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Abstract

A new stable continuous-in-time semi-discrete parametric finite element method
for Willmore flow is introduced. The approach allows for spontaneous curvature
and area difference elasticity (ADE) effects, which are important for many applica-
tions, in particular, in the context of membranes. The method extends ideas from
Dziuk and the present authors to obtain an approximation that allows for a tangen-
tial redistribution of mesh points, which typically leads to better mesh properties.
Moreover, we consider volume and surface area preserving variants of these schemes
and, in particular, we obtain stable approximations of Helfrich flow. We also discuss
fully discrete variants and present several numerical computations.
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1 Introduction

The Willmore energy for hypersurfaces in the three-dimensional Euclidean space is a fun-
damental geometric functional, which appears in differential geometry, in optimal surface
modelling, in surface restoration, and in many physical models for shells and membranes,
see Willmore (1993); Welch and Witkin (1994); Clarenz et al. (2004); Canham (1970);
Helfrich (1973); Seifert (1997). The Willmore energy is given as the integrated square of
the mean curvature over the hypersurface, and hence it is a functional formulated with
the help of second derivatives of a parameterization. It turns out that the first variation,
which leads to the Willmore equation, is of fourth order, and is thus difficult to solve.
Also evolution problems involving the Willmore functional have been studied extensively
in the literature. The L2–gradient flow of the Willmore functional leads to the so-called
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Willmore flow, which is a highly nonlinear fourth order parabolic equation. Many ques-
tions related to the Willmore energy, the Willmore equation and the Willmore flow are
still open or have only been addressed recently. We refer to Simon (1993); Willmore
(1993); Kuwert and Schätzle (2001); Simonett (2001); Bauer and Kuwert (2003); Droske
and Rumpf (2004); Kuwert and Schätzle (2004); Bobenko and Schröder (2005); Deckel-
nick et al. (2005); Dall’Acqua et al. (2008); Dziuk (2008); Schygulla (2012); Marques and
Neves (2014) for more information on analytical and numerical aspects in this context.

Defining κ as the mean curvature, i.e. the sum of the principle curvatures, of a hyper-
surface Γ in R

3 the Willmore energy is given as

E(Γ) := 1
2

∫

Γ

κ
2 dH2, (1.1)

where H2 denotes the two-dimensional Hausdorff measure. Realistic models for biological
cell membranes lead to energies more general than (1.1). In the original derivation of
Helfrich (1973) a possible asymmetry in the membrane, originating e.g. from a different
chemical environment, was taken into account. This led Helfrich to the energy

Eκ(Γ) :=
1
2

∫

Γ

(κ − κ)2 dH2, (1.2)

where κ ∈ R is the given so-called spontaneous curvature. In the general model the
integrated Gaussian curvature over the hypersurface also appears. However, as we will
only consider closed surfaces, this contribution is constant within a fixed topological class,
due to the Gauss-Bonnet theorem, and we hence will neglect this contribution.

In the context of biological membranes further aspects play a role, which we would like
to take into account in this paper. Due to osmotic pressure effects between the inside and
the outside of the membrane the total enclosed volume is preserved, and hence a volume
constraint has to be taken into account when minimizing (1.2), or when considering
the L2–gradient flow of (1.2). Biological membranes are typically incompressible with a
fixed number of molecules in the membrane. This leads to the total surface area of the
membrane being fixed, which gives rise to another constraint for the functional (1.2) and
for related flows. Biological membranes consist of two layers of lipids and it is difficult
to exchange molecules between the two layers. In membrane theories two possibilities are
considered to take this into account. Both variants use the fact, that to leading order,
the actual area difference between the two layers can be described with the help of the
integrated mean curvature over the hypersurface, see Seifert (1997). If one assumes that
no lipid molecules swap from one layer to the other, a hard constraint on the integrated
mean curvature is enforced so that the area difference in this case is fixed. Another
possibility is to energetically penalize deviations from an optimal area difference. In this
case we obtain the energy

Eκ,β(Γ) := Eκ(Γ) +
β

2
(M(Γ)−M0)

2 (1.3a)

with

M(Γ) :=

∫

Γ

κ dH2 (1.3b)
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and given constants β ∈ R≥0, M0 ∈ R. Models employing the energy (1.3a) are often
called area difference elasticity (ADE) models, see Seifert (1997). The L2–gradient flow
of Eκ,β is given as

V = −∆s κ + (1
2
(κ − κ)2 + Aκ)κ − |∇s ~ν|2 (κ − κ + A), (1.4)

where V is the normal velocity of Γ, ~ν is a unit normal of Γ, A = β(M(Γ)−M0) and |∇s ~ν|
is the Frobenius norm of the Weingarten map. We will also look at volume preserving
flows, as well as volume and surface area preserving flows. In the case β = 0, the latter is
called Helfrich flow.

One of the first numerical approaches for Willmore flow was the work of Mayer and
Simonett (2002), who used a finite difference scheme and numerically found an example
where the Willmore flow can drive a smooth surface to a singularity in finite time. The
first variational method for Willmore flow, based on a mixed method, was introduced
by Rusu (2005) and has also been studied by Clarenz et al. (2004). Droske and Rumpf
(2004) used a level set method to solve the Willmore flow equation, Deckelnick and Dziuk
(2006) gave an error analysis for the Willmore flow of graphs and Deckelnick et al. (2015)
analyzed a C1 finite element method for Willmore flow of graphs.

There also has been considerable work on numerical aspects of more involved models
like Helfrich flow or models involving spontaneous curvature and ADE effects. We only
mention the work of Du et al. (2004); Barrett et al. (2008b); Bonito et al. (2010); Elliott
and Stinner (2010).

A fundamental new approach for Willmore flow of hypersurfaces in three dimensions
was a parametric finite element approach introduced by Dziuk (2008). The semi-discrete
scheme of Dziuk (2008) has the property that it satisfies a stability bound. Despite
the stability bound, the approach of Dziuk often leads to bad mesh properties for fully
discrete variants. However, an approach of Barrett et al. (2008a) for geometric evolution
problems uses the tangential degrees of freedom in the parameterization to obtain good
mesh properties. This approach has been used for Willmore and Helfrich flow in Barrett
et al. (2008b). However, no stability bound for this scheme seems to be possible. Hence, it
would be desirable to combine the approaches of Dziuk (2008) and Barrett et al. (2008a,b)
to obtain a stable semi-discrete parametric finite element approximation with better mesh
properties. It is the goal of this paper to introduce and analyze such a method and to
present several numerical computations based on this approach.

The outline of this paper is at follows. In Section 2 we state several weak formulations
using the calculus of PDE constrained optimization. These weak formulations allow for
stable semi-discrete finite element approximations, which are derived and analyzed in
Section 3. In Section 4 we state fully discrete finite element approximations and state
an existence and uniqueness result. Section 5 states how we solve the resulting algebraic
equations and in Section 6 we present several numerical computations for Willmore and
Helfrich flow with possibly spontaneous curvature and area difference elasticity effects.
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2 Weak formulations/Calculus of PDE constrained

optimization

We assume that (Γ(t))t∈[0,T ] is a sufficiently smooth evolving hypersurface without bound-
ary that is parameterized by ~x(·, t) : Υ → R

3, where Υ ⊂ R
3 is a given reference manifold,

i.e. Γ(t) = ~x(Υ, t). We assume also that Γ(t) is oriented with a sufficiently smooth unit
normal ~ν(t). We define the velocity

~V(~z, t) := ~xt(~q, t) ∀ ~z = ~x(~q, t) ∈ Γ(t) , (2.1)

and V := ~V . ~ν is the normal velocity of the evolving hypersurface Γ(t). Moreover, we
define the space-time surface

GT :=
⋃

t∈[0,T ]

Γ(t)× {t} . (2.2)

Let κ denote the mean curvature of Γ(t), where we have adopted the sign convention
given by the formula

∆s
~id = κ ~ν =: ~κ on Γ(t) , (2.3)

where ∆s = ∇s .∇s is the Laplace–Beltrami operator on Γ(t), with ∇s = (∂s1, ∂s2 , ∂s3)
T

denoting the surface gradient on Γ(t). In addition, we define the surface deformation
tensor

D(~χ) := ∇s ~χ+ (∇s ~χ)
T , (2.4)

where ∇s ~χ =
(

∂sj χi

)3

i,j=1
.

We define the following time derivative that follows the parameterization ~x(·, t) of
Γ(t). Let

∂◦t ζ = ζt + ~V .∇ ζ ∀ ζ ∈ H1(GT ) ; (2.5)

where we stress that this definition is well-defined, even though ζt and ∇ ζ do not make
sense separately for a function ζ ∈ H1(GT ). For later use we note that

d

dt
〈ψ, ζ〉Γ(t) = 〈∂◦t ψ, ζ〉Γ(t) + 〈ψ, ∂◦t ζ〉Γ(t) +

〈

ψ ζ,∇s . ~V
〉

Γ(t)
∀ ψ, ζ ∈ H1(GT ) , (2.6)

see Lemma 5.2 in Dziuk and Elliott (2013). Here 〈·, ·〉Γ(t) denotes the L2–inner product
on Γ(t). It immediately follows from (2.6) that

d

dt
H2(Γ(t)) =

〈

∇s . ~V, 1
〉

Γ(t)
=
〈

∇s
~id,∇s

~V
〉

Γ(t)
. (2.7)

Moreover, on denoting the interior of Γ(t) by Ω(t), we recall that

d

dt
L3(Ω(t)) =

〈

~V , ~ν
〉

Γ(t)
, (2.8)

where L3 denotes the Lebesgue measure in R
3, and where here, and from now on, ~ν(t) is

the outward unit normal to Ω(t).
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In this section we would like to derive a weak formulation for the L2–gradient flow
of Eκ,β(Γ(t)). To this end, we need to consider variations of the energy with respect to
Γ(t) = ~x(Υ, t). For any given ~χ ∈ [H1(Γ(t))]3 and for any ε ∈ (0, ε0) for some ε0 ∈ R>0,
let

Γε(t) := {~Ψ(~z, ε) : ~z ∈ Γ(t)} , where ~Ψ(~z, 0) = ~z and ∂~Ψ
∂ε
(~z, 0) = ~χ(~z) ∀~z ∈ Γ(t) .

