and computing the minimum
eigenvalue; our analysis complements their study with a theoretical justification. ♦
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Remark 2.7. Using a deterministic algorithm to compute λQ eliminates the probabilistic component
in Theorem 10 at the expense of a slightly worse dependence on ε and n in the iteration complexity.

Unlike other methods [23, 37, 43], our proposed method need not differentiate between the easy
case and the hard case. ♦

Remark 2.8. In practice, we will not be able to form the objective f(y) exactly, since λQ will be
computed only approximately. Let us consider an estimate γ ≈ λQ and working with the objective
fγ(y) = y>(Q − γIn)y + 2g>y. In Appendix A, we show that by using fγ(y) instead of f(y), the
error we incur is linearly dependent on the error of estimating λQ with γ, which for our purposes
is O(ε). ♦

Remark 2.9. Let us compare our bound (7) to the running time from [29]. The approach of [29,
Theorem 1] requires

O

(
N

√
Γ log (Γ/ε)√

ε
log

(
n

δ
log

(
Γ

ε

)))
elementary operations to obtain an ε-accurate solution for (2) with probability 1 − δ, where Γ =
max {2(‖Q‖+ ‖g‖), 1}. By using the convex reformulation (5) as opposed to the method of [29],
we remove (at least) a factor of log (Γ/ε) and the dependence on ‖g‖.

Our method is simpler to implement than the method of [29] as well because it decomposes
the TRS into two well-studied problems as discussed in Remark 2.6. In contrast, since [29] relies
on solving the dual SDP, at the end of its iterations, it requires additional operations to obtain
the primal solution from the dual one, and then a rounding procedure to find the solution in the
original space. Also, because the approach of [29] works in a lifted space and requires additional
transformations at the end, it is not amenable to be used within the completely online convex
optimization framework as described in [30]. ♦

3 Convexification of the Epigraph of TRS

In this section, we study the convex hull of the epigraph of TRS. In general, a tight convex relaxation
for a nonconvex optimization problem does not necessarily imply that the epigraph of the convex
relaxation is giving the exact convex hull of the epigraph of the nonconvex optimization problem.
However, in the particular case of TRS with additional conic constraints, i.e., problem (1), under a
slightly more stringent variant of Condition 2.1, we will establish that not only our convex relaxation
given by (4) is tight but also its epigraph exactly characterizes the convex hull of the epigraph of
underlying TRS (1) (see Corollary 14).

By defining a new variable xn+2 (where the variable xn+1 is reserved for later homogenization),
and moving the nonconvex function from the objective to the constraints, we can equivalently recast
(1) as minimizing xn+2 over its epigraph

Opth = min
y,xn+2

xn+2 :
‖y‖ ≤ 1

Ay − b ∈ K
h(y) = y>Qy + 2g>y ≤ xn+2

 . (8)

Since the objective xn+2 is linear, optimizing over the epigraph is equivalent to optimizing over its
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convex hull. We define the associated epigraph as

X :=

x = [y; 1;xn+2] ∈ Rn+2 :
‖y‖ ≤ 1

Ay − b ∈ K
y>Qy + 2g>y ≤ xn+2

 . (9)

Our convex hull characterizations are also SOC based. That is, as in Section 2.1, we focus
mainly on the quadratic parts of the TRS (1), namely the nonconvex quadratic y>Qy + 2g>y and
the unit ball constraint ‖y‖ ≤ 1 and provide the convexification of this set X via a single new SOC
constraint.

Our approach is a refinement of the one from Burer and Kılınç-Karzan [16]. We first summarize
the approach of [16] in Section 3.1 and then give our direct characterization in Section 3.2. As
opposed to general SOCs and their cross-sections examined in Section 3.1, we present a direct
study of conv(X) in Section 3.2 that utilizes the fact that our domain in the context of TRS is a
subset of an ellipsoid. Consequently, our analysis in Section 3.2 eliminates the need to verify several
conditions from [16] completely and allows possibilities to handle additional conic constraints under
appropriate assumptions. Finally, in Section 3.3, we extend our analysis to cover additional hollow
constraints in the domain.

3.1 Summary and Discussion of Results from [16]

We start with a number of relevant definitions and conditions and then present the main result of
[16].

A cone F+ ⊆ Rk is said to be second-order-cone representable (or SOCr) if there exists a matrix
0 6= R ∈ Rk×(k−1) and a vector r ∈ Rk such that the nonzero columns of R are linearly independent,
r 6∈ Range(R), and

F+ =
{
x : ‖R>x‖ ≤ r>x

}
. (10)

Given an SOCr cone F+, the cone F− := −F+ is also SOCr. Based on F+ from (10), we
define W := RR> − rr> and consider the union F+ ∪ (F−) = F+ ∪ (−F+) =: F . Note that F
corresponds to a nonconvex cone defined by the homogeneous quadratic inequality x>Wx ≤ 0:

F := F+ ∪ (F−) =
{
x : ‖R>x‖2 ≤ (r>x)2

}
=
{
x : x>Wx ≤ 0

}
.

We define apex(F+) = apex(F−) = apex(F) = {x : R>x = 0, r>x = 0}. Any matrix W of the
form W = RR>− rr> as described above has exactly one negative eigenvalue, and given F , we can
recover F+ by performing an eigenvalue decomposition of W , see [16, Propositions 1 and 3].

Given matrices W0,W1 ∈ Rk×k and a vector h ∈ Rk, we let Wt = (1− t)W0 + tW1 for t ∈ [0, 1],
and define the sets

F0 := {x : x>W0x ≤ 0}, F1 := {x : x>W1x ≤ 0}, Ft = {x : x>Wtx ≤ 0},
H0 := {x : h>x = 0}, H1 := {x : h>x = 1}.

