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Abstract. We describe a general strategy for the verification of variational source con-
dition by formulating two sufficient criteria describing the smoothness of the solution and
the degree of ill-posedness of the forward operator in terms of a family of subspaces. For
linear deterministic inverse problems we show that variational source conditions are nec-
essary and sufficient for convergence rates of spectral regularization methods, which are
slower than the square root of the noise level. A similar result is shown for linear inverse
problems with white noise. In many cases variational source conditions can be character-
ized by Besov spaces. This is discussed for a number of prominent inverse problems.

1. Introduction

This paper is concerned with inverse problems described by ill-posed operator equations
in real Hilbert spaces X and Y. Let T : X → Y an injective, bounded, linear operator and
f † ∈ X the unknown solution to the inverse problem. We will study both a deterministic
and a white noise noise model. In the first case measurement errors are described by a
vector ξ ∈ Y, and observed data are given by

(1) gobs = Tf † + ξ, ‖ξ‖ ≤ δ

for some deterministic noise level δ > 0. In the second case measurement errors are
described by a white noise process W on Y, and observed data are given by

(2) gobs = Tf † + εW

with a stochastic noise level ε > 0. Recall that a white noise process is characterized by
the relations E[〈W, y〉] = 0 and E [〈W, y1〉〈W, y2〉] = 〈y1, y2〉 for all y, y1, y2 ∈ Y.

Regularization theory is concerned with error estimates for approximate reconstruction
methods (regularization methods) for f † given data gobs described by (1) or (2). It is
well-known that for ill-posed problems uniform error bounds necessarily require further
assumptions on the solution f † (see [6, Prop. 3.11]). Such conditions are usually called

E-mail address: t.hohage@math.uni-goettingen.de,f.weidling@math.uni-goettingen.de.
1

http://arxiv.org/abs/1603.05133v4


2 MAXISETS FOR SPECTRAL REGULARIZATION

source conditions. Over the last years, starting with [9] it has become increasingly popular
to formulate such conditions in the form of variational inequalities

(3) 2
〈
f †, f † − f

〉
X

≤ 1

2

∥∥∥f − f †
∥∥∥

2

X
+ ψ

(∥∥∥T (f) − T (f †)
∥∥∥

2

Y

)
for all f ∈ X

with an index function ψ. (A function ψ : [0,∞) → [0,∞) is called an index function if it
is continuous, strictly monotonically increasing, and ψ(0) = 0.) Advantages of these varia-
tional source conditions (VSC) over classical source conditions of the form f † = ϕ(T ∗T )w
with an index function ϕ and w ∈ X include extensions to Banach spaces, general penalty
and data fidelity functionals, treatment of nonlinear operators without the need of a de-
rivative of T and restrictive assumptions relating T ′ and T , as well as simpler proofs. As
a disadvantage we mention that (3) cannot be used to describe high order rates of conver-
gence since it is easy to see that it cannot hold true for f † 6= 0 if limx→0 ψ(x2)/x = 0. This
excludes in particular the case ψ(t) = tν with ν > 1/2.

In this paper we will address the following two related main questions:

• What are verifiable sufficient (and possibly even necessary) conditions such that
the VSC (3) holds true?

• What are necessary and sufficient conditions on f † for a given rate of convergence
of a given regularization method as the noise level δ or ε tends to 0?

Let us now discuss known results from the literature and the contributions of this paper
for both of these questions. Concerning the first question, verifiable sufficient conditions
for (3) have mainly been given via spectral source conditions so far, see Appendix A for
more details. In [11, 23] we have recently derived sufficient conditions for (3) in the form
of bounds on Sobolev norms of f † for nonlinear inverse medium scattering problems. Here
we formulate in Theorem 2.1 two criteria which capture the main strategy of the proofs
in [11, 23]. In the following we will apply them to linear inverse problems. These criteria
describe the two main factors influencing rates of convergence: Smoothness of the solution
and ill-posedness of the inverse of the forward operator. Here both criteria are formulated
in terms of a sequence of approximating subspaces in X. If these spaces are chosen as
eigenspaces of T ∗T , we obtain an equivalent characterization of the VSC (3) in terms of
the rate of decay of the spectral distribution function of f †. The latter criterion has been
introduced by Neubauer [17] and shown to be necessary and sufficient for Hölder rates of
convergence. A characterization of the VSC (3) for ψ(t) = tν , ν ∈ (0, 1/2] has previously
been shown by Andreev et al. [4] using a different technique which seems to be limited to
this special case.

Let us now discuss the second question. In deterministic regularization theory theorems
on the necessity of conditions for a given rate of convergence (which have already shown to
be sufficient) are known as converse results. In statistics the maximal set of f † for which a
given estimator achieves a given desired rate of convergence is called a maxiset. Converse
results for Hölder rates of Tikhonov regularization have been established by Neubauer [17].
Andreev [3] has proven converse results for Hölder rates of (generalized) Tikhonov regular-
ization and Landweber iteration in terms of K-interpolation spaces with fine index q = ∞
between X and (T ∗T )ν(X) equipped with the image space norm. Flemming, Hofmann &
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Mathé [8] have derived converse results for general convergence rates of the bias of gen-
eral spectral regularization methods in terms of approximate source conditions. Albani et
al. [1] proved converse results for general deterministic rates and spectral regularization
method, but additional assumptions had to be imposed, which are not always obvious to
interpret. Here we will prove converse results without such assumptions. As a byproduct
of our analysis we show the equivalence of weak and strong quasioptimality of a posteriori
parameter choice rules in many cases (see [20]). Together with our answer to the first ques-
tion we also obtain converse results in terms of VSCs (3) for concave ψ. Moreover, we will
show for inverse problems for which the forward operator satisfies T ∗T = Λ(−∆) for some
Laplace-Beltrami operator ∆, that VSCs for certain index functions ψ are satisfied if and
only if f † belongs to a Besov space Bs

2,∞. This holds true in particular for the backward
and sideways heat equation, and the inverse gradiometry problem.

In statistics maxisets of wavelet methods for the estimation of the density of i.i.d. ran-
dom variables have been characterized as Besov spaces by Kerkyacharian & Picard [12].
They consider not only L2, but also other Lp norms as loss functions. Maxisets of thresh-
olding and more general wavelet estimators have been characterized by the same authors
in [13, 14], and their results have been generalized by Rivoirand [21] to some linear esti-
mators in the sequence space model of inverse problems. These latter references show in
particular that under certain circumstances nonlinear thresholding methods have larger
maxisets than linear methods for given polynomial rates. Here we show under fairly gen-
eral assumptions that VSCs characterize maxisets of spectral regularization methods for
linear inverse problems with white noise.

The plan of this paper is as follows: In the following section we formulate and prove the
theorem describing our general strategy for the verification of VSCs. In sections 3–5 we
derive converse results for the bias, rates of convergence with deterministic noise, and rates
of convergence with white noise, respectively. In Section 6 we introduce a class of inverse
problems for which maxisets of linear spectral regularization methods are given by Besov
spaces Bs

2,∞. Finally, in Section 7 we apply our theoretical results to a number of well-
known inverse problem before we end this paper with some conclusions. In an appendix we
show how the general strategy in Section 2 can be applied to verify a VSC given a spectral
source condition for linear problems.

2. A general strategy for verifying variational source conditions

In this section we formulate sufficient conditions for VSCs in terms of arbitrary families
of subspaces. In the rest of this paper these will always be chosen as invariant subspaces
of T ∗T , but in principle the choice is arbitrary. To allow also polynomial, trigonometric,
wavelet and other subspaces, which may be relevant in more general situation (see e.g.
[11]), we will parametrize the spaces by a general index set J .

Theorem 2.1. Suppose there exists a family of orthogonal projections Pr ∈ L(X) indexed
by a parameter r in some index set J such that for some functions κ, σ : J → (0,∞) and
some C ≥ 0 the following conditions hold true for all r ∈ J :

‖f † − Prf
†‖X ≤ κ(r)(4)
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〈
f †, Pr(f

† − f)
〉
X

≤ σ(r)‖T (f †) − T (f)‖ + Cκ(r)‖f † − f‖
for all f ∈ D(T ) with ‖f − f †‖ ≤ 4‖f †‖.

(5)

Then f † satisfies the VSC (3) with

ψ(t) := 2 inf
r∈J

[
(C + 1)2κ(r)2 + σ(r)

√
t
]
.

Assumption (4) may be seen as an estimate of the approximation quality of the approx-
imating spaces PrX, and assumption (5) may be seen as a kind of stability estimate for T
on these spaces. If f † belongs to some smooth subspace of X, the stability estimate may
be taken with respect to the norm of the dual space. However, (5) is not exactly a stability
estimate for the restriction of T to PrX since by do not bound by ‖T (Prf)−T (Prf

†)‖, but
‖T (f)−T (f †)‖. On the other hand the additional term Cκ(r)‖f−f †‖ may help. The case
C > 0 and the restriction to f ∈ X with ‖f − f †‖ ≤ 4‖f †‖ are also crucial for nonlinear
inverse problems.

