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Abstract

We present a new approach for computing approximate global minimizers to a large
class of non-local pairwise interaction problems defined over probability distributions. The
approach predicts candidate global minimizers, with a recovery guarantee, that are some-
times exact, and often within a few percent of the optimum energy (under appropriate
normalization of the energy). The procedure relies on a convex relaxation of the pair-
wise energy that exploits translational symmetry, followed by a recovery procedure that
minimizes a relative entropy. Numerical discretizations of the convex relaxation yield a lin-
ear programming problem over convex cones that can be solved using well-known methods.
One advantage of the approach is that it provides sufficient conditions for global minimizers
to a non-convex quadratic variational problem, in the form of a linear, convex, optimization
problem for the auto-correlation of the probability density. We demonstrate the approach
in a periodic domain for examples arising from models in materials, social phenomena
and flocking. The approach also exactly recovers the global minimizer when a lattice of
Dirac masses solves the convex relaxation. An important by-product of the relaxation is
a decomposition of the pairwise energy functional into the sum of a convex functional and
non-convex functional. We observe that in some cases, the non-convex component of the
decomposition can be used to characterize the support of the recovered minimizers.

Keywords: Global minimizers, non-convex energy, pairwise interactions, convex relaxations,
conic programming, semi-definite programming, flocking, self-assembly.

AMS Subject Classifications: 49M30, 49S05.

1 Introduction

In this paper, we present a new approach for computing candidate global minimizers to a class
of energy functionals that arise as continuum approximations to a large collection of interacting
particles. Although there are many models for how a collection of particles may interact, we
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consider here functionals corresponding to systems where particles interact only in pairs with
each other. The resulting pairwise energy functionals are in general non-convex and quadratic,
and may have multiple local minimizers, making the global optimization a potentially difficult
problem. One could in principle numerically discretize the quadratic functional we consider,
using n� 1 spatial grid points, and arrive at a finite dimensional, quadratic optimization prob-
lem. Unfortunately, minimizing such a discrete problem through currently known methods,
see Sections 4–5 in [28] (and references within), is computationally prohibitive, and requires
O(2n) floating point operations. We stress that these computational costs are a currently
known upper bound, and future algorithms may improve upon them.

The idea in the new approach is to avoid minimizing the non-convex quadratic functional,
and instead minimize a linear convex functional that bounds the non-convex functional from
below. The solution to this lower bound problem then results in a new sufficient condition
for global minimizers. The advantage of this approach is that numerical discretizations of
the linear, lower bound problem, using n spatial grid points, require O(n) linear constraints,
and hence may be solved using O(n) floating point operators. We then obtain candidate
minimizers, not by minimizing the original energy, but rather choosing ones that try to satisfy
this new sufficient condition. If a candidate satisfies the sufficient condition exactly, then we are
guaranteed that it is a global minimum. If a candidate minimizer does not satisfy the condition
exactly, then by virtue of the fact that the sufficient condition provides a lower bound to the
energy functional, we can quantify a worst case estimate on the energy difference between the
candidate and global minimizer.

Although parts of the approach are numerical in nature, a by-product of the analytic for-
mulation is an optimal decomposition of the energy functional into the sum of a non-negative,
non-convex functional, and a convex functional. The resulting convex functional in the decom-
position is then highly reminiscent of a convex envelope. This decomposition will also help to
explain the emergence of new length scales that characterize the patterns of many interacting
particles.

Pair interaction problems are ubiquitous throughout the sciences, appearing in problems
ranging from electromagnetics, the weak interaction of nuclear matter [49], biological swarming
[5, 18, 40, 43, 59, 60, 61], colloids, polymers [17, 44], consensus [41], mathematical physics
[14, 36] and self-assembly [29, 38, 46] to name a few. In these systems, each particle exhibits
and experiences a force from every other particle in the system. The resulting sum of the
pairwise energies then promote the collective organization of matter into the formation of
structures such as solids or crystalline lattices [16, 54, 55, 56].

Global minimizers or ground states for many particle systems play a key physical role as
they often describe the most likely observed state at low temperatures, influence the structure
of matter at high temperatures, and are also important for computing phase diagrams [21, 26].
Dynamically, global minimizers appear as steady states to gradient flows, or as critical points
to Hamiltonian systems, and therefore may play a role in characterizing the long time behavior
in some dynamical systems.

We consider problems motivated by a large number, N � 1, of interacting particles, where
a probability measure ρ(x) dx is used to represent the distribution of particles. Here x ∈ Rd

denotes the spatial coordinates in a dimension d ≥ 1. For problems on a domain Ω ⊆ Rd, we
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consider energy functionals that take the form

E(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W (x− y) dx dy. (1.1)

In equation (1.1), ρ(x) dx (resp. ρ(y) dy) is interpreted as the fraction of particles in the
vicinity of a point x (resp. y) in the domain Ω. Hence, the energy (1.1) is the double integral
over all possible pairs of particles at locations x and y, weighted by the interaction potential
W (x− y). Physically, W (r) typically represents the energy cost of having two particles sepa-
rated by the vector r. Due to the double integral in (1.1) over all possible pairs of locations x
and y, we refer to E(ρ) as the pairwise energy.

Formally ρ(x) dx will be taken as a probability measure, however for brevity we will sup-
press the dx throughout the written text and write ρ(x) with the understanding that ρ(x) is
a measure and includes L1(Ω) probability densities and non-classical functions such as a Dirac
mass. Without a loss of generality, the total mass m of ρ(x) is taken to be 1:

m :=

∫
Ω
ρ(x) dx = 1. (1.2)

If, ρ(x) was normalized to m 6= 1 in equation (1.2), i.e., as the total number of particles in
the system m = N , then a re-scaling of ρ̃(x) = m−1ρ(x) re-scales E(ρ) = m2E(ρ̃) by m2. As
a result, minimizing E(ρ̃) over ρ̃(x) with mass 1 is equivalent to minimizing a re-scaled E(ρ)
over ρ(x) with mass m. In general, the assumption of (1.2), as opposed to a different value of
m, does not alter the approach in this paper.

Remark 1. For the purposes of minimizing the energy (1.1) on Ω = Rd, the interaction
potential W (x) may be assumed to be mirror symmetric, i.e., even with respect to the si-
multaneous negation of the coordinates, for all x ∈ Rd, W (−x) = W (x) where W (−x) :=
W (−x1, . . . ,−xd). If, for instance, W (x) is not mirror symmetric, one may write W (x) =
WE(x)+WO(x) where WE(x) and WO(x) are the following even and odd components of W (x):

WE(x) :=
1

2

(
W (x) +W (−x)

)
, WO(x) :=

1

2

(
W (x)−W (−x)

)
.

The function WO(x), when inserted into the energy integral (1.1), then integrates to zero by a
change of variables:∫

Rd

∫
Rd
ρ(y)WO(x− y)ρ(x) dx dy =

1

2

∫
Rd

∫
Rd
ρ(y)

(
W (x− y)−W (y − x)

)
ρ(x) dx dy = 0.

(1.3)

Hence, the energy E(ρ) in (1.1) is the same for all ρ(x) regardless of whether W (x) or WE(x)
is used. Therefore, one may assume that W (x) = WE(x) is the symmetric component of
W (x), even when W (x) is not mirror symmetric. Note that mirror symmetry does not con-
strain W (x) to be even symmetric in each individual component, i.e., in general one could
have W (x1,−x2) 6= W (x1, x2) and still satisfy W (−x1,−x2) = W (x1, x2). The same results
regarding mirror symmetry hold for the periodic domain Ω = [0, 1]d.
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The approach in this paper will focus on energies of the form (1.1), however we now briefly
discuss how the energy E(ρ), which is defined for probability measures ρ(x), can be related to
the energy of a discrete particle system. For example, restricting ρ(x) in the energy E(ρ) to a
sum of N Dirac masses can be interpreted as the energy of an N particle system. Specifically,
substituting an ansatz of Dirac masses into the energy (1.1) yields:

EN (x1,x2, . . . ,xN ) := E(ρN ), where ρN (x) =
1

N

N∑
j=1

δ(x− xj). (1.4)

By direct calculation, and assuming that W (x) is continuous so that the integration against
Dirac masses is well defined, one has

EN (x1,x2, . . . ,xN ) =
1

2N2

N∑
i=1

N∑
j=1

W (xi − xj). (1.5)

Within the double-sum (1.5) are N terms where i = j that result in a total contribution of
(2N)−1W (0) to the overall energy EN . Provided W (0) < ∞ is bounded1 at the origin, EN
can be identified as the energy of N discrete interacting particles–interacting with the same
interaction potential W (x) as in (1.1). The calculation also shows that minimizing E(ρ) over
probability measures ρ(x) includes the energies EN of all possible arrangements of N particles,
for any N ≥ 1.

Remark 2. (Numerical example: a particle gradient flow for a periodic Morse potential)
Arrangements of particles that minimize the collective energy EN may form patterns on length
scales that are not readily identifiable from the interaction energy W (x). Figure 1 shows the
time evolution for a collection of randomly distributed particles undergoing a one dimensional
gradient flow governed by the system of ordinary differential equations:

dxj
dt

= −∇xjEN , 1 ≤ j ≤ N. (1.6)

Here the periodic Morse potential (6.3) (with parameters σ = 0.1, (L,G) = (1.2, 0.9)) was used
for EN , while the initial particle positions, i.e., xj at t = 0 for 1 ≤ j ≤ N , was taken to be
randomly distributed in the domain [0, 1], sampled from a uniform probability distribution. A
total of N = 400 particles was used in the simulation, however the same histogram shape in
Figure 1 was observed in repeated trials, for different values of N = 200 and 600, and also
for (slightly perturbed) uniformly distributed initial data. Figure 1 also shows the histogram
of particle positions as t → ∞, demonstrating that the particles coalesce into a region with a
width of ∼ 0.159 units.