Burer and Kılınç-Karzan [16] provide a general scheme to build an SOC-based convex relaxation
of F+

0 ∩F1 and establish that under appropriate conditions their relaxations are exactly describing
cone(F+

0 ∩ F1) and conv(F+
0 ∩ F1 ∩H1). Their analysis relies on the following conditions:

Condition 3.1. W0 has at least one positive eigenvalue and exactly one negative eigenvalue.
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Condition 3.2. There exists x̄ such that x̄>W0x̄ < 0 and x̄>W1x̄ < 0.

Condition 3.3. Either (i) W0 is nonsingular, (ii) W0 is singular and W1 is positive definite on
Null(W0), or (iii) W0 is singular and W1 is negative definite on Null(W0).

Conditions 3.1–3.3 ensure the existence of a maximal s ∈ [0, 1] such that Wt has a single negative
eigenvalue for all t ∈ [0, s], Wt is invertible for all t ∈ (0, s), and Ws is singular—that is, Null(Ws) is
nontrivial whenever s < 1. Then, for all Wt with t ∈ [0, s], the set F+

t is well-defined by computing
an eigenvalue decomposition of Wt. We also need the following conditions on the value of s:

Condition 3.4. When s < 1, apex(F+
s ) ∩ int(F1) 6= ∅.

Condition 3.5. When s < 1, apex(F+
s ) ∩ int(F1) ∩H0 6= ∅ or F+

0 ∩ F+
s ∩H0 ⊆ F1.

Conditions 3.1–3.5 are all that is needed to state the main result of [16]. Here, we state [16,
Theorem 1] for completeness.

Theorem 11 ([16, Theorem 1]). Suppose Conditions 3.1–3.3 are satisfied, and let s be the maximal
s ∈ [0, 1] such that Wt := (1− t)W0 + tW1 has a single negative eigenvalue for all t ∈ [0, s]. Then
cone(F+

0 ∩F1) ⊆ F+
0 ∩F+

s , and equality holds under Condition 3.4. Moreover, Conditions 3.1–3.5
imply F+

0 ∩ F+
s ∩H1 = conv(F+

0 ∩ F1 ∩H1).

These convexification results were also applied to the classical TRS (2) in [16]. In particular, it
is shown in [16, Section 7.2] that the classical TRS (2) can be reformulated in the form of

Opth = min
ỹ,xn+2

{
−x2

n+2 :
‖ỹ‖ ≤ 1

ỹ>Q̃ỹ + 2g̃>ỹ ≤ −x2
n+2

}
, (11)

where g̃ = [g; 0] and Q̃ :=

[
Q 0
0 λQ

]
is defined to ensure λmin(Q̃) = λQ and the multiplicity of λQ

in Q̃ is at least two. Note that here ỹ = [y; ỹn+1] ∈ Rn+1. Then [16] suggests to solve (11) in two
stages after the nonconvex domain in (11) is replaced by its convex hull. Specifically, [16] defines a
new variable x̃ = [ỹ;xn+1;xn+2] and the matrices

W̃0 =

In+1 0 0
0> −1 0
0 0 0

 , W̃1 =

 Q̃ g̃ 0
g̃> 0 0
0 0 1

 , (12)

which then leads to

Y :=

{
[ỹ; 1;xn+2] ∈ Rn+3 :

‖ỹ‖ ≤ 1

ỹ>Q̃ỹ + 2g̃>ỹ ≤ −x2
n+2

}

=

x̃ = [ỹ;xn+1;xn+2] ∈ Rn+3 :
x̃>W̃0x̃ ≤ 0

x̃>W̃1x̃ ≤ 0
xn+1 = 1


= F+

0 ∩ F1 ∩
{
x̃ ∈ Rn+3 : xn+1 = 1

}
, (13)

where F0 = {x̃ : x̃>W̃0x̃ ≤ 0} and F1 = {x̃ : x̃>W̃1x̃ ≤ 0}. Then the conditions of Theorem 11 are
satisfied, and we deduce that there exists some s ∈ (0, 1) ensuring

conv(F+
0 ∩ F1 ∩ {x̃ : xn+1 = 1}) = F+

0 ∩ F
+
s ∩ {x̃ : xn+1 = 1} . (14)
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While the precise value of s is not given in [16], one can show that in fact s = 1
1−λQ . We present

the verification of conditions of Theorem 11 for matrices in (12) and the derivation for this s value
in Appendix B.

Remark 3.1. The reformulation (11) of classical TRS (2) implicitly requires that Opth ≤ 0 because
of the constraint ỹ>Q̃ỹ + 2g̃>ỹ ≤ −x2

n+2 ≤ 0. For the classical TRS (2) with no additional
constraints, this is not an additional limitation because ỹ = 0 will always be a feasible solution
with objective value 0 and thus the optimum solution will have a nonpositive objective value.
However, this becomes a limitation when we want to extend such arguments for the TRS (1) with
additional conic constraints Ay − b ∈ K because Opth may no longer be nonpositive. ♦

3.2 Direct Convexification of the Epigraph of TRS

Due to Remark 3.1, we instead choose to study the epigraph of TRS (1) as in (9), which allows for
positive objective values in (8) and avoids the additional lifting of the problem Q → Q̃. To this
end, we define the matrices

W0 =

In 0 0
0> −1 0
0 0 0

 , W1 =

Q g 0
g> 0 −1

2
0 −1

2 0

 , (15)

and the corresponding sets

F+
0 =

{
x = [y;xn+1;xn+2] ∈ Rn+2 : ‖y‖2 ≤ x2

n+1, xn+1 ≥ 0
}

=
{
x ∈ Rn+2 : x>W0x ≤ 0, xn+1 ≥ 0

}
,

F1 =
{
x ∈ Rn+2 : y>Qy + 2g>y xn+1 ≤ xn+1xn+2

}
=
{
x : x>W1x ≤ 0

}
, (16)

K̂ =
{
x ∈ Rn+2 : Ay − bxn+1 ∈ K

}
,

H1 =
{
x ∈ Rn+2 : xn+1 = 1

}
.

