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Abstract

Covering arrays find important application in software and hardware interaction testing. For practical
applications it is useful to determine or bound the minimum number of rows, CAN(t, k, v), in a covering
array for given values of the parameters t, k and v. Asymptotic upper bounds for CAN(t, k, v) have
earlier been established using the Stein-Lovász-Johnson strategy and the Lovász local lemma. A series
of improvements on these bounds is developed in this paper. First an estimate for the discrete Stein-
Lovász-Johnson bound is derived. Then using alteration, the Stein-Lovász-Johnson bound is improved
upon, leading to a two-stage construction algorithm. Bounds from the Lovász local lemma are improved
upon in a different manner, by examining group actions on the set of symbols. Two asymptotic upper
bounds on CAN(t, k, v) are established that are tighter than the known bounds. A two-stage bound is
derived that employs the Lovász local lemma and the conditional Lovász local lemma distribution.

1 Introduction
Let N, t, k, and v be positive integers with k ≥ t ≥ 2 and v ≥ 2. A covering array CA(N ; t, k, v) is an N × k
array A in which each entry is from a v-ary alphabet Σ, and for every N × t sub-array B of A and every
x ∈ Σt, there is a row of B that equals x.

When k is a positive integer, [k] denotes the set {1, . . . , k}. A t-way interaction is {(ci, ai) : 1 ≤ i ≤ t, ci ∈
[k], ci 6= cj for i 6= j, and ai ∈ Σ}. So an interaction is an assignment of values from Σ to t of the k columns.
An N × k array A covers the interaction ι = {(ci, ai) : 1 ≤ i ≤ t, ci ∈ [k], ci 6= cj for i 6= j, and ai ∈ Σ} if
there is a row r in A such that A(r, ci) = ai for 1 ≤ i ≤ t. When there is no such row in A, ι is not covered
in A. Hence a CA(N ; t, k, v) covers all the t-way interactions involving k columns each having v values.

Covering arrays are used extensively for interaction testing in complex engineered systems. In that
setting, the k columns represent factors that may affect performance; the v values are the valid levels of the
factors; each of the N rows forms a test of a test suite; and t is the strength of coverage of interactions among
the factors. Real-world software or hardware system can consist of hundreds of components. While unit
testing can reveal faulty selections for particular components, correct components may nevertheless interact
to cause a fault. To ensure that all possible combinations of options of t components function together
correctly, one needs to examine all possible t-way interactions. When the number of components is k, and
the number of different options available for each component is v, the N tests of a CA(N ; t, k, v) collectively
test all t-way interactions. For this reason, covering arrays have been used in combinatorial interaction
testing in varied fields like software and hardware engineering, design of composite materials, and biological
networks [4, 20, 21, 27, 29].

The cost of testing is directly related to the number of test cases, so one is interested in covering arrays
with the fewest rows. The smallest value of N for which CA(N ; t, k, v) exists is denoted by CAN(t, k, v).
Efforts to determine or bound CAN(t, k, v) have been extensive; see [7, 9, 20, 26] for example. Naturally one
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would prefer to determine CAN(t, k, v) exactly. Katona and Kleitman [18] and Spencer [19] independently
showed that for t = v = 2, the minimum number of rows N in a CA(N ; 2, k, 2) is the smallest N for which
k ≤

(
N−1
dN2 e

)
. Since that time, the exact value of CAN(t, k, v) as a function of k has not been determined for

any other cases with t ≥ 2 and v ≥ 2.
In light of this, the asymptotic determination of CAN(t, k, v) has been of substantial interest. For fixed

t and v, it is well-known that CAN(t, k, v) is Θ(log k); the lower bound can be established by observing
that all columns are distinct, and the upper bound is a simple probabilistic argument. When t = 2 and
v ≥ 2. Gargano et al. [14] establish the much more precise statement that CAN(t, k, v) = v

2 log k {1 + o(1)}.
However, when t > 2, even the coefficient of the highest order term is not known precisely. One of our main
results improves on the best known asymptotic upper bound on CAN(t, k, v).

Returning to the testing application, the methods used to obtain asymptotic bounds have had little impact
to date, for two main reasons. First, other methods typically provide smaller arrays than are guaranteed by
the asymptotic methods. Secondly, even when the asymptotic methods yield a better bound, it may be non-
constructive or provide no efficient construction method. To understand these, consider the current tables
of upper bounds for covering array numbers [8]. When t = 6 and v = 3, for example, direct constructions
[31] determine the best known upper bounds on CAN(6, k, 3) when k ≤ 14; greedy algorithms [10, 12]
determine bounds for 15 ≤ k ≤ 51; and recursive methods [11] determine bounds for k ≥ 52. Each of
these provides an efficient method of producing the covering array for use in testing, yet for k ≥ 53 the
sizes of the arrays so produced are larger than one guaranteed to exist by probabilistic arguments. Evidently
efficient constructions to implement the asymptotic methods show much promise in producing covering arrays
for testing large systems. Our second main contribution is to demonstrate that the improvements in the
asymptotic bound form the basis of efficient construction algorithms.

