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POLYNOMIAL COLLOCATION FOR HANDLING AN
INACCURATELY KNOWN MEASUREMENT CONFIGURATION IN
ELECTRICAL IMPEDANCE TOMOGRAPHY

N. HYVONENT, V. KAARNIOJA', L. MUSTONEN', AND S. STABOULIS*

Abstract. The objective of electrical impedance tomography is to reconstruct the internal con-
ductivity of a physical body based on measurements of current and potential at a finite number
of electrodes attached to its boundary. Although the conductivity is the quantity of main interest
in impedance tomography, a real-world measurement configuration includes other unknown param-
eters as well: the information on the contact resistances, electrode positions and body shape is
almost always incomplete. In this work, the dependence of the electrode measurements on all afore-
mentioned model properties is parametrized via polynomial collocation. The availability of such a
parametrization enables efficient simultaneous reconstruction of the conductivity and other unknowns
by a Newton-type output least squares algorithm, which is demonstrated by two-dimensional numer-
ical experiments based on both noisy simulated data and experimental data from two water tanks.

Key words. Electrical impedance tomography, polynomial collocation, uncertainty quantifica-
tion, Bayesian inversion, inaccurate measurement model, complete electrode model
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1. Introduction. The objective of electrical impedance tomography (EIT) is
to reconstruct the conductivity /admittivity inside a physical body from boundary
measurements of electric current and electromagnetic potential. EIT can be applied
to, e.g., medical imaging, process tomography, and nondestructive testing of materials
[6, @, 42]. The most accurate way to model the measurements of EIT is employing
the complete electrode model (CEM), which takes into account the electrode shapes
and contact resistances/impedances caused by resistive layers at electrode-object in-
terfaces [0, [41].

When EIT is used in practice, the conductivity is typically not the only unknown.
In particular, the electrode positions, the contact resistances and the shape of the im-
aged object are also subject to uncertainties. For example, in a medical application
the body shape and the contact resistances obviously depend on the patient, and
one cannot assume precise information on the positioning of the electrodes. As it
is well known that even slight mismodelling usually ruins the reconstruction of the
conductivity in absolute EIT imaging [Bl 8, 28], not being able to account for such
inaccuracies considerably hampers establishing EIT as a practical imaging modality.
Since the contact resistances and the electrode locations can be (stably) estimated at
the same time as the conductivity reconstruction is formed by a Newton-type algo-
rithm [12[43], the most challenging of the aforementioned three sources of uncertainty
is arguably the inaccurately known object shape. In the following, we present a brief
survey of the previously introduced methods for recovering from uncertainties in the
exterior boundary shape in EIT; for a more comprehensive discussion, see [33].

Difference imaging is the simplest technique for handling uncertainties in the
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measurement set-up of EIT []: Electrode measurements are performed at two time
instants (or angular frequencies [2]) and the corresponding change in the conductivity
(or admittivity) is reconstructed. The main idea is that the modelling errors partly
cancel out when the difference data are formed, assuming there are no alterations
in the boundary shape in between the two measurements, e.g., due to the breathing
cycle of a patient. On the negative side, difference imaging is highly approximative
as the theoretical grounds for its functionality rely on a linearization of the forward
model. In addition, difference data are not always available.

The first generic algorithm capable of coping with an unknown object boundary
in absolute EIT imaging was introduced in two spatial dimensions by Kolehmainen,
Lassas and Ola [26, 27]. Allowing an oversimplification, their approach is based on
compensating for the mismodelled geometry by reconstructing a (slightly) anisotropic
conductivity. An obvious weakness of the ideas in [26] [27] is the difficulty in generaliz-
ing the corresponding numerical algorithm to three dimensions. The so-called approx-
imation error methodology [24] was successfully applied to EIT with an inaccurately
known boundary shape in [32],[33]: The error caused by the uncertainties in the model
geometry (and other nuisance parameters) is represented as an auxiliary measurement
noise process whose second order statistics are approximated via simulations based
on the prior probability models for the conductivity and the boundary shape. Subse-
quently, a reconstruction of the conductivity is formed within the Bayesian paradigm.
The most straightforward approach to dealing with an inexactly known body shape
in EIT was introduced in [I3| [I4], where the Fréchet derivative of the solution to
the CEM with respect to the exterior boundary shape was employed in a regularized
Newton-type output least squares algorithm that simultaneously reconstructs the con-
ductivity, the contact resistances, the electrode positions and the exterior boundary
of the imaged object. The main weakness of the algorithm in [13 [14] lies with the
numerical instability in the computation of the needed shape derivatives, which ne-
cessitates the use of relatively dense finite element (FE) meshes and thus slows down
the computations to a certain extent.

This work tackles absolute EIT imaging with an unknown object shape by means
of (stochastic) polynomial collocation. The conductivity, the contact resistances, the
electrode positions and the boundary shape are parametrized by a finite number of,
say a thousand, parameters supported in a bounded interval; in the framework of
stochastic collocation [3], these parameters would be interpreted as uniformly dis-
tributed random variables. The forward problem of the CEM is then treated as a
parametric elliptic boundary value problem whose solution depends not only on the
current feed and the spatial variable but also on the high-dimensional parameter vec-
tor. This forward problem is solved by a (stochastic) collocation finite element method
(cFEM) [3]: The standard CEM problem is first solved with a finite element method
(FEM) for the conductivities and measurement settings defined by an appropriate
sparse grid of collocation points in the parameter hypercube, and subsequently the
dependence of the forward solution on the parameters is generalized to the whole
hypercube via collocation by tensor products of Legendre polynomials. In particular,
such a procedure gives an approximate parametrization of the electrode potentials
with respect to (the parameters defining) the conductivity, the contact resistances,
the electrode positions and the object shape, which makes it possible to reconstruct
these unknowns, e.g., by Tikhonov regularization or via Bayesian inference. Indeed,
the described approach results in a functional reconstruction algorithm that is tested
both with simulated and experimental data in a two-dimensional setting. See [19] for
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a closely related algorithm as well as related theory in inverse obstacle scattering.