(2.9)

Then the first variation of H2(Γ(t)) with respect to Γ(t) in the direction ~χ ∈ [H1(Γ(t))]3

is given by
[

δ

δΓ
H2(Γ(t))

]

(~χ) =
d

dε
H2(Γε(t)) |ε=0

= lim
ε→0

1
ε

[

H2(Γε(t))−H2(Γ(t))
]

=
〈

∇s
~id,∇s ~χ

〉

Γ(t)
, (2.10)

see e.g. the proof of Lemma 1 in Dziuk (2008). For later use we note that generalized
variants of (2.10) also hold. Namely, we have that

d

dε
〈wε, 1〉Γε(t)

|ε=0=
〈

w∇s
~id,∇s ~χ

〉

Γ(t)
∀ w ∈ L∞(Γ(t)) , (2.11)

where wε ∈ L∞(Γε(t)) is defined by wε(~Ψ(~z, ε)) = w(~z) for all ~z ∈ Γ(t). This definition
of wε yields that ∂

0
ε w = 0, where

∂0ε w(~z) =
d

dε
wε(~Ψ(~z, ε)) |ε=0 ∀ ~z ∈ Γ(t). (2.12)

Of course, (2.11) is the first variation analogue of (2.6) with w = ψ ζ and ∂◦t ψ = ∂◦t ζ = 0.
Similarly, it holds that

d

dε
〈~wε, ~νε〉Γε(t)

|ε=0=
〈

(~w . ~ν)∇s
~id,∇s ~χ

〉

Γ(t)
+
〈

~w, ∂0ε ~ν
〉

Γ(t)
∀ ~w ∈ [L∞(Γ(t))]3 , (2.13)

where ∂0ε ~w = ~0 and ~νε(t) denotes the unit normal on Γε(t). In this regard, we note
the following result concerning the variation of ~ν, with respect to Γ(t), in the direction
~χ ∈ [H1(Γ(t))]3:

∂0ε ~ν = −[∇s ~χ]
T ~ν on Γ(t) ⇒ ∂◦t ~ν = −[∇s

~V]T ~ν on Γ(t) , (2.14)

see Schmidt and Schulz (2010, Lemma 9). Finally, we note that for ~η ∈ [H1(Γ(t))]3 it
holds that

d

dε

〈

∇s
~id,∇s ~ηε

〉

Γε(t)
|ε=0= 〈∇s . ~η,∇s . ~χ〉Γ(t)

+
3
∑

l,m=1

[

〈(~ν)l (~ν)m∇s (~η)m,∇s (~χ)l〉Γ(t) − 〈(∇s)m (~η)l, (∇s)l (~χ)m〉Γ(t)
]

= 〈∇s . ~η,∇s . ~χ〉Γ(t) + 〈∇s ~η,∇s ~χ〉Γ(t) −
〈

(∇s ~η)
T , D(~χ) (∇s

~id)T
〉

Γ(t)
, (2.15)

5



where ∂0ε ~η = ~0, see Lemma 2 and the proof of Lemma 3 in Dziuk (2008). Here we observe
that our notation is such that ∇s ~χ = (∇Γ ~χ)

T , with ∇Γ ~χ = (∂si χj)
3
i,j=1 defined as in

Dziuk (2008). It follows from (2.15) that

d

dt

〈

∇s
~id,∇s ~η

〉

Γ(t)
=
〈

∇s . ~η,∇s . ~V
〉

Γ(t)
+
〈

∇s ~η,∇s
~V
〉

Γ(t)
−
〈

(∇s ~η)
T , D(~V) (∇s

~id)T
〉

Γ(t)

∀ ~η ∈ {~ξ ∈ H1(GT ) : ∂
◦
t
~ξ = ~0} . (2.16)

In the seminal work Dziuk (2008), the author introduced a stable semi-discrete finite
element approximation of Willmore flow, which is based on the discrete analogue of the

identity d
dt
E(Γ(t)) = 1

2
d
dt
〈~κ, ~κ〉Γ(t) = −

〈

~fΓ, ~V
〉

Γ(t)
, where

〈

~fΓ, ~χ
〉

Γ(t)
= 〈∇s ~κ,∇s ~χ〉Γ(t) + 〈∇s . ~κ,∇s . ~χ〉Γ(t) + 1

2

〈

|~κ|2∇s
~id,∇s ~χ

〉

Γ(t)

−
〈

(∇s ~κ)
T , D(~χ) (∇s

~id)T
〉

Γ(t)
∀ ~χ ∈ [H1(Γ(t))]3 . (2.17)

In the recent paper Barrett et al. (2015a) the present authors were able to extend (2.17),
and the corresponding semi-discrete approximation, to the case of nonzero β and κ in
(1.3a). The approximation is based on a suitable weak formulation, which can be ob-
tained by considering the first variation of (1.3a) subject to the side constraint, the weak
formulation of (2.3),

〈~κ, ~η〉Γ(t) +
〈

∇s
~id,∇s ~η

〉

Γ(t)
= 0 ∀ ~η ∈ [H1(Γ(t))]3 . (2.18)

To this end, one defines the Lagrangian

L(Γ(t), ~κ, ~y) = 1
2
〈~κ − κ ~ν, ~κ − κ ~ν〉Γ(t) + β

2

(

〈~κ, ~ν〉Γ(t) −M0

)2

− 〈~κ, ~y〉Γ(t) −
〈

∇s
~id,∇s ~y

〉

Γ(t)
(2.19)

with ~y ∈ [H1(Γ(t))]3 being a Lagrange multiplier for (2.18). Then, on using ideas from the
adjoint approach of the calculus of PDE constrained optimization, see e.g. Hinze et al.
(2009), one can compute the direction of steepest descent ~fΓ of Eκ,β(Γ(t)), under the
constraint (2.18). To achieve this, we consider variations Γε(t) of Γ(t) as in (2.9). We
then define ~κε such that

〈~κε, ~η〉Γε(t)
+
〈

∇s
~id,∇s~η

〉

Γε(t)
= 0 ∀ ~η ∈ [H1(Γε(t))]

3, (2.20)

and for a fixed ~y ∈ [H1(Γ(t))]3 we define ~yε such that ∂0ε ~y = ~0. It now follows from (2.19),
(2.20), (1.3a,b) and (1.2) that for any ~y ∈ [H1(Γ(t))]3

Eκ,β(Γε(t)) = L(Γε(t), ~κε, ~yε) . (2.21)
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We now want to compute the direction of steepest descent ~fΓ of Eκ,β(Γ(t)), where the

curvature, ~κ = κ ~ν, is given by (2.18). This means that ~fΓ needs to fulfill

〈

~fΓ, ~χ
〉

Γ(t)
= −

[

δ

δΓ
Eκ,β(Γ(t))

]

(~χ) ∀ ~χ ∈ [H1(Γ(t))]3 . (2.22)

Using (2.21) and (2.11)–(2.15) one computes

−
〈

~fΓ, ~χ
〉

Γ(t)
= −〈∇s ~y,∇s ~χ〉Γ(t) − 〈∇s . ~y,∇s . ~χ〉Γ(t) +

〈

(∇s ~y)
T , D(~χ) (∇s

~id)T
〉

Γ(t)

+ 1
2

〈

[|~κ − κ ~ν|2 − 2 (~y . ~κ)]∇s
~id,∇s ~χ

〉

Γ(t)
− (A− κ)

〈

~κ, [∇s ~χ]
T ~ν
〉

Γ(t)

+ A
〈

(~κ . ~ν)∇s
~id,∇s ~χ

〉

Γ(t)
+
〈

~κ − κ ~ν, ∂0ε ~κ
〉

Γ(t)

+ A
〈

∂0ε ~κ, ~ν
〉

Γ(t)
−
〈

∂0ε ~κ, ~y
〉

Γ(t)
∀ ~χ ∈ [H1(Γ(t))]3 ,

where
A(t) = β

(

〈~κ, ~ν〉Γ(t) −M0

)

.

Choosing
~y = ~κ + (A− κ) ~ν (2.23)

leads to

−
〈

~fΓ, ~χ
〉

Γ(t)
=− 〈∇s ~y,∇s ~χ〉Γ(t) − 〈∇s . ~y,∇s . ~χ〉Γ(t) +

〈

(∇s ~y)
T , D(~χ) (∇s

~id)T
〉

Γ(t)

+ 1
2

〈

[|~κ − κ ~ν|2 − 2 (~y . ~κ)]∇s
~id,∇s ~χ

〉

Γ(t)
− (A− κ)

〈

~κ, [∇s ~χ]
T ~ν
〉

Γ(t)

+ A
〈

(~κ . ~ν)∇s
~id,∇s ~χ

〉

Γ(t)
∀ ~χ ∈ [H1(Γ(t))]3 , (2.24)

see Barrett et al. (2015a) for a similar computation.

In the context of the numerical approximation of the L2–gradient flow of (1.3a), this
gives rise to the weak formulation: Given Γ(0), for all t ∈ (0, T ] find Γ(t) = ~x(Υ, t), where
~x(t) ∈ [H1(Γ(t))]3, and ~y(t) ∈ [H1(Γ(t))]3 such that

〈

~V , ~χ
〉

Γ(t)
− 〈∇s ~y,∇s ~χ〉Γ(t) − 〈∇s . ~y,∇s . ~χ〉Γ(t) +

〈

(∇s ~y)
T , D(~χ) (∇s

~id)T
〉

Γ(t)

+ 1
2

〈

[|~κ − κ ~ν|2 − 2 (~y . ~κ)]∇s
~id,∇s ~χ

〉

Γ(t)
− (A− κ)

〈

~κ, [∇s ~χ]
T ~ν
〉

Γ(t)

+ A
〈

(~κ . ~ν)∇s
~id,∇s ~χ

〉

Γ(t)
= 0 ∀ ~χ ∈ [H1(Γ(t))]3 , (2.25a)

〈~y, ~η〉Γ(t) +
〈

∇s
~id,∇s ~η

〉

Γ(t)
= (A− κ) 〈~ν, ~η〉Γ(t) ∀ ~η ∈ [H1(Γ(t))]3 , (2.25b)

where ~κ = ~y − (A− κ) ~ν and A(t) = β
(

〈~κ, ~ν〉Γ(t) −M0

)

.

Under discretization, (2.25a,b) does not have good mesh properties. Note that this is in
contrast to the situation in Barrett et al. (2014), where a local incompressibility condition
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for the membrane leads to the constraint ∇s . ~V = 0 on Γ(t). This condition arises for
vesicles and membranes, as considered in Barrett et al. (2014), because the membrane is
considered as a surface fluid. Hence, a surface (Navier-)Stokes equation has to be solved as
part of the problem, which, in particular, contains an incompressibility condition for the
velocity on the surface, see Barrett et al. (2014) for details. The position of the membrane
is then advected with the fluid velocity, which leads to the incompressibility condition
∇s . ~V = 0 on Γ(t). This then enforces local area preservation, and on the discrete level
means that the polyhedral approximation of Γ(t) always remains well-behaved. However,
discretizations of (2.25a,b) for the gradient flow situation exhibit mesh movements that
are almost exclusively in the normal direction, which in general leads to bad meshes. To
see this, we note that (2.25a,b) is the weak formulation of

~V =
[

−∆s κ + (1
2
(κ − κ)2 + Aκ)κ − |∇s ~ν|2 (κ − κ + A)

]

~ν , (2.26)

which agrees with Barrett et al. (2008b, (1.12)). A derivation of (2.26), in the context of
surfaces with boundary, can be found in Barrett et al. (2015c).