Proof of Theorem 2.1. If ‖f − f †‖ > 4‖f †‖ we have

2
〈
f †, f † − f

〉
≤ 2‖f †‖ ‖f † − f‖ ≤ 1

2
‖f † − f‖2,(6)

so (3) holds true. Otherwise we can apply (5) and (4) and the basic inequality 2ab ≤
2a2 + 1

2
b2 to obtain

2
〈
f †, (f † − f)

〉
= 2

〈
f †, Pr(f

† − f)
〉

+ 2
〈
(I − Pr)f

†, f † − f
〉

≤ 2σ(r)‖T (f) − T (f †)‖ + 2(C + 1)κ(r)‖f † − f‖

≤ 2σ(r)‖T (f) − T (f †)‖ + 2(C + 1)2κ(r)2 +
1

2
‖f † − f‖2

for all r ∈ J . Taking the infimum over of the right hand side over r ∈ J with t =
‖T (f) − T (f †)‖2 yields (3). �

3. Converse results for the bias

For λ ≥ 0 we define the spectral projections

(7) ET ∗T
λ := χ[0,λ](T

∗T ).

The function λ 7→ ‖ET ∗T
λ f‖ is called the spectral distribution function of f ∈ X. For an

index function κ we define a subspace X
T
κ ⊂ X via a weighted supremum norm of the

spectral distribution function with weight 1/κ:

(8) X
T
κ :=

{
f ∈ X : ‖f‖

XT
κ
< ∞

}
, ‖f‖

XT
κ

:= sup
λ>0

1

κ(λ)

∥∥∥ET ∗T
λ f

∥∥∥
X

It is not difficult to see that XT
κ is a Banach space. Note that the unit ball in X

T
κ contains

all functions satisfying (4) with Pr = I−ET ∗T
r . For the remainder of this and the following

two sections we will suppress the superscript T ∗T to simplify the notation. However, we
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will need it in Section 6 to deal with spectral distribution functions w.r.t. several operators
simultaneously.

Theorem 3.1. Let κ : [0,∞) → [0,∞) be an index function such that t 7→ κ(t)2/t1−µ is
decreasing for some µ ∈ (0, 1) and κ · κ is concave. Moreover, we associate with each such
κ an index function ψκ by

(9) ψκ(t) := κ
(
Θ−1
κ (

√
t)
)2
, Θκ(λ) :=

√
λκ(λ).

Then the following statements for f † ∈ X are equivalent:

(i) f † satisfies a VSC with ψ(t) = Aψκ(t) for some A > 0.
(ii) ‖f †‖XT

κ
< ∞.

More precisely, (i) implies ‖Eλf †‖ ≤
√

2A
3
κ
(

2A
3
λ
)

≤
√

2A
3

max(1,
√

2A
3

)κ(λ). Vice versa,

if κ is normalized such that ‖f †‖XT
κ

= 1, then (i) holds true with A = 2(1 + µ−1) +

2κ(‖T‖2) supt∈(0,4‖T‖‖f†‖]

√
t/ψκ(t), and A is finite.

Proof. (i) ⇒ (ii): First note that

(10) ψ−1
κ (ξ) = ξ · (κ · κ)−1(ξ)

since

ψκ(t) · (κ · κ)−1(ψκ(t)) = κ(Θ−1
κ (

√
t))2 · Θ−1

κ (
√
t) = Θκ(Θ

−1
κ (

√
t))2 =

√
t
2

= t.

Choosing f = (I −Eλ)f
† in (3) yields

2‖Eλf †‖2 = 2
〈
f †, Eλf

†
〉

≤ 1

2
‖Eλf †‖2 + Aψκ

(
‖TEλf †‖2

)
.

As

‖TEλf †‖2 =
∫ λ

0
λ d‖Eλf †‖2 ≤ λ

∫ λ

0
d‖Eλ̃f †‖2 = λ‖Eλ̃f †‖2,

the spectral distribution function κ̃(λ) := ‖Eλf †‖ of f † satisfies the inequality 3
2
κ̃(λ)2 ≤

Aψκ (λκ̃(λ)2) . Hence, setting ψ̃κ(t) := ψκ(t)/t we have

3

2Aλ
≤ ψκ (λκ̃(λ)2)

λκ̃(λ)2
= ψ̃κ(λκ̃(λ)2).

As κ ·κ is assumed to be a concave index function, the inverse function (κ ·κ)−1 is a convex
index function. This implies that ξ 7→ ξ · (κ · κ)−1(ξ) is a convex index function as well,

and from (10) we see that ψκ is concave. This in turn implies that ψ̃κ is monotonically
decreasing, so we obtain

ψ̃−1
κ

(
3

2Aλ

)
≥ λκ̃(λ)2

or with β = 2Aλ
3

(11) κ̃
(

3

2A
β
)

≤
√

2A

3

√√√√ 1

β
ψ̃−1
κ

(
1

β

)
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for all β > 0. Setting ξ = κ(β)2 in (10), we obtain ψ−1
κ (κ(β)2) = βκ(β)2 or κ(β)2 =

ψκ(βκ(β)2). This is equivalent to 1
β

= ψκ(βκ(β)2)
βκ(β)2 and to 1

β
ψ̃−1
κ

(
1
β

)
= κ2(β). Plugging this

into (11) shows that κ̃(λ) ≤
√

2A
3
κ
(

2A
3
λ
)

for all λ > 0. Due to the concavity of the index

function κ · κ we have κ
(

2A
3
λ
)2 ≤ κ(max(1, 2A

3
)λ)2 ≤ max(1, 2A

3
)κ(λ)2.

(ii) ⇒ (i): Suppose that ‖f †‖XT
κ

= 1, i.e. ‖Eλf †‖ ≤ κ(λ) for all λ > 0. In a first step we
show that

(12) ‖(T (I −Eλ))
†f †‖2 =

∫ ‖T ∗T‖

λ

1

t
d‖Etf †‖2 ≤ 1

µ

κ(λ)2

λ
+ ‖f †‖2

for all λ > 0. Here (T (I − Eλ))
† denotes the Moore-Penrose inverse of T (I − Eλ). By

partial integration we have
∫ ‖T ∗T‖

λ

1

t
d‖Etf †‖2 = ‖f †‖2 − ‖Eλf †‖2 +

∫ ‖T ∗T‖

λ

‖Etf †‖2

t2
dt.

Now we use the assumption ‖Etf †‖ ≤ κ(t) and the monotonicity of κ(t)2/t1−µ to obtain
∫ ‖T ∗T‖

λ

‖Etf †‖2

t2
dt ≤

∫ ‖T ∗T‖

λ

κ(t)2

t1−µ
1

t1+µ
dt ≤ κ(λ)2

λ1−µ

∫ ‖T ∗T‖

λ

1

t1+µ
dt

=
κ(λ)2

µλ

(
1 − λµ

‖T ∗T‖µ
)

≤ κ(λ)2

µλ
.

In a second step we can now use (12) to verify assumption (5) in Theorem 2.1:
〈
f †, (I − Eλ)(f

† − f)
〉

=
〈
(T (I − Eλ))

†f †, T (I − Eλ)(f
† − f)

〉

≤ ‖T (I −Eλ))
†f †‖ ‖T (I − Eλ)(f

† − f)‖ ≤
(
κ(λ)√
µλ

+ ‖f †‖
)

‖Tf † − Tf‖,

i.e. σ(λ) = κ(λ)
µλ

+ ‖f †‖. Hence, by Theorem 2.1 (3) holds true with

ψ(t) = 2 inf
λ>0

[
κ(λ)2 +

(
κ(λ)√
µλ

+ ‖f †‖
)√

t

]
≤ 2

(
1 +

1√
µ

)
ψκ(t) + 2‖f †‖

√
t

where we have chosen λ = Θ−1
κ (

√
t), i.e.

√
λκ(λ) =

√
t. This implies κ(λ)√

λ

√
t = κ2(λ) =

ψκ(t). It remains to bound
√
t in terms of ψκ(t). Note from (6) that we only need to show

the variational source condition for ‖f † − f‖ ≤ 4‖f †‖ in order to prove it everywhere.
Hence it is enough to bound

√
t by ψκ(t) for

√
t = ‖Tf † − Tf‖ ≤ 4‖T‖‖f †‖. We have

‖f †‖
√
t ≤ κ(‖T‖2)ψκ(t) sup

τ∈(0,4‖T‖‖f†‖]

√
τ

ψκ(τ)
.