Note that λQ < 0, and thus F1 is not convex. With these definitions, the epigraph X from (9) can
be written as

X = F+
0 ∩ F1 ∩ K̂ ∩H1.

It is mentioned in [16] that the matrices (15) do not satisfy the necessary conditions to apply
Theorem 11 directly. In particular, Condition 3.3 is violated for the choice of matrices (15). As a
result, [16, Section 7.2] reformulates the classical TRS with matrices (12) instead. In contrast, we
next show that in the special case of the classical TRS, via a direct analysis, finding the convex
hull through linear aggregation of constraints will still carry through for the matrices in (15). This
then indicates that while Condition 3.3 is sufficient, it is not necessary to obtain the convex hull
result. In fact, we show that the value of s = 1

1−λQ that works for the matrices (12) will also work

for our matrices (15). More precisely, for s = 1
1−λQ , we define

Fs =
{
x : x>Wsx ≤ 0

}
=
{
x : y>(Q− λQIn)y + 2g>yxn+1 + λQx

2
n+1 ≤ xn+1xn+2

}
, (17)

and prove that conv(X) = conv(X) = conv(F+
0 ∩F1 ∩ K̂ ∩H1) = F+

0 ∩Fs ∩ K̂ ∩H1 directly under
the following condition that handles additional conic constraints.
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Condition 3.6. There exists a vector d 6= 0 such that Qd = λQd, Ad ∈ K, and −Ad ∈ K.

Note that when K is pointed and A is full rank, Condition 3.6 assumes Ad = 0.

Remark 3.2. Condition 3.6 implies Condition 2.1. To see this, suppose d 6= 0 satisfies Condition 3.6.
Then if g>d ≤ 0, d satisfies Condition 2.1 also. Otherwise, −d will satisfy Condition 2.1. We
demonstrate that Condition 2.1 does not imply Condition 3.6 in Example 15.

Furthermore, Condition 3.6 holds whenever Condition 2.2 of [33] is satisfied because Condi-
tion 2.2 implies that there exists d such that Qd = λQd and Ad = 0 and since K is a closed convex
cone, ±Ad = 0 ∈ K as well. ♦

One of the ingredients of our convex hull result is given in the next lemma.

Lemma 12. Let Fs be defined as in (17). Then the cone Fs ∩ {x : xn+1 > 0} is convex, and the
set Fs ∩H1 where H1 is as defined in (16) is SOC representable.

Proof. Let x = [y;xn+1;xn+2] ∈ Rn+2. Note that by definition, we have

Fs ∩ {x : xn+1 > 0}

=
{
x : y>(Q− λQIn)y + 2g>yxn+1 + λQx

2
n+1 ≤ xn+1xn+2, xn+1 > 0

}
=
{
x : y>(Q− λQIn)y ≤ xn+1(xn+2 − 2g>y − λQxn+1), xn+1 > 0

}
=

{
x :

y>(Q− λQIn)y ≤ xn+1(xn+2 − 2g>y − λQxn+1),
xn+1 > 0, xn+2 − 2g>y − λQxn+1 ≥ 0

}
,

where the last equation follows because Q − λQIn � 0, we have y>(Q − λQIn)y ≥ 0 for all y and
then xn+1 > 0 implies xn+2 − 2g>y − λQxn+1 ≥ 0. As a result, xn+1 + xn+2 − 2g>y − λQxn+1 ≥ 0
holds for all x ∈ Fs ∩ {x : xn+1 > 0}. In addition, from these derivations, we immediately deduce
that the set Fs ∩ {x : xn+1 = 1} is an SOC representable set.

Theorem 13. Let F+
0 ,F1, H

1, K̂,Fs be defined as in (16) and (17). Assume that λQ < 0 and
Condition 3.6 holds. Then

conv(F+
0 ∩ F1 ∩ K̂ ∩H1) = F+

0 ∩ Fs ∩ K̂ ∩H
1.

Proof. We will first establish that conv(F+
0 ∩ F1 ∩ K̂ ∩ H1) = F+

0 ∩ Fs ∩ K̂ ∩ H1. Since the sets

F+,Fs, K̂, H1 are closed, this will immediately imply our closed convex hull result.
It is clear from the definition of Fs and Lemma 12 that conv(F+

0 ∩F1∩K̂∩H1) ⊆ F+
0 ∩Fs∩K̂∩H1.

We will prove the reverse direction.
Let x = [y;xn+1;xn+2] be a vector in F+

0 ∩ K̂ ∩H1 ∩ Fs. Then x satisfies

x>W0x ≤ 0,

Ay − bxn+1 ∈ K,
xn+1 = 1,

x>Wsx ≤ 0.
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We will show that x ∈ conv(F+
0 ∩ F1 ∩ K̂ ∩ H1). If x ∈ F1, then we are done. Suppose x 6∈ F1,

that is, x>W1x > 0. Then from the definition of s, 0 < x>W1x, and x>Wsx ≤ 0, we have

0 < s(x>W1x)− x>Wsx = −(1− s)x>W0x =
λQ

1− λQ
(x2
n+1 − ‖y‖2).