Next we introduce some notation used throughout the paper. Let It be the set of all t-way interactions
on k factors with v levels, and let Ct be the set of all subsets of size t of [k], i.e. Ct =

(
[k]
t

)
. We represent each

t-subset of [k] as an increasing sequence of t values from [k], so that each t-subset has a unique representation.
We often abuse the notation and use this sequence representation for the subset. Define c : It → Ct as
follows: For ι ∈ It, c(ι) = (c1, . . . , ct) where (ci, ai) ∈ ι for some ai ∈ Σ, and ci < cj for 1 ≤ i < j ≤ t. We
use c(ι)i to denote the ith element of c(ι), i.e. ci. Similarly, define s : It → Σt as follows: For an interaction
ι ∈ It, define s(ι) = (a1, . . . , at) where (c(ι)i, ai) ∈ ι for 1 ≤ i ≤ t. We use s(ι)i to denote the ith element of
the t-tuple s(ι). A bijection between It and Ct × Σt maps ι→ (c(ι), s(ι)). Therefore, the interaction ι can
be described by the ordered pair (c(ι), s(ι)).

The rest of the paper is organized as follows. Section 2 introduces the Stein-Lovász-Johnson bound on
CAN(t, k, v). We develop a discrete version of Stein-Lovász-Johnson bound and provide a useful estimate of
this bound. In Section 2.1 we present our first result — an upper bound on CAN(t, k, v). The statement
and proof of the bound are followed by a discussion of its constructive nature. Section 3 first discusses the
partial dependence structure of the interactions, and derives the Godbole–Skipper–Sunley (GSS) bound.
Section 3.1 presents the key improvement on bounds for covering array numbers. It applies group actions
to covering arrays to improve the GSS bound. We combine the ideas of Section 2.1 and 3.1 to obtain yet
another upper bound on CAN(t, k, v) in Section 4. In Section 5 we discuss the relative merits of the different
bounds ontained, and present an open problem.

2 The Stein-Lovász-Johnson bound
Specializing the method of Stein [30], Lovász [22], and Johnson [17] to the case of covering arrays one gets
an upper bound on CAN(t, k, v) in the general case. Because the ideas used are essential for the rest of the
paper, we provide a proof of this known result.

Theorem 1. [17, 22, 30](Stein-Lovász-Johnson (SLJ) bound): Let t, k, v be integers with k ≥ t ≥ 2, and
v ≥ 2. Then as k →∞,

CAN(t, k, v) ≤ t

log vt

vt−1

log k(1 + o(1))
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Proof. Let A be an N×k array in which each entry is chosen independently and uniformly at random from an
alphabet Σ of size v. The probability that a specific interaction of strength t is not covered in A is

(
1− 1

vt

)N .
By the linearity of expectations, the expected number of uncovered interactions in A is

(
k
t

)
vt
(
1− 1

vt

)N . If
this expectation is less than 1, because the number of uncovered interactions is an integer, there is an array

with N rows that covers all the interactions. Solving
(
k
t

)
vt
(
1− 1

vt

)N
< 1, we get CAN(t, k, v) ≤ log (k

t)+t log v

log
(

vt

vt−1

) .

Simplifying further,

CAN(t, k, v) ≤
log
(
k
t

)
+ t log v

log
(

vt

vt−1

)
≤

t log
(
ke
t

)
+ t log v

log
(

vt

vt−1

)
=

t log k

log
(

vt

vt−1

) (1 +
1

log k
− log t

log k
+

log v

log k

)

=
t

log vt

vt−1

log k(1 + o(1))

This completes the proof.

Rather than choosing the N rows at random, we can build the covering array one row at a time. To select
a row, compute the expected number of uncovered interactions that remain when we choose the next row
uniformly at random from Σk. There must be a row whose selection leaves at most that expected number
of interactions uncovered. Indeed except when the first row is selected, some row must leave a number that
is strictly less than the expectation, because previously selected rows cover no interaction that is not yet
covered. Add such a row to the covering array and repeat until all the interactions are covered. The number
of rows employed by this method yields an upper bound on CAN(t, k, v). If at each stage the row selected
left uncovered precisely the expected number of uncovered interactions, we recover Theorem 1. However,
after each row selection the number of uncovered interactions must be an integer no larger than the expected
number, improving on the basic SLJ bound. The better upper bound is the discrete Stein-Lovász-Johnson
(discrete-SLJ) bound.

A row that leaves no more than the expected number uncovered can be computed efficiently when t and v
are fixed, so the discrete-SLJ bound can be efficiently derandomized; this is the basis of the density algorithm
[2, 3]. The density algorithm works quite well in practice, providing the smallest known covering arrays in
many cases [8]. Although Theorem 1 provides an easily computed upper bound on the array sizes produced
by the density algorithm, it is a very loose bound.

We analyze the discrete Stein-Lovász-Johnson bound in order to establish a better estimate.

Theorem 2. The number of rows N in A obtained by the discrete-SLJ bound satisfies

log
{(

k
t

)
+ 1
}

log
(

vt

vt−1

) < N ≤
log
{(

k
t

)
+ ε
}
− log ε

log
(

vt

vt−1

)
for some 0 < ε < 1.