To see that this is finite and even limτ→0

√
τ/ψκ(τ) = 0, we substitute δ = Θ−1

κ (
√
τ ):

lim
τ→0

√
τ

ψκ(τ)
= lim

τ→0

√
τ

κ(Θ−1
κ (

√
τ ))2

= lim
δ→0

Θκ(δ)

κ(δ)2
≤ lim

δ→0
δµ/2

√√√√ δ1−µ

κ2(δ)
= 0. �
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We now consider spectral regularization methods of the form

(13) f̂α := Rαg
obs with Rα := qα(T ∗T )T ∗

and impose the following assumptions:

Assumption 3.2. With rα(λ) := 1 − λqα(λ) assume that there are constants C1 > 0,
α ∈ (0,∞], and 0 < C2 ≤ C3 < 1 such that

(i) |qα(λ)| ≤ C1

α
for all λ ∈ [0, ‖T ∗T‖] ,

(ii) λ 7→ rα(λ) is decreasing for all α > 0 and rα(λ) ≥ 0,
(iii) α 7→ rα(λ) is increasing for all λ ∈ [0, ‖T ∗T‖],
(iv) C2 ≤ rα(α) ≤ C3 for all 0 < α ≤ α.

As rα(0) = 1 − 0qα(0) = 1, assumption (ii) implies

(14) 0 ≤ rα(λ) ≤ 1

for all α > 0 and λ ≥ 0. Below we will use the following notations for x, y ∈ R:

x ∨ y := max(x, y), x ∧ y := min(x, y)

Assumption 3.2 is satisfied in particular for the following methods. Unless stated otherwise
we choose α = ∞. For a more detailed discussion of these methods we refer to [6].

• Tikhonov regularization: Here qα(λ) = (α+λ)−1 and rα(λ) = α/(α+λ). We have
C1 = 1 and C2 = C3 = 1

2
.

• Showalter’s method: Here rα(λ) = exp(−λ/α), C1 = 1 and C2 = C3 = exp(−1).
• Landweber iteration: For α > 0 let kα := min{n ∈ N0 : n + 1 > 1/α} be the

number of iterations. Then rα(λ) = (1 − µλ)kα and qα(λ) =
∑kα−1
j=0 (1 − µλ)j

where 0 < µ ≤ ‖T ∗T‖−1 is the step length parameter. We have C1 = 1. For
α = 1/(n+ ǫ) with ǫ ∈ [0, 1) we have kα = n, therefore rα(α) ≥ (1 − µ/n)n which
by the inequality of arithmetic and geometric means is monotonically increaing in
n = kα for kα > µ, hence we choose α < ‖T ∗T‖ ∧ 1 and get C2 = (1 −µ/kα)kα and
C3 = limn→∞(1 − µ/(n+ 1))n = exp(−µ).

• k-times iterated Tikhonov regularization: This is described by rα(λ) = αk/(α+λ)k.
We have C1 = k and C2 = C3 = 2−k.

• Lardy’s method: Here rα(λ) = βkα/(β+λ)kα where β > 0 is fixed and the iteration
number kα and C1 = 1. Choosing α := 1∧β we have C3 = exp(−1/2β)). Choosing
α as for Landweber we see that rα(α) ≥ (1+1/(βn))−n, therefore C2 = exp(−1/β)
since (1 + 1/(βn))n → exp(1/β) is monotonically increasing in n as argued above.

• modified spectral cutoff: Here rα(λ) = (1 − λ/2α) ∨ 0, qα(λ) = 1/λ ∧ 1/2α, and
C1 = C2 = C3 = 1/2.

Note that Assumption 3.2(iv) is violated for standard spectral cutoff (or truncated SVD),
i.e. rα(λ) = 1 if α ≤ λ and rα(λ) = 0 else.

Theorem 3.3 ([1, Prop. 2.3]). Assume that a spectral regularization method satisfies As-
sumption 3.2. Moreover, assume that for the index function κ there exists A > 0 and ν > 1
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such that

(15) rα(λ)κ(λ)ν ≤ Bκ(α)ν

for all α, λ > 0 (i.e. the qualification of the regularization method covers κν in the termi-
nology of [16]). Then the following statements for f † ∈ X are equivalent:

(i) ‖f †‖XT
κ
< ∞.

(ii) A := sup0<α≤α
1

κ(α)
‖rα(T ∗T )f †‖ < ∞, i.e. the bias for f † is of order O(κ(α)).

More precisely,

‖f †‖XT
κ

≤ A

C2
∨ ‖f †‖
κ(α)

and A2 ≤ B‖f †‖2

κ(‖T‖2)
+ ‖f †‖2

XT
κ


1 +

B1/ννC
(ν−1)/ν
3

ν − 1


 .

Proof. The more difficult implication (i) ⇒ (ii) has been proved in [1, Prop. 2.3]. Since
we have slightly different assumptions we give the proof of the implication (ii) ⇒ (i). For
0 < α ≤ α we have

‖Eαf †‖ ≤ 1

rα(α)
‖rα(T ∗T )f †‖ ≤ A

C2

κ(α).

Otherwise, if α > α, we have ‖Eαf †‖/κ(α) ≤ ‖f †‖/κ(α). �

Recall that the largest number µ0 > 0 for which (15) holds true for κ(α)ν = αµ0 is
called the classical qualification of the regularization method. We have µ0 = k for k-times
iterated Tikhonov regularization and µ = ∞ for Showalter’s method, Lardy’s methods,
Landweber iteration, and modified spectral cutoff ([6]).

4. Converse results for deterministic noise

This section discusses regularization methods for the deterministic noise model (1).

Theorem 4.1. Assume that a spectral regularization method satisfies Assumption 3.2.
Moreover, let κ be an index function for which there exists p ≥ 1 such that

(16) κ(rα) ≤ rpκ(α)

for all α > 0 and r ≥ 1 (i.e. κ does not grow faster than polynomially). Then the following
statements are equivalent for f † ∈ X:

(i) A := sup0<α≤α
1

κ(α)2 ‖rα(T ∗T )f †‖2 < ∞.

(ii) B := sup0<δ≤Θκ(α)
1

ψκ(δ2)
inf0<α≤α sup‖ξ‖≤δ ‖Rα(Tf † + ξ) − f †‖2 < ∞.

More precisely,

B ≤ 2(A+ C1) and A ≤ B

(
4B2

(1 − C3)4
∨ 1

)p
∨ ‖f †‖2κ

(
α(1 − C3)

2

2B

)−2

.

Proof. (i) ⇒ (ii): From the standard estimate

(17) ‖Rα‖2 = ‖R∗
αRα‖ = ‖qα(T ∗T )2T ∗T‖ ≤ ‖qα‖∞‖1 − rα‖∞ ≤ C1

α
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using Assumption 3.2(i) and (14). Hence we have

‖Rα(Tf † + ξ) − f †‖2 ≤
(
‖rα(T ∗T )f †‖ + ‖Rα‖δ

)2 ≤ 2Aκ(α)2 + 2
C1δ

2

α

for all ‖ξ‖ ≤ δ and 0 < α ≤ α. Choosing α = Θ−1
κ (δ) and using

√
Θ−1
κ (δ)κ(Θ−1

κ (δ)) =

Θκ(Θ
−1
κ (δ)) = δ, i.e. δ2/Θ−1

κ (δ) = ψκ(δ
2), we obtain

sup
‖ξ‖≤δ

‖Rα(Tf † + ξ) − f †‖2 ≤ (2A+ 2C1)ψκ(δ
2).

(ii) ⇒ (i): Expanding

‖Rα(Tf †+ξ)−f †‖2 = ‖rα(T ∗T )f †+Rαξ‖2 = ‖rα(T ∗T )f †‖2+2
〈
rα(T ∗T )f †, Rαξ

〉
+‖Rαξ‖2,

we see that only the middle of the three terms on the right hand side is affected by a sign
change of ξ. Therefore, to bound the supremum over ξ from below, we may assume that
the middle term is positive and neglect it to obtain

(18) sup
‖ξ‖≤δ

‖Rα(Tf †+ξ)−f †‖2 ≥ ‖rα(T ∗T )f †‖2+ sup
‖ξ‖≤δ

‖Rαξ‖2 = ‖rα(T ∗T )f †‖2+‖Rα‖2δ2.