Compared to the previous methods for recovering from uncertainties in the geo-
metric specifications of the measurement set-up in EIT, on a general level the intro-
duced algorithm most closely resembles the approximation error technique employed
in [32] B3]: Both require heavy off-line computations that can be performed prior
to the measurements (to simulate the statistics of the approximation error process
or to parametrize the dependence on the unknowns via polynomial collocation), but
both also allow a fast on-line reconstruction phase once the measurements become
available. For completeness, it should be mentioned that [I7, 23] used a stochastic
Galerkin FEM (cf., e.g., [38]) as a building block of a Bayesian reconstruction algo-
rithm for EIT under the assumption that the electrode positions and the object shape
are known. However, it seems difficult to apply a stochastic Galerkin FEM to han-
dling uncertainties in the measurement configuration of EIT; see, e.g., [I9] for similar
conclusions.

This text is organized as follows. Section [2] recalls the CEM and presents its
parametric extension, while Section [3| describes how ¢cFEM can be applied to the
CEM. The actual implementation of the reconstruction algorithm is discussed in Sec-
tion[4 and applied to both simulated and experimental data in Section[f] Finally, the
conclusions are drawn in Section [6l

2. Complete electrode model and its parametric extension. This sec-
tion introduces an extension of the CEM, allowing the use of parameter-dependent
conductivities, contact resistances, electrode positions and boundary shapes. For a
justification of the standard CEM, see [10, 4I]. We work in two spatial dimensions
and with M € N\ {1} electrodes of the same known width, but the generalization to
three dimensions and/or to the case of electrodes with unknown shapes is conceptually
straightforward.

2.1. Parametrization of the measurement set-up. Let N = N, + N, +2M
denote the number of parameters living in the hypercube

T="yxYTyxYTpxT,=[-1/2,1/2]".

We decompose y = (Yo, Yy, YE,y-) € T, where the subvectors y, € T, C RN-, Yy €
T, C RY, yp € Tp C RM and y, € T, € RM correspond to the parametrizations
of the conductivity field, the boundary curve, the electrode positions and the contact
resistances, respectively.

Let us first introduce a parametrization for the boundary curve, that is, a con-
tinuous map

T, 2y, = (-, y,) € CPH(RR?), (2.1)

where, for every y, € T, 7(+,y,) : [0,L) — R? defines a bounded, closed, non-self-
intersecting, Lipschitz curve parametrized in the counterclockwise direction. Here
and in what follows, the subscript L > 0 indicates that the elements of the considered
function space are L-periodic. The domain enclosed by

L(yy) = {7(,5,) | 6 €[0,1)}

is denoted D(y.). We assume there exists a natural bi-Lipschitz homeomorphism

®(-,yy) : D(y,) = D(0) (2:2)
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for all y, € T,. In our numerical tests, D(0) is an origin-centered open disk and the
domains D(y,), yy € Y., are star-shaped with respect to the origin, meaning that
one can define the mappings ®(-,y,) by suitably scaling the distance to the origin;
see Section M for the details.

Given a parametrization for the domain boundary, the position of an electrode
is determined by a curve parameter corresponding to its starting point. To be more
precise, after introducing a suitable mapping

Ye 3 yp — 0(ys) € [0,L)",
the electrodes are parametrized by the set-valued functions,

YT, xYTg 3 (yy,ye) = En(yy, ye) C IT'(yy), m=1,...,M, (2.3)

where

Em(yy, yE) = {7(¢,4y) €T(yy) | 0 < dist(v(6m (yE), y), (¢, 45)) < w}

with dist(x, z) denoting the distance between the points z, z € I'(y,) along I'(y,) in
the counterclockwise direction and w being the known width of the electrodes. The
mapping 6 : T — [0, L) is assumed to be continuous, when L is identified with 0
on the image side, and to satisfy the condition

min min  min dist(7(0;(y), v:), YOk (), 9)) > (2.4)
which guarantees that the electrodes do not overlap, or change their order. (In our
numerical tests, the parametrization is slightly simpler as the mth starting parameter
0., depends only on the corresponding component of yg.)

The conductivity field is parametrized by first introducing the dependence on ¥,
in the ‘unperturbed’ reference domain D(0) with the help of a continuous mapping

Yo 2 ys — 00+, ys) € LT(D(0)) := {x € L>(D(0)) | essinf x > 0},
and then defining the actual domain-dependent parametrization via

Yo x Ty 3 o 4y) = 0+, Yosyy) = 00(R(+, 1), 50) € LT (D(yy)). (2.5)

Finally, the contact resistances z € Rf are parametrized simply by a continuous map
Y. 3y~ 2(y:) € RY, (2.6)

where, in fact, z,,, m = 1,..., M, only depends on the corresponding component
of y,.

In what follows, we often write v¥ = v(-,y,), I'V = I'(y,), DY = D(y,), ®¥ =
O(-,yy), BY, = En(y+,YE), 0¥ = 0(-, Yo, yy) and 2¥ = 2(y.) to simplify the notation.