Hence, similarly to Barrett et al. (2012), it is natural to consider the Lagrangian

L(Γ(t),κ, ~y) = 1
2
〈κ − κ,κ − κ〉Γ(t)+β

2

(

〈κ, 1〉Γ(t) −M0

)2

−〈κ ~ν, ~y〉Γ(t)−
〈

∇s
~id,∇s ~y

〉

Γ(t)
,

(2.27)
which corresponds to minimizing (1.3a) under the side constraint

〈κ ~ν, ~η〉Γ(t) +
〈

∇s
~id,∇s ~η

〉

Γ(t)
= 0 ∀ ~η ∈ [H1(Γ(t))]3 . (2.28)

A similar computation to the above leads to the following weak formulation of the L2–
gradient flow of (1.3a). Given Γ(0), for all t ∈ (0, T ] find Γ(t) = ~x(Υ, t), where ~x(t) ∈
[H1(Γ(t))]3, and ~y(t) ∈ [H1(Γ(t))]3 such that

〈

~V . ~ν, ~χ . ~ν
〉

Γ(t)
− 〈∇s ~y,∇s ~χ〉Γ(t) − 〈∇s . ~y,∇s . ~χ〉Γ(t) +

〈

(∇s ~y)
T , D(~χ) (∇s

~id)T
〉

Γ(t)

+ 1
2

〈

[(~y . ~ν −A)2 − 2 (~y . ~ν − A) (~y . ~ν − A+ κ)]∇s
~id,∇s ~χ

〉

Γ(t)

+
〈

[~y . ~ν − A+ κ] ~y, [∇sχ]
T ~ν
〉

Γ(t)
= 0 ∀ ~χ ∈ [H1(Γ(t))]3 , (2.29a)

〈~y . ~ν, ~η . ~ν〉Γ(t) +
〈

∇s
~id,∇s ~η

〉

Γ(t)
= (A− κ) 〈~ν, ~η〉Γ(t) ∀ ~η ∈ [H1(Γ(t))]3 , (2.29b)

where A(t) = β
(

〈κ, 1〉Γ(t) −M0

)

, on noting from (2.28) and (2.29b) that κ = ~y . ~ν+κ−A,
can be formulated in terms of ~y as

A(t) =
β

1 + βH2(Γ(t))

[

〈~y . ~ν + κ, 1〉Γ(t) −M0

]

. (2.29c)

The two-dimensional analogue of (2.29a,b), in the case β = κ = 0, has been considered
in Barrett et al. (2012), where the corresponding semi-discrete approximation leads to
equidistributed polygonal approximations of Γ(t). This equidistribution property is a
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direct consequence of the discrete analogue of (2.29b), and has been exploited by the
authors in a series of papers, see e.g. Barrett et al. (2007, 2010, 2011, 2012). In three
space dimensions the discrete analogue of (2.29b) leads to so-called “conformal polyhedral
surfaces”, which means that meshes in general stay well-behaved, e.g. no coalescence
occurs.

Surprisingly, in three space dimensions discretizations of (2.29a,b) do not work as
well in practice. A common problem for numerical simulations of such discretizations
is that the tangential part of the discrete variant of the Lagrange multiplier ~y grows
unboundedly. It is for this reason that we consider a family of schemes with a relaxation
parameter θ ∈ [0, 1], where θ = 1 corresponds to the discrete variants of (2.25a,b), while
θ = 0 corresponds to a variant with (2.29b), so that good mesh properties can be expected
in practice. Hence the natural side constraint to consider is

〈θ ~κ + (1− θ) (~κ . ~ν) ~ν, ~η〉Γ(t) +
〈

∇s
~id,∇s ~η

〉

Γ(t)
= 0 ∀ ~η ∈ [H1(Γ(t))]3 , (2.30)

and we will present the precise details in the discrete setting below.

3 Semi-discrete finite element approximation

The parametric finite element spaces are defined as follows, see also Barrett et al. (2008a).
Let Υh(t) ⊂ R

3 be a two-dimensional polyhedral surface, i.e. a union of non-degenerate
triangles with no hanging vertices (see Deckelnick et al. (2005, p. 164)), approximating

the reference manifold Υ. In particular, let Υh =
⋃J

j=1 o
h
j , where {ohj }Jj=1 is a fam-

ily of mutually disjoint open triangles. Then let V h(Υh) := {~χ ∈ C(Υh,R3) : ~χ |ohj
is linear ∀ j = 1, . . . , J}. We consider a family of parameterizations ~Xh(·, t) ∈ V h(Υh)

with ~Xh(Υh, t) = Γh(t). In particular, let Γh(t) =
⋃J

j=1 σ
h
j (t), where {σh

j (t)}Jj=1 is a family

of mutually disjoint open triangles with vertices {~qhk (t)}Kk=1. Then let

V h(Γh(t)) := {~χ ∈ [C(Γh(t))]3 : ~χ |σh
j

is linear ∀ j = 1, . . . , J}
=: [W h(Γh(t))]3 ⊂ [H1(Γh(t))]3 ,

where W h(Γh(t)) ⊂ H1(Γh(t)) is the space of scalar continuous piecewise linear functions
on Γh(t), with {χh

k(·, t)}Kk=1 denoting the standard basis of W h(Γh(t)), i.e.

χh
k(~q

h
l (t), t) = δkl ∀ k, l ∈ {1, . . . , K} , t ∈ [0, T ] . (3.1)

For later purposes, we also introduce πh(t) : C(Γh(t)) → W h(Γh(t)), the standard inter-
polation operator at the nodes {~qhk(t)}Kk=1, and similarly ~πh(t) : [C(Γh(t))]3 → V h(Γh(t)).
In case that Γh(t) encloses an open set we define Ωh(t) to be the interior of Γh(t), so that
Γh(t) = ∂Ωh(t).

We denote the L2–inner product on Γh(t) by 〈·, ·〉Γh(t). In addition, for piecewise
continuous functions, with possible jumps across the edges of {σh

j }Jj=1, we also introduce
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the mass lumped inner product

〈η, ζ〉hΓh(t) :=
1
3

J
∑

j=1

H2(σh
j )

3
∑

k=1

(η . ζ)((~qhjk)
−) ,

where {~qhjk}3k=1 are the vertices of σh
j , and where we define η((~qhjk)

−) := lim
σh
j ∋~p→~qhjk

η(~p). We

naturally extend this definition to vector and tensor functions.

Following Dziuk and Elliott (2013, (5.23)), we define the discrete material velocity for
~z ∈ Γh(t) by

~Vh(~z, t) :=

KΓ
∑

k=1

[

d

dt
~qhk(t)

]

χh
k(~z, t) . (3.2)

Then, similarly to (2.5), we define

∂◦,ht ζ = ζt + ~Vh .∇ ζ ∀ ζ ∈ H1(Gh
T ) , where Gh

T :=
⋃

t∈[0,T ]

Γh(t)× {t} . (3.3)

For later use, we also introduce the finite element spaces

W (Gh
T ) := {χ ∈ C(Gh

T ) : χ(·, t) ∈ W h(Γh(t)) ∀ t ∈ [0, T ]} ,
WT (Gh

T ) := {χ ∈ W (Gh
T ) : ∂

◦,h
t χ ∈ C(Gh

T )} .

We recall from Dziuk and Elliott (2013, Lem. 5.6) that

d

dt

∫

σh
j (t)

ζ dH2 =

∫

σh
j (t)

∂◦,ht ζ + ζ∇s . ~Vh dH2 ∀ ζ ∈ H1(σh(t)) , j ∈ {1, . . . , JΓ} , (3.4)

which immediately implies that

d

dt
〈η, ζ〉Γh(t) = 〈∂◦,ht η, ζ〉Γh(t) + 〈η, ∂◦,ht ζ〉Γh(t) + 〈η ζ,∇s . ~Vh〉Γh(t) ∀ η, ζ ∈ WT (Gh

T ) .

(3.5)
Similarly, we recall from Barrett et al. (2015b, Lem. 3.1) that

d

dt
〈η, ζ〉hΓh(t) = 〈∂◦,ht η, ζ〉hΓh(t)+〈η, ∂◦,ht ζ〉hΓh(t)+〈η ζ,∇s . ~Vh〉hΓh(t) ∀ η, ζ ∈ WT (Gh

T ) . (3.6)

Let ~νh denote the the outward unit normal to Γh(t). For later use, we introduce the
vertex normal function ~ωh(·, t) ∈ V h(Γh(t)) with

~ωh(~qhk(t), t) :=
1

H2(Λh
k(t))

∑

j∈Θh
k

H2(σh
j (t)) ~ν

h |σh
j (t)

,

where for k = 1, . . . , K we define Θh
k := {j : ~qhk(t) ∈ σh

j (t)} and set Λh
k(t) := ∪j∈Θh

k
σh
j (t).

Here we note that
〈

~z, w ~νh
〉h

Γh(t)
=
〈

~z, w ~ωh
〉h

Γh(t)
∀ ~z ∈ V h(Γh(t)) , w ∈ W h(Γh(t)) . (3.7)
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In addition, we introduce Qh
θ by setting

Qh
θ (~q

h
k (t), t) = θ Id + (1− θ)

~ωh(~qhk (t), t)⊗ ~ωh(~qhk(t), t)

|~ωh(~qhk (t), t)|2
∀ k ∈ {1, . . . , K} , (3.8)

where here and throughout we assume that ~ωh(~qhk(t), t) 6= ~0 for k = 1, . . . , K and t ∈ [0, T ].
Only in pathological cases could this assumption be violated, and in practice this never
occurred. We note that

〈

Qh
θ ~z, ~v

〉h

Γh(t)
=
〈

~z,Qh
θ ~v
〉h

Γh(t)
and

〈

Qh
θ~z, ~ω

h
〉h

Γh(t)
=
〈

~z, ~ωh
〉h

Γh(t)
(3.9)

for all ~z, ~v ∈ V h(Γh(t)).