From the equality in (17) and the isometry of the functional calculus together with the
last point in Assumption 3.2 we obtain

‖Rα‖2 = sup
λ≥0

λ|qα(λ)|2 = sup
λ≥0

(1 − rα(λ))2

λ
≥ (1 − rα(α))2

α
≥ (1 − C3)

2

α

if 0 < α ≤ α. By Assumption 3.2(iii) the first term on the right hand side of (18)
is increasing in α whereas the second term is decreasing. Therefore, using the choice
α∗(δ) = Θ−1

κ (δ)(1 − C3)
2/(2B) from the first part of the proof, for which both terms are

of the same order, we obtain the lower bound

Bψκ(δ
2) ≥ inf

α>0
sup

‖ξ‖≤δ
‖Rα(Tf † + ξ) − f †‖2 ≥ ‖rα∗(δ)(T

∗T )f †‖2 ∧ ‖Rα∗(δ)‖2δ2

≥ ‖rα∗(δ)(T
∗T )f †‖2 ∧ (1 − C3)

2

α∗(δ)
δ2 = ‖rα∗(δ)(T

∗T )f †‖2 ∧ 2Bψκ(δ
2)

for α ≥ α∗(δ) > 0. As ‖rα∗(δ)(T
∗T )f †‖2 ≥ 2Bψκ(δ

2) would lead to a contradiction, the
minimum is attained at the first argument, and we have ‖rα∗(δ)(T

∗T )f †‖2 ≤ Bψκ(δ
2). As

δ = Θκ(
2B

(1−C3)2α
∗(δ)) and ψκ(t) = (κ ◦ Θ−1

κ (
√
t))2, we obtain

‖rα∗(T ∗T )f †‖2 ≤ Bκ

(
2B

(1 − C3)2
α∗
)2

≤ B

(
4B2

(1 − C3)4
∨ 1

)p
κ(α∗)2

for all 0 < α∗ ≤ α(1 − C3)
2/(2B). If α(1 − C3)

2/(2B) < α ≤ α we can bound

κ(α)−2‖rα(T ∗T )f †‖2 ≤ κ

(
α(1 − C3)

2

2B

)−2

‖f †‖2

finishing the proof. �
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We point out that in comparison to similar results by Neubauer [17, Thm. 2.6] and
Albani et al. [1, Prop. 3.3] we have interchanged the order of the supremum over the noise
vector ξ and the infimum over the regularization parameter α. Since obviously

(19) sup
‖ξ‖≤δ

inf
α

‖Rα(Tf † + ξ) − f †‖ ≤ inf
α

sup
‖ξ‖≤δ

‖Rα(Tf † + ξ) − f †‖,

the more difficult implication (ii) ⇒ (i) in Theorem 4.1 is weaker than in [1]. However,
we do not have to impose additional assumptions relating the regularization method and
the index function as required in [1]. Let us now state conditions under which a reverse
inequality to (19) holds true:

Lemma 4.2. Under Assumption 3.2 the estimate

(20) inf
0<α≤α

sup
‖ξ‖≤δ

∥∥∥Rα(Tf † + ξ) − f †
∥∥∥ ≤ 2

√
2 sup

‖ξ‖≤δ
inf

0<α≤α

∥∥∥Rα(Tf † + ξ) − f †
∥∥∥

holds true for all

(21) δ ∈ ∆(f †) :=

{
‖rα(T ∗T )f †‖

‖Rα‖ : 0 < α < α

}

This set has the following properties:

(i) If qα(λ) is continuous in α with α = ∞ for all λ ∈ σ(T ∗T ) and f † 6= 0, then
∆(f †) = (0,∞).

(ii) If Eαf
† 6= 0 for all α > 0, then 0 is always a cluster point of ∆(f †).

(iii) For Landweber iteration with µ‖T ∗T‖ < 1 and Lardy’s method and f † 6= 0 the size
of the gaps of ∆(f †) on a logarithmic scale is bounded by ln γ with

(22) γ := sup

{
b

a
: a, b ∈ ∆(f †) ∧ 0 < a < b ∧ (a, b) ∩ ∆(f †) = ∅

}
< ∞

Proof. For δ ∈ ∆(f †) there exists α′ = α′(δ, f †) such that
∥∥∥rα′(T ∗T )f †

∥∥∥ = ‖Rα′‖ δ.

By the definition of the operator norm, for each ǫ > 0 there exists a noise vector ξ′ with
‖ξ′‖ ≤ δ such that ‖Rα′ξ′‖ ≥ (1 − ǫ)‖Rα′‖δ (if T is compact we may choose ǫ = 0). We
claim that ξ′ (depending on α′ and f †) can be chosen such that

(23)
〈
rα(T ∗T )f †, Rαξ

′
〉

≥ 0 for all α ∈ (0, α].

Let T = U(T ∗T )1/2 be the polar decomposition of T with a unitary operator U : X →
R(T ) ⊂ Y (recall that T is assumed to be injective). As R(T ) ⊃ N(Rα)⊥, we may assume

w.l.o.g. that ξ′ ∈ R(T ). Hence, (23) is equivalent to
〈
rα(T ∗T )f †, qα(T ∗T )(T ∗T )1/2ξ′′

〉
≥ 0

with ξ′ = Uξ′′. By the Halmos version of the spectral theorem [18], T ∗T is unitarily
equivalent to a multiplication operator Mλ : L2(Ω, µ) → L2(Ω, µ), (Mλh)(z) = λ(z)h(z),
z ∈ Ω on a locally compact space Ω with positive Borel measure µ and a non-negative
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function λ ∈ L∞(Ω, µ), i.e. T ∗T = W ∗MλW for some unitary operator W : X → L2(Ω, µ)
(if T is compact, µ may be chosen as counting measure on Ω = N). It follows that

〈
rα(T ∗T )f †, Rαξ

′
〉

=
∫

Ω
rα (λ(z))

(
Wf †

)
(z) qα (λ(z))

√
λ(z) (Wξ′′) (z) dµ(z).

By Assumption 3.2 we have rα ≥ 0 and qα ≥ 0 for all α > 0 (see (14)). Therefore,
the right hand side of the last equation is non-negative if (Wf †)(z)(Wξ′′)(z) ≥ 0 for µ-
almost all z ∈ Ω. This may be achieved by replacing (Wξ′′)(z) by s(z)(Wξ′′)(z) with a
measurable function s : Ω → {−1, 1}. This shows that (23) holds true if ξ′ is replaced by
UW ∗(s · (Wξ′′)).

With this choice of α′ and ξ′ we can estimate

inf
α>0

sup
‖ξ‖≤δ

∥∥∥Rα(Tf † + ξ) − f †
∥∥∥ ≤ inf

α>0
sup

‖ξ‖≤δ

[∥∥∥rα(T ∗T )f †
∥∥∥ + ‖Rαξ‖

]

≤
∥∥∥rα′(T ∗T )f †

∥∥∥ + sup
‖ξ‖≤δ

‖Rα′ξ‖

≤
∥∥∥rα′(T ∗T )f †

∥∥∥ +
1

1 − ǫ
‖Rα′ξ′‖

≤ 2

1 − ǫ
inf

0<α≤α

[∥∥∥rα(T ∗T )f †
∥∥∥ + ‖Rαξ

′‖
]

since the first term in the last line is monotonically increasing and the second term is
monotonically decreasing in α. As (‖x‖ + ‖y‖)2 ≤ 2‖x+ y‖2 for 〈x, y〉 ≥ 0, we obtain via
(23) that

inf
α>0

sup
‖ξ‖≤δ

∥∥∥Rα(Tf † + ξ) − f †
∥∥∥ ≤ 2

√
2

1 − ǫ
inf

0<α≤α

∥∥∥Rα(Tf † + ξ′) − f †
∥∥∥

≤ 2
√

2

1 − ǫ
sup

‖ξ‖≤δ
inf

0<α≤α

∥∥∥Rα(Tf † + ξ) − f †
∥∥∥ .

As ǫ > 0 was arbitrary, we have proven (20). Let us now show the properties of ∆(f †):

(i) If qα(λ) and rα(λ) are continuous in α, then ‖rα(T ∗T )f †‖ is continuous in α by
Lebesgue’s Dominated Convergence Theorem, and so is α 7→ ‖Rα‖. Moreover,
limα→0 ‖rα(T ∗T )f †‖ = 0 as T is assumed to be injective, α 7→ ‖Rα‖ is decreasing,
by (17) we have ‖Rα‖ → 0 as α → α, and by (14) we have ‖rα(T ∗T )f †‖ ≤ ‖f †‖
for all α. As f † 6= 0, the case rα(T ∗T )f † = 0 for all α > 0 can be excluded by
noting that

(24) rα(λ) > 0 for α > C1λ

since qα(λ) ≤ C1/α < 1/λ. This shows that ‖rα(T ∗T )f †‖/‖Rα‖ tends to 0 as
α → 0 and to ∞ as α → α. Now ∆(f †) = (0,∞) follows from continuity and the
intermediate value theorem.

(ii) If qα(λ) is not continuous or α 6= ∞, we still have the same limiting behaviour of
‖rα(T ∗T )f †‖/‖Rα‖ for α → 0. However, we have to exclude the case rα(T ∗T )f † =
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0 for all α in some neighborhood of 0 to ensure that 0 is a cluster point of ∆(f †).
This is achieved by (24) and the assumption Eαf

† 6= 0 for all α > 0.
(iii) For Landweber iteration and Lardy’s method we have

∆(f †) =

{
δn(f †) :=

‖r1/n(T ∗T )f †‖
‖R1/n‖ : n ∈ N

}
and γ = sup

n∈N

δn(f †)

δn+1(f †)
.