2.2. Parameter-dependent CEM. Assume that the parametrizations ,
(12.3), and are given, denote by R} the mean-free subspace of RM  and
let I € RM define the net current feeds through the electrodes. According to the
CEM [I0], for a fixed parameter vector y € T, the electromagnetic potential u¥ inside
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DY and the potentials UY € RM on the electrodes satisfy the elliptic boundary value
problem

V- (0¥VuY) =0 in DY,
Yy R
%L — on T¥ \ BV,
v
Yy 2.7
uy—&—zglayai:U#L onEY, m=1,..., M, @7)
ov
Y
/ w2 a1, m=1,..., M,
EY, 81/

where v = v(z) denotes the exterior unit normal of I'Y and EY = UM_, EY . Tt follows
immediately from the material in [41] and the properties of the parametrizations intro-
duced in Sectionthat has a unique solution (u¥,UY) € (H*(DY) RM)/R =:
HY for all y € Y. Moreover, one can write a relatively explicit y-independent estimate
for the HY-norm of (u¥,UY) as revealed by the following analysis.

The variational formulation of is to find (u¥,UY) € HY such that [41]

BY((w’,UY),(v,V)) =1-V for all (v, V) € HY, (2.8)

where the bilinear form BY : HY x HY — R is defined as

M
BY((w, W), (v,V)) = / c¥Vw - Vudz + Z i /Ey (Wi — w)(Vi, —v) dS.

DY

Let us define

= mi inf oo ( -, o), - o) Lo (Dion 2.9
< yirgqrfla essinf oo( -, ys) St y{,nea%U oo (Yo )|l Lo (D(0)) (2.9)
and
(— =min min 2z, (y.), ¢+ = max max zm,(y.). (2.10)
m y.€Y, m y.eY,

Furthermore, let Cy ¢, > 0 be the norm of the trace operator
tr:v e vlpy, HY (DY) — L*(TY),

and Cy p > 0 be the Poincaré-Wirtinger constant for DY, that is, the smallest constant
such that

||v - 'DHHl(Dy) < Cy,p ||VU||L2(Dy) for all v € f[l(l)y>7
where v € R denotes the mean of v over DY. Finally, set

Cow =supChary  Co = sup Cyp.
yeT yeY

Note that the dependence of the trace norm on the corresponding domain is an active
research topic; see, e.g., [37] and the references therein. On the other hand, consult [7]
for a result that could be applied to the Poincaré—Wirtinger constant in our setting.
In the following, we simply assume that both C}, and Cp are finite.

THEOREM 2.1. The bilinear form BY : HY x HY — R is uniformly bounded and
coercive, that is,

202 2w

B ((w W), (0.V) < max i+ 25, 2L W)l 0, V)l
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and

2 2 -1
(0,0, 0.7) = (max{ (14 20) 22 1) v
' w w
forally e Y.
Proof. The result follows by keeping track of the constants in [2I] Proof of
Lemma 2.5] and accounting for the slight difference between the H-norm employed
in [2I] and the natural norm of HY, i.e.,

10, V) = inf (Jlo =l vy + IV = c12)

where 1 = (1,...,1) e RM. 0O
COROLLARY 2.2. The solution of (2.7) satisfies the uniform bound

C2 202\ 2¢
vy Uy y < p tr .
|(w?, UY)]| 2 max{ . (1 + ), } || (2.11)

forallye Y.

Proof. The claim is a direct consequence of the Lax—Milgram lemma. 0O

For the convergence of (standard) FEM, it is essential to have control over the
behavior of the higher Sobolev norms of v¥ € H*(DY)/R. To this end, denote by
Cy.c > 0 the norm of the zero continuation operator from H/2=¢(EY) to H'/2=¢(T'Y),
0 < e <1, and by C’y,e > (0 the norm of the solution mapping

HY?=€(IY) 5 f¥ — oY € H*¢(DY)/R,

corresponding to the Neumann problem

. ovY
V- (ayVo¥) =0 in DY, Uya— =fY onTVY.
v
Moreover, let C'y be the norm of the Neumann-to-Dirichlet map
L2(TY) > fY = o¥|r, € H'(TY)/R,
where L2(T') is the mean-free subspace of L?(I'Y). Finally, set

Ce = sup C, C.=supC,., C =sup C,,.
yeY yeT yeY
It is once again assumed that the parametrization of our measurement setting is
regular enough to make these definitions unambiguous as well as C, C. and C finite
for the considered 0 < ¢ < 1 (cf. [T, [30]).
COROLLARY 2.3. Let C7 > 0 be the constant on the right-hand side of .
For any 0 < € < 1, the first part of the solution to satisfies the uniform bound

1 \/iceée é
1?2 owym < 67(? +1) max{Cir, v} C11] (2.12)
forallye Y.
Proof. By definition,
' 5 || w0 - ||, 0ur
W] zr2-<(puy/r < Ce e pudnit < 0.0 ||ov 2 ’
OV || grr2—e(roy W |l g1 ()




POLYNOMIAL COLLOCATION IN EIT 7

where we also used the trivial embedding H'(EY) ¢ H'/?~¢(EY) to deduce the second
inequality. Now the claim follows by carefully keeping track of the constants in [I8]
Proof of Lemma 3.1] and [22] Proof of Lemma 2.1]. O

Observe that the constants appearing on the right-hand side of are not
independent of each other: For example, the norm of the zero continuation C, certainly
depends on w > 0 and obviously C, C. and C,, are intimately connected. Moreover,
the estimate is not optimal; as an example, consult [I1], [I5] for more careful
analysis of the dependence on (_. Be that as it may, arguably gives a general
idea of how the parametrization of the measurement configuration affects the bound
on the H2~¢(DY)-norm of the interior potential.

REMARK 2.4. Although the estimate on the H?=¢(DY)-norm of the electromag-
netic potential is connected to the accuracy of the numerical forward solution
at the chosen sparse grid points over Y (cf. Section @), from the standpoint of efficient
polynomial collocation it would be more important to prove analytic dependence of the
solution pair (u¥,UY) on the parameter vector y € Y; see, e.g., [3]. However, such
investigations are left for future studies.