Proof. Let y =
(
1− 1

vt

)
and x = 1/y. Let r(i) denote the number of uncovered interactions that remain

after i rows are chosen. Suppose that when row i is chosen, it leaves

r(i) =

{
byr(i− 1)c when i = 1 or r(i− 1) 6≡ 0 (mod vt)
yr(i− 1)− 1 when i > 1 and r(i− 1) ≡ 0 (mod vt)

3



uncovered interactions.
Write ε(i− 1) = yr(i− 1)− r(i) for i ≥ 1. Then expanding the recurrence r(i) = yr(i− 1)− ε(i− 1),

r(n) = ynr(0)−
n−1∑
i=0

yn−1−iε(i).

Rewriting in terms of x,

xnr(n) = r(0)−
n−1∑
i=0

xi+1ε(i).

Now r(0) =
(
k
t

)
vt and r(n) = 0, so (

k

t

)
vt = xnε(n− 1) +

n−2∑
i=0

xi+1ε(i).

Because r(n) = 0, y ≤ ε(n− 1) < 1. Then because 0 ≤ ε(i) ≤ 1,

xn−1 +

n−2∑
i=0

xi+1ε(i) ≤
(
k

t

)
vt < xn +

n−2∑
i=0

xi+1ε(i) <

n∑
i=1

xi =
x(xn − 1)

(x− 1)
.

Simplify
(
k
t

)
vt < x(xn−1)

(x−1) to obtain
(
k
t

)
+ 1 < xn. Take logarithms to establish that n >

log{(k
t)+1}

log
(

vt

vt−1

) . If

we select each row so that r(n) = byr(n− 1)c, we cannot cover all interactions in log
{(

k
t

)
+ 1
}
/ log

(
vt

vt−1

)
rows. This establishes the lower bound.

Note that ε(0) = 0. Let ε = min{ε(k) : 1 ≤ k < n−1}. Then 1
vt ≤ ε ≤ 1, because every row selected after

the first covers more than the expected number of previously uncovered interactions. Then for sufficiently
large k

εx(xn−1−1)
(x−1) = ε

∑n−1
i=1 x

i ≤ xn−1 + ε
∑n−2
i=2 x

i

< xn−1 + ε
∑n−2
i=2 x

i + ε(xn−1 − x)

≤ xn−1 +
∑n−2
i=0 x

i+1ε(i) ≤
(
k
t

)
vt

.

The strict inequality follows from the fact that x > 1. Hence ε(xn − 1) <
(
k
t

)
, so n <

log{(k
t)+ε}−log ε

log
(

vt

vt−1

) + 1,

and because n is an integer the upper bound follows.

Consequently log
{(

k
t

)
+ 1
}
/ log

(
vt

vt−1

)
can be used to estimate the discrete Stein-Lovász-Johnson bound.

Figure 1 compares the estimate to the discrete Stein-Lovász-Johnson bound and the Stein-Lovász-Johnson
bound from Theorem 1 when t = 6 and v = 3. For a wide range of values of k, the reduction in the number
of rows is substantial.

The density algorithm [2, 3] enables one to produce covering arrays of sizes at most those given by the
bound efficiently. Despite their efficiency in theory, in practice the methods are limited by the need to store
information about all t-way interactions; even when t = 6, v = 3, and k = 54, there are 18,828,003,285
6-way interactions, so the storage requirements are limiting. Moreover, as shown in the analysis, rows added
towards the end of the process account for relatively few of the interactions. For these reasons, we explore
a two-stage approach using alteration.

2.1 Constructing and completing a partial array
Alteration is an important strategy in probabilistic methods [1]. The idea is to consider “random” structures
that have a few “blemishes”, in that they do not have all the desired properties. Such “partial” structures

4
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Figure 1: Comparison of the Stein-Lovász-Johnson bound, the discrete Stein-Lovász-Johnson bound, and
the estimate for the discrete Stein-Lovász-Johnson bound. t = 6, v = 3.

are then altered to obtain the desired property. To apply this technique to covering arrays, in stage 1
we construct a random n × k array with each entry chosen from the v-ary alphabet Σ independently and
uniformly at random. The number of uncovered interactions after stage 1 can be computed using the SLJ
or discrete-SLJ bounds. In stage 2, we add one new row for each uncovered interaction to obtain a covering
array.

For example, when t = 6, k = 54 and v = 3, Theorem 1 gives CAN(6, 54, 3) ≤ 17, 236. Using the
alteration approach, Figure 2 plots an upper bound on the size of the completed covering array against the
number n of rows in a partial array that covers at least the expected number of interactions. The smallest
covering array is obtained when n = 12, 402, which when completed yields CAN(6, 54, 3) ≤ 13, 162. At least
in this case, our alteration provides a much better bound. We explore this in general.

Theorem 3. Let t, k, v be integers with k ≥ t ≥ 2, and v ≥ 2. Then

CAN(t, k, v) ≤
log
(
k
t

)
+ t log v + log log

(
vt

vt−1

)
+ 1

log
(

vt

vt−1

) .