Recently, computational methods based on convex relaxations or lower bounds have been
used to estimate low energy states and phase diagrams in material science. For instance,
[52] computed convex lower bounds to estimate the order-disorder phase transition in energy

1 Many interaction potentials are not bounded at x = 0, see for instance the divergent power law potentials
in [15, 53].
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(a) Gradient flow (b) Particle density

Figure 1: (a) Time evolution of equation (1.6) for the interaction potential (6.3) and N = 400
discrete particles (only 50 shown), towards a critical point of EN . (b) The density distribution
(using 50 bins) of the discrete particles at steady state (i.e., as t → ∞) from part (a). The
density is normalized to have area one. The support of the density has an approximate width of
∼ 0.159 (computed as the difference between the maximum and minimum particle locations)
which is not immediately related to the interaction potential W (x). The width, however,
will emerge as the length scale in the optimal dual decomposition for the energy presented in
Section 5 (see also Figure 5a).

functionals containing double-wells. Meanwhile, [32] used relaxations to compute approximate
density matrices for quantum systems at zero temperature, while [34, 35, 37] have computed
molecular structures.

The approach we present for computing approximate global minimizers is similar in spirit to
other state of the art algorithms currently used in optimization theory and integer programming
that exploit matrix semi-definite programming (SDP) (see also [6, 23, 42] for a discussion on
SDPs and relaxations). For example, semi-definite based convex relaxations represent some of
the best known polynomial time algorithms for computing approximate solutions to the graph
partitioning problem [25] and matrix completion problem (Netflix prize) [11]. They have also
been used in data science to approximately solve the k-disjoint clique problem [2] and blind
deconvolution [1], while other relaxations have been used to characterize the sparsest element
in a discrete set [19].

Our paper is presented as follows: Section 2 introduces the general problem and definition
of the recovery guarantee. In Section 3 we formulate the convex relaxation, while in Section 4
we outline the recovery procedure. Section 5 contains a detailed description of the dual problem
and resulting optimal decomposition of the pairwise energy. Sections 7 and 8 present numerical
examples in dimensions one and two respectively. Finally, Appendix A contains information
on known cases where the convex relaxation is exact, Appendix B contains numerical details,
while Appendix C characterizes solutions to the relaxed problem that take the form of three
Dirac masses.
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2 Problem formulation and preliminaries

Consider a periodic domain Ω = [0, 1]d in dimension d (eventually taken to be d = 1, 2 in
Sections 6–7), and interaction energy W (x). We are interested in the problem of finding global
minimizers to the pairwise energy (1.1):

(P ) Minimize
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W (x− y) dx dy,

over probability measures ρ(x) ∈ C1 with

∫
Ω
ρ(x) dx = 1.

Here we have introduced C1 as a convex cone to characterize non-negative measures2:

C1 :=
{
f ∈ C0(Ω)′ : 〈f, u〉 ≥ 0 for all u ∈ C0(Ω) with u(x) ≥ 0

}
,

where

〈f, u〉 =

∫
Ω
u(x)f(x) dx

is the integral of the continuous function u(x) against the measure f(x) dx. In the case when
ρ(x) is a classical function, we may equivalently replace C1 with ρ(x) ≥ 0 for all x ∈ Ω. In the
problem (P), we further assume that W (x) satisfies the following properties

(W1) Mirror symmetric: W (x) = W (−x), holds for all x (See Remark 1 for justification).

(W2) Continuous on Ω.

(W3) Periodic with period 1: W (x + k) = W (x), for all x ∈ Ω and integer vectors k ∈ Zd.

(W4) Normalized with mean zero:
∫

ΩW (x) dx = 0. In such a case, the minimum to (P) is at
most zero since E(1) = 0. Note that one can always add, without loss of generality, a
constant to W (x).

Remark 3. For numerical simplicity we have intentionally limited the problem (P) to contin-
uous interaction potentials W (x) on periodic domains Ω. Many of the results presented here
apply to other domains as well, including the sphere or Rd. For instance, when Ω = Rd, one
may still define a convex relaxation for problem (P). In this case, the countable wavenumbers
(i.e. Fourier series) used to define the relaxation in Section 3 for the periodic domain [0, 1]d

will be replaced with a continuous set of wavenumbers (i.e. Fourier transform). Additional
difficulties, not encountered here, may arise in the numerical solution when the domain is
unbounded.

2In the definition of C1, C0(Ω) is the space of periodic continuous functions on Ω endowed with the sup
norm. Since Ω = [0, 1]d is compact, the functions u ∈ C0(Ω) are bounded and also form a Banach space. The
notation here, 〈f, u〉, represents the pairing of elements f in the dual space C0(Ω)′ with continuous functions
u that are elements of C0(Ω) (See Chapter 5 in [24] for a general discussion on Banach spaces). In addition,
the Riesz representation theorem for bounded continuous functions (see Chapter 7 in [24], or Chapter 2 in [48])
shows that elements in C0(Ω)′ can be identified as non-negative Borel measures, which justifies the integral
representation of 〈f, u〉.
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For the problems we consider where Ω is compact, (P) admits a global minimum E0 :=
E(ρ0), achieved by some probability measure ρ0(x). Note that ρ0(x) is not unique since E(ρ)
is invariant under translations so that ρ0(x + s) is also a global minimum for any s. For non-
compact domains, the existence and uniqueness [13, 15, 53] (up to translations and rotations)
of global minimizers is more subtle since mass can be spread arbitrarily far apart (see also
[3, 4, 8] for results on the structure of minimizers).

We now review several necessary conditions imposed by the first and second variation of
E(ρ) that a global minimizer ρ0(x) must satisfy (see [5] for a discussion and [12] for a rigorous
treatment). Firstly, a candidate global minimizer ρ∗(x) satisfies the first order necessary
conditions if the first variation of E(ρ):

Λ(x) :=

∫
Ω
W (x− y)ρ∗(y) dy, (2.1)

satisfies

Λ(x) = 2µ, for all x ∈ S∗ := supp(ρ∗). (2.2)

Λ(x) ≥ 2µ, for all x ∈ Ω, (Including x /∈ S∗). (2.3)

Here supp(f) is the support of f(x), i.e., the set where f(x) does not vanish3, while µ ∈ R is
a Lagrange multiplier constant. Note that multiplying (2.2) through by ρ∗(x) and integrating
over Ω shows that E(ρ∗) = µ. Hence, if ρ∗(x) satisfies the first order condition (2.2), then ρ∗(x)
has energy µ. As a result, setting µ = E0 in equation (2.2) shows that the global minimizer
ρ0(x) satisfies: ∫

Ω
W (x− y)ρ0(y) dy = 2E0, for all x ∈ S0 := supp(ρ0). (2.4)

One difficulty with using the condition (2.4) to solve for ρ0(x) is that both E0 and S0 are not
known a priori. As implied by the integral equation in [5] (see Remark 2.5 in [12] for a rigorous
treatment), consideration of the second variation of E(ρ) will show that knowledge of S0 alone
will be sufficient to compute ρ0(x) through a convex optimization problem. Specifically, a
candidate ρ∗(x) satisfies the second order necessary conditions for a global minimum if the
second variation is non-negative (within the class of perturbations that make the first variation
vanish):

E(f) ≥ 0, for finite measures f(x), with

∫
Ω
f(x) dx = 0, and supp(f) ⊆ S∗. (2.5)

Here the class of f(x)’s in (2.5) are exactly the measures that when integrated against Λ(x)
vanish. Equation (2.5) also implies the following remark regarding the convexity of E(ρ) when
restricted to probabilities having supports in S∗.

Remark 4. (The importance of S0) Examining the necessary condition in (2.5) when ρ0(x)
is a global minimum, one has the following observations:

3If f(x) is a continuous function on Ω, then supp(f) = cl{x : f(x) 6= 0}, where cl denotes the closure. See
Chapter 7 in [24] for the definition when f(x) is a measure.
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(i) Condition (2.5) implies that:

E(ρ) is convex when restricted to B :=
{
ρ(x) ∈ C1,

∫
Ω
ρ(x) dx = 1, supp(ρ) ⊆ S0

}
.

(ii) Knowledge of the support of ρ0(x), i.e., the set S0, implies that (P) may be formulated
as a convex optimization problem.

Note that B is a convex set. To show (i), take any ρ1(x), ρ2(x) ∈ B and set f(x) := ρ1(x) −
ρ2(x). Therefore, f(x) has support in S0 and satisfies the criteria in (2.5). Then, by direct
calculation using the fact that E(ρ) is quadratic, one has for any 0 ≤ λ ≤ 1,

0 ≤ (1− λ)λ E(f) = λE(ρ1) + (1− λ)E(ρ2)− E(λρ1 + (1− λ)ρ2), (2.6)

⇒ E(λρ1 + (1− λ)ρ2) ≤ λE(ρ1) + (1− λ)E(ρ2).

The inequality (2.6) shows that E(ρ) is convex when restricted to probabilities in B. For (ii),
note that ρ0(x) ∈ B, so that restricting the optimization of E(ρ) in (P) to the space B produces
the same minimum E0. Moreover, (P) then becomes the following convex problem:

min E(ρ), subject to ρ(x) ∈ B.

Remark 4 highlights the importance of finding sets S∗ where E(ρ) is convex. In our ap-
proach, we do not have a proof that the recovered candidate minimizers satisfy the first and
second order necessary conditions, however in Section 5 we provide new sufficient conditions
for E(ρ) to be convex when supp(ρ) ⊆ S∗. Sections 6–7 then demonstrate that our recovered
minimizers often satisfy this new sufficient condition.

A common practice in optimization theory is to guarantee that a candidate minimizer
(or maximizer) is within a factor α of the optimal value. Here we say that an approximate
minimizer ρ∗(x) to problem (P) has an (α, ν) guarantee, where 0 ≤ α ≤ 1, ν ≥ E0, if the
shifted energy E(ρ∗)− ν is optimal to within a factor of α:

(E0 − ν) ≤ E(ρ∗)− ν ≤ α(E0 − ν).