Similarly to the continuous setting in (2.24,b), we consider the first variation of the
discrete energy

Eh
κ,β(Γ

h(t)) := 1
2

〈

|~κh − κ ~νh|2, 1
〉h

Γh(t)
+ β

2

(

〈

~κh, ~νh
〉

Γh(t)
−M0

)2

(3.10)

subject to the side constraint

〈

Qh
θ ~κ

h, ~η
〉h

Γh(t)
+
〈

∇s
~id,∇s ~η

〉

Γh(t)
= 0 ∀ ~η ∈ V h(Γh(t)) . (3.11)

When taking variations of (3.11), we need to compute variations of the discrete vertex
normal ~ωh. To this end, for any given ~χ ∈ V h(Γh(t)) we introduce Γh

ε (t) as in (2.9) and
∂0,hε defined by (2.12), both with Γ(t) replaced by Γh(t). We then observe that it follows
from (3.7) with w = 1 and the discrete analogue of (2.11) that

〈

~z, ∂0,hε ~ωh
〉h

Γh(t)
=
〈

~z, ∂0,hε ~νh
〉h

Γh(t)
+
〈

(~z . (~νh − ~ωh))∇s
~id,∇s ~χ

〉h

Γh(t)

∀ ~z, ~χ ∈ V h(Γh(t)) . (3.12)

An immediate consequence is that

〈

~z, ∂◦,ht ~ωh
〉h

Γh(t)
=
〈

~z, ∂◦,ht ~νh
〉h

Γh(t)
+
〈

(~z . (~νh − ~ωh))∇s
~id,∇s

~Vh
〉h

Γh(t)
∀ ~z ∈ V h(Γh(t)) .

(3.13)
In addition, we note that

∂0,hε πh

[(

~ξ .
~ωh

|~ωh|

)(

~η .
~ωh

|~ωh|

)]

= πh
[

~Gh(~ξ, ~η) . ∂0,hε ~ωh
]

on Γh(t) ∀ ~ξ, ~η ∈ V h(Γh(t)) ,

(3.14)

where

~Gh(~ξ, ~η) = ~πh

[

1

|~ωh|2

(

(~ξ . ~ωh) ~η + (~η . ~ωh) ~ξ − 2
(~η . ~ωh) (~ξ . ~ωh)

|~ωh|2 ~ωh

)]

. (3.15)
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It follows that
~Gh(~ξ, ~η) . ~ωh = 0 ∀ ~ξ, ~η ∈ V h(Γh(t)) . (3.16)

Now we define the Lagrangian

Lh(Γh(t), ~κh, ~Y h) = 1
2

〈

|~κh − κ ~νh|2, 1
〉h

Γh(t)
+ β

2

(

〈

~κh, ~νh
〉

Γh(t)
−M0

)2

−
〈

Qh
θ ~κ

h, ~Y h
〉h

Γh(t)

−
〈

∇s
~id,∇s

~Y h
〉

Γh(t)
(3.17)

with ~Y h ∈ V h(Γh(t)) being a Lagrange multiplier for (3.11). Similarly to (2.22), (2.24)
and (2.25a,b), we obtain the L2–gradient flow of Eh

κ,β(Γ
h(t)) subject to the side constraint

(3.11) by setting [ δ
δΓh E

h
κ,β](~χ) = −

〈

Qh
θ
~Vh, ~χ

〉h

Γh(t)
for all ~χ ∈ V h(Γh(t)), where ~κh is

given by (3.11). Once again, on recalling the calculus of PDE constrained optimization,
we want to compute the first variation of Eh

κ,β with the help of the Lagrangian Lh. For

fixed ε ∈ (0, ε0), we now choose ~κhε ∈ V h(Γh
ε (t)) solving

〈

Qh
θ,ε ~κ

h
ε , ~η
〉h

Γh
ε (t)

+
〈

∇s
~id,∇s ~η

〉

Γh
ε (t)

= 0 ∀ ~η ∈ V h(Γh
ε (t)),

where Qh
θ,ε is now based on ~ωh

ε which satisfies (3.7) with Γh(t) replaced by Γh
ε (t). Then

with ~Y h
ε ∈ V h(Γh

ε (t)) satisfying ∂
0,h
ε

~Y h = ~0 for any ~Y h ∈ V h(Γh(t)), we obtain that

Eh
κ,β(Γ

h
ε (t)) = Lh(Γh

ε (t), ~κ
h
ε ,
~Y h
ε ),

and we compute the first variation of the left hand side by differentiating the right hand
side, see e.g. Hinze et al. (2009). Choosing ~Y h ∈ V h(Γh(t)) such that

〈~κh + (Ah − κ)~νh −Qh
θ
~Y h, ~ξ〉hΓh(t) = 0 ∀ ~ξ ∈ V h(Γh(t)),

which is the analogue of (2.23), we obtain similarly as in the continuous case the following
semi-discrete finite element approximation of Willmore flow with spontaneous curvature
and ADE effects. Given Γh(0), for all t ∈ (0, T ] find Γh(t) and ~κh(t), ~Y h(t) ∈ V h(Γh(t))
such that
〈

Qh
θ
~Vh, ~χ

〉h

Γh(t)
−
〈

∇s
~Y h,∇s ~χ

〉

Γh(t)
−
〈

∇s . ~Y
h,∇s . ~χ

〉

Γh(t)

+
〈

(∇s
~Y h)T , D(~χ) (∇s

~id)T
〉

Γh(t)
+ 1

2

〈[

|~κh − κ ~νh|2 − 2 ~Y h . Qh
θ ~κ

h
]

∇s
~id,∇s ~χ

〉h

Γh(t)

− (Ah − κ)
〈

~κh, [∇s ~χ]
T ~νh

〉h

Γh(t)
+ Ah

〈

(~κh . ~νh)∇s
~id,∇s ~χ

〉

Γh(t)

− (1− θ)
〈

( ~Gh(~Y h, ~κh) . ~νh)∇s
~id,∇s ~χ

〉h

Γh(t)

+ (1− θ)
〈

~Gh(~Y h, ~κh), [∇s ~χ]
T ~νh

〉h

Γh(t)
= 0 ∀ ~χ ∈ V h(Γh(t)) , (3.18a)

〈

~κh + (Ah − κ) ~νh −Qh
θ
~Y h, ~ξ

〉h

Γh(t)
= 0 ∀ ~ξ ∈ V h(Γh(t)) , (3.18b)

〈

Qh
θ ~κ

h, ~η
〉h

Γh(t)
+
〈

∇s
~id,∇s ~η

〉

Γh(t)
= 0 ∀ ~η ∈ V h(Γh(t)) , (3.18c)
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where ~Gh(~Y h, ~κh) ∈ V h(Γh(t)) is defined as in (3.15), and

Ah(t) = β
(

〈

~κh, ~νh
〉

Γh(t)
−M0

)

. (3.18d)

In deriving (3.18a–d) from the variation of Lh mentioned above, we have made use of the
obvious discrete variants of (2.11)–(2.15), and recalled (3.12), (3.14) and (3.16). We note
that (3.18b) and (3.7) imply that

~κh = ~πh [Qh
θ
~Y h]− (Ah − κ) ~ωh . (3.19)

In addition, we note that the last two terms on the left hand side of (3.18a) vanishes on
the continuous level, since there

~G(~ξ, ~η) = (~ξ . ~ν) ~η + (~η . ~ν) ~ξ − 2 (~η . ~ν) (~ξ . ~ν) ~ν , (3.20)

and so ~G(~y, ~κ) = ~0.

In order to be able to consider area and volume preserving variants of (3.18a–d), we
introduce Lagrange multipliers λh(t), µh(t) ∈ R for the constraints

d

dt
H2(Γh(t)) =

〈

∇s . ~Vh, 1
〉

Γh(t)
= 0 and

d

dt
L3(Ωh(t)) =

〈

~Vh, ~νh
〉

Γh(t)
= 0 , (3.21)

where we recall (2.7) and (2.8), and where Ωh(t) denotes the interior of Γh(t). Hence, on
writing (3.18a) as

〈

Qh
θ
~Vh, ~χ

〉h

Γh(t)
=
〈

∇s
~Y h,∇s ~χ

〉

Γh(t)
+
〈

~fh, ~χ
〉h

Γh(t)
∀ ~χ ∈ V h(Γh(t)) ,

we consider
〈

Qh
θ
~Vh, ~χ

〉h

Γh(t)
=
〈

∇s
~Y h,∇s ~χ

〉

Γh(t)
+
〈

~fh, ~χ
〉h

Γh(t)
+ λh

〈

Qh
θ ~κ

h, ~χ
〉h

Γh(t)
+ µh

〈

~ωh, ~χ
〉h

Γh(t)

(3.22)
for all ~χ ∈ V h(Γh(t)), where (λh(t), µh(t))T ∈ R

2 solve the symmetric linear system





〈

Qh
θ ~κ

h, ~κh
〉h

Γh(t)

〈

~κh, ~ωh
〉h

Γh(t)
〈

~κh, ~ωh
〉h

Γh(t)

〈

~ωh, ~ωh
〉h

Γh(t)





(

λh

µh

)

=







−
〈

∇s
~Y h,∇s ~κ

h
〉

Γh(t)
−
〈

~fh, ~κh
〉h

Γh(t)

−
〈

∇s
~Y h,∇s ~ω

h
〉

Γh(t)
−
〈

~fh, ~ωh
〉h

Γh(t)






.

(3.23)

In order to motivate (3.23) we firstly note, on recalling (3.9) and (3.18c), that

〈

Qh
θ
~Vh, ~κh

〉h

Γh(t)
=
〈

Qh
θ ~κ

h, ~Vh
〉h

Γh(t)
= −

〈

∇s
~id,∇s

~Vh
〉

Γh(t)
= −

〈

∇s . ~Vh, 1
〉

Γh(t)
.