Proof. In an n×k array with each entry chosen independently and uniformly at random from an alphabet Σ
of size v, the expected number of uncovered t-way interactions is

(
k
t

)
vt
(
1− 1

vt

)n. Let P be an n×k array with
at most b

(
k
t

)
vt
(
1− 1

vt

)nc uncovered interactions. Let Q contain b
(
k
t

)
vt
(
1− 1

vt

)nc new rows, each covering

a different interaction not covered in P . Then A =
(
P
Q

)
is a covering array with n+ b

(
k
t

)
vt
(
1− 1

vt

)nc rows.
So an upper bound on the number of rows in A is n +

(
k
t

)
vt
(
1− 1

vt

)n. Applying elementary calculus, the
fewest rows is

log
(
k
t

)
+ t log v + log log

(
vt

vt−1

)
+ 1

log
(

vt

vt−1

) ,

obtained when P has n =
log (k

t)+t log v+log log
(

vt

vt−1

)
log
(

vt

vt−1

) rows.
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Figure 2: Plot of n +
⌊(
k
t

)
vt
(
1− 1

vt

)n⌋ against n, the size of the partial covering array, for t = 6, k = 54,

and v = 3.
(
k
t

)
vt
(
1− 1

vt

)n is the expected number of uncovered interactions in a random n× k array. The
minimum number of rows in the final covering array is 13, 162, achieved when the initial random array has
n = 12, 402 rows. The Stein-Lovász-Johnson bound requires 17, 236 rows, and the best known covering array
has 17, 197 rows.

For v, t ≥ 2, log log
(

vt

vt−1

)
< 0. Hence, Theorem 3 gives a tighter bound on CAN(t, k, v) than that of

Theorem 1. Using the Taylor series expansion of log(1 − x), it can be shown that 1/ log
(

vt

vt−1

)
≤ vt. In

fact, in the range of values of v and t of interest, 1/ log
(

vt

vt−1

)
≈ vt. So Theorem 3 guarantees the existence

of a covering array with N ≈ log (k
t)+1

log
(

vt

vt−1

) ≈ vt log
(
k
t

)
+ vt rows.

The argument in the proof of Theorem 3 can be made constructive. It underlies an efficient randomized
construction algorithm for covering arrays: In the first stage, construct a random n × k array with n ≈
vt log

(
k
t

)
rows; then check if the number of uncovered interactions is at most vt. If not, randomly generate

another n×k array and repeat the check. In the second stage add at most vt rows to the partial covering array
to cover the remaining interactions. Neither stage needs to store information about individual interactions,
because we need only count the uncovered interactions in the first stage. The second stage is deterministic
and efficient. The first stage has expected polynomial running time; it could be efficiently derandomized in
principle using the methods in [2, 3], at the price of the storage of the status of individual interactions.

The proof of Theorem 3 suggests a general “two-stage” construction paradigm, in which the first stage
uses one strategy to cover almost all of the interactions, and the second uses another to cover the relatively
few that remain. In related work we explore such two-phase methods for the explicit construction of covering
arrays [28].

Figure 3 compares the two-stage based bound with the Stein-Lovász-Johnson bound and the discrete
Stein-Lovász-Johnson bound. In the cases shown, the two-stage bound is much better than the Stein-
Lovász-Johnson bound, and not much worse than the discrete Stein-Lovász-Johnson bound. Therefore a
purely randomized method (with much smaller memory requirements) produces covering arrays that are
competitive with the guarantees from the density algorithm.
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Figure 3: Comparison of Stein-Lovász-Johnson bound, discrete Stein-Lovász-Johnson bound and two-stage
based bound from Theorem 3. t = 6, v = 3.

3 Limited dependence and the Lovász local lemma
When k ≥ 2t, some interactions have no columns in common. The events of coverage of such interactions
are independent. Neither Theorem 1 nor Theorem 3 takes advantage of this. Consider an N × k array A
with each entry chosen independently and uniformly at random from Σ. Let Aι denote the event that the
interaction ι ∈ It is not covered in A. Aι depends on all events {Aρ : ρ ∈ It, c(ι) ∩ c(ρ) 6= ∅}, and only
on those events. Hence when k ≥ 2t, there are events of which Aι is independent. Because of this limited
dependence, the upper bound on CAN(t, k, v) from Theorem 1 can be considerably improved by applying
the Lovász local lemma.

Lemma 4. (Lovász local lemma; Symmetric case) (see [1]) Let A1, A2, . . . , An events in an arbitrary prob-
ability space. Suppose that each event Ai is mutually independent of a set of all other events Aj except for
at most d, and that Pr[Ai] ≤ p for all 1 ≤ i ≤ n. If ep(d+ 1) ≤ 1, then Pr[∩ni=1Āi] > 0.

The symmetric version of Lovász local lemma provides an upper bound on the probability of a “bad”
event in terms of the dependence structure among such bad events, so that there is a guaranteed outcome in
which all “bad” events are avoided. In this and following sections we successively improve the upper bound
on CAN(t, k, v) asymptotically by exploiting this limited dependence among interactions through the Lovász
local lemma.

To simplify the comparisons, define d(t, v) = lim supk→∞
CAN(t,k,v)

log k . Theorem 1 establishes that d(t, v) ≤
t

log vt

vt−1

. Using Lemma 4, Godbole, Skipper, and Sunley [15] establish a tighter bound:

Theorem 5. [15] Let t, v be integers with t, v ≥ 2. Then

d(t, v) ≤ t− 1

log vt

vt−1

Figure 4 compares the bounds from Theorems 1 and 5 for t = 6 and v = 3. The bounds are plotted in
log-log scale to highlight the asymptotic difference between them.