In the context of gradient flows on E(ρ), one may always add an arbitrary constant to
the underlying potential W (x), and hence E(ρ), without effecting the dynamics of ρ(x). To
eliminate the ambiguity of adding such an arbitrary constant, we introduce the shift ν = E(ρref )
as a reference energy with respect to a base probability ρref (x).

Clearly, if α = 1 with any ν then E(ρ∗) = E0, and hence ρ∗(x) is a global minimizer. In this
case, we drop the notation ν and simply say the solution ρ∗(x) is optimal with a guarantee
α = 1. In the numerical section of this paper we always report an α guarantee with ν = 0.
Due to the normalization (W4), ν = E(1) = 0 corresponds to the constant state ρref (x) = 1.

In general, problem (P) is difficult to solve since the energy E(ρ) is a non-convex functional
of ρ(x). In the next section we will show how to replace (P) with a convex relaxation (R) that
is more amenable to analysis. We will:

1. Formulate a convex relaxation (R) of (P).

2. Solve the relaxation (R) using efficient linear programming (LP) algorithms.

3. Recover a candidate minimizer from (R) using minimal points of the Kullback-Leibler
divergence, and report an (α, ν) guarantee for the candidate minimizer (with ν = 0).
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3 The Convex relaxation

The purpose of this section is to formulate a convex relaxation of (P) that takes the form
of a constrained linear optimization problem. The linear optimization problem may then be
numerically approximated and solved using linear programming techniques.

To obtain the relaxation, we first rewrite E(ρ) by performing a coordinate change of vari-
ables in the integral. Letting s = x− y,

E(ρ) =
1

2

∫
Ω

∫
Ω
ρ(x)ρ(x + s)W (s) dx ds =

1

2
〈F,W 〉,

F (s) :=

∫
Ω
ρ(x)ρ(x + s) dx = ρ ◦ ρ.

Here we have introduced F (x) as the auto-correlation of ρ(x), along with a shorthand binary
operator notation ◦. In addition, we assume that ρ(x) is defined periodically on Ω so that
F (x) is also periodic on Ω.

The original problem (P) can then be understood as minimizing a linear functional 〈F,W 〉,
over the space of elements F (x) ∈ A that arise as the auto-correlations of probabilities:

A :=
{
F : F (s) =

∫
Ω
ρ(x)ρ(x + s) dx, such that ρ ∈ C1,

∫
Ω
ρ(x) dx = 1

}
.

We will show below that A is not a convex space (See Remark 5). Hence, we have re-
formulated the original problem (P) of minimizing a non-convex objective functional over a
convex set, to the minimization of a linear, convex functional over a non-convex set. Our
goal is now to relax the admissible space of functions A to a convex set. Ideally, one would
like to use the smallest convex relaxation, i.e., the convex hull of A, however we use a space
of convex cones that may be exploited in subsequent numerical computations. Specifically,
since F (x) is defined in the periodic domain Ω, it is natural to consider representations as a
Fourier series. The following proposition, which characterizes several well-known properties of
auto-correlations, will play an important role in defining the relaxation.

Proposition 3.1. (Properties of A) Given any F (x) ∈ A, the following properties hold:

(A1) F (x) is non-negative, i.e. for any non-negative continuous function u(x) ≥ 0, 〈F, u〉 ≥ 0.

(A2) F (x) integrates to one: 〈F, 1〉 = 1.

(A3) F (x) is mirror symmetric about the origin, i.e., F (−x) = F (x), corresponding to zero
sine modes. For every k ∈ Zd, k 6= 0: 〈F, sin(2πk · x)〉 = 0.

(A4) F (x) has non-negative cosine modes. For every k ∈ Zd, k 6= 0: 〈F, cos(2πk · x)〉 ≥ 0.

Here Zd is the set of integers defined by

Zd =
{

(n1, . . . , nd) : for integers nj , 0 ≤ j ≤ d
}
.

Note that values of −k in properties (A3)–(A4) characterize the same constraints as k, and
are therefore redundant. We will, however retain all k ∈ Zd to simplify subsequent notation.
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Proof. The proof of (A1)–(A4) is straightforward and done by a direct calculation of the
appropriate integrals 〈·, ·〉. If F (x) ∈ A, then F (s) =

∫
Ω ρ(x)ρ(x + s) dx for some ρ(x) ∈ C1.

The integral 〈F, u〉 can then be written as:

〈F, u〉 =

∫
Ω

∫
Ω
ρ(x)ρ(y)u(x− y) dx dy = 〈ρ, U〉, where U(x) :=

∫
Ω
ρ(y)u(x− y) dy.

For (A1), take any continuous, non-negative function u(x) ≥ 0 to integrate against F (x). Then,
since ρ(x) ∈ C1, the function U(x) ≥ 0 is non-negative, and also continuous since it is a convolu-
tion. Hence, integrating U(x) against ρ(x) is also non-negative, implying: 〈F, u〉 = 〈ρ, U〉 ≥ 0.
For (A2), taking u(x) = 1 in the definition for U(x) implies that U(x) = 1. It then follows
that 〈F, 1〉 = 〈ρ, 1〉 = 1.
For (A3), integrating F (x) against any sine mode, sin(2πk · x), yields:

〈F, sin(2πk · x)〉 =

∫
Ω

∫
Ω
ρ(x)ρ(y)

(
sin(2πk · x) cos(2πk · y)− sin(2πk · y) cos(2πk · x)

)
dx dy

= 0.

Note also that a similar calculation shows that F (x) is mirror symmetric, i.e., for any continu-
ous function u(x), one has 〈F (−x), u(x)〉 = 〈F (x), u(x)〉. Here (−x), denotes the simultaneous
negation of all coordinates (see also Remark 1).
Finally, for (A4), integrating F (x) against any cosine mode, cos(2πk · x), yields:

〈F, cos(2πk · x)〉 =

∫
Ω

∫
Ω
ρ(x)ρ(y) cos(2πk · (x− y)) dx dy,

= |〈ρ, cos(2πk · x)〉|2 + |〈ρ, sin(2πk · x)〉|2 ≥ 0.

Remark 5. (The set A is not convex) To show that A is not convex take f1(x) = 1+cos(2πx)
and f2(x) = 1 + cos(2nπx) on Ω = [0, 1], where n � 1 is a large integer. The convex
combination of

λ(f1 ◦ f1) + (1− λ)(f2 ◦ f2) = 1 +
1

4
cos(2πx) +

1

4
cos(2nπx),

when λ = 1
2 , must come from an auto-correlation of a function taking the form (with arbitrary

phases ϕ1, ϕ2)

f3(x) = 1 +
1√
2

cos(2πx− ϕ1) +
1√
2

cos(2nπx− ϕ2).

Choosing n large enough, the minimum value of f3(x), regardless of the values ϕ1, ϕ2, can be
made arbitrarily close to 1−

√
2 < 0. Hence, for sufficiently large n, there is no non-negative

function f3(x) with auto-correlation (λf1 ◦ f1 + (1− λ)f2 ◦ f2).

Properties (A1)–(A2) characterize F (x) ∈ A as a probability measure, and therefore show
that the set A is a subset of the convex cone C1, i.e., A ⊆ C1. Properties (A3)–(A4), are
related to a standard result in signal processing–that the Fourier series of an auto-correlation
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is a power spectrum. In the case at hand, (A3)–(A4) motivate the definition of a second convex
cone, C2, defined by measures having non-negative cosine modes and zero sine modes:

C2 :=
{
f ∈ C0(Ω)′ : 〈f, cos(2πk · x) 〉 ≥ 0, 〈f, sin(2πk · x) 〉 = 0, ∀ k ∈ Zd \ 0

}
. (3.1)

Hence, properties (A3)–(A4) show that the set A is also a subset of C2, i.e., A ⊆ C2. Finally,
taking the properties (A1)–(A4) together, we define the set

C :=
{
f ∈ C0(Ω)′ : for all continuous u(x) ≥ 0, and k ∈ Zd \ 0,

〈f, cos(2πk · x) 〉 ≥ 0, 〈f, u(x)〉 ≥ 0,

〈f, sin(2πk · x) 〉 = 0, 〈f, 1〉 = 1,
}
.

Proposition 3.1 may then be alternatively stated as: A is a subset of C, i.e., A ⊆ C. Our goal
now is to extend the non-convex set A, in the optimization of (P), to a relaxed set C. The
purpose of introducing C1 and C2 is to identify the set C as a convex subset of a convex cone.
To this end, we make the following remarks characterizing C:

Remark 6. (The set C is a convex cone with an affine constraint) The set C is defined through
linear constraints and inequalities, and hence is a convex set. However, C may also alternatively
be written as

C =
{
f : f ∈ C1 ∩ C2, and 〈f, 1〉 = 1

}
.

Here we have used the cones C1 and C2 to represent the properties (A1), (A3) and (A4) in the
definition of C. Since both C1 and C2 are convex cones, by the intersection properties of convex
cones, it follows that C1 ∩ C2 is also a convex cone. As a result, the set C may be interpreted
as the convex cone C1 ∩ C2, whose elements satisfy the additional affine constraint 〈f, 1〉 = 1.

Remark 7. (The set C contains elements that are not in A). Consider Ω = [0, 1] and F (x) =
1 + cos(2πx) ∈ C. Then, only functions of the form f(x) = 1 +

√
2 cos(2πx − ϕ), for any

ϕ, have auto-correlations equal to F (x). Since f(x) contains negative values, then f(x) /∈ C1

showing that F (x) /∈ A. Moreover, a similar calculation shows that F (x) cannot be written
as the convex combination of two, or even a finite number of, elements in A, i.e., F (x) 6=
λf1 ◦ f1 + (1 − λ)f2 ◦ f2, for probabilities f1(x) and f2(x) and 0 ≤ λ ≤ 1. This suggests that
F (x) cannot be approximated by convex combinations of elements in A.