Because λQ < 0, this implies ‖y‖2 < x2
n+1. Let d be the vector given by Condition 3.6 such

that Qd = λQd, Ad ∈ K, −Ad ∈ K, and ‖d‖2 = 1. We now consider the points xη := [y +
ηd; xn+1; xn+2 + 2g>dη] for η ∈ R. We first argue that xη ∈ Fs holds for all η ∈ R. To see this,
note that

(y + ηd)>(Q− λQIn)(y + ηd) + 2g>(y + ηd)xn+1 + λQx
2
n+1

= (y + ηd)>Q(y + ηd) + 2g>(y + ηd)xn+1 + λQ(x2
n+1 − ‖y + ηd‖2)

= y>Qy + 2 y>Qd︸ ︷︷ ︸
=λQy>d

η + d>Qd︸ ︷︷ ︸
=λQ

η2 + 2g>y + 2g>dxn+1η

+ λQ(x2
n+1 − ‖y‖2 − 2y>dη − η2)

= y>Qy + 2g>yxn+1 + λQ(x2
n+1 − ‖y‖2) + 2g>dxn+1η

= y>(Q− λQIn)y + 2g>yxn+1 + λQx
2
n+1 + 2g>dxn+1η

= xn+1xn+2 + (1− λQ)(x>Wsx) + 2g>dxn+1η

≤ xn+1xn+2 + 2g>dxn+1η (18)

= xn+1(xn+2 + 2g>dη),

where the third equation follows from Qd = λQd and ‖d‖2 = 1, and the inequality holds because
x>Wsx ≤ 0 and λQ < 0. Then from the inequality (18) and the definition of Fs in (17), we conclude
xη ∈ Fs for all η ∈ R. Moreover, because ‖y‖2 < x2

n+1 and d 6= 0, there must exist δ, ε > 0 such
that ‖y − δd‖2 = ‖y + εd‖2 = x2

n+1. We define

xδ := [y − δd; xn+1; xn+2 − 2g>dδ]

xε := [y + εd; xn+1; xn+2 + 2g>dε].

Then by our choice of δ, ε, we have xδ, xε ∈ bd(F+
0 ). From s ∈ (0, 1), xη ∈ Fs for all η ∈ R, and

the relation
(xη)>Wsx

η = (1− s)[(xη)>W1x
η] + s[(xη)>W0x

η],

we conclude that xη ∈ F1 for all η such that xη ∈ bd(F+
0 ). In particular, xδ, xε ∈ F1. Furthermore,

by Condition 3.6, ±Ad ∈ K, and since K is a cone, −Adδ,Adε ∈ K; thus xδ, xε ∈ K̂. Finally,
xn+1 = 1 in both xδ, xε, and so we have xδ, xε ∈ F+

0 ∩ F1 ∩ K̂ ∩H1. Now it is easy to see that

x =
ε

δ + ε
xδ +

δ

δ + ε
xε ∈ conv(F+

0 ∩ F1 ∩ K̂ ∩H1).

As a consequence, we have the relation

F+
0 ∩ F1 ∩ K̂ ∩H1 ⊆ F+

0 ∩ Fs ∩ K̂ ∩H
1 ⊆ conv(F+

0 ∩ F1 ∩ K̂ ∩H1).

By Lemma 12, the set Fs∩H1 is SOC representable and hence convex; this implies that F+
0 ∩Fs∩

K̂ ∩ H1 is convex also. Then taking the convex hull of all terms in the above inequality gives us
the result.
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Note that the set F+
0 ∩ Fs ∩ K̂ ∩H1 is closed. We give our explicit convex hull result for TRS

below.

Corollary 14. Let X be the set defined in (9). When λQ < 0, under Condition 3.6 we have

conv(X) =

x = [y; 1;xn+2] :
‖y‖ ≤ 1

y>(Q− λQIn)y + 2g>y + λQ ≤ xn+2

Ay − b ∈ K

 .

As a result,

Opth = min
y

{
h(y) = y>Qy + 2g>y :

‖y‖ ≤ 1
Ay − b ∈ K

}
= min

y

{
f(y) = y>(Q− λQIn)y + 2g>y + λQ :

‖y‖ ≤ 1
Ay − b ∈ K

}
.

Remark 3.3. In the particular case of TRS with additional conic constraints, i.e., problem (1),
under Condition 3.6, Corollary 14 shows that not only our convex relaxation given by (4) is tight
but also we can characterize the convex hull of its epigraph exactly. Because Condition 3.6 holds
for the classical TRS, this then recovers the results from [16, Section 6.2]. ♦

As a consequence of Remark 3.2 and Corollary 14, in all of the cases where Jeyakumar and
Li [33] show the tightness of their convex reformulation, i.e., for robust least squares and robust
SOC programming, we can further give the exact convex hull characterizations of the associated
epigraphs.

We next present an example to illustrate that when Condition 3.6 is violated, we may not be
able to obtain the convex hull description. We also give a variant of this example to demonstrate
that there are cases where our convex relaxation is tight while Condition 3.6 is still violated.

Example 15. Consider the following problem with the data given by

Q =

[
1 0
0 −1

]
, g =

[
0
1

]
, A =

[
0 −1

]
, b =

1

2
, K = R+.

In this example, Condition 3.6 is violated. To see this, any vector d such that Qd = λQd is of the
form d = [0; d2]. But then Ad = −d2. Hence, if d2 > 0 then Ad 6∈ K, and similarly, if d2 < 0 then
−Ad 6∈ K.