7
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Figure 4: Comparison of Stein-Lovász-Johnson and Lovász local lemma bounds for t = 6 and v = 3. The
graph is plotted in log-log scale.

3.1 Group action
We apply the Lovász local lemma in conjunction with a group action. Let Γ be a permutation group on
the v-symbol alphabet Σ. We define the action of Γ on the set of all t-way interaction on k factors in the
natural way: For σ ∈ Γ and ι = {(ci, ai) : 1 ≤ i ≤ t, ci ∈ [k], ci 6= cj for i 6= j, and ai ∈ Σ}, σ maps ι to
{(ci, σ(ai)) : 1 ≤ i ≤ t}. The strategy of covering orbits of interactions under the action of the permutation
group Γ on the symbols has been used in direct and computational methods [5, 23], and in randomized and
derandomized methods [10]. The objective is to construct an array A that covers all the orbits under Γ of
t-way interactions; to be precise, for every orbit, at least one row must cover an interaction in this orbit.
The rows of A, when developed over Γ provides an array that covers all t-way interactions, and therefore is a
covering array. Group action here essentially works as a search space reduction technique. In [10] it is noted
that using a group action appears to construct covering arrays with fewer rows than using similar methods
on the covering array directly. We analyze the effect of group actions on the Lovász local lemma bound to
further tighten the bound on the asymptotic size of covering arrays.

The action of a group Γ on Σ is sharply transitive if for every u, v ∈ Σ there is exactly one σ ∈ Γ that
maps u to v. When the action of Γ is sharply transitive on Σ, |Γ| = |Σ| = v. For example, the action of
the cyclic group Cv on v symbols is sharply transitive. Similarly, the action of a group Γ on Σ is sharply
l-transitive if for all pairwise distinct u1, . . . , ul ∈ Σ and pairwise distinct v1, . . . , vl ∈ Σ there is exactly one
σ ∈ Γ that maps ui to vi for 1 ≤ i ≤ l.

Theorem 6. Let t, v be integers with t, v ≥ 2. Then

d(t, v) ≤ v(t− 1)

log
(

vt−1

vt−1−1

)
Proof. Let Γ be a group that acts sharply transitively on Σ. Let Ct =

(
[k]
t

)
, and τ ∈ Ct be a collection of

t columns. The action of Γ partitions the set of interactions involving the columns in τ into vt−1 orbits of
length v each. We consider an n×k array A with each entry chosen independently and uniformly at random
from the alphabet Σ . We want to cover all the orbits for every τ ∈ Ct. The probability that there is at least
one orbit involving τ that is not covered is vt−1

(
1− 1

vt−1

)n.
8



For τ ∈ Ct , let Aτ denote the event that not all the orbits involving the columns in τ are covered in A.
So Pr[Aτ ] ≤ vt−1

(
1− 1

vt−1

)n for all τ ∈ T . The event Aτ is not independent of event Aρ if and only if τ and
ρ share a column. So d ≤

(
t
1

)(
k−1
t−1

)
< t
(
k
t−1

)
. By the Lovász local lemma, if evt−1

(
1− 1

vt−1

)n
t
(
k
t−1

)
< 1,

there exists an n× k array that covers every orbit on every t-column combination of A. Solving for n, and
then developing A over the group Γ, we obtain a covering array of size N , where

N = vn

> v
1 + log

(
vt−1t

(
k
t−1

))
log
(

vt−1

vt−1−1

)

≥ v

1 + log

(
vt−1t

(
k
t−1

)t−1
)

log
(

vt−1

vt−1−1

)
=

v(t− 1) log k

log
(

vt−1

vt−1−1

) {1 +
1

(t− 1) log k
+

log v

log k
+

log t

(t− 1) log k
− log(t− 1)

log k

}

=
v(t− 1) log k

log
(

vt−1

vt−1−1

) {1 + o(1)}

This yields the required bound on d(t, v).

Comparing the bounds from Theorems 5 and 6, using the Taylor series expansion of log(1 − x) =

−x− x2

2 −O(x3), we find that

t−1

log
(

vt

vt−1

) = t−1

− log(1− 1
vt )

≈ t−1

( 1
vt + 1

2.v2t )
= vt(t−1)

1+ 1
2vt

, and

v(t−1)

log
(

vt−1

vt−1−1

) = v(t−1)

− log(1− 1

vt−1 )
≈ v(t−1)

( 1

vt−1 + 1

2v2t−2 )
= vt(t−1)

1+ 1

2vt−1
.

Hence the bound of Theorem 6 is tighter. Francetić and Stevens [13] also report the bound in Theorem
6. Their approach uses entropy compression arguments, and appears to be more involved than the approach
here. Furthermore, we can get a better improvement by using a larger group:

Theorem 7. Let t ≥ 2 be an integer and v be a prime power. Then

d(t, v) ≤ v(v − 1)(t− 1)

log
(

vt−1

vt−1−v+1

)
Proof. Let Γ be a group that is sharply 2-transitive on v symbols. Consider the action of Γ on the set of
interactions involving the columns τ ∈

(
[k]
t

)
. Under the action of Γ the v interactions {(ci, vi) : ci ∈ τ, 1 ≤

i ≤ t} with v1 = . . . = vt (the constant interactions) form a single orbit of length v. The remaining vt − v
interactions form vt−1−1

v−1 orbits, each of length v(v − 1). So the probability that a full length orbit is not
covered in a n × k random array is

(
1− v−1

vt−1

)n, and the probability that at least one of these orbits is not

covered in the random array is at most
(
vt−1−1
v−1

) (
1− v−1

vt−1

)n by the union bound.