In the following, we systematically choose the ground level of potential by iden-
tifying (H'(Q2) @ RM)/R ~ H'(Q) @ RM.

3. cFEM applied to the CEM. In this section we describe how the parameter-
dependent CEM forward problem is discretized in both spatial and parametric dimen-
sions. Let Z € RM*(M=1) denote a current matrix whose columns form an arbitrary
but fixed basis for the space of feasible net current feeds, that is, for R?. The corre-
sponding numerical solutions &¥ € RM*(M=1) for the electrode potentials in problem
27 (or in its variational formulation (2.8)) with a fixed y € T can be computed by
using standard FE techniques; recall that y = (Yo, Yy, Y&, y-) defines the conductivity,
the contact resistances and the geometric set-up for the forward problem . We
continue to assume that the ground level of potential is chosen such that each column
of UY has zero mean. It is straightforward to show that, due to the linear dependence
on the current pattern I in , the solutions UY corresponding to another current
matrix Z satisfy uv = L{yfTI, where (-)! denotes the Moore-Penrose pseudoinverse.
Thus, we pay no attention to choosing the current feeds in what follows.

By requiring the variational formulation to hold for all M —1 current patterns
and for all FEM basis functions, we end up with a matrix equation

AVyY = FY, (3.1)

where the stiffness matrix AY depends on all parameters y € T and FY, having M — 1
columns, depends only on the subvectors y, and yg (through the meshing of DY).
Ultimately, we are interested only in those @ := M (M — 1) elements of the unknown
matrix v¥Y that define the electrode potentials /Y.

The aim of the cFEM is to construct an explicit parameter dependence into the
numerical solution. More precisely, we seek for a polynomial mapping

T3y Uy) e RY

so that U(y) = UY element-wise. For notational convenience, we actually consider
U(y) as a vector that is obtained by stacking the matrix columns on top of each
other. We write the numerical parametric solution in the form

P
U= Usploly). a=1,....Q, (3.2)
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where ﬁqyp € R and %), are suitably scaled Legendre polynomials in N variables
(cf. [16]). It remains to choose the actual set of polynomials and also to determine
the coefficient matrix U € R@*P,

We henceforth assume that the polynomial basis is normalized as

/3 y) dy = 0p p, p,p=1,..., P,

where 6, s denotes the Kronecker symbol defined to be unity whenever its indices
coincide and vanishing otherwise. Performing a discrete projection of the parametric
solution onto the tensorized Legendre polynomial basis (.,?p);f:l in T yields a
representation of the coefficients given by the integrals

~

Uq,p:/r[u(y)]qu(y)dy7 qzla"'aQ7 p:17"'5P7

which we approximate by a sparse grid quadrature based on nested Clenshaw—Curtis
rules. The sparse grid method was first introduced in [40] and comprehensive analyses
of its approximation properties were developed later in [35] 30 [44]. The application
of sparse grid quadratures to collocation methods was pioneered in the context of
parametric partial differential equations in such works as [3, [45]. In the following, we
give a brief overview of these techniques applied to the problem considered in this
paper.

The sparse grid method is based on extending a family of univariate quadrature
rules into the high-dimensional parametric region T C R by considering a sparsity-
promoting linear combination of tensorized collections of univariate quadrature oper-
ators. The nested Clenshaw—Curtis rules in the interval [—1/2,1/2] are based on the
sequence m(1) = 1 and m(n) = 2"~*+1 for n > 1, which corresponds to the abscissae

ygl) =0 and

(k—1D)m

y,(vn):—;cos(m(n)_1>, k=1,...,m(n), n€ N\ {1}.

The abscissae characterize a sequence of positive weights (w ,(Cn))m(") that define the
Clenshaw—Curtis quadrature rules

1/2

_ () £, (MY d
Qnf gzl wy f(y ) /_1/2f(y) Y,

which are exact for all polynomials of degree not more than m(n). The tensor products
of these quadrature operators are defined as

m(ai)

®Qakf— > Z e 0,

111 7,N1

where o, € Nfor 1 <k < N.

A particular case of sparse grid quadrature is the well known Smolyak’s con-
struction [44]. The N-dimensional Smolyak rule of order K > 0 based on the nested
Clenshaw—Curtis rules is given by

D SRS b (S I - @@w

max{N,K+1}<|a|<N+K
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where @ = (a1, ...,ay) € NV and |a| = a3 + ...+ ay. The function evaluations are
carried out in the sparse grid

eN,K: U @alx-nx(%w,
la|=N+K

where O,, = {y,(:) le(rf) The sparse grid © 5 x has the asymptotic cardinality

2K
NN K = #ONK ~ FN

as N tends to infinity for a fixed K [36]. By tabulating the collocation nodes
(yl(cN’K))Zi’lK in Oy, x and their respective weights (w,(cN’K))Zi'lK, the Smolyak quadra-
ture rule can be rewritten as a cubature rule

NN, K

Onrcf = Y wi ™).

k=1
The Smolyak rule generalizes the polynomial exactness of the underlying univariate
rules [35]. Let I denote the space of all polynomials in N variables of total degree
at most K. Then

QN,Kf:/Tf(y)dy

for all multivariate polynomials f such that

fe > (M) ® T, )
|a|=N+K

In particular, it can be shown that the rule is exact for all f € IIY, whenever
K < 3N [36]. For K > 3N, the related total degree space is different and we omit it.