We now define the relaxed problem by extending the set A to the convex set C:

(R) Minimize
1

2
〈F,W 〉

subject to 〈F, cos(2πk · x)〉 ≥ 0, 〈F, u(x)〉 ≥ 0,

〈F, sin(2πk · x)〉 = 0, 〈F, 1〉 = 1,

for all integers k ∈ Zd \ 0 and non-negative continuous functions u(x) ≥ 0.
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We denote any solution to (R) as FR(x), and set ER = 1
2〈FR,W 〉. Moreover, we note that ER

is a lower bound to E0, i.e., E0 ≥ ER, since (R) can be understood as optimizing (P) over a
feasible set C that contains A.

As discussed in Remark 6, the constraints in (R) are both (i) linear in F (x), and (ii) (up
to the affine constraint 〈F, 1〉 = 1) restricted to lie in the convex cone C1 ∩ C2. This will lead
to numerical discretizations of (R) that take the form of a conic linear programming problem.
Note that in practice when solving (R), it is often better to enforce the mirror symmetry of
F (x) directly, and remove redundant k values (i.e. k and −k yield the same constraint) for
the cosine constraints. This will also allow for the removal of the sine constraints in (R), and
reduce the size of the domain Ω, and hence the optimization problem. A few remarks are now
in order:

Remark 8. (Sufficient conditions for a global minimizer) The relaxation (R) may in some
cases verify that a candidate minimizer ρ∗(x) solves (P). Suppose ρ∗(x) is a probability dis-
tribution with auto-correlation FR(x). Then, since any probability distribution is by definition
larger than the minimizer E(ρ∗) = ER ≥ E0 ≥ ER. Therefore, one has ER = E0, which implies
that ρ0(x) = ρ∗(x) is a, possibly non-unique, global minimum.

Remark 9. (Lattices are exact) If the solution FR(x) forms a periodic lattice pattern4 χ ⊂ Ω

FR(x) =
1

|χ|
∑
s∈χ

δ(x− s), (3.2)

where |χ| is the number of points in the lattice pattern, then the relaxation is exact. For
solutions of the form (3.2), FR ◦FR = FR(x). Hence, taking ρ∗(x) = FR(x), satisfies FR(x) =
ρ∗ ◦ ρ∗ thereby implying that a lattice is the global minimizer.

Minimizers that take the form of a lattice are of great physical interest, as they explain
why matter may form crystal structures. Proofs that particle models, in the large particle
number limit, exhibit lattice minimizer have been done for sticky disk models [27, 45], Lennard-
Jones type interaction potentials [57], and energies which include the sum of Lennard-Jones
interaction potentials and three particle interactions [20, 22].

In Appendix B, we discuss how to numerically discretize and solve (R). In general, we
observe that numerical solutions convergence to either (i) classical functions FR(x) that are
continuous, i.e., FR(x) ∈ C0(Ω), or (ii) non-classical functions FR(x) that consist of a finite
collection of Dirac point masses. Motivated by Remark 8, the following section presents one
approach for recovering a candidate minimizer ρ∗(x) using FR(x).

In the case when FR(x) is a collection of Dirac masses, we will expect recovered candi-
dates ρ∗(x) to also be a collection of Dirac masses. This is because the auto-correlation of a
discrete set of Dirac masses is a discrete set of Dirac masses. In contrast, when FR(x) is a

4 A lattice X is the infinite array of discrete points defined by a set of primitive vectors vj : X = {
∑d
j=1 njvj :

nj ∈ Z, for 1 ≤ j ≤ d}. Take χ = X ∩ Ω as the points in X restricted to the computational domain. Hence χ
may be defined for any X. We refer here to χ as a lattice pattern if X can be written as translated copies of χ:
X = ∪~n∈Zd(χ + ~n). Note that χ may be a set that is larger than one containing the primitive lattice vectors,
and that X cannot always be written as the collection of translated copies of χ (in which case χ would not be
a lattice pattern).
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continuous function, we will expect ρ∗(x) to be in L2(Ω), and typically take the form of a piece-
wise continuous function, i.e., since the auto-correlation of a piece-wise continuous function is
continuous.

4 Recovering ρ∗(x) from FR(x) by minimizing a relative entropy

In this section we outline a procedure for recovering a candidate global minimizer ρ∗(x) from
knowledge of the solution to (R), i.e., FR(x). In general, the relaxed space C, and therefore
solutions to problem (R) may include measures that are not auto-correlations of probabilities
(see Remark 7). Hence, A ⊂ C is only a proper subset of C and as a result, the solution FR(x)
may not come from an auto-correlation of a probability distribution.

The problem of recovering ρ∗(x) from FR(x) is equivalent to deauto-correlating a function
F (x) ∈ C, with the caveat that the source function ρ∗(x) is also a probability distribution.
The additional non-negativity restriction, i.e., ρ∗(x) ∈ C1, distinguishes the phase recovery
problem at hand from other phase recovery problems recently studied in the context of signal
processing [9, 10, 11, 30, 58]. In our recovery process we follow a procedure introduced by
Schulz and Snyder [50] (see also [51]) which chooses ρ∗(x) as a minimizer of the Kullback-
Leibler divergence functional (also known as the information divergence) between FR(x) and
the auto-correlation Fρ(x) = ρ◦ρ. As discussed in [50] (and references within) the information
divergence functional has many nice properties for the recovery of non-negative signals making
it a natural choice for the recovery of ρ∗(x).

In this discussion we assume that FR(x) ∈ C ∩ C0(Ω) is a continuous function, however
the approach here can also be extended to handle cases where FR(x) is a collection of discrete
Delta masses. The Kullback-Leibler divergence is defined as

F(ρ) :=

∫
Ω
FR(x) ln

(FR(x)

Fρ(x)

)
dx =

∫
Ω
FR(x) ln

(FR(x)

ρ ◦ ρ

)
dx, (4.1)

where we assume that ρ(x) ∈ C ∩ L2(Ω) with
∫

Ω ρ(x) dx = 1. In the definition of F(ρ), one
adopts the conventions:

0 ln
0

a
:= 0, 0 ln

0

0
:= 0, a ln

a

0
:=∞, (4.2)

to allow for both FR(x) and ρ ◦ ρ to vanish on some set.
Viewing both FR(x) and Fρ(x) as probability distributions, the Kullback-Leibler diver-

gence, defined by F(ρ), measures the mismatch between probabilities FR(x) and Fρ(x). Al-
though F(ρ) does not define a metric between FR(x) and Fρ(x), for instance since it is not
symmetric, it is always non-negative F(ρ) ≥ 0, and may still be used to guarantee an ex-
act match between FR(x) and Fρ(x). Specifically, F(ρ∗) = 0, only when FR(x) = Fρ(x)
(See, for instance, Pinsker’s inequality in Chapter 2 of [39]). Hence, in light of Remark 8, we
have the following alternative sufficient condition for a global minimizer–which motivates the
minimization of F(ρ):

Remark 10. (Equivalent sufficient condition for a global minimizer) Let FR(x) solve (R).
Then if F(ρ∗) = 0, it follows that ρ∗(x) solves (P). For instance, if F(ρ∗) = 0, then the two
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auto-correlations are equal: FR(x) = Fρ∗(x) = ρ∗ ◦ ρ∗, so that the conditions in Remark 8 are
satisfied.

To compute minimizers of F(ρ) we use the Schulz-Snyder iterative algorithm5, which is
an iterative method on the space of non-negative probabilities. The advantage of the Schulz-
Snyder algorithm is not only that it minimizes the functional F(ρ), but the iterations naturally
enforce the probability constraints. As a result, the algorithm is very easy to implement.

We now briefly summarize the derivation, and properties of the Schulz-Snyder algorithm.
The idea is to iterate the Euler-Lagrange equation that one obtains by taking the first variation
of F(ρ). Namely, the Euler-Lagrange equation of (4.1) is given as follows: For any mean
zero perturbation g(x) whose support is contained in the support of ρ∗(x), the first variation
vanishes ∫

Ω
g(x)

δF
δρ

(ρ∗) = 0, =⇒ δF
δρ

(ρ∗) = const. for any x ∈ supp(ρ∗). (4.3)

By direct calculation, the (unconstrained) L2 variation of F(ρ) is:

δF
δρ

(ρ) = −2

∫
Ω
ρ(x + y)

FR(y)

Fρ(y)
dy. (4.4)

Hence, multiplying (4.4) by ρ∗(x) and integrating over space yields the constant in (4.3).
Critical points of F(ρ) satisfying the first variation conditions are then concisely described by

δF
δρ

(ρ∗)

{
= −2 if ρ∗(x) > 0,
> −2 if ρ∗(x) = 0,

=⇒ ρ∗(x) = ρ∗(x)

∫
Ω
ρ∗(x + y)

FR(y)

Fρ∗(y)
dy. (4.5)

Equation (4.5) may now be used to devise an iterative fixed-point algorithm:
The algorithm also ensures the following properties, which we state without proof6

1. (Positivity preserving) ρn(x) ≥ 0 for all x and n ≥ 0.

2. (Mass preserving)
∫

Ω ρn(x) dx = 1 for all n ≥ 0.

3. (Monotonicity) F(ρn+1) ≤ F(ρn) for all n ≥ 0.

4. (Fixed points) If ρ∗(x) is a fixed point in the Schulz-Snyder algorithm, then ρ∗(x) satisfies
the first variation conditions (4.5).