Using (17) we can bound quotients of the denominators of δn(f †) by

‖R1/(n+1)‖ = sup
λ∈σ(T ∗T )

1 − r1/(n+1)(λ)√
λ

≤ sup
λ∈σ(T ∗T )

1 − r1/(n+1)(λ)

1 − r1/n(λ)
sup

λ∈σ(T ∗T )

1 − r1/n(λ)√
λ

≤ sup
λ∈[0,‖T ∗T‖]

1 − r1/(n+1)(λ)

1 − r1/n(λ)
‖R1/n‖.

Now setting x = (1 − µλ) and x = β/(β + λ) for Landweber iteration and Lardy’s
method respectively we obtain the bound

‖R1/(n+1)‖
‖R1/n‖ ≤ sup

x∈[0,1]

1 − xn+1

1 − xn
= sup

x∈[0,1]

(
x+

1 − x

1 − xn

)
≤ 2.

For Landweber iteration quotients of enumerators of δn(f †) are bounded by

‖r1/n(T ∗T )f †‖2

‖r1/(n+1)(T ∗T )f †‖2
=

∫ ‖T ∗T‖
0 (1 − µλ)2n d‖Eλf †‖2

∫ ‖T ∗T‖
0 (1 − µλ)2n+2 d‖Eλf †‖2

≤ 1

(1 − µ ‖T ∗T‖)2

since (1 − µλ) ≥ 1 − µ ‖T ∗T‖ for all λ ≤ ‖T ∗T‖. Similar for Lardy’s method we
use β/(β + λ) ≥ β/(β + ‖T ∗T‖) for all λ ≤ ‖T ∗T‖ to obtain

‖r1/n(T ∗T )f †‖2

‖r1/(n+1)(T ∗T )f †‖2
=

∫ ‖T ∗T‖
0

(
β

β+λ

)2n
d‖Eλf †‖2

∫ ‖T ∗T‖
0

(
β

β+λ

)2n+2
d‖Eλf †‖2

≤
(

1 +
‖T ∗T‖
β

)2

.

This shows that γ is finite in both cases. �

The difference between our Theorem 4.1 and the corresponding results in [1,17] is analo-
gous to the difference between the concepts of weakly and strongly quasioptimal parameter
choice rules as introduced by Raus & Hämarik [20]. They called a parameter choice rule
α∗ : [0,∞) × Y → [0,∞) weakly quasioptimal (or simply quasioptimal) for the regulariza-
tion method {Rα} if there exists a constant C > 0 such that

(25) ‖Rα∗(δ,gobs)g
obs − f †‖ ≤ C inf

α>0
sup

‖ξ‖≤δ
‖Rα(Tf † + ξ) − f †‖ + O(δ)

for all f † ∈ X and all gobs ∈ Y with ‖gobs − Tf †‖ ≤ δ as δ → 0. (Our formulation of this
definition slightly differs from that in [20], but it is equivalent due to the arguments at
the beginning of part 2 of the proof of Theorem 4.1.) A parameter choice rule α∗ is called
strongly quasioptimal if there exists C > 0 such that

(26) ‖Rα∗(δ,gobs)g
obs − f †‖ ≤ C sup

‖ξ‖≤δ
inf
α>0

‖Rα(Tf † + ξ) − f †‖ + O(δ)
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for all f † ∈ X and all gobs ∈ Y with ‖gobs − Tf †‖ ≤ δ. Lemma 4.2 shows that the notions
of weak and strong quasioptimality coincide for continuous regularization methods. In
[20] it is shown that the discrepancy principle is strongly quasioptimal for regularization
methods of infinite qualification such as Landweber iteration, Lardy’s method or spectral
cut-off (but it is not even weakly quasioptimal for Tikhonov regularization and iterated
Tikhonov regularization). For iterated Tikhonov regularization the Raus-Gfrerer rule is
weakly quasioptimal by results in [19], and hence by Lemma 4.2 also strongly quasioptimal.
Moreover, Lepskĭı’s rule was shown to be weakly quasioptimal for all considered methods
([20]), and hence it is strongly quasioptimal for (iterated) Tikhonov regularization, Showal-
ter’s method, and modified spectral cut-off by Lemma 4.2. The Monotone Error Rule is
strongly quasioptimal for Landweber iteration and Lardy’s method ([20]). In most cases
the constant C in (25) or (26) can be given explicitly.

Theorem 4.3. Suppose Assumption 3.2 holds true, let α∗ be weakly quasioptimal param-
eter choice rule, let ψκ be concave, and assume that (16) holds true. Then the following
statements are equivalent for any f † ∈ X for which ∆(f †) satisfies (22):

(i) supα≥α>0
1

κ(α)2 ‖rα(T ∗T )f †‖2 < ∞.

(ii) For any finite δ0 > 0 we have

sup
δ∈(0,δ0]

1

ψκ(δ2)
sup

‖ξ‖≤δ
‖Rα∗(δ,Tf†+ξ)(Tf

† + ξ) − f †‖2 < ∞.

Proof. (i) ⇒ (ii): Using Theorem 4.1 and the definition of weak quasioptimality (25) we
see that there exists a constant C such that for all δ > 0 the estimate

sup
‖ξ‖≤δ

‖Rα∗(δ,Tf†+ξ)(Tf
† + ξ) − f †‖2 ≤ C

(
ψκ(δ

2) + δ2
)

holds true. Since ψκ is concave limt→0 t/ψκ(t) is bounded and hence we obtain (ii) for any
finite δ0 > 0.

(ii) ⇒ (i): By Lemma 4.2 we have

inf
α≥α>0

sup
‖gobs−Tf†‖≤δ

‖Rα(gobs) − f †‖2 ≤ 8 sup
‖gobs−Tf†‖≤δ

inf
α≥α>0

‖Rα(gobs) − f †‖2

≤ 8 sup
‖gobs−Tf†‖≤δ

‖Rα∗(δ,gobs)(g
obs) − f †‖2 ≤ 8C(f †, δ0)ψκ(δ)

for all δ ∈ ∆(f †)∩[0, δ0]. Now choose δ0 = Θκ(2Bβ/(1−C3)
2) with β = α∧‖T ∗T‖ and first

assume that ∆(f †) ∩ (0, δ0] = (0, δ0]. Then we obtain supα∈(0,β]
1

κ(α)2 ‖rα(T ∗T )f †‖2 < ∞
following the proof of Theorem 4.1. As ‖rα(T ∗T )f †‖2 ≤ ‖f †‖2 for all α > 0, this is
equivalent to (i).

If ∆(f †) has gaps, but satisfies (22), then for each δ ∈ (0, δ0] we can find δ ∈ [δ/γ, δ]
with δ ∈ ∆(f †). By the concavity of ψκ we have ψκ(δ)/ψκ(δ) ≤ γ. Therefore, replacing
the supremum over δ ∈ (0, δ0] ∩ ∆(f †) by the supremum over δ ∈ (0, δ0] increases the value
at most by a factor γ. �
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5. Converse results for white noise

We now want to prove a theorem similar to Theorem 4.1 for the white noise error model
(2) using the expected square error as error measure. By the bias-variance decomposition
this equals

(27) E

[∥∥∥f̂α − f †
∥∥∥

2

X

]
=
∥∥∥E

[
f̂α
]

− f †
∥∥∥

2

X
+ ε2E

[
‖RαW‖2

]
.

By Theorem 3.3 the bias can be controlled by assuming that f † ∈ X
T
κ . The variance is

given by ε2E [‖RαW‖]2 = ε2trace(R∗
αRα), i.e. as opposed to the deterministic the effect of

the noise is not described by the maximum, but by the sum of the eigenvalues of R∗
αRα.

Often the sum grows faster than the maximum as α → 0, and the specific rate depends not
only on the regularization methods, but also on the eigenvalue distribution of the operator.
We will assume that there exists a constant D ≥ 1 and a monotonically decreasing function
v ∈ C((0,∞)) such that

(28a)
1

D
v(α)2 ≤ E

[
‖RαW‖2

]
≤ Dv(α)2 ∀α ≥ α > 0

with limits limt→0 v(t) = ∞ and limt→∞ v(t) = 0. Note the in the deterministic case, i.e.

for E
[
‖RαW‖2

]
replaced by ‖Rα‖2, we could simply choose v(α) = c/

√
α. Moreover, we

will assume that v(α) does not grow faster than polynomially as α → 0, or equivalently,
that the inverse function v−1 : (0,∞) → (0,∞) does not decay faster than polynomially
at infinity in the sense that there exists p ≥ 1 such that

(28b) v−1(rt) ≥ r−qv−1 (t)

for all t > 0 and r ≥ 1.
It was shown in [5] that E [‖RαW‖2] ∼ E

[
‖(T (I − ET ∗T

α ))†‖2
]

under certain conditions,

and explicit expressions for v have been derived.

Theorem 5.1. Let Assumption 3.2 and (28) hold true and define

ψκ,v(t) := κ
(
Θ−1
κ,v

(√
t
))2

with Θκ,v(α) :=
κ(α)

v(α)
.