The coefficients qu’p € R that appear in the operator can now be approxi-
mated by using the cubature rule

nN,K

Upp ~ Qv (U( e Z) = > w U@ N, L), (3.3)
k=1

where the needed nodal evaluations of U(-) are replaced by those of the FEM solu-
tions U(). The error accumulation of the collocated solution depends on the error
introduced in the numerical solution of the CEM for fixed realizations of the param-
eter y € T, the truncation error that stems from the representation and the
aliasing error caused by the cubature rule in .

4. Implementation. As emphasized in, e.g., [23], an EIT inversion algorithm
based on stochastic or parametric FEM consists of two distinct parts. In the pre-
measurement processing, the explicit parameter dependence (3.2)) is constructed by
using ¢cFEM. Unlike in [23], we do not assume that the geometry of the measure-
ment setting is known during the pre-measurement processing, but instead include
parameters for the boundary curve and electrode positions in the cFEM problem.

In the post-measurement processing, the parametric solution is fitted to the mea-
surement data with respect to the parameter vector y. This part is often treated as a
least squares minimization problem, which involves either a Tikhonov functional or a
mazimum a posteriori (MAP) estimator in a Bayesian approach. Once a minimizing
vector y € T is found, recovering the quantities of interests follows straightforwardly
by considering the mappings introduced in the pre-measurement step.
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4.1. Pre-measurement processing. This subsection introduces one possible
set of concrete mappings that were abstractly given in Section [2.1] That is, we
consider functions that map the parameter vectors y,, yg, y» and y. to boundary
curve, electrode positions, conductivity field and contact resistances, respectively. We
will frequently use the fact that the components of the parameter vectors lie in the
interval [—1/2,1/2]. The mappings introduced here are certainly not the only feasible
ones.

The boundary curve I'(y, ) is represented as a perturbed circle, where the amount
of perturbation is determined by a linear combination of N, > 3 quadratic B-splines
(cf., e.g., [20]). To this end, we choose L = 27 in and write

7(¢, y’y) = (7”((;5, y'y)a ¢)

in polar coordinates. We then choose the maximum radial perturbations

~ = min min r ; = max max 7
P #€[0,27]) Yy ET (¢,97) P+ $E[0,27] yr e T (¢, 94)

and set pg = (p— + p+)/2. The radial coordinate for v can now be written as

N’Y
r(6,0y) = po+ Y _(p+ — p-)[yylitdi(9), (4.1)

i=1

where 1; € C3_(R) are nonnegative and uniform quadratic B-splines that form a
partition of unity. The unperturbed case y, = 0 corresponds to a circle with radius po,
i.e., D(0) is a disk of radius pg. Each spline satisfies |supp(¢;)N[0, 27]| = 67 /N.,. Thus,
the deformations are local, as illustrated in Figure[4.1] We define the homeomorphism

B as

o rl7¢ Y = (mr/’qs)’ 4.2
(00 = o) (42
which holds whenever (r', ¢) € D(y,).

For all yg € T, we define the starting angles of the electrodes as

Om(yE) = (m—l)%+2a[y];]m, m=1,...,M. (4.3)
Here, the offset parameter o > 0 is sufficiently small so that the non-overlapping
condition is satisfied. (Actually, the existence of such « also requires that p_ is
sufficiently large compared to w, i.e., 2rp_ > Mw, but this is assumed to be true.)
Because in EIT the absolute orientation of the imaged object in space cannot be
determined, we can as well fix one of the starting angles and decrease the number of
parameters by one. For simplicity, however, we keep IV as defined and fix the starting
angle of the first electrode by (re-)defining 6, (yg) =0 for all yg € Tg.

We resort to a piecewise constant representation for the conductivity. Other
possible choices include Karhunen—Loeve eigenfunctions corresponding to a (prior)
random field and suitable FEM basis functions. We partition the canonical domain
D(0) into N, pairwise disjoint subdomains that satisfy

Ndi PR
Uxfl(l) = D(0),
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Fig. 4.1: The discretization of the conductivity in a disk (left) and in a domain that
is obtained by maximally perturbing 2 out of IV, = 16 spline coefficients defining the
boundary curve (right). In these pictures N, = 960, p_ = 0.8 and p, = 1.2.

where y; is the indicator function of the ith subdomain. An example partitioning is
shown in Figure For x € D(0), the canonical conductivity oq is defined as

00(2,Ys) = ixz-(w) exp (; log(s—<4) + log (?) [ya]z') (4.4)

for some given values 0 < ¢_ < ¢,. It is easy to see that (4.4) satisfies (2.9). The
domain-dependent parametrization of the conductivity follows from (2.5) and (4.2).
The contact resistances are defined according to

i) = exp( glon(c- G log( )l ). m=to M (@)

which agrees with ([2.10).

Typically, the number of parameters defining the conductivity field is much higher
than the number of boundary curve parameters. In Figure [{.1] for example, we have
chosen N, = 960, whereas N, = 16. On the other hand, the number of parameters
defining the contact resistances and electrode positions is directly determined by the
number of electrodes, which is usually quite low. Due to the structure of a typical
sparse collocation grid, the number of different computational domains and finite
element meshes is therefore moderate compared to the total number of collocation
points. In fact, most of the forward problems in our numerical examples are computed
in the canonical domain D(0) with equiangled electrodes and with contact resistances
set to z(0). These problems merely correspond to perturbing a few values in the
stiffness matrix AY in .