Figure 2(c) shows that the convex relaxation for the epigraph X = F+
0 ∩ F1 ∩ K̂ ∩H1 given by

F+
0 ∩ Fs ∩ K̂ ∩ H1 does not give the convex hull of X. Note also that Condition 2.1 is satisfied

for this example by taking d = [0; 1], and so by Theorem 4, the SOC optimization problem (4) is a
tight relaxation for (1). Despite this, we cannot give the exact convex hull characterization because
Condition 3.6 is violated.

If we were to set b = 1 instead of b = 1
2 in this example, then the linear inequality would become

redundant. In this case, our convex relaxation would give the convex hull, as illustrated in Figure 3
below. Nevertheless, even in this case Condition 3.6 would still be violated. This demonstrates that
Condition 3.6 is not necessary to obtain the convex hull.

♦
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(a) X = F+
0 ∩ F1 ∩ K̂ ∩H1 (b) F+

0 ∩ Fs ∩ K̂ ∩H1 (c) X vs F+
0 ∩ Fs ∩ K̂ ∩H1

Figure 2: Plots of the epigraph of Example 15.

(a) X = F+
0 ∩ F1 ∩ K̂ ∩H1 (b) F+

0 ∩ Fs ∩ K̂ ∩H1 (c) X vs F+
0 ∩ Fs ∩ K̂ ∩H1

Figure 3: Plots of the epigraph of Example 15 without the linear inequality.
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We close this section with a simple result which highlights a particularly important structure
of the extreme points of X.

Lemma 16. Let X be defined as in (9). Assume that λQ < 0 and Condition 3.6 also holds. Then
any point [y; 1;xn+2] ∈ X is an extreme point of conv(X) only if ‖y‖ = 1.

Proof. Consider [y; 1;xn+2] ∈ conv(X) with ‖y‖ < 1. Let d 6= 0 be the vector given by Condi-
tion 3.6. Because d satisfies Qd = λQd and ±Ad ∈ K, for any ε ∈ R,

f(y + εd) = (y + εd)>(Q− λQIn)(y + εd) + 2g>(y + εd) + λQ

= [y>(Q− λQIn)y + 2g>y + λQ] + 2g>dε

≤ xn+2 + 2g>dε.

Now choose ε+ > 0 such that ‖y + ε+d‖ = 1, and define x+ = [y + ε+d; 1;xn+2 + 2g>dε+]. Then
we have x+ ∈ X, since ‖y + ε+d‖ = 1 guarantees f(y + ε+d) = h(y + ε+d) ≤ xn+2 + 2g>dε+. Note
that we will have ε+ > 0 and finite since ‖y‖ < 1 and d 6= 0. Similarly, choosing ε− > 0 such that
‖y − ε+d‖ = 1, x− = [y − ε−d; 1;xn+2 − 2g>dε−] ∈ X also. Then the point x will be a convex
combination of x+, x− ∈ X with weights ε−/(ε− + ε+) and ε+/(ε− + ε+) respectively.

3.3 Additional Hollow Constraints

In this section we explore additional constraints y ∈ R included in the domain of TRS (1), where
R = Rn \ P and P is a given possibly nonconvex set. More precisely, we characterize the convex
hull of the set X ∩ R̂ = F+

0 ∩ F1 ∩ K̂ ∩H1 ∩ R̂ where F+
0 , F1, K̂, and H1 are as defined in (16),

and R̂ := {[y;xn+1;xn+2] : y ∈ R}.
We impose the following condition on R = Rn \ P.

Condition 3.7. The set P ⊆ Rn satisfies P ⊆ {y : ‖y‖ < 1, Ay − b ∈ K}.

Consider the case where Ay − b ∈ K is non-existent. If P =
⋃m
i=1Ei is a union of ellipsoids

Ei =
{
y : y>Wiy + 2b>i y + ci ≤ 0

}
where each Wi � 0, then Condition 3.7 can be checked by

solving

vi = min
y

{
1− ‖y‖2 : y>Wiy + 2b>i y + ci ≤ 0

}
.

That is, Ei satisfies Condition 3.7 if and only if vi > 0. The computation of vi as stated requires
solving a nonconvex quadratic program, which is nothing but a classical TRS after an appropriate
affine transformation of the variables is applied. Hence, our developments from Section 2 give a
tight SOC reformulation for it. In addition, the inhomogeneous S-lemma [7, Proposition 3.5.2]
ensures that the associated semidefinite relaxation is tight. Thus, Condition 3.7 can be verified
efficiently when P is a union of ellipsoids.

Hollow constraints have been studied in TRS literature under conditions similar to Condi-
tion 3.7. Most notably, the interval-bounded TRS [8, 11, 42, 49, 53] corresponds to the case when
R is a single lower-bounded quadratic constraint y>Dy ≥ l, where D � 0. The interval-bounded
TRS is used to generate new steps in the context of the trust-region algorithm where minimum step
lengths are enforced. In the case of interval-bounded TRS, Condition 3.7 is automatically satisfied.
It is shown in a number of these papers [42, 53] that the natural SDP relaxation of interval-bounded
TRS is tight. More recently, Yang et al. [52] showed the tightness of the SDP relaxation when the
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hollow set P is the disjoint union of ellipsoids which do not intersect the boundary of the unit ball
{y : ‖y‖ ≤ 1}. As opposed to these results on tight SDP relaxations, Bienstock [10] has established
that the general quadratically constrained quadratic programming problem

min
y

{
y>Q0y + 2g>0 y : y>Qiy + 2g>i y + ci ≤ 0, i = 1, . . . ,m

}
is polynomially solvable for a fixed number of constraints m using a weak feasibility oracle, under
the assumption that at least one quadratic constraint y>Qiy + 2g>i y + ci ≤ 0 is strictly convex.
In a similar vein, Bienstock and Michalka [12] also study TRS with additional ellipsoidal hollow
constraints. Instead of giving the convex hull, [12] explores conditions that allow for polynomial
solvability using a combinatorial enumeration technique and thus is able to cover cases where the
set P may not be contained in the unit ball. On a related subject, [11] studies the characterization
and separation of valid linear inequalities that convexify the epigraph of a convex, differentiable
function whose domain is restricted to the complement of a convex set defined by linear or convex
quadratic inequalities.