Moreover, assume that κ satisfies (16). Then for f † ∈ X the following statements are
equivalent:

(i) A := sup0<α≤α
1

κ(α)2 ‖rα(T ∗T )f †‖2
X
< ∞

(ii) B := sup0<ε≤Θκ,v(α)
1

ψκ,v(ε2)
inf0<α≤α E[‖Rα(Tf † + εW ) − f †‖2

X
] < ∞.

More precisely,

B ≤ A +D and A ≤ B ∨ B(2BD)pq ∨ ‖f †‖2

κ
(
v−1(

√
2BDv(α))

) .
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Proof. (i) ⇒ (ii): Set f̂α := Rα(Tf † + εW ). By (i) and Theorem 3.3 we can bound

‖E[f̂α] − f †‖2
X

= ‖rα(T ∗T )f †‖2
X

≤ Aκ(α)2, and by assumption (28a) we can estimate
E[‖RαW‖2] ≤ Dv2(α). Hence,

E

[∥∥∥f̂α − f †
∥∥∥

2

X

]
≤ Aκ2(α) +Dε2v2(α).

The minimum over the right hand side is approximately attained if κ(α) = εv(α) or
equivalently if α = Θ−1

κ,v(ε). The equality κ(α) = εv(α) implies in particular that

(29) ψκ,v(ε
2) = ε2v(Θ−1

κ,v(ε))
2.

Therefore, for all ε > 0 we obtain

inf
0<α≤α

E

[∥∥∥f̂α − f †
∥∥∥

2

X

]
≤ [A +D]κ

(
Θ−1
κ,v(ε)

)2

and can choose B = A +D.
(ii) ⇒ (i): Using again (27) and the lower bound on the variance in (28a) we obtain

E

[∥∥∥f̂α − f †
∥∥∥

2

X

]
≥
∥∥∥E

[
f̂α
]

− f †
∥∥∥

2

X
+

1

D
v(α) =

∥∥∥rα(T ∗T )f †
∥∥∥

2

X
+
ε2

D
v(α)2.

Because the first term is increasing and the second term is decreasing in α, we obtain

Bψκ,v(ε
2) ≥ inf

α>0

[∥∥∥rα(T ∗T )f †
∥∥∥

2

X
+
ε2

D
v(α)2

]
≥
∥∥∥rα∗

(T ∗T )f †
∥∥∥

2

X
∧ ε2

D
v(α∗)

2.(30)

for any α∗ ∈ (0, α]. We will choose

(31) α∗(ε) = v−1
(√

2BD v
(
Θ−1
κ,v (ε)

))
.

Using (29) we see that the second term in the minimum in (30) equals twice the left hand
side:

ε2

D
v(α∗)

2 = 2Bε2v(Θ−1
κ,v(ε))

2 = 2Bψκ,v(ε
2),

Therefore,
∥∥∥rα∗

(T ∗T )f †
∥∥∥

2

X
≥ ε2

D
v(α∗)2 leads to a contradiction, i.e. the minimum in (30) is

attained at the first argument. We obtain

∥∥∥rα∗
(T ∗T )f †

∥∥∥
2

X
≤Bψκ,v(ε2) = Bψκ,v



(

Θκ,v

(
v−1

(
v(α∗)√
BD

)))2

 ,

where we have solved (31) for ε in the second step. Abbreviating z := v−1
(
v(α∗)/

√
2BD

)

and using (29) again, we find
∥∥∥rα∗

(T ∗T )f †
∥∥∥

2

X
≤ Bψκ,v ((Θκ,v (z)))2 = B (Θκ,v (z))2 v

(
Θ−1
κ,v (Θκ,v (z))

)2

= Bκ (z)2 ≤ Bκ
((

1 ∨ (2BD)q/2
)
α∗
)2 ≤ (B ∨ B(2BD)pq)κ(α∗)2

for all α ∈ (0, α] defined by (31) using (28b).
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For α ∈ (0, α] not of the given form note that α ≥ v−1(
√

2BDv(α)) and using mononicity
we obtain for these α

1

κ(α)2

∥∥∥rα(T ∗T )f †
∥∥∥

2

X
≤ ‖f †‖2

κ
(
v−1(

√
2BDv(α))

)

showing boundedness for all α ∈ (0, α]. �

Remark 5.2. If assumption (28a) is relaxed to

(32) v−(α)2 ≤ E
[
‖RαW‖2

]
≤ v+(α)2 ∀α ≥ α > 0

where possibly limα→0(v+/v−)(α) = ∞, and v− satisfies (28b), then it can be seen by
inspection of the proof that

Theorem 5.1(i) ⇒ sup
0<ε≤Θκ,v+

(α)

1

ψκ,v+
(ε2)

inf
0<α≤α

E
[
‖Rα(Tf † + εW ) − f †‖2

X

]
< ∞,

Theorem 5.1(i) ⇐ sup
0<ε≤Θκ,v−

(α)

1

ψκ,v−
(ε2)

inf
0<α≤α

E
[
‖Rα(Tf † + εW ) − f †‖2

X

]
< ∞.

This is relevant for operators T with exponentially decaying singular values. Whereas
for polynomial decay assumption (28a) can be verified using results from [5], for singular
values with asympototic behaviour σj(T ) ∼ exp(−cjβ) with c, β > 0 one can only (easily)
verify the relaxed condition (32) with

v−(α) = c−α
−1/2 and v+(α) = c+α

−1/2−τ

for any τ > 0 and some c−, c+ > 0. However, for such operators (i) is typically satisfied only
for logarithmic functions κ(α) = (− lnα)−p with some p > 0 for f † of finite smoothness.
In this case one has

ψκ,v+
(t) = (− ln t)−2p(1 + o(1)), t → 0

independent of the choice of τ ∈ [0,∞) (see [15]). Therefore, the equivalence in Theorem
5.1 still holds true with either v = v− or v = v+.

6. Besov spaces as maxisets

We have seen in the previous sections that convergence rates of ψκ to a true solution f †

for regularization methods are completely characterized by f † ∈ X
T
κ . Andreev [3] showed

that these spaces coincide with K-interpolation spaces with equivalent norms. Recall that
for a Banach space Z ⊂ X, which is continuously embedded in X the K-functional is defined
by

Kt(f) := inf
g∈Z

(
‖f − g‖2

X
+ t2‖g‖2

Z

)1/2
.

For ν ∈ (0, 1) the K-interpolation space with fine index ∞ is defined by

(X,Z)ν,∞ := {f ∈ X : ‖f : (X,Z)ν,∞‖ < ∞} where ‖f : (X,Z)ν,∞‖ := sup
t>0

t−νKt(f).
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Here we temporarily switch to a different norm notation because of the numereous indices.
It can be shown that (X,Z)ν,∞ with this norm is a Banach space. If Z = (S∗S)k(X) for
a bounded linear operator S : X → Y and some k ∈ N with norm ‖f‖

Z
:= ‖(S∗S)−kf‖X,

Andreev [3] showed that

(33) X
S
idkν = (X, (S∗S)k(X))ν,∞

for ν ∈ (0, 1) with
√

1 − ν
∥∥∥f : (X, (S∗S)k(X)ν,∞

∥∥∥ ≤
∥∥∥f : XS

idkν

∥∥∥ ≤ (1−ν)1−ν νν
∥∥∥f : (X, (S∗S)k(X)ν,∞

∥∥∥ .

We further recall that the K-interpolation of certain Sobolev spaces yields Besov spaces.
In particular,

(34) (L2(M), Hk(M))ν,∞ = Bkν
2,∞(M)

if M is a smooth Riemannian manifold with Laplace-Beltrami operator ∆ satisfying As-
sumption 6.1 below and Hk(M) := (I − ∆)−k/2(L2(M)) with norm ‖f‖Hk := ‖(I −
∆)k/2f‖L2 (see [22, Chapter 7]).

Assumption 6.1. Let M be a connected smooth Riemanian manifold. Let M
• be complete,
• have an injectivity radius r > 0 and
• a bounded geometry.

Here completeness means that all geodesics are infinitely extendable, the injectivity
radius refers to the size of the domains in which the exponential map is bijective, and
bounded geometry means that the determinant of the Riemannian metric is bounded from
below by a positive constant and all its derivatives are bounded from above (see [22]
for further discussions). Important examples of such manifolds include R

n and compact
manifolds without boundaries.

In the following we will consider operators T : X = L2(M) → Y such that

(35) T ∗T = Λ(−∆),

where Λ fulfills the following conditions:

Assumption 6.2. Let Λ : [0,∞) → (0,∞) such that

• Λ is continuous,
• Λ|[t0,∞) is strictly decreasing for some t0 ≥ 0,
• Λ(µ) → 0 for µ → ∞.