Besides being easily parallelizable, there may also be a lot of symmetries that
can be used to reduce the amount of computation in the pre-measurement phase. For
example, if the conductivity is discretized as in Figure the number of electrodes is
divisible by eight and the current matrix involves certain symmetries, then solving a
forward problem corresponding to a conductivity node (i.e., a collocation node where
only y, contains nonzero values) simultaneously solves several problems where both
current feed and the conductivity field are rotated. Only re-ordering of the resulting
potential values is required. Similar symmetries may arise, e.g., when the boundary
curve is perturbed but other components are fixed. Exploiting these symmetries is
beyond the scope of this article.
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4.2. Post-measurement processing. The aim of the post-measurement pro-
cessing is to fit the parametric solution to measurement data; once again, recall
that y € T appearing in parametrizes the conductivity, the contact resistances
and the geometric set-up for . Let ¥V € R? denote a vector of noisy potential
measurements corresponding to some known set of current feeds. As mentioned in
the beginning of Section [3] the actual current values can be arbitrary as long as they
are known and they form a proper basis. Moreover, the linearity with respect to the
applied current pattern implies that uncertainties in the current feeds can be assumed
to be propagated to the measurement errors of potentials. In this paper, we tackle
the inverse problem of EIT by considering a nonlinear least squares problem of the
form

min {[U(y) = VI* + N|R(y)I*}, (4.6)

where A > 0 is a regularization parameter and R: RN — RV " is a differentiable
regularization operator for an arbitrary N’ € N. Notice that the connection be-
tween a (local) minimizer of and (regularized) solutions of the underlying undis-
cretized inverse problem of EIT in the framework of the CEM is nontrivial to analyze;
see, e.g., [19, B9 for related considerations.

We refer to [34] for discussion about nonlinear least squares algorithms. In short,
most algorithms are based on successive linearizations and require evaluating both
U(y) and R(y) as well as their Jacobian matrices for different values of y € Y. The
reconstructions in Section [5| are obtained by using the 1sqnonlin function in MAT-
LAB with a user-supplied Jacobian. It is shown in [3I] that the cost of evaluating
U(y) and its Jacobian is O(QN¥), where k is the largest polynomial (total) degree
in the chosen P-dimensional polynomial subspace. On the other hand, solving a lin-
earized least squares subproblem typically has a complexity of O(QN?), assuming
that N’ < N.

As the regularization operator we use a block-diagonal matrix R € con-
taining blocks R, € RNo*No R, € RN >Ny Rp € RMXM and R, € RM*XM_ The
conductivity block R, is defined via its inverse Cholesky factor, that is,

RNXN

|z —
232

where k., 3,¢ > 0 are free parameters to be specified by the operator of the algorithm
and x; € D(0) is the polar mean of the ith subdomain of D(0), i.e., the point defined
by the mean values of the polar coordinates in that subdomain. Loosely speaking, this
corresponds to the assumption that the conductivity is a priori a log-normal random
field with variance-like parameter x2 and correlation length 3; the role of the small
parameter € is just to guarantee the invertibility of the matrix. We could as well write
R, = R,(y) and compute the distances in perturbed domains, but this would cause
extra work with insignificant effect on the reconstruction.

The (Cholesky factors of the) regularization matrices R, Rg and R, are diagonal,

[R;TRgl]’Lj = ngXP(_ ) +65i,j7 7’7.7 = 17"'7N0'7

ie.,

Ry, = k', Rp = r3'l, R. = k],

where I denotes an identity matrix of the appropriate size and s, kg, k. > 0 are reg-
ularization parameters. If (4.6) were considered as computation of a MAP estimate
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within the Bayesian paradigm, the positive parameters x., g and £, would act as the
standard deviations of the (independent) zero-mean Gaussian priors for the compo-
nents of v, yg and y., respectively (cf., e.g., [25]). In particular, under the Bayesian
interpretation, the prior for the contact resistances is log-normal (cf. ) and those
for the electrode angles and the coefficients of the spline-like boundary perturbations
Gaussian.

5. Numerical experiments. We demonstrate the feasibility of the proposed
method by numerical experiments in two spatial dimensions. First, the parametric
solution U(y) is constructed as explained in Sections [3| and The conductivity
is discretized with N, = 960 parameters as in Figure [£.1] For the boundary curve,
we choose N, = 16 splines and the number of electrodes is M = 16. Thus, the
total number of parameters is N = 1008. By using the notation of Section [4.1]
we choose the minimum and maximum radii as (p—, p4) = (15,20). The maximum
offset for an electrode angle is a = 0.1 and the width of the electrodes is w = 2.
For the conductivity and the contact resistances we choose (¢_,¢y) = (0.1,1) and
(¢—,¢+) = (0.05,1), respectively. (In the tests based on experimental data, the units of
length, conductivity and contact resistance are cm, mS/cm and k{2 cm?, respectively.)

The tensorized Legendre polynomial basis (.Zp)f;:l is chosen such that it spans
the space containing all bilinear, linear and constant polynomials in N variables. This
results in P = (N? + N)/2 + 1 = 508 537 and the complexity of evaluating U (y) and
its Jacobian matrix becomes O(QN?). The Smolyak rule of order K = 2 based on
the nested Clenshaw—Curtis rules is used in the computation of the coefficients ﬁqm.
This rule is exact for integrands in IIY, i.e., for all N-variate polynomials of total
degree at most 5, resulting in 2034 145 collocation nodes in . The corresponding
CEM forward problems are solved by a standard FEM with about 2000 piecewise
linear basis functions and appropriate refinement of the employed meshes close to
the electrodes. Recall that these forward problems can be solved in parallel. With
our hardware (53GB RAM, Intel Xeon X5650 CPU) and non-optimized MATLAB
implementation, this pre-measurement phase of forming (3.2]) took a few hours. In
what follows, we employ the same parametric forward solution in all reconstructions,
except for the fixed-geometry reconstructions (see Figures and , which for
comparison are computed by setting p_ = p; and a = 0 in the pre-measurement
phase.