We note that these papers [8, 10, 11, 12, 42, 49, 52, 53] consider the more general case of
minimizing an arbitrary quadratic objective, which can be convex, over a domain given by possibly
nonconvex quadratic constraints. On the other hand, our result applies to the special case of
minimizing a nonconvex quadratic, i.e., λQ < 0, over the unit ball, a convex quadratic constraint.
As a result, we are able to relax the assumptions that the set P is generated by quadratics and the
ellipsoidal hollows are disjoint. Specifically, we show that under Condition 3.7, our main convex
hull result, i.e.,Theorem 13, obtained without the constraint y ∈ R is tight.

Theorem 17. Let X be defined in (9) and R = Rn \ P be a set satisfying Condition 3.7. Assume
that λQ < 0 and Condition 3.6 also holds. Then

conv


[y; 1;xn+2] :

‖y‖ ≤ 1
y ∈ R

Ay − b ∈ K
y>Qy + 2g>y ≤ xn+2


 = conv(X).

Proof. Denoting R̂ := {[y;xn+1;xn+2] : y ∈ R}, our aim is to prove conv(X ∩ R̂) = conv(X). We
trivially have conv(X∩R̂) ⊆ conv(X). To prove conv(X∩R̂) ⊇ conv(X), note that from Lemma 16,
any point x = [y; 1;xn+2] ∈ Ext(conv(X)) satisfies ‖y‖ = 1. Also, by Condition 3.7, the constraint
x ∈ R̂ does not remove any of the points with ‖y‖ = 1, in particular, all of the extreme points
of X are also in R̂. Thus, Ext(X ∩ R̂) = Ext(X). Moreover, because ‖y‖ ≤ 1, the only recessive
direction of conv(X) is [0; 0; 1], i.e., Rec(conv(X)) = cone([0; 0; 1]). Note [0; 0; 1] is also a recessive
direction in R̂. Then the result follows from

conv(X ∩ R̂) = conv(Ext(X ∩ R̂)) + Rec(X ∩ R̂)

= conv(Ext(X)) + Rec(X) = conv(X).

Theorem 17 has the following immediate implication.
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Corollary 18. When λQ < 0 and l ≤ 1, an exact convex reformulation of the interval-bounded
TRS

min
y

{
y>Qy + 2g>y : l ≤ ‖y‖ ≤ 1

}
is given by (5).

Corollary 18 gives a convex reformulation for the interval-bounded TRS with λQ < 0, as do
results from [8, 42, 49, 53]. These results were often derived as a consequence of a simultaneously
diagonalizable assumption of the underlying matrices associated with TRS, or through SDP re-
laxations. In contrast to this, Condition 3.7 and Theorem 17 highlights the important geometric
aspect, and provide a convex reformulation without additional variables. In addition, Corollary 18
together with Theorem 10 establish the convergence rate of FOMs to solve interval-bounded TRS
as opposed to specialized algorithms suggested in [42].

Remark 3.4. While preparing our first revision, an overlap of our original submission with a recent
paper was brought to our attention. The first version of our work [31] was published online on
March 10, 2016 on archives Optimization Online and arXiv and sent to a journal for possible
publication. Five months after this date, on August 20, 2016, a paper by Jiulin Wang and Yong
Xia [51] has appeared in online form on the journal Optimization Letters. It appears that this paper
was submitted to Optimization Letters on March 21, 2016, 11 days after our paper was posted in
public domain. To the best of our knowledge, Wang and Xia’s paper [51] was not available in public
domain or available to us before August 20, 2016. The paper [51] has significant overlap with a part
of the results in our paper. In particular, [51, Theorem 1] is a corollary of results in our original
submission, see [31, Theorem 2.7 and Theorem 3.8]. Moreover, we were the first ones to note and
discuss the use of Nesterov’s accelerated gradient descent algorithm in the context of TRS and
demonstrate that it achieves the best-known theoretical convergence rate to solve TRS and some of
its variants. Specifically, [31, Section 2.2] along with the conclusion of [31, Theorem 3.8] in the case
of interval-bounded TRS covers not only [51, Section 3] but also highlights that there is no need to
modify Nesterov’s accelerated gradient descent algorithm to solve exact convex reformulation of the
interval-bounded TRS. Therefore, the convergence rate established in [31, Section 2.2] did already
imply [51, Theorem 4]. To the best of our understanding, the main results in [51] are [51, Theorems
1 and 4]; whereas we also study SOC-based convex reformulations and convex hull descriptions of
TRS and its variants with additional conic constraints and/or general hollow constraints see [31,
Sections 2.1 and 3]. ♦

Acknowledgments

The authors wish to thank the review team for their constructive feedback that improved the
presentation of the material in this paper. This research is supported in part by NSF grant CMMI
1454548.

References

[1] S. Adachi, S. Iwata, Y. Nakatsukasa, and A. Takeda. Solving the trust region subproblem by
a generalized eigenvalue problem. METR 2015-14, University of Tokyo, April 2015, 2015.

[2] F. Alizadeh. Interior point methods in semidefinite programming with applications to combi-
natorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

24



[3] A. Beck. Convexity properties associated with nonconvex quadratic matrix functions and
applications to quadratic programming. Journal of Optimization Theory and Applications,
142(1):129, 2009.