Finally, as prescribed in Step 1 of the Schulz-Snyder algorithm, it is important to avoid ini-
tializing the data ρ0(x) to lie in any invariant set of the iterative map from Step 2. Initializing
the data ρ0(x) to lie in an invariant set can potentially constrain the resulting fixed point min-
imizer ρ∗(x) to have the same symmetry as ρ0(x). The Schulz-Snyder algorithm has invariant
sets that include the following subspaces:

5In the original paper [50], the functional F(ρ) +
∫

Ω
FR(x) − Fρ(x) dx was used instead of F(ρ). Due to

the fact that the Schulz-Snyder iterative algorithm conserves the constraint
∫

Ω
Fρ(x) dx = 1, the discrepancy

in functional definition has no effect on the algorithm or results.
6Note: properties 1, 2 and 4 are straight-forward to prove. See [50] for a proof of a discrete version of the

monotonicity property 3.
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Recovering ρ∗(x) from FR(x) (Schulz-Snyder)

1. Initialize ρ0(x) > 0 to be strictly positive with
∫

Ω ρ0(x) dx = 1. Ensure that ρ0(x) has
no planes of symmetry: for any fixed vector a, the shifted ρ0(x) is not even symmetric
ρ0(a− x) 6= ρ0(x− a).

2. Iterate the discrete mapping:

ρn+1(x) = −1

2
ρn(x)

δF
δρ

(ρn), for x ∈ Ω, and n = 1, 2, 3 . . .

= ρn(x)

∫
Ω
ρn(x + y)

FR(y)

Fρn(y)
dy,

where Fρn(x) = ρn ◦ ρn and we have used the fact that FR(y) = FR(−y).

3. Take ρ∗(x) = ρ∞(x) as the candidate global minimizer to (P).

• If ρn(xp) = 0 for some point xp ∈ Ω then ρn+1(xp) = 0.

• If for a fixed vector a, ρn(a− x) = ρn(x− a) then ρn+1(a− x) = ρn+1(x− a).

The first symmetry regarding ρn+1(xp) = 0 follows directly from testing both sides of Step 2
in the iterative scheme at a point xp ∈ Ω. The second property, regarding planes of symmetry,
can be shown as well since both FR(x) and Fρ(x) are mirror symmetric about 0:

ρn+1(a− x) = ρn(a− x)

∫
Ω
ρn(a− x + y)

FR(y)

Fρn(y)
dy,

= ρn(a− x)

∫
Ω
ρn(a− x− y)

FR(y)

Fρn(y)
dy,

= ρn(x− a)

∫
Ω
ρn(x− a + y)

FR(y)

Fρn(y)
dy = ρn+1(x + a).

We now briefly discuss several numerical details of the Schulz-Snyder algorithm. One
advantage with minimizing the Kullback-Liebler divergence over other norms or metrics is
that the Schulz-Snyder algorithm may be numerically computed using integral quadrature
rules, without enforcing non-negativity and mass constraints. Moreover, up to a negative sign
in x, the integral in Step 2 of the algorithm has the form of a convolution–which may also
be computed in an efficient manner using the fast Fourier transform. Finally, regarding the
convergence rate of the scheme, one might heuristically expect it to behave in a fashion similar
to other iterative methods with an exponential convergence at large n, i.e., |F(ρn)−F(ρ∞)| ∼
γn, for a value of 0 < γ < 1. Together these properties make using the Kullback-Liebler
divergence an attractive approach for practitioners.

In Section 2, necessary conditions for a candidate minimizer to solve (P) were given by
equations (2.2), (2.3) and (2.5). Although numerical examples in Sections 6 and 7 provide
supporting evidence that solutions to equation (4.5) may (at least in some cases) satisfy (2.2),
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(2.3) and (2.5), we have no formal proof of such a result. The minimization via the Schultz-
Snyder algorithm does however often recover candidates ρ∗(x) with Fρ∗(x) having the same
support as FR(x)–which, as we will show through the introduction of the dual formuation to
(R), guarantees the necessary condition related to (2.5) in Remark 4.

5 The Dual decomposition

The purpose of this section is to formulate the dual optimization problem to the convex relation
(R), and show how it may be used, in some cases, to explain why the supports of the recovered
minimizers ρ∗(x) satisfy the necessary conditions in Remark 4. This will be done in two steps.
First, the dual formulation will provide a decomposition of the pairwise energy E(ρ) that takes
the form of a non-convex/convex splitting:

E(ρ) = E+(ρ) +K(ρ), (5.1)

where

1. E+(ρ) ≥ 0, is a non-negative functional for all non-negative measures ρ(x) ∈ C1, and, in
general, is non-convex.

2. K(f) is convex for all finite measures f(x). Namely, for all 0 ≤ λ ≤ 1 and f1(x), f2(x)
(which may be negative), one has:

K(λf1 + (1− λ)f2) ≤ λK(f1) + (1− λ)K(f2).

Second, the non-negative part of the decomposition (5.1), E+(ρ), will be used to provide a
sufficient condition to satisfy the necessary conditions in Remark 4.

Decompositions of the form given by (5.1) are in general not unique. However, the dual
formulation to (R) will provide such a decomposition that also maximizes the minimum value
of the convex functional K(ρ) over probabilities ρ(x). In other words, we will seek K(ρ) to be,
in some sense, the largest convex functional that underestimates E(ρ). As a result, the optimal
functional K(ρ) that we compute has a strong resemblance to the convex envelope of E(ρ).

We will show below that an optimal decomposition of the form (5.1) may be formulated
as the dual problem to (R) – and therefore computed with the same computational cost as
solving (R). Here the construction of the optimal decomposition of the form (5.1) will arise
by decomposing the interaction energy W (x) into the sum of a non-negative function, and a
function with non-negative cosine modes.

To motivate the dual formulation to (R), first consider any decomposition for W (x) that
takes the form

W (x) = W+(x) +K(x) + 2ED, (5.2)

where

(D1) 0 ≤ W+(x) ∈ C0(Ω) is a continuous, non-negative, mirror symmetric function (See
Remark 1).
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(D2) K(x) is a continuous, mirror symmetric, mean-zero function with real non-negative cosine
coefficients, i.e.:

K̂(k) :=

∫
Ω
K(x) cos(2πk · x) dx ≥ 0, for all k ∈ Zd \ 0, and K̂(0) = 0,

K(x) =
∑
k∈Zd

K̂(k) cos(2πk · x).

Note that the summation in the above cosine series includes all k ∈ Zd, and the inclusion
of K̂(−k) = K̂(k) accounts for the apparent missing factor of 2.

We also make the following technical assumption on the cosine coefficients of K(x):∑
k∈Zd

K̂(k) <∞. (5.3)

Assumption (5.3) guarantees that the cosine series for K(x) converges uniformly, for
instance by a Weierstrass M-test. Moreover (5.3) will be sufficient to use a Plancherel-
type theorem when integrating K(x) against probability measures.

(D3) ED is a constant. Due to the normalization convention (W4), of W (x), we see that
ED = −1

2

∫
ΩW

+(x) dx will be negative for decompositions of the form (5.2).

Proposition 5.1. (Properties of the decomposition (5.2)) Any decomposition of the form (5.2)
with properties (D1)–(D3) satisfies the following:

1. The functions W+(x) and K(x) are in the dual cones to C1 and C2: i.e., W+(x) ∈ C∗1 ,
and K(x) ∈ C∗2 where the dual cone X∗ to a convex cone X is given by:

X∗ := {x ∈ X ′ : 〈x, y〉 ≥ 0,∀y ∈ X}.

2. ED ≤ ER is a lower bound to (R).

3. The following functional is non-negative:

E+(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W+(x− y) dx dy ≥ 0, for all ρ(x) ∈ C1.

4. The following functional is convex for ρ(x) ∈ C1:

K(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)K(x− y) dx dy + ED,

Proof. The proof again involves computing the appropriate integrals.
For 1 we have:

• Given F (x) ∈ C1, then 〈F,W+〉 =
∫

ΩW
+(x)F (x) dx ≥ 0, since W+(x) ≥ 0, and F (x) ∈

C1 is non-negative.
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• Given F (x) ∈ C2, then 〈F,K〉 =
∑

k∈Zd K̂(k)F̂ (k) ≥ 0, since7 K̂(k) ≥ 0, and F̂ (k) :=
〈F, cos(2πk · x)〉 ≥ 0, for all k ∈ Zd.

Hence W+(x) and K(x) are in the dual cones to C1 and C2 respectively.
For 2: A direct calculations shows:

ER =
1

2
〈FR,W 〉 (5.4)

=
1

2

(
〈FR,W+〉+ 〈FR,K〉

)
+ ED ≥ ED,

The last inequality follows since each pairing independently is non-negative. Namely FR(x)
is in both C1 and C2 and so the result in part 1 applies. Hence, both 〈FR,W+〉 ≥ 0 and
〈FR,K〉 ≥ 0.
For 3: The proof is identical to the proof of property (A1) in Proposition 3.1.
For 4: Since K(x) satisfies (5.3), uniform convergence of the cosine series allows one to write
K(ρ) using a Plancherel-type identity. Specifically, for any ρ(x) ∈ C1:

K(ρ) =
1

2

∑
k∈Zd

K̂(k)
(
〈ρ, cos(2πk · x)〉2 + 〈ρ, sin(2πk · x)〉2

)
+ ED.

Since K̂(k) ≥ 0, the functional K(ρ) is a positive definite quadratic–and hence convex. Note
that in general, numerical observations later show it is often the case that K̂(k) = 0 for some
subset of integers k, indicating that K(ρ) is not strictly convex.

The dual problem (D) to (R) is then formulated as optimizing (5.2) to find the best possible
constant ED and corresponding decomposition for W (x) into the sum of a non-negative function
and a function with non-negative cosine modes:

(D) Maximize ED, (5.5)

subject to
(
W (x)− 2ED

)
∈ cl

(
C∗1 + C∗2

)
.

Here cl is the weak∗ closure, C∗1,2 are the dual cones8 to C1,2, where the sum C∗1 + C∗2 = {u+ v :
u ∈ C∗1 , v ∈ C∗2}.

Assumption 5.2. (Regularity assumption) We assume there exists functions W+
R (x) ∈ C∗1

and KR(x) ∈ C∗2 that solve (D), and also satisfy the smoothness properties in (D1)–(D2). In
other words, W (x) may be written as an optimal decomposition into the dual cones of C1 and
C2:

W (x) = W+
R (x) +KR(x) + 2ER, (5.6)

where the optimum value of ED in (D) is the same as ER.