Using the Lovász local lemma, when e
(
vt−1−1
v−1

) (
1− v−1

vt−1

)n
t
(
k
t−1

)
< 1, there exists an n× k array that

covers all the full orbits of interactions on all t-column combinations. Developing this array over Γ and
adding v additional rows to cover the short orbit, we obtain a covering array with N rows, with

9



N = v(v − 1)n+ v

> v(v − 1)
1 + log

(
t
(
k
t−1

))
+ log

(
vt−1−1
v−1

)
log
(

vt−1

vt−1−v+1

) + v

≥ v(v − 1)

1 + log

(
t
(

k
t−1

)t−1
)

+ log
(
vt−1−1
v−1

)
log
(

vt−1

vt−1−v+1

) + v

=
v(v − 1)(t− 1) log k

log
(

vt−1

vt−1−v+1

) {1 + o(1)}

This proves the theorem.

Again using the Taylor series expansion, the bound obtained in Theorem 7 is tighter than the bound in
Theorem 6, as follows.

v(v − 1)(t− 1)

log
(

vt−1

vt−1−v+1

) =
v(v − 1)(t− 1)

− log
(
1− v−1

vt−1

) ≈ v(v − 1)(t− 1){
v−1
vt−1 + (v−1)2

2v2t−2

} =
vt(t− 1)

1 + v−1
2vt−1

Let G be the Frobenius group defined on the finite field Fv, i.e. G = {g : Fv → Fv : g(x) = ax+b, x, a, b ∈
Fv, a 6= 0}. G is an efficiently constructible group that acts sharply 2-transitively on the set of v symbols
and can be used for practical construction of covering arrays [10].

It is natural to consider the action of larger groups in seeking further improvements. One simple but
important idea in Theorem 7 is to treat full length orbits using the Lovász local lemma, adjoining a small
number of additional rows to cover the short orbits. Thus far we have treated a sharply 1-transitive group
(the cyclic group) and a sharply 2-transitive group (the Frobenius group). In order to generalize, the next
natural choice is the projective general linear (PGL) group for v = q + 1 where q is a prime power, which is
a sharply 3-transitive group of order v(v − 1)(v − 2). Let Γ be the PGL group on v symbols. The action of
Γ on t-way interactions forms orbits of lengths v, v(v − 1), and v(v − 1)(v − 2). Constant interactions lie in
orbits of length v, interactions involving precisely two distinct symbols lie in orbits of length v(v − 1), and
the r = vt−1−(v−1)(2t−1−1)−1

(v−1)(v−2) others lie in full length orbits. Constant orbits can be handled as in Theorem 7,
and full length orbits can be treated using the Lovász local lemma. Unlike constant orbits, orbits of length
v(v − 1) cannot be covered with a number of rows that is independent of k. If we cover the orbits of length
v(v − 1) as we covered full length orbits, we see no improvement over Theorem 7. We adapt a method from
[6] to gain occasional improvements.

Theorem 8. Let t ≥ 2 be an integer and v − 1 be a prime power. Then

d(t, v) ≤ v(v − 1)(v − 2)(t− 1)

log
{

vt−1

vt−1−(v−1)(v−2)

} +
v(v − 1)(t− 1)

log
(

2t−1

2t−1−1

)
Proof. Let Γ be the PGL group acting on v symbols.

Covering orbits of length v(v− 1)(v− 2): The probability that at least one orbit of length v(v− 1)(v− 2)

is not covered in an array with n rows is p ≤ r
(

1− (v−1)(v−2)
vt−1

)n
. As before, d < t

(
k
t−1

)
. Using the Lovász

local lemma, if ep(d + 1) ≤ 1 there is an array with n rows that covers all orbits of length v(v − 1)(v − 2).
Developing over Γ we obtain an array of size

10



v(v − 1)(v − 2)
1 + log

{
t
(
k
t−1

)}
+ log r

log
{

vt−1

vt−1−(v−1)(v−2)

}
=v(v − 1)(v − 2)

1 + (t− 1) log k + log t+ log r

log
{

vt−1

vt−1−(v−1)(v−2)

}
=
v(v − 1)(v − 2)(t− 1)

log
{

vt−1

vt−1−(v−1)(v−2)

} log k {1 + o(1)}

Using the Taylor series expansion:

v(v − 1)(v − 2)(t− 1)

log
{

vt−1

vt−1−(v−1)(v−2)

} ≈ vt(t− 1)

1 + (v−1)(v−2)
2vt−1

Covering orbits of length v(v − 1): Use a binary covering array on every pair of symbols, adding(
v
2

)
CAN(t, k, 2) rows to cover all interactions in orbits of length v(v − 1). Applying Theorem 6 to bound

CAN(t, k, 2), in this way we add(
v

2

)
2(t− 1)

log
(

2t−1

2t−1−1

) log k {1 + o(1)} =
v(v − 1)(t− 1)

log
(

2t−1

2t−1−1

) log k {1 + o(1)}

rows.
So d(t, v) ≤ v(v−1)(v−2)(t−1)

log
{

vt−1

vt−1−(v−1)(v−2)

} + v(v−1)(t−1)

log
(

2t−1

2t−1−1

) .
In the bound of Theorem 8, the first term dominates the second. However, only when t ∈ {3, 4} and v is

sufficiently large does Theorem 8 give a tighter bound on d(t, v) than that given by Theorem 7. Moreover,
Theorem 7 gives a tighter bound in many situations; when t = 5, it is tighter when v ≤ 29, and for larger
t the values of v for which it is tighter extend further. Hence the natural avenue of generalization to larger
groups does not appear to be fruitful.