[4] A. Beck and Y. C. Eldar. Strong duality in nonconvex quadratic optimization with two
quadratic constraints. SIAM Journal on Optimization, 17(3):844–860, 2006.

[5] A. Ben-Tal and D. den Hertog. Hidden conic quadratic representation of some nonconvex
quadratic optimization problems. Mathematical Programming, 143(1):1–29, 2014.

[6] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University
Press. Princeton Series in Applied Mathematics, Philadelphia, PA, USA, 2009.

[7] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. Technical report,
August 2015. http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf.

[8] A. Ben-Tal and M. Teboulle. Hidden convexity in some nonconvex quadratically constrained
quadratic programming. Mathematical Programming, 72(1):5163, 1996.

[9] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimization.
SIAM Review, 53(3):464–501, 2011.

[10] D. Bienstock. A note on polynomial solvability of the CDT problem. SIAM Journal on
Optimization, 26(1):488–498, 2016.

[11] D. Bienstock and A. Michalka. Cutting-planes for optimization of convex functions over non-
convex sets. SIAM Journal on Optimization, 24(2):643–677, 2014.

[12] D. Bienstock and A. Michalka. Polynomial solvability of variants of the trust-region sub-
problem. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 380–390, 2014.

[13] C. Buchheim, M. De Santis, L. Palagi, and M. Piacentini. An exact algorithm for nonconvex
quadratic integer minimization using ellipsoidal relaxations. SIAM Journal on Optimization,
23(3):1867–1889, 2013.

[14] S. Burer. A gentle, geometric introduction to copositive optimization. Mathematical Program-
ming, 151(1):89–116, 2015.

[15] S. Burer and K. M. Anstreicher. Second-order-cone constraints for extended trust-region
subproblems. SIAM Journal on Optimization, 23(1):432–451, 2013.
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A Working with Approximate Eigenvalues

Consider the classical TRS (2) and its convex reformulation (5). In practice, we will actually
form the objective y>(Q − γIn)y + 2g>y + γ where γ ≈ λQ is an approximation. Due to this
imprecision, we must ensure that the objective remains convex. To do this, suppose that we solve
the minimum eigenvalue problem of Q to within ε-accuracy, and obtain an approximate solution
λQ− ε < λ < λQ+ ε. Subtracting ε from the inequality, we obtain λQ−2ε < λ− ε < λQ. To ensure
the convexity of the objective, we set γ := λ − ε < λQ which is an underestimate of λQ, ensuring
that Q− γIn � 0. Let η := λQ − γ which satisfies 0 < η < 2ε, and

fη(y) := y>(Q− γIn)y + 2g>y = y>(Q− (λQ − η)In)y + 2g>y = f(y) + η‖y‖2.

Based on this scheme, we next explore the effects of solving

min
y
{fη(y) : ‖y‖ ≤ 1} (19)

instead of (5). Let y∗ be an optimal solution to the true convex reformulation (5). Let yη be
an optimal solution to (19) and ȳη be an approximate optimal solution. Then we can bound the
objective value f(ȳη) as

f(ȳη)− f(y∗) = fη(ȳ
η)− fη(y∗) + η(‖y∗‖2 − ‖ȳη‖2) ≤ fη(ȳη)− fη(yη) + η,

where the last inequality follows from ‖y∗‖ ≤ 1 and ‖ȳη‖ ≤ 1. Thus, the convergence rate of ȳη to
the optimum of (5) is controlled by the size of η and the convergence rate for solving (19).

We can also control the distance between yη and y∗. Because fη(y) is a 2η-strongly convex
function, we have

η ‖y∗ − yη‖2 ≤ fη(y∗)− fη(yη) +∇fη(yη)>(yη − y∗)
= f(y∗)− f(yη) +∇fη(yη)>(yη − y∗) + η(‖y∗‖2 − ‖yη‖2)

≤ η(‖y∗‖2 − ‖yη‖2),

where the last inequality follows from the optimality of yη for the problem (19), i.e., ∇fη(yη)>(yη−
y∗) ≤ 0, and the optimality of y∗ for the problem (5). Then ‖yη‖ ≤ ‖y∗‖. Also, from ‖y∗‖ ≤ 1,
we deduce that if ‖yη‖ = 1, then y∗ = yη. When ‖yη‖ < 1, the only constraint in our domain is
inactive, and thus we conclude that yη is also optimum for the unconstrained minimization problem.
Then the optimality conditions leads to ∇fη(yη) = 0. This implies that yη = −(Q+(η−λQ)In)−1g.
Moreover, y∗ satisfies the optimality condition ∇f(y∗)>(y∗ − y) ≤ 0 for all y such that ‖y‖ ≤ 1.
Since our domain is the unit ball, this is true if and only if ∇f(y∗) = −αy∗, for some α ≥ 0.
Therefore, y∗ = −(Q + (α − λQ)In)†g, where A† denotes the pseudo-inverse of a matrix A. If we
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denote the ordered eigenvalues of Q by qi and their corresponding orthonormal eigenvectors by ui,
we obtain

‖yη‖2 =
n∑
i=1

(u>i g)2

(qi − qn + η)2
and ‖y∗‖2 =

n∑
i=1

(u>i g)2

(qi − qn + α)2
.

Note that it is possible to have α = 0 and qi − qn = 0. However, this happens only when u>i g = 0,
so we follow the convention 0

0 = 0. After some simple algebra, we have the equality

‖y∗‖2 − ‖yη‖2 =
n∑
i=1

(u>i g)2

(qi − qn + α)2
−

n∑
i=1

(u>i g)2

(qi − qn + η)2

= (η − α)
n∑
i=1

(u>i g)2 2qi − 2qn + η + α

(qi − qn + α)2(qi − qn + η)2
.