7Here we provide some details justifying the series expansion for 〈F,K〉. Note that if K(x) satisfies assump-
tion (5.3), then the cosine series converges uniformly. Hence, for any ε > 0, there exists an M > 0, such that
maxx∈[0,1]d ‖DM (x)‖ < ε, where DM (x) := K(x)−

∑
|k|<M K̂(k) cos(2πk · x). Since DM (x) is continuous with

a maximum norm of ε, this implies that 〈F,DM 〉 → 0 as M → ∞. Hence, 〈F,K〉 →
∑

k∈Zd K̂(k)F̂ (k) as
M →∞.

8The formulation (D) is over the dual cone C∗, which (see Lemma 3.1 in [7] for two intersecting closed convex
cones) is equal to C∗ = (C1 ∩ C2)∗ = cl

(
C∗1 + C∗2

)
.

18



We refer to the optimal decomposition (5.6) of the interaction energy as the dual decomposi-
tion, as it arises from the dual formulation of (D) to (R). At the level of numerical discretizations
presented in Appendix B, the Assumption 5.2 is justified by the following remark.

Remark 11. (Numerical justification of Assumption 5.2) Numerical discretizations of (R)
presented in Appendix B result in a linear program–which therefore has a duality gap of zero.
Hence, every numerical discretization of (R) has the optimal value ER equal to the optimal
value ED in (D). Moreover, the finite dimensional cones C1,h and C2,h that arise as the discrete
approximations to C1 and C2 are closed, self-dual and polyhedral. The sum of two polyhedral
cones is also polyhedral and hence closed (Theorem 19.1 and Corollary 19.3.2 in [47]). There-
fore, for any finite discretization, one has: (C1,h∩C2,h)∗ = cl(C∗1,h+C∗2,h) = C1,h+C2,h, showing
that the dual cone C∗h can be written as the sum of the cones C1,h and C2,h. This justifies,
for any finite dimensional discretization, the existence of an optimal dual decomposition of the
form (5.6). Note that in general, the sum of two closed, but non-polyhedral cones, may not be
closed. For example, for two closed convex cones C1, C2 ⊂ Rn, one may have the pathological
situation where a point x ∈ cl(C1 + C2), however there are no values y ∈ C1, z ∈ C2 such that
x = y + z.

With the Assumption 5.2 on the existence of a dual decomposition, the dual problem (D)
may be written as a conic optimization problem with linear constraints:

(D) Maximize ED,
subject to

(
W (x)− 2ED −K(x)

)
≥ 0,

〈K, cos(2πk · x)〉 ≥ 0, 〈K, 1〉 = 0,

〈K, sin(2πk · x)〉 = 0,

for all x ∈ Ω and k ∈ Zd \ 0.

Remark 12. (Regularity observation) The regularity of the optimal decomposition to (D) is an
interesting problem: Numerical solutions in dimension one (see Section 6) suggest that if W (x)
is smooth at x, then W+

R (x) and KR(x) are not necessarily smooth at x (although continuity
of W+

R (x) and KR(x) has been observed).

Remark 13. (Examples of decompositions for W (x)) Two examples of feasible dual decompo-
sitions, i.e., of the form in equation (5.2), are:

Example 1: Take ED = 1
2 minx∈ΩW (x), K(x) = 0 and W+(x) := W (x)− 2ED ≥ 0.

Example 2: Write W (x) = K+(x) + K−(x) + 2ED as the sum of two functions where K±(x)
have only ± cosine coefficients. Take K(x) = K+(x) to be the projection of W (x)
onto cosine modes with positive coefficients, let ED := 1

2 minx∈Ω(W (x)−K(x)) and
take W+(x) = W (x)−K(x)− 2ED ≥ 0.

5.1 Properties of the optimal dual decomposition

The purpose of this subsection is to show that the support of W+
R (x) can be used to identify sets

S∗ in which the functional E(ρ) is convex whenever supp(ρ) ⊆ S∗. Specifically, the conclusion
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of the subsection will provide a sufficient condition for a candidate minimizer ρ∗(x) to satisfy
the necessary condition given in Remark 4.

We first discuss the support of W+
R (x) in relation to FR(x). Revisiting the lower bound

(R) and writing W (x) using the optimal dual decomposition yields:

ER =
1

2
〈W,FR〉 =

1

2
〈W+

R , FR〉+
1

2
〈KR, FR〉+ ER. (5.7)

Since both W+
R (x),KR(x) are in the appropriate dual cones, the pairings 〈W+

R , FR〉 ≥ 0 and
〈KR, FR〉 ≥ 0. Therefore, (5.7) holds only if the integrals vanish

〈W+
R , FR〉 = 0, 〈KR, FR〉 = 0. (5.8)

Here the constraint (5.8) can be used to infer that FR(x) must have a complementary support
to W+

R (x) in real space, and KR(x) in k space. Specifically:

Case 1: When FR(x) ∈ C0(Ω) is continuous, the dual decomposition satisfies

W+
R (x)FR(x) = 0, for all x ∈ Ω, (5.9)

K̂R(k)F̂R(k) = 0, for all k ∈ Zd. (5.10)

Here F̂R(k), K̂R(k) are the cosine coefficients defined in the proof of Proposition 5.1.

Case 2: When FR(x) =
∑

r∈R fR(r)δ(x − r), is a collection of Dirac masses at the locations
R = {x1,x2, . . .xm}, with amplitudes fR(r):

W+
R (r) = 0, for all r ∈ R, (5.11)

K̂R(k)F̂R(k) = 0, for all k ∈ Zd. (5.12)

Again K̂R(k) and F̂R(k) are the cosine coefficients of KR(x) and FR(x), where FR(k)
can be expressed in terms of fR(r):

F̂R(k) = 〈FR, cos(2πk · x)〉 =
∑
r∈R

fR(r) cos(2πk · r).

Equation (5.9) (or the discrete version of the equation (5.11) ) shows that W+
R (x) = 0 whenever

FR(x) 6= 0, and vise versa. We now combine this observation with the results from Proposition
5.1. First set:

E+
R (ρ) :=

1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W+

R (x− y) dx dy =
1

2
〈ρ ◦ ρ,W+

R 〉,

KR(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)KR(x− y) dx dy + ER,

where E(ρ) = E+
R (ρ) + KR(ρ) is the functional decomposition for E(ρ) that arises from the

optimal dual decomposition. We now arrive at the main observation:
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Proposition 5.3. (Sets where E(ρ) is convex) Consider a candidate minimizer ρ∗(x) with
support S∗, and suppose that the support of Fρ(x) = ρ∗ ◦ ρ∗ lies in the support of FR(x), i.e.,
supp(ρ∗ ◦ρ∗) ⊆ supp(FR). Then E(ρ) is convex on the space of probabilities having support S∗.
In other words, E(ρ) is convex when restricted to the set

B∗ :=
{
ρ(x) ∈ C1,

∫
Ω
ρ(x) dx = 1, supp(ρ) ⊆ S∗

}
.

Proof. The proof uses the dual decomposition and the complementary support equations (5.9)
or (5.11). It will be sufficient to show that for any ρ(x) ∈ B∗, we have E+

R (ρ) = 0. This will
imply that on the space B∗, the functional E(ρ) = KR(ρ) is convex.

Suppose that ρ(x) ∈ B∗, then supp(ρ ◦ ρ) ⊆ supp(ρ∗ ◦ ρ∗) by a basic property of the
auto-correlation of probabilities. Using the hypothesis in Proposition 5.3, one then has that
supp(ρ ◦ ρ) ⊆ supp(FR). However (5.9) or (5.11) guarantees that W+

R (x) = 0 for any
x ∈ supp(FR), and hence W+

R (x) = 0 for any x ∈ supp(ρ ◦ ρ). Therefore the integral E+
R (ρ) =

1
2〈ρ ◦ ρ,W

+
R 〉 = 0.

Proposition 5.1 shows that if a recovered minimizer ρ∗(x) has an auto-correlation with
support supp(Fρ) ⊆ supp(FR), then ρ∗(x) satisfies the necessary condition for a candidate
minimizer outlined in Remark 4. In the subsequent numerical examples, we will observe that
the recovery procedure outlined in Section 4 will generate candidate minimizers ρ∗(x) that
often satisfy the hypothesis in Proposition 5.3

Finally, we conclude this section with the observation that finding analytic descriptions for
sets S∗ in which the energy functional E(ρ), when restricted to ρ(x) with supp(ρ) ⊆ S∗, is
convex is not a simple problem. The importance of the dual decomposition for W (x) is that it
is a constructive approach that allows one to find such sets S∗. Specifically, W+

R (x) and KR(x)
are constructed analytically from W (x); and if a set S∗ satisfies the property that supp(ρ) ⊆ S∗
implies E+

R (ρ) = 0, then E(ρ) is convex when restricted to probabilities with supports in S∗.