So far in our discussion of group action we have emphasized only the search space reduction aspect. Now
we mention a side benefit inherent to sharply transitive group actions that further validates their role. By
using sharply transitive (or sharply l-transitive) group actions we can further reduce the dependence between
different bad events. Concretely, consider the cyclic group used in Theorem 6. For any set of t columns τ , if
we fix the symbols in a specific column c and select symbols in the remaining t − 1 columns independently
and uniformly at random, the probability of a “bad event” (i.e. at least one orbit not being covered) remains
unchanged. This suggests that all the “bad events” on the t-set of columns that share only the column c with
τ are mutually independent of the “bad event” on τ . Therefore, we can set d ≤ t

(
k−1
t−1

)
−
(
k−t
t−1

)
. Although this

improved estimate does not change the asymptotic bound in Theorem 6, in some cases it reduces the actual
number of rows required in practice [28]. Similar reduction in dependence may be obtained when we apply
the Lovász local lemma to cover the full length orbits under sharply l-transitive group actions in Theorem 7
and Theorem 8.

Although the proofs of Theorems 6 and 7 are non-constructive, construction algorithms can be obtained
realizing the same bounds. In some remarkable work, Moser et al. [24, 25] provide a constructive version of
the Lovász local lemma. Applying the method of [25] to covering array construction provides a randomized
algorithm:

1. For group Γ acting on symbols Σ, determine the smallest value of n by applying Theorems 6 or 7.

2. Construct an n× k array with each entry chosen independently and uniformly at random from Σ.

11



3. Check sequentially in some fixed order that each of the (full length) orbits is covered in the array. If
all are covered, report success and stop.

4. For the first orbit that is not covered, “re-sample” each column in that orbit, by choosing new entries
in the column independently and uniformly at random from Σ.

5. Restart the check from the beginning.

The expected number of column re-samplings is polynomially bounded [25].
The storage requirements are quite modest; in order to determine whether resampling is necessary, one

maintains a single list indexed by the orbits of Σt. A set of t columns can be treated without regard to the
coverage in other sets of t columns. See Sarkar and Colbourn [28] for a detailed exploration of this algorithm
for the practical purpose of covering array construction.

4 Partial array construction with the Lovász local lemma
Can alteration techniques such as those in Section 2.1 be applied in conjunction with the techniques in
Section 3? More precisely, can we use the Lovász local lemma to obtain a suitable partial covering array that
covers “most” interactions with fewer rows than a random array? We make some first steps in addressing
this question.

To provide a better appreciation of our strategy, we start with an alternative proof of Theorem 3. Let X
be a subset of interactions, and let x = |X|

(k
t)vt

. Using the union bound, the number of rows in a random array

that covers all interactions in X is expected to be log |X|
log
(

vt

vt−1

) =
log(x(k

t)v
t)

log
(

vt

vt−1

) . The expected number of uncovered

interactions in a random array with n > log |X|
log
(

vt

vt−1

) rows is R =
(
k
t

)
vt
(
1− 1

vt

)n
<
(
k
t

)
vt
(
1− 1

vt

) log |X|

log

(
vt

vt−1

)
=

(k
t)v

t

|X| = 1
x . So there is a partial covering array with

log x+log (k
t)+t log v

log
(

vt

vt−1

) rows that covers all the interactions

in X, and has at most 1/x uncovered interactions. Adding one row to cover each uncovered interaction we

obtain a covering array with 1
x +

log x+log (k
t)+t log v

log
(

vt

vt−1

) rows. Applying elementary calculus, when x = log
(

vt

vt−1

)
the number of rows in the covering array is the minimum,

log (k
t)+t log v+log log

(
vt

vt−1

)
+1

log
(

vt

vt−1

) . This is the same as the

bound in Theorem 3. Applying the Taylor series expansion of log(1−x), it can be shown that log
(

vt

vt−1

)
≈ 1

vt .

So in aiming to cover |X| =
(
k
t

)
vtx =

(
k
t

)
vt log

(
vt

vt−1

)
≈
(
k
t

)
interactions with a random array, we cover

almost
(
k
t

)
vt − vt interactions.

Now we consider a variation. Start with a target set of interactions X. Cover all interactions in X
using an array A with n rows, produced by the randomized algorithm of [25]. Then A may also cover some
interactions not in X, but does not in general cover all interactions. To finish, cover the interactions that
still remain in the second stage.