Since ‖y∗‖ ≥ ‖yη‖ and η > 0, we must have η ≥ α. Also, η ≤ α is possible only if yη = y∗. Hence,
we have

‖y∗‖2 − ‖yη‖2 = (η − α)+

n∑
i=1

(u>i g)2 2qi − 2qn + (η − α)+ + 2α

(qi − qn + α)2(qi − qn + (η − α)+ + α)2

≤ (η − α)+

n∑
i=1

(u>i g)2 2qi − 2qn + (η − α)+ + 2α

(qi − qn + α)4

= 2(η − α)+

n∑
i=1

(u>i g)2

(qi − qn + α)3
+ (η − α)2

+

n∑
i=1

(u>i g)2

(qi − qn + α)4
.

This shows that ‖y∗‖2 − ‖yη‖2 ≤ φη + o(η), where φ = 2(y∗)>(Q+ (α− λQ)In)†y∗. Therefore,

‖yη − y∗‖2 ≤ ‖y∗‖2 − ‖yη‖2 ≤ φη + o(η).

Thus yη has error O(
√
η), which is expected since the error in the objective function is O(η), and

the objective function is quadratic.

B Computation of s value

Recall the notation ỹ = [y; ỹn+1] and x̃ = [ỹ;xn+1;xn+2]. For the set Y in (13), Condition 3.1 is
satisfied by construction, and Condition 3.2 is satisfied by taking x̃′ = [y′; ỹ′n+1;x′n+1;x′n+2] with
y′ = 0, ỹ′n+1 = 1

2 , x′n+1 = 1 and x′n+2 = 0. This ensures that for any t ∈ [0, 1], we have

W̃t = (1− t)W̃0 + tW̃1 =

(1− t)In+1 + tQ̃ tg̃ 0
tg̃> t− 1 0
0> 0 t

 , (20)

and (x̃′)>W̃tx̃
′ = (x̃′)>((1 − t)W̃0 + tW̃1)x̃′ < 0. Thus, by the variational characterization of

eigenvalues, W̃t has at least one negative eigenvalue. Also, Condition 3.3(ii) is now satisfied.
We next show that the precise value of s is simply determined by λQ.

Lemma 19. Suppose λQ < 0. Consider W̃0, W̃1 as defined in (12). Then, the maximal t ∈ [0, 1]
that ensures that the matrix W̃t in (20) has a single negative eigenvalue for all t ∈ [0, s], is invertible
for all t ∈ (0, s), and W̃s is singular is given by

s =
1

1− λQ
∈ (0, 1).
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Proof. Define ŝ := 1
1−λQ ∈ (0, 1). From (20), note that W̃t has a block structure and s is such that

it equals to the smallest positive t ensuring

Vt := (1− t)
[
In+1 0

0 −1

]
+ t

[
Q̃ g̃
g̃> 0

]
is singular.

Let λn+2,t, λn+1,t be the two smallest eigenvalues of Vt, and ρn+1,t, ρn,t be the two smallest
eigenvalues of (1− t)In+1 + tQ̃. Notice that (1− t)In+1 + tQ̃ has the same eigenvectors as Q̃, and
the eigenvalues are simply scaled and shifted from those of Q, thus the minimum eigenvalue of
(1− t)In+1 + tQ̃ is 1− t + tλQ for t ∈ (0, 1). Also, by construction, the multiplicity of λQ in Q̃ is
at least two, so the multiplicity of the minimum eigenvalue of (1− t)In+1 + tQ̃ is also at least two,
therefore ρn+1,t = ρn,t = 1− t+ tλQ.

For any t ∈ (0, 1), the last diagonal entry of Vt is negative implying Vt is not positive semidefinite,
hence λn+2,t < 0. However, for t ∈ (0, ŝ), ρn+1,t > 0, and from Cauchy’s interlacing theorem for
eigenvalues [32, Theorem 4.3.17], we obtain

λn+2,t < 0 < ρn+1,t = λn+1,t = ρn,t, t ∈ (0, ŝ).

Thus, for any t ∈ (0, ŝ), the matrix Vt, and hence Ŵt, is invertible, and Ŵt has exactly one negative

eigenvalue. When t = ŝ, ρn+1,ŝ = ρn,ŝ = 1 − ŝ + ŝλQ = 0. By recalling that Q̃ :=

[
Q 0
0 λQ

]
and g̃ = [g; 0], we immediately observe that Vŝ, and thus W̃ŝ, is singular since Vŝ has eigenvector
[y; ỹn+1;xn+1] = [0; 1; 0] with eigenvalue 0. Also,

λn+2,ŝ < 0 = ρn+1,ŝ = λn+1,ŝ = ρn,ŝ

so W̃ŝ has exactly one negative eigenvalue. Moreover, for any t > ŝ, the minimum eigenvalue of
(1− t)In + tQ is 1− t+ tλQ < 0. Hence, for any t > ŝ, λn+2,t ≤ ρn+1,t = λn+1,t = ρn,t < 0 follows

from [32, Theorem 4.3.17]. As a result Vt, and thus Ŵt, has at least two negative eigenvalues.
Therefore, s = ŝ = 1

1−λQ is the correct value.

Choosing x̃′′ = [y′′; ỹ′′n+1;x′′n+1;x′′n+2] with y′′ = 0, ỹ′′n+1 = 1, x′′n+1 = 0 and x′′n+2 = 0 ensures

that x̃′′ ∈ Null(W̃s), (x̃′′)>W̃1x̃
′′ < 0, and x′′n+1 = 0. This simultaneously verifies Conditions 3.4

and 3.5.
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