Our aim of this section is to prove the following theorem:

Theorem 6.3. Let M fulfill Assumption 6.1, Λ fulfill Assumption 6.2 and s > 0. Let
T : L2(M) → Y be of the form (35) and define

κ(α) :=





0, if α = 0
(
Λ|[t0,∞)

−1(α)
)−1/2

, if α ∈ ((0,Λ(t0)]),

t
−1/2
0 , if α > Λ(t0).
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Then X
T
κs = Bs

2,∞(M) with equivalent norms.

Proof. We introduce the operator S := κ(T ∗T )1/2 : L2(M) → L2(M)) such that

S∗S = κ(T ∗T ) = (κ ◦ Λ)(−∆).

As (κ ◦ Λ)(t) = t−1/2 for t ≥ t0 and inf0≤t≤t0(κ ◦ Λ)(t) > 0 by continuity, we have

(36) (S∗S)k(L2(M)) = Hk(M)

with equivalent norms for all k ∈ N. Using the substitution t = κ(α) we obtain
∥∥∥f : XS

ids

∥∥∥ = sup
0<t≤1/t0

t−s
∥∥∥ES∗S

t f
∥∥∥ = sup

α∈(0,Λ(t0)]

1

κ(α)s

∥∥∥ES∗S
κ(α)f

∥∥∥ = sup
α∈(0,Λ(t0)]

1

κ(α)s

∥∥∥ET ∗T
α f

∥∥∥ .

As ET ∗T
α (f) = ET ∗T

Λ(0)(f) = f for α > Λ(0), this shows that the norms
∥∥∥f : XS

ids

∥∥∥ and∥∥∥f : XT
κs

∥∥∥ are equivalent. Choosing k ∈ N with k > s and using (33), (36) and (34) we

obtain
X
T
κs = X

S
ids = (L2(M), (S∗S)k(M))s/k,∞ = Bs

2,∞(M)

with equivalent norms. �

7. Examples

In this section we want to apply our results to some examples. The examples are taken
from [10] and complement the results there.

7.1. Operators in Sobolev scales. In the following we describe a fairly general class
of problems. It contains convolution operators (if M = R

d or M = (S1)d), for which
the convolution kernel has a certain type of singularity at 0, boundary integral operators,
injective elliptic pseudo-differential operators, and compositions of such operators.

Theorem 7.1. Let M be a d-dimensional manifold satisfying Assumption 6.1, and let T be
an operator which is a times smoothing (a > d/2) in the sense that T : Hs(M) → Hs+a(M)
is well-defined, bounded and has a bounded inverse for all s ∈ R. We will consider T
as an operator from L2(M) into itself, i.e. X = Y = L2(M). We consider a spectral
regularization method with classical qualification µ0 ≥ 1 satisfying Assumption 3.2. Then
the following statements are equivalent for all f † ∈ X \ {0} and u ∈ (0, a):

(i) f † satisfies a the VSC (3) with ψ(t) = Ct
u

u+a for some C > 0.
(ii) f † ∈ Bu

2,∞(M).
(iii) For a quasioptimal parameter choice rule α∗ and a regularization method for which

∆(f †) satisfies (22) we have

sup{
∥∥∥Rα∗(δ,gobs)g

obs − f †
∥∥∥
L2

:
∥∥∥gobs − Tf †

∥∥∥
L2

≤ δ} = O
(
δ

u
u+a

)
, δ → 0.

(iv)
(

infα>0 E

[∥∥∥Rα(Tf † + εW ) − f †
∥∥∥

2

L2

])1/2

= O
(
ε

u
u+a+d/2

)
, ε → 0.

(ii)–(iv) are equivalent for all u ∈ (0, 2aµ0), and the assumption a > d/2 can be relaxed to
a > 0 if (iv) is neglected.
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Proof. (i) ⇔ f † ∈ X
T
κ : Note that ψ = ψκ with

κ(t) = C ′tu/2a for some C ′ > 0,

and that the assumption u ∈ (0, a) ensures that κ satisfies the conditions of Theorem 3.1.
f † ∈ X

T
κ ⇔ (ii): It follows from (33) and (34) that

X
T
κ = (L2(M), (T ∗T )(L2(M)))u/2a,∞ = (L2(M), H2a(M))u/2a,∞ = Bu

2,∞(M).

f † ∈ X
T
κ ⇔ (37) below: For u/2a < µ0 Theorem 3.3 yields equivalence to

(37) sup
α>0

α−u/2a‖rα(T ∗T )f †‖ < ∞.

(37) ⇔ (iii): This follows from Theorem 4.3.
(37) ⇔ (iv): It has been shown in [5, §5.3] that (28a) holds true with v(α) = α−(a+d/2)/(2a).

Hence, we can apply Theorem 5.1. �

Example 7.2. We consider a circle M = rS1 ⊂ R
2 with r > 0 and the single layer potential

operator (Tf)(x) := − 1
π

∫
M ln |x−y|f(y) ds(y). Let fn(r cos t, r sin t) := (2πr)−1/2 exp(int),

n ∈ Z denote the trigonometric basis of L2(rS). It is known (see [2, Sec. 3.3]) that
Tfn = −1/|n|fn for n 6= 0, and Tf0 = ln(r)f0. Let us choose r = exp(1) for simplicity.
Recall that an (equivalent) norm on Hs(M) is given by ‖f‖2

Hs =
∑
n∈Z(1 ∨ |n|)2s〈f, fn〉2

for s ≥ 0. W.r.t. this norm T ν = (T ∗T )u/2 is isometric from Hs(M) to Hs+u(M) for
all u > 0, so the assumptions of Theorem 7.1 hold true with a = d = 1. Moreover, the
spectral source condition f † ∈ ran((T ∗T )u/2 is equivalent to f † ∈ Hu(M) and yields the

convergence rate O
(
δu/(u+1)

)
. The (equivalent) X

T
κ -norm of Bu

2,∞(M) (with κ(t) = tu) is

given by ‖f †‖2
Bu

2,∞
= supm≥0(1 ∨ m)2u∑

|n|≥m〈f †, fn〉2. This shows that Bu
2,∞(M) is the

set of f ∈ L2(M) for which the L2-orthogonal projections onto the space of trigonometric
polynomials of degree ≤ m converge with rate O(m−u) as m → ∞. Note that

f † =
∑

n∈Z

(1 ∨ |n|)−ufn ∈ Bu
2,∞(M) \Hu(M)

for any u > 0, but f † ∈ Hν(M) for ν < u. Therefore, we obtain the convergence rate
O(δu/(u+1)) for f †, whereas an analysis via spectral source conditions only yields rates
O(δν/(ν+1)) for ν ∈ (0, u). Moreover, as limνրu ‖f †‖Hν = ∞, constants explode as ν → u.

7.2. Backward heat equation. Let us consider the heat equation on a manifold M
satisfying Assumption 6.1:

∂tu = ∆u in M × (0, t)

u(·, 0) = f on M
The backward heat equation is the inverse problem to estimate the initial temperature f
from observations of the final temperature g = u(·, t). This fits into the framework (35)
with the function

ΛBH(µ) = exp(−2tµ).

We obtain the following equivalence result:
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Theorem 7.3. Let M be a compact manifold satisfying Assumption 6.1. For spectral
regularization methods satisfying Assumption (3.2) and the forward operator T : L2(M) →
L2(M) with T ∗T = ΛBH(−∆) of the backward heat equation the following statements for
β > 0 and f † ∈ L2(M) \ {0} are equivalent:

(i) f † ∈ B2β
2,∞(M).

(ii) f † satisfies a VSC (3) with index function ψ(t) = C log(3+t−1)−2β for some C > 0.
(iii) For a quasioptimal parameter choice rule α∗ and a regularization method for which

∆(f †) satisfies (22) we have

sup{
∥∥∥Rα∗(δ,gobs)g

obs − f †
∥∥∥
L2

:
∥∥∥gobs − Tf †

∥∥∥
L2

≤ δ} = O
(
log(δ−1)−β

)
, δ → 0.

(iv)
(

infα>0 E

[∥∥∥Rα(Tf † + εW ) − f †
∥∥∥

2

L2

])1/2

= O
(
log(ε−1)−β

)
, ε → 0.

Proof. (i) ⇔ f † ∈ X
T
κ2β : By Theorem 6.3 we have f † ∈ B2β

2,∞(M) if and only if f † ∈ X
T
κ2β

with κ(α) = ((1/2t) ln(α−1))
−1/2

for 0 < α ≤ ΛBH(t0) and any t0 > 0.
f † ∈ X

T
κ2β ⇔ (ii): This follows from Theorem 3.1 since

(38) ψκ2β (t) = C log(t−1)−2β (1 + o(1)) , as t → 0

as shown in [15]. The 3 is included in the definition of ψ to avoid a singularity at t = 1.
f † ∈ X

T
κ2β ⇔ (iii): Follows from Theorems 3.3 and 4.3.

f † ∈ X
T
κ2β ⇔ (iv): Use the results of [5, §5.1] to see that (32) is fulfilled for any τ > 0

and apply Remark 5.2 and Theorem 3.3. �

7.3. Sideways heat equation. We now consider the heat equation in the interval [0, 1].
We may think of [0, 1] as the wall of a furnace where the right boundary 1 is the inaccessible
interior side and 0 the accessible outer side. We assume the left boundary is insulated and
impose the no-flux boundary condition ∂xu(0, t) = 0. The forward problem reads

ut = uxx in [0, 1] × R,

u(1, t) = f(t), t ∈ R,

ux(0, t) = 0, t ∈ R.