As mentioned in Section[£.2] the inverse problem is also solved with MATLAB. We
actually treat the problem as an unconstrained minimization problem and solve it
by lsgnonlin with zero initial vectorﬂ and the levenberg-marquardt option, because
this is simple, easily reproducible and there is no reason to expect that some other
technique would result in a significantly more accurate localization of a minimizer
for . Apart from A > 0, we use the same values for the free parameters of
the post-measurement processing in all numerical tests, namely 3 = 4, ¢ = 10~*
and kK, = Ky = kg = Kk, = 0.25 (cf. Section . Making these parameters case-
specific would certainly improve the reconstructions to a certain extent, but it would
also conflict our aim of demonstrating that a generic set of parameter values leads to
good reconstructions both with simulated data and for different experimental settings.
Recall that within the Bayesian paradigm x,, k,, kg and k, can be interpreted as
the prior standard deviations for the components of y,, ¥, yr and y., respectively,

I This initial guess corresponds to a disk of radius pg = 17.5, equiangled electrodes, a homogeneous
conductivity o = ,/c—¢+ ~ 0.32 and contact resistances z,;, = \/(—-(+ ~0.22, m=1,...,16.
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Fig. 5.1: Simulated data. Left: the target configurations. Right: the reconstructions.

meaning that the sizes of the former indicate the amount of variation one expects in
the latter a priori. Combining this observation with the parametrizations and
7 indicates how much fluctuation is expected in the boundary curve, the
electrode positions, the pixel values of the conductivity and the contact resistances,
respectively, prior to the measurements. Moreover, the choice of the correlation length
B > 0 is related to the anticipated characteristic length of conductivity variations
inside the imaged object.

Unless otherwise stated, the post-measurement processing phase lasted only a few
seconds on a modern desktop computer.

5.1. Simulated data. Let us first consider simulated measurements. The con-
sidered artificial target conductivities and body shapes are shown in the left-hand
column of Figure Neither of the two boundary curves can be exactly represented
by the parametrization with IV, = 16. For both phantoms, there are sixteen elec-
trodes of two units width distributed somewhat evenly along the respective boundary
curve. The corresponding contact resistances are similar random perturbations; see
Figure for the details. The employed current patterns, i.e., the columns of Z, are

I =e; —ema1, m=1,...,M —1, (5.1)

with e,, denoting the mth Euclidean basis vector of R™. The electrode measure-
ments are simulated by first solving the necessary CEM forward problems by a FEM
with piecewise linear basis functions — on considerably denser meshes than the ones
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Fig. 5.2: Simulated data. Left: the reconstructed electrode angles (red circles) com-
pared with the true ones (blue asterisks). Right: the reconstructed contact resistances
(red circles) compared with the true ones (blue asterisks). The top row corresponds
to the top row of Figure and the bottom row to the bottom row of Figure

employed for the inverse solver — to obtain the ‘exact’ potential vector U**°* € R?.
Subsequently, the actual data are formed as

V — uexct +7]7

where the components of 7 € R? are independent realizations of a normally dis-
tributed random variable with zero mean and standard deviation

7 =107 max |US - UP,
Jk=1,...,Q

which corresponds to 0.1% of noise. The reconstruction algorithm is then applied to V
with the regularization parameter A = 27. If is interpreted as the determination
of a MAP estimate within the Bayesian paradigm, then A plays the role of the stan-
dard deviation for the assumed zero mean Gaussian noise process with independent
components (cf., e.g., [25]). In particular, we assume here twice as high noise level
than actually contaminating the (simulated) measurements.

The resulting conductivity reconstructions are illustrated in the right-hand col-
umn of Figure They demonstrate that the algorithm is capable of capturing the
qualitative behavior of the conductivity phantoms as well as the exterior boundary
shapes of the examined objects. The circumference of the top left object in Figure[5.1
is approximately 121, while the circumference of its reconstruction is only 111. The
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Fig. 5.3: Simulated data. The reconstructions of conductivity obtained by fixing the
domain to be a disk of radius pg = 17.5 with equally spaced electrodes attached to its
boundary. The left-hand image corresponds to the target in the top row of Figure
and the right-hand image to that in the bottom row of Figure The color axes are
those used in Figure but the highest reconstructed values are approximately 1.49
(left) and 4.17 (right).

corresponding values for the second object are 115 and 113, respectively. Thus, the
reconstructed circumferences are close to that of D(0), i.e., 27 - 17.5 & 110.

The reconstructed contact resistances and electrode angles are compared with
the true ones in Figure [5.2} it is obvious that the algorithm does not estimate these
quantities accurately. The inaccuracy demonstrated by Figure is probably mainly
due to the nontrivial interplay between the object shape, electrode angles and contact
resistances: Some features of the data caused by the object shape may be less ‘expen-
sive’ to explain by varying the electrode angles and/or contact resistances under the
chosen regularization/prior model. Such behavior is most evident in the top right im-
age of Figure[5.2] where the too high values for the reconstructed contact resistances
arguably compensate for the too small size of the reconstructed object in the top right
image of Figure It should also be noted that the orientation of the reconstruction
in space is intimately connected to the reconstructed electrode angles: All (random)
angle offsets for the target in the bottom left image of Figure [5.1] are negative, which
leads to a reconstruction that is slightly rotated in the clockwise direction. This elimi-
nates the systematic bias in the true electrode angles (in comparison to the parameter
value yg = 0) and results in reconstructed angle offsets that take both positive and
negative values.