6 Results: examples in one dimension

6.1 The Morse potential

In this section we use the convex relaxation and recovery approach to generate candidate
minimizers to the Morse potential on a periodic domain. The Morse potential is a simple
example of an attractive-repulsive potential that has been used recently [5, 33, 40] to model
swarms and collective behavior in social phenomena. On Ω = R, we write the Morse potential
as:

WM (x) = −GLe−|x|/l1 + e−|x|/l2 , G, L > 0, x ∈ R, (6.1)

where L := l1/l2 is a dimensionless quantity; l1 and l2 are the length scales associated with an
attractive and repulsive force respectively; and G denotes the strength of the attractive part
of the potential. Mathematically, for different strengths of attraction and repulsion, the Morse
potential results in a non-convex energy functional E(ρ). For computational purposes, we work
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on a periodic domain. To make WM (x) periodic, we introduce a box size lbox, and define the
periodic Morse potential as:

WPM (x) =
∑
n∈Z

WM (x+ nlbox). (6.2)

Equation (6.2) can then be summed exactly by converting it into a geometric series. To non-
dimensionalize WPM (x), we use lbox as the length scale, and replace x→ x/lbox. We also intro-
duce the dimensionless parameter σ := l2/lbox. After summation and non-dimensionalization,
the function WPM (x), when restricted to one period 0 ≤ x ≤ 1, takes the form:

WPM (x) =
−GL

1− e−1/(Lσ)

(
e−x/(Lσ) + e−(1−x)/(Lσ)

)
+

1

1− e−1/σ

(
e−x/σ + e−(1−x)/σ

)
−W,

(6.3)

Here W is a constant9 added for numerical purposes to normalize WPM (x) to have mean zero
(see Property (W4)). When the box size lbox � l1, l2 is much larger than the interaction length
scales, the periodic effects of WPM (x) are expected to be small, and minimizers of E(ρ) with
WPM (x) are expected to recover the results of minimizing WM (x) on the infinite line R.

In the following numerical examples we fix σ = 0.1, so that lbox is several times larger
than l1 and l2. To illustrate the utility of the new approach, we compute the phase diagram
for WPM (x) and characterize the results in the (L,G) parameter plane. This is done by
systematically computing the minimizer FR(x) and recovered ρ∗(x) for every value of (L,G).
We find that the qualitative properties, which are characterized by four different regions, A–D,
in Figure 2 are in agreement with the ones computed in [33]. In particular, the region D
corresponds to the blow up region observed in [33]. Within this region, we observe a cascade
where minimizers form lattices of Dirac masses–with progressively smaller lattice spacings, as
G decreases at a fixed value of L.

Figures 3–5 show explicit results for a fixed value of (L,G) = (1.2, 0.9), that lies in the
region where FR(x) is a continuous function. Figure 3 demonstrates the convergence of the
Schulz-Snyder algorithm, while Figure 4 shows the optimal dual decomposition for WPM (x).

Figure 5 together shows the recovered minimizer ρ∗(x) (with a guarantee α = 0.99), along
with the solutions to (R) and (D), i.e., FR(x),W+

R (x),KR(x). The purpose of showing both the
solutions to (R) and (D) is to highlight the complimentarity conditions (5.9)–(5.10). Specif-
ically, Subfigure 5a shows ρ∗(x) to have a support S∗ with length |S∗| = 0.161, which is
consistent with the histogram width observed in the particle simulations in Figure 1. The
auto-correlation Fρ(x) also has a support supp(Fρ) = supp(FR), and therefore is complemen-
tary to W+

R (x), i.e. W+
R (x)Fρ(x) = 0 for all x ∈ Ω (See Subfigure 5b). Hence, ρ∗(x) satisfies

the hypothesis in Proposition 5.3, which implies that E(ρ) is convex when restricted to prob-
abilities having support with a width of ∼ 0.161. Subfigure 5c, shows the complimentarity
condition (5.10). Finally, we note that the size |S∗| emerges as a new length scale for the
particle density, and is exactly 1/2 of the length where W+

R (x) = 0.

9 W = −GL
1−e−1/(Lσ)A+ 1

1−e−1/σB, where A =
∫ 1

0
e−x/(Lσ) +e−(1−x)/(Lσ) dx, and B =

∫ 1

0
e−x/σ+e−(1−x)/σ dx.
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Figure 2: The phase diagram for the periodic Morse potential (6.3) with σ = 0.1. The
(L,G) plane is partitioned by thick black lines into 4 regions, denoted by A–D, which show
qualitatively different minimizers ρ∗(x) (Note that these regions are similar to the ones observed
in [33]). Region A: The global minimum is ρ∗(x) = δ(x). Region B: Densities ρ∗(x) have a
non-zero width whose support is contained strictly inside [0, 1]; and have a continuous auto-
correlation FR(x). Here, one recovered solution is shown for the parameter values (L,G) =
(1.2, 0.9). Region C: ρ∗(x) = 1, corresponds to an evenly spread probability distribution.
Region D: Solutions are a collection of Dirac masses, and may form lattices. For instance, the
white banded regions show a cascade of lattice minimizers. Plotted are lattices with 2, 3, 4, and
5 evenly spaced Dirac δ(x)’s, and the number continues to increase as G approaches 1. The
small transition regions (black shading), between the lattice regions, may contain (possibly
infinitely) many different solutions. Minimizers in regions A, C, as well as the lattice solutions
in D are exact global minimizers with α = 1 (See Remark 9 and Appendix A).

6.2 A local potential

In the context of social interactions, recent work [41] has focused on a class of local interaction
potentials whereW (x) has compact support. In this section we examine the approximate global
minimizers and dual decomposition for a continuous periodic version of the local potential
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Figure 3: Convergence versus iteration for
log10 ||ρn − ρn+1||L1(Ωh) (dashed curve), and

log10

(
F(ρn)

)
→ 7.98× 10−6 (solid line) in the Schulz-

Snyder algorithm. The quantities are for the periodic
Morse potential (6.3) with σ = 0.1, (L,G) = (1.2, 0.9),
and grid n = 800. The non-zero value of 7.98× 10−6 is
the result of a mismatch between the converged Fρ∗(x),
and target FR(x), and may be due to: (i) round-off
or tolerance errors introduced into the numerical dis-
cretizations; or (ii) a fundamental limitation that for
the analytic solution FR(x) at hand, there may not
exist a ρ∗(x) that exactly satisfies the sufficient condi-
tions in Remark 10.

Figure 4: The figure shows the optimal dual decomposition (5.6) for the periodic Morse poten-
tial WPM (x) defined in (6.3). Here the parameters are σ = 0.1, (L,G) = (1.2, 0.9), and grid
n = 800. Note that the cosine coefficients of KR(x) are non-negative, while ER is the largest
possible constant as described by the solution to (D).

examined in [41]:

ψ(x) =


0.1, |x| ≤ 1

2 ,
9|x| − 4.4, 1

2 < |x| ≤
3
5 ,

1, 3
5 < |x| ≤

9
10 ,

10− 10|x|, 9
10 < |x| ≤ 1,

0, |x| > 1,

for x ∈ R, (6.4)

W (x) =
∑
n∈Z

(
ψ
(x+ n

lc

)
− ψ

)
.

Figure 6c shows the potential ψ(x), which differs primarily from the one in [41] by replacing
the discontinuous jumps (at range values 0.1, 1 and 0) by linear interpolation. The quantity
lc > 0 enters as the (dimensionless) ratio of the local interaction length to periodic domain
length, with W (x) entering in as a full periodic potential. One might expect in the limit lc � 1
to recover the characteristics of the non-periodic model. For lc = 0.1, which is commensurate
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(a) ρ∗(x), Λ(x). (b) FR(x), Fρ∗(x),W+
R (x). (c) ρ̂∗(k), F̂R(k), K̂R(k).

Figure 5: Example for the Morse potential (6.3) with σ = 0.1, (L,G) = (1.2, 0.9), and grid
n = 800. Figure (a) shows the recovered minimizer ρ∗(x) (solid curve), which has a guarantee
of α = 0.99, along with Λ(x) (dashed curve, arbitrary units). The width of the support
of ρ∗(x) is ∼ 0.161. Figure (b) shows the auto-correlation Fρ∗(x) (solid line), target auto-
correlation FR(x) (circles), and a re-scaled W+

R (x) (blue curve). Here W+
R (x) is drawn to

show that Fρ(x) and W+
R (x) have complementary supports, i.e. W+

R (x)Fρ(x) = 0. This
implies that ρ∗(x) satisfies the hypothesis in Proposition 5.3, and therefore E(ρ) is convex when
restricted to probabilities with a width ∼ 0.161. Figure (c) shows that the cosine coefficients
(coefficients not plotted are numerically zero) F̂R(k) (green circles), and K̂R(k) (red squares),
have complementary support for different values of k, i.e., F̂R(k)K̂R(k) = 0. Here the cosine
coefficients F̂ρ∗(k) (blue crosses) of the recovered solution are shown for reference.

with the periodic domain length, and n = 360 grid points, one recovers the auto-correlation
with 10 equispaced Dirac masses

FR(x) =
∑
s∈S

fR(s)δ(x− s), (6.5)

fR(s) =
1

10
, where S =

{
0,

1

10
,

2

10
, . . . ,

9

10

}
.

Since FR(x) = FR ◦ FR, letting ρ∗(x) = FR(x) recovers the exact auto-correlation and hence
is a global minimizer with guarantee α = 1. Figure 6a shows the dual decomposition of
W (x) = W+

R (x) +KR(x) + 2ER. Numerically, it is observed that both W+
R (x) and KR(x) are

constant in regions where the local potential W (x) = 0, so that they too are effectively local
potentials. As a final remark, if lc is not taken as an integer fraction of the domain length,
or the grid spacing h = 1/n (see Appendix B), is not commensurate with the spacing of the
Dirac masses, one may have non-lattice minimizers that become sensitive to the number of
grid points n, and tolerance chosen in the numerical optimization routine.
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6.3 A regularized power law potential

Power law potentials are often used in models of social dynamics. Here we illustrate the
approach for a regularized power law potential on a periodic domain. Set

Wp(x) = x−0.4 − 1

3.5
x−0.2 −W,

W (x) = Wp(x+ ε) +Wp(1− x+ ε), for x ∈ [0, 1], extended periodically. (6.6)

The exponents −0.4,−0.2 and parameter 3.5 are chosen arbitrarily. The parameter ε = 0.01
is taken to regularize the discontinuity at x = 0. Without the regularization, the value W (0)
becomes undefined and the optimization routine in Appendix B must be modified to obtain a
convergent minimizer to (R). As a note, the shape of the potential is somewhat sensitive to the
parameters ε and deviations from the constant 3.5. The candidate minimizer ρ∗(x) is shown
in Figure 7 and has a guarantee α = 0.988.