(3.24)
Secondly, it follows from (3.9) and (3.7) that

〈

Qh
θ
~Vh, ~ωh

〉h

Γh(t)
=
〈

~Vh, ~ωh
〉h

Γh(t)
=
〈

~Vh, ~νh
〉

Γh(t)
. (3.25)
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Hence the solution to (3.23) is such that (3.21) is satisfied, on noting (3.9). Clearly, the
determinant of the matrix in (3.23), on recalling (3.9) and that θ ∈ [0, 1], is equal to

〈

Qh
θ ~κ

h, ~κh
〉h

Γh(t)

〈

~ωh, ~ωh
〉h

Γh(t)
−
(

〈

Qh
θ ~κ

h, ~ωh
〉h

Γh(t)

)2

≥
〈

~ωh, ~ωh
〉h

Γh(t)

(

〈

Qh
θ ~κ

h, ~κh
〉h

Γh(t)
−
〈

Qh
θ ~κ

h, Qh
θ ~κ

h
〉h

Γh(t)

)

=
〈

~ωh, ~ωh
〉h

Γh(t)
θ (1− θ)

(

〈

~κh, ~κh
〉h

Γh(t)
−
〈

~κh .~ωh

|~ωh| ,
~κh .~ωh

|~ωh|

〉h

Γh(t)

)

≥ 0 , (3.26)

with equality in the first inequality if and only if Qh
θ ~κ

h and ~ωh are linearly depen-

dent, i.e. if and only if ~κh and ~ωh are linearly dependent. Hence the linear system
(3.23) has a unique solution unless ~κh is a scalar multiple of ~ωh. Of course, the nat-
ural discretization of volume preserving Willmore flow is given by (3.22) with µh =

−
(

〈

∇s
~Y h,∇s ~ω

h
〉

Γh(t)
+
〈

~fh, ~ωh
〉h

Γh(t)

)

/
〈

~ωh, ~ωh
〉h

Γh(t)
and λh = 0, together with

(3.18b–d). Similarly, the natural discretization of surface area preserving Willmore flow is

given by (3.22) with λh = −
(

〈

∇s
~Y h,∇s ~κ

h
〉

Γh(t)
+
〈

~fh, ~κh
〉h

Γh(t)

)

/
〈

Qh
θ ~κ

h, ~κh
〉h

Γh(t)
and

µh = 0, together with (3.18b–d).

The following theorem establishes that (3.18a–d) is indeed a weak formulation for the
L2–gradient flow of Eh

κ,β(Γ
h(t)) subject to the side constraint (3.11). We will also show

that for θ = 0 the scheme produces conformal polyhedral surfaces. Here we recall from
Barrett et al. (2008a, §4.1) that the surface Γh(t) is a conformal polyhedral surfaces if

〈

∇s
~id,∇s ~η

〉

Γh(t)
= 0 ∀ ~η ∈

{

~ξ ∈ V h(Γh(t)) : ~ξ(~qhk (t)) . ~ω
h(~qhk (t), t) = 0, k = 1, . . . , K

}

.

(3.27)
We recall from Barrett et al. (2008a) that conformal polyhedral surfaces exhibit good
meshes. In particular, coalescence of vertices in practice never occurred. Moreover, we
recall that the two-dimensional analogue of conformal polyhedral surfaces are equidis-
tributed polygonal curves, see Barrett et al. (2007, 2011).

Theorem. 3.1. Let θ ∈ [0, 1] and let {(Γh, ~κh, ~Y h)(t)}t∈[0,T ] be a solution to (3.18a–d).
Then

d

dt
Eh

κ,β(Γ
h(t)) = −

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
≤ 0 . (3.28)

Moreover, if θ = 0 then Γh(t) is a conformal polyhedral surface for all t ∈ (0, T ].

Proof. Taking the time derivative of (3.18c) with ∂◦,ht ~η = ~0, yields that

〈

∂◦,ht (Qh
θ ~κ

h), ~η
〉h

Γh(t)
+
〈

(Qh
θ ~κ

h . ~η)∇s
~id,∇s

~Vh
〉h

Γh(t)
+
〈

∇s . ~Vh,∇s . ~η
〉

Γh(t)

+
〈

∇s
~Vh,∇s ~η

〉

Γh(t)
−
〈

D(~Vh) (∇s
~id)T , (∇s ~η)

T
〉

Γh(t)
= 0 , (3.29)
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where we have noted (3.6) and the discrete version of (2.16). Choosing ~χ = ~Vh in (3.18a),

~η = ~Y h in (3.29) and combining yields, on noting the discrete variant of (2.14), that

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
+ 1

2

〈

[|~κh − κ ~νh|2 − 2 ~Y h . Qh
θ ~κ

h + 2Ah (~κh . ~νh)]∇s
~id,∇s

~Vh
〉h

Γh(t)

+ (Ah − κ)
〈

~κh, ∂◦,ht ~νh
〉h

Γh(t)
+
〈

∂◦,ht (Qh
θ ~κ

h), ~Y h
〉h

Γh(t)
+
〈

(Qh
θ ~κ

h . ~Y h)∇s
~id,∇s

~Vh
〉h

Γh(t)

− (1− θ)

(

〈

( ~Gh(~Y h, ~κh) . ~νh)∇s
~id,∇s

~Vh
〉h

Γh(t)
−
〈

~Gh(~Y h, ~κh), [∇s
~Vh]T ~νh

〉h

Γh(t)

)

= 0 ,

(3.30)

which implies, on recalling (3.7), that

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
+ 1

2

〈

|~κh − κ ~νh|2∇s
~id,∇s

~Vh
〉h

Γh(t)
− κ

〈

~κh, ∂◦,ht ~νh
〉h

Γh(t)

+
〈

∂◦,ht ~κh, Qh
θ
~Y h − Ah ~ωh

〉h

Γh(t)
+
〈

∂◦,ht (Qh
θ ~κ

h), ~Y h
〉h

Γh(t)
−
〈

∂◦,ht ~κh, Qh
θ
~Y h
〉h

Γh(t)

+ Ah

[

〈

(~κh . ~νh)∇s
~id,∇s

~Vh
〉h

Γh(t)
+
〈

∂◦,ht ~κh, ~νh
〉h

Γh(t)
+
〈

~κh, ∂◦,ht ~νh
〉h

Γh(t)

]

− (1− θ)

(

〈

( ~Gh(~Y h, ~κh) . ~νh)∇s
~id,∇s

~Vh
〉h

Γh(t)
−
〈

~Gh(~Y h, ~κh), [∇s
~Vh]T ~νh

〉h

Γh(t)

)

= 0 .

(3.31)

On recalling (3.18d) and (3.6), we observe that

Ah

[

〈

(~κh . ~νh)∇s
~id,∇s

~Vh
〉h

Γh(t)
+
〈

∂◦,ht ~κh, ~νh
〉h

Γh(t)
+
〈

~κh, ∂◦,ht ~νh
〉h

Γh(t)

]

= β

2

d

dt

(

〈

~κh, ~νh
〉

Γh(t)
−M0

)2

. (3.32)

Combining (3.31), (3.32) and (3.19), on noting (3.7) and (3.10), yields that

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
+

d

dt
Eh

κ,β(Γ
h(t)) + (1− θ) Π = 0 ,

where

Π :=

〈

~κh . ∂◦,ht ~ωh,
~Y h . ~ωh

|~ωh|2

〉h

Γh(t)

+

〈

~Y h . ∂◦,ht ~ωh,
~κh . ~ωh

|~ωh|2
〉h

Γh(t)

− 2

〈

(~κh . ~ωh) (~Y h . ~ωh),
~ωh . ∂◦,ht ~ωh

|~ωh|4

〉h

Γh(t)

−
〈

( ~Gh(~Y h, ~κh) . ~νh)∇s
~id,∇s

~Vh
〉h

Γh(t)

+
〈

~Gh(~Y h, ~κh), [∇s
~Vh]T ~νh

〉h

Γh(t)
. (3.33)
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It remains to show that Π as defined in (3.33) vanishes. To see this, we observe that it
follows from (3.16), (3.15) and (3.13) that

Π =
〈

( ~Gh(~Y h, ~κh), ∂◦,ht ~ωh
〉h

Γh(t)
+
〈

( ~Gh(~Y h, ~κh) . (~ωh − ~νh)∇s
~id,∇s

~Vh
〉h

Γh(t)

−
〈

( ~Gh(~Y h, ~κh), ∂◦,ht ~νh
〉h

Γh(t)
= 0 . (3.34)

This proves the desired result (3.28).

If θ = 0 then it immediately follows from (3.18c) that (3.27) holds. Hence Γh(t) is a
conformal polyhedral surface.

Remark. 3.1. It is clear from the above proof that on replacing 〈Qh
θ
~Vh, ~χ〉hΓh(t) in (3.18a)

with 〈~Vh, ~χ〉hΓh(t) we obtain a slightly different family of schemes that is also stable. I.e.

solutions to this scheme satisfy d
dt
Eh

κ,β(Γ
h(t)) = −〈~Vh, ~Vh〉hΓh(t) in place of (3.28). How-

ever, the proof of the following theorem demonstrates that in order to satisfy the first
conservation property in (3.21), it is crucial to keep the left hand side of (3.22) as stated.

Theorem. 3.2. Let θ ∈ [0, 1] and let {(Γh, ~κh, ~Y h, λh, µh)(t)}t∈[0,T ] be a solution to (3.22),
(3.18b–d) and (3.23). Then it holds that

d

dt
Eh

κ,β(Γ
h(t)) = −

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
≤ 0, (3.35)

as well as
d

dt
H2(Γh(t)) = 0 and

d

dt
L3(Ωh(t)) = 0 , (3.36)

where Ωh(t) denotes the region bounded by Γh(t). Moreover, if θ = 0 then Γh(t) is a
conformal polyhedral surface for all t ∈ (0, T ].

Proof. Choosing ~χ = ~ωh in (3.22) yields, on recalling (3.9), that

〈

~Vh, ~ωh
〉h

Γh(t)
=
〈

∇s
~Y h,∇s ~ω

h
〉

Γh(t)
+
〈

~fh, ~ωh
〉h

Γh(t)
+ λh

〈

~κh, ~ωh
〉h

Γh(t)
+ µh

〈

~ωh, ~ωh
〉h

Γh(t)

= 0 , (3.37)

where we have observed (3.23) in deducing the second equality. Similarly, choosing ~χ = ~κh

in (3.22) yields that

〈

Qh
θ
~Vh, ~κh

〉h

Γh(t)
=
〈

∇s
~Y h,∇s ~κ

h
〉

Γh(t)
+
〈

~fh, ~κh
〉h

Γh(t)
+ λh

〈

Qh
θ ~κ

h, ~κh
〉h

Γh(t)

+ µh
〈

~ωh, ~κh
〉h

Γh(t)
= 0 . (3.38)

It follows from (3.24), (3.25), (3.38) and (3.37), that (3.21) holds, which yields the desired
results (3.36). The stability result (3.35) directly follows from the proof of Theorem 3.1.

In particular, choosing ~χ = ~Vh in (3.22), on noting (3.37) and (3.38), yields that

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
=
〈

∇s
~Y h,∇s

~Vh
〉

Γh(t)
+
〈

~fh, ~Vh
〉h

Γh(t)
.
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Combining this with (3.29) yields that (3.30) holds, and the rest of the proof proceeds as
that of Theorem 3.1. Finally, as in the proof of Theorem 3.1, for θ = 0 it follows from
(3.18c) that Γh(t) is a conformal polyhedral surface.