To conclude this section, let us demonstrate what happens if the uncertainties
related to the measurement geometry are simply ignored. Figure shows the recon-
structions of the target configurations in Figure [5.1] produced by our reconstruction
algorithm when the pre-measurement phase is computed in a disk of radius pg = 17.5
with equally spaced electrodes attached to its boundary. As illustrated by the ex-
tremely poor reconstructions of the conductivity in Figure this naive approach
is intolerable, which is inline with the findings of [B, [8, 13| 14, 28]. Moreover, the
minimization algorithm converges slowly: As an example, the left image in Figure [5.3
required 121 function evaluations, whereas the top right image in Figure was ob-
tained with only 12 function evaluations, although the same (1sqnonlin’s default)
stopping criterion was used.
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Fig. 5.4: Experimental data from a thorax-shaped tank. Left: the target configura-
tions. Right: the reconstructions. The unit of conductivity is mS/cm. The images
are not in scale; the circumferences of the tank and the reconstructions are given in
the text.

5.2. Experimental data. We next apply our algorithm to four sets of experi-
mental data from two water tanks: a thorax-shaped with circumference 106 cm and a
deformable one with circumference 86 cm (cf. Figures and [5.5)). Both tanks have
M = 16 rectangular metallic electrodes of width 2 cm attached to their interior lateral
surface. In each experiment, the considered water tank contains vertically homoge-
neous embedded cylinders of steel and/or plastic extending from the bottom all the
way through the water surface. The water level is controlled so that the tanks are
always filled with tap water up to the top of the electrodes, which are of height 5cm
for the thorax-shaped tank and of height 7cm for the deformable one. The mea-
surements were performed with low-frequency (1kHz) alternating current using the
Kuopio impedance tomography (KIT4) device [29]. The phase information of the mea-
surements is ignored, meaning that the amplitudes of electrode currents and potentials
are interpreted as real numbers.

As the measurement configurations are vertically homogeneous and no current
flows through the top or the bottom of the water layer, one can employ the two-
dimensional version of the CEM as the forward model. For a discussion on the
conversion of units between two and three spatial dimensions, see, e.g., [23]. To
put it short, if the voltage measurements on the electrodes are multiplied or, alter-
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Fig. 5.5: Experimental data from a deformable tank. Left: the target configurations.
Right: the reconstructions. The unit of conductivity is mS/cm. The images are not
in scale; the circumferences of the tank and the reconstructions are given in the text.

natively, the net currents are divided by the height of the tank, a two-dimensional
inverse solver automatically produces reconstructions in the proper three-dimensional
units. We take here the latter approach based on the (three-dimensional) current
patterns ; prior to the scaling by the tank height, the unit of current is mA. The
regularization parameter is chosen as

A=2-10" max [V; — V]
J.k=1,...,Q
for both tanks. Loosely speaking, the Bayesian interpretation of this is that we expect
roughly 0.1 % of measurement noise as in the case of simulated data.

The conductivity reconstructions corresponding to the thorax-shaped tank are
presented in Figure 5.4 The two target configurations are shown in the left-hand
column and the corresponding reconstructions on the right. In both cases, there are
two cylinders placed inside the tank: a metallic one with square cross-section and a
plastic one with round cross-section. For both targets, the reconstruction of the tank
boundary is accurate and the approximate positions of the inclusions can also be
deduced from the images in the right-hand column of Figure[5.4] However, especially
the insulating inclusions appear blurred in the reconstructions and there are also some
oscillations in the estimated background conductivity level. Both reconstructions have
a circumference of about 112 cm.
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Fig. 5.6: Reconstructions based on the data from a deformable tank and fixed geom-
etry. The left image corresponds to the top row of Figure [5.5| and the right image to
the bottom row. The highest reconstructed values are approximately 34.2 (left) and
14.6 (right).

The reconstructions corresponding to the deformable tank are presented in Fig-
ure which is organized in the same way as Figure The target configurations
are shown in the left-hand column and the associated reconstructions in the right-hand
column. The water tank has been bent into two different shapes. The corresponding
conductivity phantoms consist of two pieces of plastic with rectangular cross-sections
and of one round steel cylinder and a rectangular body of plastic, respectively. The
reconstructions are not quite as informative as for the thorax-shaped tank, which is
inline with our experience of expecting data from the deformable tank to be of lower
quality. The shapes of the exterior boundary are not reproduced as accurately, the in-
clusions appear more blurred and the variations in the background conductivity level
are notable. It seems that the algorithm tries to explain some of the data variations
originating from the inhomogeneities by deforming the object boundary. The recon-
struction circumferences 116 cm (top) and 114 cm (bottom) are also quite far off the
mark; our hypothesis is that the algorithm compensates for the overestimation of the
tank size by downtuning the contact resistances (cf. the top right image of Figure.
In any case, the reconstructions in Figure [5.5]still carry useful information about the
corresponding targets. In particular, they are far better than ones obtained by alto-
gether ignoring the incompleteness of the information on the measurement geometry
and computing the conductivity reconstruction in, e.g., a disk (cf. [I4]): In Figure
we present the reconstructions similar to those in Figure Now the geometry is
fixed to a disk having the correct circumference of 86 cm and equiangled electrodes.

6. Conclusion. By employing cFEM, we have introduced a numerical algorithm
that is capable of simultaneously producing reasonable reconstructions of the con-
ductivity and the exterior boundary shape of the examined body in EIT from both
simulated and experimental data. The algorithm consists of two stages: In the pre-
measurement processing, a polynomial surrogate model is formed for the CEM. This
is the computationally expensive part of the proposed method, but it can fortunately
be carried out off-line prior to any actual measurements, assuming there is enough
general-level information available on the measurement set-up (the approximate size
and conductivity level of the body, the shape and number of the electrodes etc.). The
post-measurement processing consists of minimizing a sum of squares of multivariate
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polynomials, which does not demand a lot of computation time — unless the polyno-
mial order in the surrogate model is high. Our numerical experiments were based on
second-degree polynomials and approximately a thousand parameters, which resulted
in post-processing times of only a few seconds.
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