We will consider the inverse problem to estimate the temperature f(t) = u(1, t) at the
inaccessible side from measurements of the temperature g(t) = u(0, t) at the accessible
side for all times t ∈ R. As shown in [10] this fits into the framework (35) if we set

ΛSH(µ) =

∣∣∣∣cosh
√
i
√
µ

∣∣∣∣
−2

, M = R.

Theorem 7.4. For spectral regularization methods satisfying Assumption (3.2) and the
forward operator T : L2(R) → L2(R) such that T ∗T = ΛSH(−∆) of the sideways heat
equation the following statements for β > 0 and f † ∈ L2(R) \ {0} are equivalent:

(i) f † ∈ B
β/2
2,∞(R).

(ii) f † satisfies a VSC (3) with index function ψ(t) = C log(3+t−1)−2β for some C > 0.
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(iii) For a quasioptimal parameter choice rule α∗ and a regularization method for which
∆(f †) satisfies (22) we have

sup{
∥∥∥Rα∗(δ,gobs)g

obs − f †
∥∥∥
L2

:
∥∥∥gobs − Tf †

∥∥∥
L2

≤ δ} = O
(
log(δ−1)−β

)
, δ → 0.

(iv)
(

infα>0 E

[∥∥∥Rα(Tf † + εW ) − f †
∥∥∥

2

L2

])1/2

= O
(
log(ε−1)−β

)
, ε → 0.

Proof. (i) ⇔ f † ∈ X
T
κβ/2: As shown in [10] ΛSH(µ) = (1/4) exp(−

√
2µ1/4)(1 + o(µ)) as

µ → ∞. Therefore we obtain κ(α) = 2 ln(α−1)−2(1 + o(α)) as α → 0.
f † ∈ X

T
κβ/2 ⇔ (ii) ⇔ (iii) ⇔ (iv): This follows as in proof of Theorem 7.3. Due to the dif-

ferent exponent in the asymptotic formula for κ we have ψκβ/2(t) = C log(t−1)−2β (1 + o(1))
here instead of (38). �

7.4. Satellite gradiometry. Let us assume that the Earth is a perfect ball of radius 1.
The gravitational potential u of the Earth is determined by its values f at the surface by
the exterior boundary value problem

∆u = 0 in {x ∈ R
3 : |x| > 1}

|u| → 0, |x| → ∞
u = f on S

2

In satellite gradiometry one studies the inverse problem to determine f from satellite
measurements of the rate of change of the gravitational force in radial direction at height
R > 0, i.e. the data are described by the function g = ∂2u

∂r2 |RS2 . As shown in [10] this fits
into the framework (35) if we set

ΛSG(µ) :=
(

1

2
+ λ

)2 (3

2
+ λ

)2

R−2λ, λ =

√
1

2
+ µ, M = S

2.

Note that ΛSG (unlike ΛBH and ΛSH) is not globally monotonically decreasing unless R is
large enough (one needs R ≥ exp((4

√
2 + 2)/(

√
2 + 5)) ≈ 3.3, which is not realistic).

Theorem 7.5. For spectral regularization methods satisfying Assumption 3.2 and the for-
ward operator T : L2(S2) → L2(S2) such that T ∗T = ΛSG(−∆) with R large enough such
that ΛSG fulfills Assumption 6.2 of the satellite gradiometry problem the following state-
ments for β > 0 and f † ∈ L2(S2) \ {0} are equivalent:

(i) f † ∈ Bβ
2,∞(S2).

(ii) f † satisfies a VSC (3) with index function ψ(t) = C log(3+t−1)−2β for some C > 0.
(iii) For a quasioptimal parameter choice rule α∗ and a regularization method for which

∆(f †) satisfies (22) we have

sup{
∥∥∥Rα∗(δ,gobs)g

obs − f †
∥∥∥
L2

:
∥∥∥gobs − Tf †

∥∥∥
L2

≤ δ} = O
(
log(δ−1)−β

)
, δ → 0.

(iv)
(

infα>0 E

[∥∥∥Rα(Tf † + εW ) − f †
∥∥∥

2

L2

])1/2

= O
(
log(ε−1)−β

)
, ε → 0.
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Proof. (i) ⇔ f † ∈ X
T
κ : Theorem 6.3 shows that f † ∈ Bβ

2,∞(S2) if and only if f † ∈ X
T
κ where

κ(α) = 2 ln(R)(ln(α−1))−1(1 + o(1)) as α → 0 since ΛSG(µ) = exp(−2 ln(R)µ1/2)(1 + o(1))
as µ → ∞.
f † ∈ X

T
κ ⇔ (ii) ⇔ (iii) ⇔ (iv): This follows again along the line of the proof of Theorem

7.3. Here ψκβ (t) = C log(t−1)−2β (1 + o(1)) as t → 0. �

8. Conclusions

We have described a general strategy for the verification of VSCs. For linear operators in
Hilbert spaces we have shown via a series of equivalence theorems that VSCs are necessary
and sufficient for certain rates of convergence both for deterministic errors and for white
noise. For a number of relevant inverse problems VSCs with certain index functions are
satisfied if and only if the solution belongs to some Besov space.

For other forward operators the set of solutions which satisfies a VSC with a (multiple of
a) given index function will not be any known function space. Nevertheless it is interesting
to derive verifiable sufficient conditions for VSCs and rates of convergence also for such
operators, and we intend to explore the potential of our general strategy in such situations
in future research.

Furthermore, our strategy for the verification of VSCs has straightforward extensions to
Banach spaces, general data fidelity and penalty functionals, and it has already successfully
been applied to nonlinear inverse scattering problems. These extensions will be an inter-
esting topic of future research. Although VSC are known to be sufficient for certain rates
of convergence in such general situations, little is known about necessity so far. However,
we expect that different techniques than those applied in this paper will be required for
such converse results.
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Appendix A. Spectral source conditions

In this appendix we will use the general strategy of §2 to derive variational source
conditions from spectral source conditions. Compared to the implication (ii) ⇒ (i) in
Theorem 3.1, we can relax the assumption that t 7→ κ(t)2/t1−µ is decreasing for some
µ ∈ (0, 1) by allowing also µ = 0. Moreover, the proof for spectral source conditions is
considerably simpler.

The result has been known in principle, but previous derivations have been indirect via
distance functions, did not yield explicit control over constants, and already for logarithmic
source conditions involved quite heavy computations (see [7]).
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Proposition A.1. If T is linear, Y is a Hilbert space, and f † satisfies a spectral source
condition

f † = ϕ(T ∗T )w, ‖w‖ ≤ ρ

with an index function ϕ such that ϕ2 is concave, then f † satisfies the variational source
condition (3) with

(39) ψ(δ2) = 4ρ2ϕ

(
Θ−1

(
δ

ρ

))2

, Θ(t) :=
√
tϕ(t).

Proof. Let Er = 1[0,r](T
∗T ) denote the spectral family generated by the operator T ∗T and

set Pr := I − Er for r > 0. Then

‖(I − Pr)f
†‖2 = ‖E(r)ϕ(T ∗T )w‖2 =

∫ r

0
ϕ(t)2 d‖Etw‖2 ≤ ϕ(r)2ρ2.

Therefore, (4) holds true with κ(r) = ρϕ(r). Moreover,

〈
f †, Pr(f

† − f)
〉

=
〈
w, Prϕ(T ∗T )(f † − f)

〉
≤ ρ

(∫ ∞

r
ϕ(t)2 d‖Et(f † − f)‖2

)1/2

≤ ρ

(
sup
t≥r

ϕ(t)2

t

∫ ∞

ρ
td‖Et(f † − f)‖2

)1/2

≤ ρ
ϕ(r)√
r

‖T (f † − f)‖

where supt≥r ϕ(t)2t = ϕ(r)2/r since ϕ2 is concave and ϕ(0) = 0. Hence, (5) holds true with
σ(r) = ρϕ(r)/

√
r and C = 0. Therefore, (3) holds true with

ψ(δ) = 2 inf
r>0

[
ρ2ϕ(r)2 +

ϕ(r)√
r
ρδ

]
= 2ρ2 inf

r>0

[
ϕ(r)2 +

ϕ(r)√
r

δ

ρ

]
.

We choose r = Θ−1(δ/ρ), i.e.
√
rϕ(r) = δ/ρ. Then ϕ(r)√

r
δ
ρ

= ϕ(r)2 = ϕ(Θ−1(δ/ρ))2, so we

obtain (39). �
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