Remark. 3.2. We recall the following semi-discrete scheme from Dziuk (2008) for the
case κ = β = 0. Given Γh(0), for all t ∈ (0, T ] find Γh(t) and ~κh(t) ∈ V h(Γh(t)) such
that

〈

~Vh, ~χ
〉

Γh(t)
−
〈

∇s ~κ
h,∇s ~χ

〉

Γh(t)
−
〈

∇s . ~κ
h,∇s . ~χ

〉

Γh(t)
− 1

2

〈

|~κh|2∇s
~id,∇s ~χ

〉

Γh(t)

= −
〈

(∇s ~κ
h)T , D(~χ) (∇s

~Xh)T
〉

Γh(t)
∀ ~χ ∈ V h(Γh(t)) ,

(3.39a)
〈

~κh, ~η
〉

Γh(t)
+
〈

∇s
~id,∇s ~η

〉

Γh(t)
= 0 ∀ ~η ∈ V h(Γh(t)) . (3.39b)

Clearly, the scheme (3.18a–d) for θ = 1, in the case κ = β = 0, collapses to a variant of
(3.39a,b) with mass-lumping. In particular, we obtain (3.39a,b) with 〈·, ·〉Γh(t) replaced by
〈·, ·〉hΓh(t) in the first and fourth term in (3.39a), as well as in the first term in (3.39b).

Remark. 3.3. A natural alternative to the scheme (3.18a–d), which does not use the
normalization of the discrete vertex normal ~ωh as in (3.8), is given as follows. Let

Qh
θ(~q

h
k (t), t) = θ Id + (1− θ) ~ωh(~qhk(t), t)⊗ ~ωh(~qhk (t), t) ∀ k ∈ {1, . . . , K} . (3.40)

Given Γh(0), for all t ∈ (0, T ] find Γh(t) and ~κh(t), ~Y h(t) ∈ V h(Γh(t)) such that

〈

Qh
θ
~Vh, ~χ

〉h

Γh(t)
−
〈

∇s
~Y h,∇s ~χ

〉

Γh(t)
−
〈

∇s . ~Y
h,∇s . ~χ

〉

Γh(t)

+
〈

(∇s
~Y h)T , D(~χ) (∇s

~id)T
〉

Γh(t)
+ (Ah − κ)

〈

~κh, [∇s ~χ]
T ~νh

〉h

Γh(t)

+ 1
2

〈[

|~κh − κ ~νh|2 − 2 (θ ~κh + (1− θ) (~κh . ~ωh) ~ωh) . ~Y h + 2Ah ~κh . ~νh
]

∇s
~id,∇s ~χ

〉h

Γh(t)

− (1− θ)
〈

(~νh − ~ωh) .
[

(~Y h . ~ωh)~κh + (~κh . ~ωh) ~Y h
]

∇s
~id,∇s ~χ

〉h

Γh(t)

+ (1− θ)
〈

(~Y h . ~ωh)~κh + (~κh . ~ωh) ~Y h, [∇s ~χ]
T ~νh

〉h

Γh(t)
= 0 ∀ ~χ ∈ V h(Γh(t)) , (3.41a)

〈

~κh − (κ − Ah) ~νh −Qh
θ
~Y h, ~ξ

〉h

Γh(t)
= 0 ∀ ~ξ ∈ V h(Γh(t)) , (3.41b)

〈

Qh
θ ~κ

h, ~η
〉h

Γh(t)
+
〈

∇s
~id,∇s ~η

〉

Γh(t)
= 0 ∀ ~η ∈ V h(Γh(t)) , (3.41c)

where

Ah(t) = β
(

〈

~κh, ~νh
〉

Γh(t)
−M0

)

. (3.41d)

This is a slightly simpler scheme, whose two-dimensional analogue in the case θ = κ =
β = 0 has similarities with the scheme (3.40a,b) in Barrett et al. (2012) in the isotropic
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case. In addition, with a simple adaptation of the proof of Theorem 3.1, it is possible

to show that (3.41a–d) is stable, i.e. that d
dt
Eh

κ,β(Γ
h(t)) = −

〈

Qh
θ
~Vh, ~Vh

〉h

Γh(t)
≤ 0 for a

solution of (3.41a–d). The same remains valid if Qh
θ in (3.41a), and in the energy bound,

is replaced by Id.

However, it does not appear possible to introduce Lagrange multipliers λh and µh for
(3.41a–d), even as stated with Qh

θ , such that the two conservation properties in (3.36) hold,
and such that the approximation remains stable. In particular, while it is still possible to
find a λh such that the surface area H2(Γh(t)) is maintained, it does not appear possible
to define a µh to ensure volume preservation. It is for this reason that we do not pursue
the scheme (3.41a–d) further in this paper.

4 Fully discrete finite element approximation

In this section we consider a fully discrete variant of the scheme (3.22), (3.18b–d) from
Section 3. To this end, let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of
[0, T ] into possibly variable time steps τm := tm+1 − tm, m = 0, . . . ,M − 1. Let Γm be a
polyhedral surface, approximating the Γh(tm), m = 0, . . . ,M . Following Dziuk (1991), we
now parameterize the new closed surface Γm+1 over Γm. Hence, we introduce the following
finite element spaces. Let Γm =

⋃J

j=1 σ
m
j , where {σm

j }Jj=1 is a family of mutually disjoint

open triangles with vertices {~qmk }Kk=1. Then for m = 0, . . . ,M − 1, let

V h(Γm) := {~χ ∈ [C(Γm)]3 : ~χ |σm
j

is linear ∀ j = 1, . . . , JΓ} =: [W h(Γm)]3 ⊂ [H1(Γm)]3 ,

for m = 0, . . . ,M − 1. We denote the standard basis of W h(Γm) by {χm
k }Kk=1. We also

introduce πm : C(Γm) → W h(Γm), the standard interpolation operator at the nodes
{~qmk }Kk=1, and similarly ~πm : [C(Γm)]3 → V h(Γm). Throughout this paper, we will pa-
rameterize the new closed surface Γm+1 over Γm, with the help of a parameterization
~Xm+1 ∈ V h(Γm), i.e. Γm+1 = ~Xm+1(Γm).

We also introduce the L2–inner product 〈·, ·〉Γm over the current polyhedral surface
Γm, the the mass lumped inner product 〈·, ·〉hΓm, as well as the outer unit normal ~νm to
Γm. Similarly to (3.7), we note that

〈~z, w ~νm〉hΓm = 〈~z, w ~ωm〉hΓm ∀ ~z ∈ V h(Γm) , w ∈ W h(Γm) ,

where ~ωm :=
∑KΓ

k=1 χ
m
k ~ω

m
k ∈ V h(Γm), and where for k = 1, . . . , KΓ we let Θm

k := {j : ~qmk ∈
σm
j } and set Λm

k := ∪j∈Θm
k
σm
j and ~ωm

k := 1
H2(Λm

k
)

∑

j∈Θm
k
H2(σm

j ) ~νmj .

We make the following very mild assumption.

(A) We assume for m = 0, . . . ,M − 1 that H2(σm
j ) > 0 for all j = 1, . . . , J and that ~0 6∈

{~ωm
k }Kk=1, for all m = 0, . . . ,M−1. If θ = 0 we also assume that dim span{~ωm

k }Kk=1 =
3, for all m = 0, . . . ,M − 1.
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In addition, we introduce Qm
θ ∈ [W h(Γm)]3×3 by setting Qm

θ (~q
m
k ) = θ ~Id+(1−θ) |~ωm

k |−2 ~ωm
k

⊗~ωm
k for k = 1, . . . , K. Similarly to (3.15), we let

~Gm(~ξ, ~η) = ~πm

[

1

|~ωm|2

(

(~ξ . ~ωm) ~η + (~η . ~ωm) ~ξ − 2
(~η . ~ωm) (~ξ . ~ωm)

|~ωm|2 ~ωm

)]

. (4.1)

On recalling (3.7), we consider the following fully discrete approximation of (3.22),

(3.18b–d). Given Γ0, A0 ∈ R and ~κ0, ~Y 0 ∈ V h(Γ0), for m = 0, . . . ,M − 1 find

( ~Xm+1, ~κm+1, ~Y m+1) ∈ [V h(Γm)]3 such that
〈

Qm
θ

~Xm+1 − ~id

τm
, ~χ

〉h

Γm

−
〈

∇s
~Y m+1,∇s ~χ

〉

Γm
=
〈

∇s . ~Y
m,∇s . ~χ

〉

Γm

−
〈

(∇s
~Y m)T , D(~χ) (∇s

~id)T
〉

Γm
+ (Am − κ)

〈

~κm, [∇s ~χ]
T ~νm

〉h

Γm

− 1
2

〈[

|~κm − κ ~νm|2 − 2 ~Y m . Qm
θ ~κ

m + 2Am ~κm . ~νm
]

∇s
~id,∇s ~χ

〉h

Γm

+ (1− θ)

(

〈

( ~Gm(~Y m, ~κm) . ~νm)∇s
~id,∇s ~χ

〉h

Γm
−
〈

~Gm(~Y m, ~κm), [∇s ~χ]
T ~νm

〉h

Γm

)

+
〈

λmQm
θ ~κ

m + µm ~ωm, ~χ
〉h

Γm
∀ ~χ ∈ V h(Γm) , (4.2a)

〈

~κm+1 + (Am − κ) ~ωm −Qm
θ
~Y m+1, ~ξ

〉h

Γm
= 0 ∀ ~ξ ∈ V h(Γm) , (4.2b)

〈

Qm
θ ~κ

m+1, ~η
〉h

Γm
+
〈

∇s
~Xm+1,∇s ~η

〉

Γm
= 0 ∀ ~η ∈ V h(Γm) , (4.2c)

and set Γm+1 = ~Xm+1(Γm). Moreover, set

Am+1 = β
(

〈

~κm+1, ~ωm
〉h

Γm −M0

)

. (4.2d)

Of course, (4.2a–d) with λm = µm = 0 corresponds to a fully discrete approximation of
(3.18a–d). For a fully discrete approximation of Helfrich flow we let (λm, µm)T ∈ R

2 be
the solution to the symmetric linear system





〈

Qm
θ ~κ

m, ~κm
〉h

Γm
〈~κm, ~ωm〉hΓm

〈~κm, ~ωm〉hΓm 〈~ωm, ~ωm〉hΓm





(

λm

µm

)

=







−
〈

∇s
~Y m,∇s ~κ

m
〉

Γm
−
〈

~fm, ~κm
〉h

Γm

−
〈

∇s
~Y m,∇s ~ω

m
〉

Γm
−
〈

~fm, ~ωm
〉h

Γm






,

(4.3)

where for convenience we have re-written (4.2a) as
〈

Qm
θ

~Xm+1 − ~id

τm
, ~χ

〉h

Γm

−
〈

∇s
~Y m+1,∇s ~χ

〉

Γm
=
〈

~fm + λmQm
θ ~κ

m + µm ~ωm, ~χ
〉h

Γm

∀ ~χ ∈ V h(Γm) .