To analyze the effectiveness, we need an upper bound on the probability that an interaction (not in
X) is not covered given that all the interactions in X have been covered. We describe how to estimate
this probability. Haeupler et al. [16] introduce the conditional Lovász local lemma distribution. Let X =
{X1, X2, . . . , Xn} be a set of n independent random variables. Let A = {A1, A2, . . . , Am} be a set of m
events that are determined by the random variables in X . Let vbl(Ai) ⊆X be the minimal set of random
variables that determine the event Ai. Let B /∈ A be another event determined by some subset of random
variables in X . For any event A ∈ A ∪ {B}, let Γ(A) be the set of other events A′ in A such that
vbl(A) ∩ vbl(A′) 6= ∅. Let x : A → [0, 1) such that for all A ∈ A , Pr[A] ≤ x(A)

∏
A′∈Γ(A)(1 − x(A′)). The

conditional Lovász local lemma distribution is the probability distribution over the random variables in X ,
given that all the events in A are avoided. The probability of the event B is given by:
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Pr[B| ∧mi=1 Āi] ≤
Pr[B]∏

A∈Γ(B)(1− x(A))
,

where Pr[B] is the unconditional probability of the event B [16]. We exploit the conditional Lovász local
lemma distribution to analyze our two stage strategy. Let R be a set of

(
k
t

)
interactions such that for every

t-column combination τ there is an interaction in R involving all the columns in τ . Let Ai be the event that
the ith interaction in R is not covered in an i.i.d. random n×k array. Each Ai is dependent on d ≤

(
t
1

)(
k
t−1

)
other such events. Let p be the probability of the event Ai. Then p =

(
1− 1

vt

)n. Following the proof of the

symmetric version of Lovász local lemma, set x(Ai) = 1
d+1 , and note that

(
1− 1

d+1

)d
> 1

e . If ep(d+ 1) ≤ 1,

then p ≤ 1
e(d+1) <

1
(d+1)

(
1− 1

d+1

)d
, i.e. there is an n× k array that covers all interactions in R. Hence for

n ≥ log{et( k
t−1)}

log
(

vt

vt−1

) , there exist n× k arrays that cover all interactions in R. Let ι be an interaction that is not

in R. The event that ι is not covered is dependent on at most d events Ai. Under the conditional Lovász
local lemma distribution, the probability that ι is not covered is p′ ≤ p

(1− 1
d+1 )

d < ep = e
(
1− 1

vt

)n. So the

expected number of uncovered interactions in the array is at most(
k

t

)
(vt − 1)e

(
1− 1

vt

)n
≤
(
k
t

)
(vt − 1)e

et
(
k
t−1

) ≤
(
ke
t

)t
(vt − 1)

t
(

k
t−1

)t−1 = k
et(vt − 1)

t2

(
1− 1

t

)t−1

By finding an n × k array with at most bk e
t(vt−1)
t2

(
1− 1

t

)t−1c uncovered interactions and then adding

one extra row for each uncovered interaction, we can construct a covering array with N =
log{et( k

t−1)}
log
(

vt

vt−1

) +

bk e
t(vt−1)
t2

(
1− 1

t

)t−1c rows. Unfortunately, the bound on N is linear in k, and so is ineffective when k is
large. However, as Figure 5 shows, before the linearity in k dominates, this bound improves substantially on
a direct application of the Lovász local lemma. Indeed the utility of the bound lies in its ability to address
situations in which k is of “intermediate” size.

To avoid the linearity in k, we can employ an improved second stage. In practice, we could apply the
density algorithm; to obtain a general bound we employ the discrete Stein-Lovász-Johnson bound. Figure 5
compares the Lovász local lemma bound, the simple two-stage bound, and the density two-stage bound. The
application of the density algorithm in the second stage reduces the number of required rows to logarithmic
in k.

5 Conclusion
The Stein-Lovász-Johnson and the Lovász local lemma methods for obtaining asymptotic bounds on CAN(t, k, v)
also yield efficient construction techniques. Exploiting 2-transitive group actions, we have shown that the
Lovász local lemma can be applied to obtain an upper bound on covering array numbers that improves
upon all known bounds. In addition, by examining group action and by considering two-stage methods, we
have developed upper bounds that are tighter when the number of factors is of intermediate size. Each of
the bounds obtained yields an efficient construction procedure and can be easily computed. Earlier density
methods are in principle efficient, but suffer from challenging storage requirements to maintain a list of

(
k
t

)
vt

t-way interactions. The two-stage methods developed here obviate the need for such extensive tables, and
hence provide construction algorithms of practical importance; see [28].

Our two-stage method based on the Lovász local lemma would be improved if a better upper bound
than discrete-SLJ were known on the number of bad events when n rows are selected. This appears not to
be straightforward, but is certainly of potential value. Another direction of interest is to explore different
techniques for sample space reduction than the transitive group actions considered here; our results indicate
that such sample space reduction can provide substantial improvements in the bounds on CAN(t, k, v).
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Figure 5: Comparison of covering array size bounds for the two-stage algorithm, the two-stage algorithm
with density (discrete SLJ) in the second stage, and the Lovász local lemma for t = 6 and v = 3. Up to
k ∼ 200, the two-stage algorithm outperforms the Lovász local lemma bound. Application of the density
algorithm in the second stage results in improvement for a higher range of k values.
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