Similarly to (3.23) we note that the linear system (4.3) is symmetric and nonnegative
definite, with a unique solution unless ~κm is a scalar multiple of ~ωm.
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Theorem. 4.1. Let the assumptions (A) hold, let θ ∈ [0, 1] and let (λm, µm)T ∈ R
2 be

given. Then there exists a unique solution ( ~Xm+1, ~κm+1, ~Y m+1) ∈ [V h(Γm)]3 to (4.2a–c).

Proof. As (4.2a–c) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X,~κ, ~Y ) ∈ [V h(Γm)]3 such that
〈

Qm
θ
~X, ~χ

〉h

Γm
− τm

〈

∇s
~Y ,∇s ~χ

〉

Γm
= 0 ∀ ~χ ∈ V h(Γm) , (4.4a)

〈

~κ−Qm
θ
~Y , ~ξ

〉h

Γm
= 0 ∀ ~ξ ∈ V h(Γm) , (4.4b)

〈

Qm
θ ~κ, ~η

〉h

Γm
+
〈

∇s
~X,∇s ~η

〉

Γm
= 0 ∀ ~η ∈ V h(Γm) . (4.4c)

Choosing ~χ = ~X in (4.4a), ~ξ = ~κ in (4.4b) and ~η = ~Y in (4.4c) yields that
〈

Qm
θ
~X, ~X

〉h

Γm
+ τm 〈~κ,~κ〉hΓm = 0 , (4.5)

and hence ~κ = ~0, as well as θ ~X = ~0 and (1−θ) πm [ ~X . ~ωm] = 0. If θ > 0 this immediately

implies that ~X = ~0. In the case θ = 0 it follows from ~κ = ~0 and (4.4c) with ~η = ~X

that 〈∇s
~X,∇s

~X〉Γm = 0, and so ~X = ~Xc ∈ R
3 is constant. Hence it follows from

~Xc . ~ω
m = 0 and assumption (A) that ~X = ~0. Similarly, combining ~X = ~κ = ~0 and

(4.4a,b) with ~χ = ~Y and ~ξ = ~Y yields that ~Y = ~0. Hence there exists a unique solution

( ~Xm+1, ~κm+1, ~Y m+1) ∈ [V h(Γm)]3 to (4.2a–c).

Remark. 4.1. In practice it can be advantageous to consider implicit Lagrange multipliers
λm+1 and µm+1 in order to obtain better discrete surface area and volume preservation
properties. In particular, we replace (4.2a) with
〈

Qm
θ

~Xm+1 − ~id

τm
, ~χ

〉h

Γm

−
〈

∇s
~Y m+1,∇s ~χ

〉

Γm
=
〈

~fm + λm+1Qm
θ ~κ

m+1 + µm+1 ~ωm, ~χ
〉h

Γm

∀ ~χ ∈ V h(Γm) (4.6)

and require the coupled solution ( ~Xm+1, ~κm+1, ~Y m+1) ∈ [V h(Γm)]3 and (λm+1, µm+1)T ∈ R
2

to satisfy the nonlinear system (4.6), (4.2b–d) as well as an adapted variant of (4.3),

where the superscript m is replaced by m + 1 in all occurrences of ~κm, ~Y m, λm and µm.
In practice this nonlinear system can be solved with a fixed point iteration as follows. Let
(λm+1,0, µm+1,0) = (λm, µm). Then, for i ≥ 0, find a solution ( ~Xm+1,i, ~κm+1,i, ~Y m+1,i) ∈
[V h(Γm)]3 to the linear system (4.6), (4.2b–d), where any superscript m+1 is replaced by
m+ 1, i. Then compute (λm+1,i+1, µm+1,i+1) as the unique solution to




〈

Qm
θ ~κ

m+1,i, ~κm+1,i
〉h

Γm
〈~κm+1,i, ~ωm〉hΓm

〈~κm+1,i, ~ωm〉hΓm 〈~ωm, ~ωm〉hΓm





(

λm+1,i+1

µm+1,i+1

)

=







−
〈

∇s
~Y m+1,i,∇s ~κ

m+1,i
〉

Γm
−
〈

~fm, ~κm+1,i
〉h

Γm

−
〈

∇s
~Y m+1,i,∇s ~ω

m
〉

Γm
−
〈

~fm, ~ωm
〉h

Γm






,
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and continue the iteration until |λm+1,i+1−λm+1,i|+|µm+1,i+1−µm+1,i| < 10−8. In practice
this iteration always converged in less than ten steps, and at little extra computational
cost compared to the linear scheme (4.2a–d), since the linear subsystem (4.2a–c), for
given values of ~κm, λm, µm, can be easily factorized with the help of sparse factorization
packages such as UMFPACK, see Davis (2004).

5 Solution of the algebraic equations

We introduce the matrices M,A,Aθ ∈ R
K×K, ~M, ~Mθ, ~A, ~Aθ, ~B, ~R ∈ (R3×3)K×K with

entries

Mkl := 〈χm
l , χ

m
k 〉hΓm , [ ~Mθ]kl :=MklQ

m
θ (~q

m
k ) , Akl := 〈∇s χ

m
l ,∇s χ

m
k 〉Γm ,

~Bkl :=
(

〈[∇s]j χ
m
l , [∇s]i χ

m
k 〉Γm

)3

i,j=1
, ~Rkl :=

∫

Γm

∇s χ
m
l .∇s χ

m
k (Id− ~νm ⊗ ~νm) dH2 ,

[Aθ]kl :=
1
2

〈[

|~κm − κ ~νm|2 − 2 ~Y m . Qm
θ ~κ

m + 2Am ~κm . ~νm
]

∇s χ
m
l ,∇s χ

m
k

〉h

Γm

− (1− θ)
〈

( ~Gm(~Y m, ~κm) . ~νm)∇s χ
m
l ,∇s χ

m
k

〉h

Γm
,

and ~Mkl :=Mkl Id, ~Akl := Akl Id, [ ~Aθ]kl := [Aθ]kl Id. It holds that ( ~Bkl)
T = ~Blk =: [ ~B⋆]kl.

Then we can formulate (4.2a–c) as: Find (~Y m+1, δ ~Xm+1, ~κm+1) ∈ (R3)3K such that







~A − 1
τm

~Mθ 0

0 ~A ~Mθ

~Mθ 0 − ~M













~Y m+1

δ ~Xm+1

~κm+1







=







[ ~B⋆ − ~B + ~R] ~Y m + ~Aθ
~Xm +~bθ − λm ~Mθ ~κ

m − µm ~M ~ωm

− ~A ~Xm

(Am − κ) ~M ~ωm






,

where, with the obvious abuse of notation, δ ~Xm+1 = (δ ~Xm+1
1 , . . . , δ ~Xm+1

K )T , ~Y m+1 =

(~Y m+1
1 , . . . , ~Y m+1

K )T and ~κm+1 = (~κm+1
1 , . . . , ~κm+1

K )T are the vectors of coefficients with

respect to the standard basis for ~Xm+1 − ~Xm, ~Y m+1 and ~κm+1, respectively. In addition,
~bθ ∈ (R3)K with

[~bθ]k =
〈[

(κ − Am)~κm + (1− θ) ~Gm(~Y m, ~κm)
]

.∇s χ
m
k , ~ν

m
〉h

Γm
.

6 Numerical computations

We note that we implemented the approximations within the finite element toolbox AL-
BERTA, see Schmidt and Siebert (2005). The arising systems of linear equations were
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solved with the help of the sparse factorization package UMFPACK, see Davis (2004).
For the computations involving volume preserving Willmore flow and Helfrich flow, we
always employ the implicit Lagrange multiplier formulation discussed in Remark 4.1.

For the fully discrete scheme (4.2a–d) we need to prescribe initial data A0, ~κ0 and ~Y 0.
Given the initial triangulation Γ0, we define

~Y 0 = ~κ0 + (A0 − κ) ~ω0 , A0 = β
(

〈

~κ0, ~ω0
〉h

Γ0
−M0

)

,

where ~κ0 ∈ V h(Γ0) is the solution to

〈

~κ0, ~η
〉h

Γ0
+
〈

∇s
~id,∇s ~η

〉

Γ0

= 0 ∀ ~η ∈ V h(Γ0) .

Throughout this section we use uniform time steps τm = τ , m = 0, . . . ,M − 1, and set
τ = 10−3 unless stated otherwise. In addition, unless stated otherwise, we fix β = κ = 0
and λm = µm = 0 for m = 0, . . . ,M − 1. At times we will discuss the discrete energy of
the numerical solutions, which, similarly to (3.10), is defined by

Em+1
κ,β (Γm, ~κm+1) := 1

2

〈

|~κm+1 − κ ~νm|2, 1
〉h

Γm + β

2

(

〈

~κm+1, ~ωm
〉h

Γm −M0

)2

.

6.1 Numerical results for Willmore flow

We begin with a numerical simulation of Willmore flow for a torus with large radius R = 2
and small radius r = 1. Here K = 2048, J = 4096 and τ = 2× 10−4, as in Barrett et al.
(2008b, Fig. 7). See Figure 1 for the results for the scheme (4.2a–d) with θ = 0. We
note that the discrete surface approaches the Clifford torus, which is the minimum of the
Willmore energy (1.1) among all genus 1 surfaces, see Marques and Neves (2014). The
Clifford torus is a standard torus with a ratio of large radius R and small radius r of
R
r
=

√
2, which leads to a Willmore energy of E(Γ(t)) = 4 π2. In our simulation the

discrete energy Em+1
κ,β (Γm, ~κm+1) decreases to a value below 4 π2, which is due to spatial

discretization errors. For finer meshes this difference converges to zero. As a comparison,
we repeat the same experiment now for (4.2a–d) with θ = 1. Now the scheme is not able
to integrate the solution until the final time T = 2 due to coalescence of mesh points. We
show the evolution only until time t = 1.4, by which time several degenerate elements
have appeared, which leads to an oscillatory behaviour of the discrete energy in time, see
Figure 2. The behaviour shown in Figure 2 is fairly generic for the scheme (4.2a–d) with
θ = 1. The scheme with θ = 0, on the other hand, often incorporates a good tangential
motion, which means that the numerical solutions can be integrated for longer. That is
why from now on we will always attempt to use θ = 0 in all our simulations.

Following Barrett et al. (2008b, Fig. 8), we also present some numerical experiments
for a sickle torus. Here the initial sickle torus has large radius R = 2 and the small
radius r varies continuously in the interval [1, 1.75]. We set K = 2048, J = 4096 and
τ = 2 × 10−4, as in Barrett et al. (2008b, Fig. 8). For this simulation we observe some
undesirable mesh effects, and a small increase in the energy, when θ = 0. For θ = 0.1
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Figure 1: (θ = 0) Willmore flow for a torus. A plot of Γm at times t = 0, 0.1, 0.5, 2.
Below a plot of the discrete energy Em+1

κ,β (Γm, ~κm+1). The horizontal line shows 4 π2.
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Figure 2: (θ = 1) Willmore flow for a torus. A plot of Γm at times t = 0, 0.1, 0.5, 1.4.
Below a plot of the discrete energy Em+1

κ,β (Γm, ~κm+1). The horizontal line shows 4 π2.

we obtain better numerical results, with a monotonically decreasing discrete energy. For
completeness we also present the run for θ = 1, where a coalescence of mesh points leads
to a highly oscillating energy plot in time. See Figures 3–5 for the results for the scheme
(4.2a–d) with θ = 0, θ = 0.1 and θ = 1, respectively.

6.2 Numerical results for Helfrich flow

For a numerical simulation of Helfrich flow, we start with a tubular shape of total dimen-
sion 4× 1 × 1. Here K = 1154, J = 2304 and τ = 10−3, as in Barrett et al. (2008b, Fig.
14). For this run the relative loss of area and volume is 0.15% and −0.03%, respectively.
See Figure 6 for the results for the scheme (4.2a–d) with θ = 0.

Following Barrett et al. (2008b, Fig. 15), we also consider Helfrich flow for a flat disc
of total dimension 4×4×1. For the discretization parameters as in Barrett et al. (2008b,
Fig. 15) we observe undesirable mesh deformations for the scheme (4.2a–d), which means
that the system matrix becomes numerically singular at time t = 1.2. Hence we use the
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Figure 3: (θ = 0) Willmore flow for a sickle torus. A plot of Γm at times t = 0, 1. On
the right a plot of the discrete energy Em+1

κ,β (Γm, ~κm+1). The horizontal line shows 4 π2.
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Figure 4: (θ = 0.1) Willmore flow for a sickle torus. A plot of Γm at times t = 0, 1. On
the right a plot of the discrete energy Em+1

κ,β (Γm, ~κm+1). The horizontal line shows 4 π2.

finer discretization parameters K = 6146, J = 12288 and τ = 2 × 10−4 in this paper.
Then the observed relative loss of area and volume was 0.23% and 0.03%, respectively.
See Figure 7 for the results for the scheme (4.2a–d).

6.3 Numerical results with spontaneous curvature effects

In this subsection, we consider flows for the free energy (1.2) with κ < 0. For our sign
convention this means that a sphere of radius 2

|κ|
will be the global energy minimizer with

Eκ(Γ(t)) = 0.

We begin with a convergence experiment for the scheme (4.2a–d) for a radially sym-
metric solution to (1.4). In fact, it is easily shown that a sphere of radius R(t), where
R(t) satisfies

Rt = −κ

R
( 2
R
+ κ) , R(0) = R0 ∈ R>0 , (6.2)

is a solution to (1.4) in the case A = β = 0. The nonlinear ODE (6.2) is solved by

R(t) = z(t)− 2
κ
, where z(t) is such that 1

2
(z2(t)−z20)− 4

κ
(z(t)−z0)+ 4

κ
2 ln z(t)

z0
+κ

2 t = 0,
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Figure 5: (θ = 1) Willmore flow for a sickle torus. A plot of Γm at times t = 0, 1. On
the right a plot of the discrete energy Em+1

κ,β (Γm, ~κm+1). The horizontal line shows 4 π2.
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Figure 6: (θ = 0) Helfrich flow for a tube. A plot of Γm at times t = 0, 1. On the right a
plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).
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Figure 7: (θ = 0) Helfrich flow for a flat plate. A plot of Γm at times t = 0, 0.1, 0.25, 0.5.
Below a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).

with z0 = R0 +
2
κ
. For the convergence experiment we set κ = −1 and use a sequence

of four non-uniform triangulations of the unit sphere (R0 = 1) to compute the error
‖Γ−Γh‖L∞ = maxm=1,...,M maxk=1,...,K ||~qmk | −R(tm)| over the time interval [0, 1] between
the true solution and the discrete solutions for the scheme (4.2a–d) in the cases θ = 0 and
θ = 1. Here we used the time step size τ = 0.01 h2Γ0, where hΓ0 is the maximal edge length
of Γ0. Some of the triangulations are shown in Figure 8, where we note that R(1) ≈ 1.47.
The computed errors are reported in Table 1. It can be seen that the beneficial tangential
motion in the case θ = 0 leads to significantly smaller errors compared to θ = 1.

In the next experiment for Willmore flow with κ = −2, we start with a tube of total
dimension 6 × 2 × 2. Here K = 898, J = 1792 and τ = 10−3, as in Barrett et al. (2008b,
Fig. 19). See Figure 9 for the results for the scheme (4.2a–d). We can see that the tube
evolves towards a dumbbell consisting of two “spheres” with radius close to unity.

For volume preserving Willmore flow with κ = −3, we start with a cigar-like shape
that has a smaller radius on the right hand side. Here K = 898, J = 1792 and τ = 10−3,

Figure 8: Triangulations of the unit sphere with K = 490 at time t = 0 (left) and at time
T = 1 for θ = 0 (middle) and θ = 1 (right).
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θ = 0 θ = 1

K hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC

126 7.6537e-01 4.0847e-02 – 1.1230e-01 –

490 4.0994e-01 1.1435e-02 2.039173 3.6676e-02 1.792350

1938 2.0854e-01 3.0834e-03 1.939170 1.0548e-02 1.843798

7714 1.0472e-01 9.5399e-04 1.703057 2.9791e-03 1.835424

Table 1: Errors for the convergence test for the scheme (4.2a–d) with κ = −1 and β = 0.
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Figure 9: (θ = 0) Willmore flow with κ = −2 for a tube. A plot of Γm at times t =
0, 0.05, 0.1, 0.25, 0.5, 1. On the right a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).

as in Barrett et al. (2008b, Fig. 20). The observed relative volume loss was −0.16%. See
Figure 10 for the results for the scheme (4.2a–d), where we note that part of the surface
is about to pinch off.

The same experiment without volume preservation is shown in Figure 11. Here we
observe that the final shape is noticeably different from the reported final shape in Barrett
et al. (2008b, Fig. 21). However, on using finer discretization parameters for the scheme
(4.2a–d), we do obtain an evolution towards three touching spheres, as in Barrett et al.
(2008b, Fig. 21). See Figure 12, where we show the numerical results for a simulation
with K = 3586, J = 7168 and τ = 10−4.

For Helfrich flow with κ = −2, we start with a disc shape of total dimension 5×5×1.
Here K = 4482, J = 8960 and τ = 10−4, which is finer than the parameters in Barrett
et al. (2008b, Fig. 22). Here the observed relative area and volume loss was 0.23% and
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Figure 10: (θ = 0) Volume preserving Willmore flow with κ = −3 for a stretched tube.
A plot of Γm at times t = 0, 0.1, 0.13. On the right a plot of the discrete free energy
Em+1

κ,β (Γm, ~κm+1).
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Figure 11: (θ = 0) Willmore flow with κ = −3 for a stretched tube. A plot of Γm at
times t = 0, 0.1, 0.2, 0.3. Below a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).
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Figure 12: (θ = 0) Willmore flow with κ = −3 for a stretched tube. A plot of Γm at
times t = 0, 0.1, 0.2, 0.3. Below a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).

−0.002%, respectively. See Figure 13 for the results for the scheme (4.2a–d).

For Helfrich flow with κ = −2, we start with a surface that is based on a 5 × 5 × 3
4

ellipsoid, where the “radius” varies continuously between 1 ± 0.05. Here K = 2314,
J = 4624 and τ = 10−3, as in Barrett et al. (2008b, Fig. 23). The relative loss of area
and volume in this experiment was 0.65% and 0.03%. See Figure 14 for the results for
the scheme (4.2a–d).

6.4 Numerical results with ADE effects

We start with the same initial surface as in Figure 14 for Willmore flow with β = 0.1 and
M0 = −150. Here K = 2314, J = 4624 and τ = 10−3. See Figure 15 for the results for
the scheme (4.2a–d).
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Figure 13: (θ = 0) Helfrich flow with κ = −2 for a stretched tube. A plot of Γm at times
t = 0, 0.1, 0.15, 0.2. Below a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).
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Figure 14: (θ = 0) Helfrich flow with κ = −2. A plot of Γm at times t = 0, 0.2, 0.42. On
the right a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).

6.5 Numerical results for higher genus surfaces

For higher genus experiments it turns out that some form of mesh smoothing is required
in practice in order to complete the simulations. This is similarly to the higher genus
numerical experiments in Barrett et al. (2008b).

We start with a figure eight surface made up of unit cubes. Here K = 2494, J = 4992
and τ = 2×10−4, as in Barrett et al. (2008b, Fig. 9). Note also that we use the same mesh
redistribution strategy after every time step as in Barrett et al. (2008b, Fig. 9). That is,
after each time step we simultaneously move all the mesh points tangentially towards the
average of their neighbouring vertices. In particular, we seek ~Xm+1 ∈ V h(Γm) such that

〈

~Xm+1 − ~id, χ ~νm
〉h

Γm
= 0, ∀ χ ∈ W h(Γm), (6.3a)

〈

~Xm+1 − ~id, χ ~τmi

〉h

Γm
=
〈

~zm − ~id, χ ~τmi

〉h

m
∀ χ ∈ V (Γm) , i = 1 → 2 , (6.3b)

where ~zm(~qmk ) is the average of the neighbouring nodes of ~qmk , and where, on each element,
{~νm, ~τm1 , ~τm2 } form an ONB of R3. See Figure 16 for the results for the scheme (4.2a–d).
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Figure 15: (θ = 0) Willmore flow with β = 0.1 and M0 = −150. A plot of Γm at times
t = 0, 0.05, 0.1, 0.5. Below a plot of the discrete free energy Em+1

κ,β (Γm, ~κm+1).
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Figure 16: (θ = 0) Willmore flow for a genus 2 surface. A plot of Γm at times t =
0, 0.5, 1, 2, 3, 4. On the right a plot of the discrete energy Em+1

κ,β (Γm, ~κm+1).
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