(a) W+
R (x), KR(x). (b) FR(x), Fρ∗(x), ρ∗(x). (c) ψ(x).

Figure 6: Results for local potential (6.4), n = 360 grid. (a) Optimal dual decomposition for
W (x) into W+

R (x) (blue curve), and KR(x) (red curve). (b) FR(x) (circles), Fρ∗(x) = ρ∗(x)
(solid lines). The recovery is exact with α = 1. (c) Local interaction potential ψ(x).

6.4 A potential with multiple length scales

Another interesting example occurs for potentials that promote several length scales by having
multiple local minima in W (x). As an example, take

Wt(x) = max{1− x, 0} −W, for x ∈ [0, 1],

W (x) = Wt

( x
10

)
+Wt

(1− x
10

)
− 1

2
cos(4πx), for x ∈ [0, 1], extended periodically. (6.7)

Here Wt(x) is a repulsive triangle potential which has non-negative cosine modes. The cos(4πx)
term is added to make E(ρ) non-convex. We find a candidate minimizer ρ∗(x) with a guarantee
α = 0.988 (see Figure 8). The dual decomposition solution found in Figure 8a also highlights
the fact that KR(x) and W+

R (x) are not in general smooth.
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(a) W+
R (x), KR(x), W (x). (b) ρ∗(x), Λ(x). (c) FR(x), Fρ∗(x),W+

R (x).

Figure 7: Results for regularized power law potential (6.6), n = 1000 grid. (a) Optimal
dual decomposition for W (x) (black curve) into W+

R (x) (blue curve), and KR(x) (red curve).
(b) ρ∗(x) (solid) with guarantee α = 0.988, re-scaled Λ(x) (dashed) with arbitrary units. (c)
Auto-correlation FR(x) (dots), and Fρ∗(x) (solid). Here W+

R (x) is plotted (blue curve, arbitrary
units) to show that Fρ(x)W+

R (x) = 0, thereby implying that ρ∗(x) satisfies the hypothesis in
Proposition 5.3.

(a) W+
R (x), KR(x), W (x). (b) ρ∗(x), Λ(x). (c) FR(x), Fρ∗(x),W+

R (x).

Figure 8: Results for potential with multiple length scales (6.7), n = 1024 grid. (a) Optimal
dual decomposition for W (x) (black curve) into W+

R (x) (blue curve), and KR(x) (red curve).
(b) ρ∗(x) (solid) with guarantee α = 0.988, rescaled Λ(x) (dashed) with arbitrary units. (c)
Auto-correlation FR(x) (dots), and Fρ∗(x) (solid). Here W+

R (x) is plotted (blue curve, arbitrary
units) to show that Fρ(x)W+

R (x) = 0, thereby implying that ρ∗(x) satisfies the hypothesis in
Proposition 5.3.

Remark 14. (Minimizers with disconnected supports) Other works, such as [5] have been
successful in characterizing global minimizers under the assumption that ρ∗(x) has connected
support. The recovery process for potential (6.7) yields an FR(x) with disconnected support,
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thereby resulting in ρ∗(x) with multiply connected supports.

7 Results: examples in two dimensions

The purpose of this section is to solve the relaxation (R), and compute minimizers in some
examples with two spatial dimensions. The examples will also highlight several difficulties and
drawbacks that become more significant in higher dimensions. Specifically, due to the enlarged
set of constraints encountered in two dimensions, the numerical solution using MATLAB’s
solver become slow, and motivate the need for more efficient numerical schemes.

Here, we focus on an attractive-repulsive potential that shares some similarity to the peri-
odic Morse potential:

W (x, y) = −GLe−
1
L

(| sin(πx)|+| sin(πy)|) + e−(| sin(πx)|+| sin(πy)|) −W, G,L > 0, x, y ∈ R.
(7.1)

As a result of the similar parameterization to WPM (x), we may expect minimizers with the
potential (7.1) for different G and L values to have qualitatively similar behavior to those
described in the phase diagram in Figure 2. For different fixed values of (L,G), we solve (R)
for FR(x), followed by performing the recovery procedure outline in Section 4.

7.1 Solutions FR(x) to (R) that are continuous

Using values of (L,G) = (1.5, 0.9) in (7.1), we obtained a solution FR(x) that is continuous,
as seen in Figure 9a. In the numerical solution, we were limited to a coarse 40 × 40 grid due
to the increased solution times required by MATLAB’s solvers. In future work we plan to
increase the efficiency of the solvers so that larger spatial discretizations may be used. Despite
the relatively coarse mesh, we still resolved a numerical solution to FR(x), which likely has an
error to the true solution that is first order, i.e. O(1/n). We also set the built in MATLAB
tolerance to 10−8. The recovered candidate ρ∗(x) (see Figure 9) was found to have a guarantee
of α = 0.99, and a relative entropy to FR(x) of F(ρ∗) = 0.0011. We now make several remarks
on the characteristics of ρ∗(x):

(i) The support of Fρ(x) is complementary to W+
R (x), i.e., Fρ(x)W+

R (x) = 0. This implies
that ρ∗(x) satisfies Proposition 5.3, and hence E(ρ) is convex when restricted to densities
having a support contained in the support of ρ∗(x).

(ii) The solution ρ∗(x) with support S∗, exhibits spikes at the four corners of the support.
To provide some explanation for the spikes, note that the previous item (i) implies that
E(ρ∗) = KR(ρ∗) (see also Proposition 5.3). The spikes may then be attributed to the
recovered solution ρ∗(x) wanting to minimizing the convex part of the energy KR(ρ) that
arises from an interaction potential KR(x). For this example W+

R (x) = 0 in a diamond
neighborhood near the origin, so that within this region KR(x) = W (x)− 2ER contains
the attractive-repulsive behavior of W (x). Hence, ρ∗(x) can be thought of as a density
that arises from locally repelling particles confined to the set S∗. As a result, the majority
of the density concentrates near the boundary and corners of S∗.
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(iii) Figure 10 shows the support of the recovered minimizer ρ∗(x), and the steady state
arrangement of N = 1000 particles obtained from the gradient flow of equation (1.6)
(using random initial data). The recovered minimizer identifies the emergent length
scale, and pattern obtained by the collective interaction of a large number of particles.

(a) FR(x). (b) ρ∗(x).

(c) FR(x). (d) W+
R (x).

Figure 9: Results for the two dimensional periodic potential in equation (7.1) with (L,G) =
(1.5, 0.9), and 40 × 40 grid. (a) Target auto-correlation FR(x). (b) ρ∗(x) with guarantee
α = 0.99. (c) Contour plot for FR(x) showing the support. (d) Contour plot of W+

R (x) with a
black line indicating the region where W+

R (x) = 0. Note that W+
R (x)Fρ(x) = 0, implying that

ρ∗(x) satisfies Proposition 5.3.

7.2 Solutions FR(x) to (R) that are non-classical

For values of (L,G) = (0.5, 1.5), the solution FR(x) is a collection of discrete Dirac masses.
Figure 11 shows the support of FR(x), Fρ∗(x) and ρ∗(x). As evident by the small dots in Figure
11c, this is a case where the recovered ρ∗(x) has an auto-correlation Fρ(x) that is not exactly
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(a) ρ∗(x). (b) N = 1000 particles.

Figure 10: A comparison of the recovered solution ρ∗(x) for the two dimensional periodic
potential in equation (7.1) (for parameters (L,G) = (1.5, 0.9), and 40×40 grid); with a discrete
steady state gradient flow. Figure (a) shows the contour plot of ρ∗(x), while Figure (b) shows
the steady state solution of equation (1.6) with N = 1000 particles. Note the similarity in the
support of ρ∗(x) with the coalescence of the individual particles.

inside FR(x), i.e., supp(Fρ) * supp(FR). This implies that Proposition 5.3 does not hold,
and the recovered minimizer from FR(x) is only an approximate one at best. One interesting
observation, is that the recovery procedure successfully matches 93% of the support of Fρ∗(x)
with FR(x), so that ρ∗(x) contains length scales that try to optimize the overall energy E(ρ).
However relative to the constant state ρ(x) = 1, the guarantee is α = 0.54, indicating there is a
large gap between E(ρ∗) and the lower bound ER. For this example, it is possible that even the
true global minimum ρ0(x) still has a large gap relative to the bound ER. Figure 12 compares
the support of ρ∗(x) with the steady state arrangement of N = 1000 particles obtained from
the gradient flow of equation (1.6) (using random initial data). The figure shows that particles
coalesce into points that are not in a well defined pattern. Finally, we remark that when the
recovered minimizers ρ∗(x) have sharp spikes, the exact height and symmetry of the spikes
obtained from the Schultz-Snyder algorithm may become sensitive to small perturbations in
the target function FR(x). Developing alternative recovery methods with improved stability
properties may therefore be important in the future.

8 Discussion and conclusions

In this paper we provide a new approach for systematically computing approximate minimizers
to an energy that models pairwise interactions. This is done by relaxing the non-convex opti-
mization problem into a convex one to obtain a new sufficient condition for global minimizers.
A recovery procedure is then introduced as a way to find candidate minimizers that satisfy the
new sufficient condition (see Remark 8). The advantage of the approach is that the resulting
convex relaxation may be described analytically, which then leads to numerical descritizations
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(a) FR(x), Fρ∗(x). (b) FR(x). (c) Fρ∗(x).

Figure 11: Results for the two dimensional potential in equation (7.1) with (L,G) = (0.5, 1.5)
and a 40×40 grid. Figure (a) shows FR(x) (black lines) and the recovered Fρ∗(x) (blue circles).
Figure (b) shows the support of FR(x), while figure (c) shows the support of Fρ∗(x). The large
circles account for a total mass of 0.9267, while the small circles (each with mass < 0.006)
account for the remaining mass. The value of the functional F(ρ∗) = 0.086.

(a) ρ∗(x). (b) N = 1000 particles.

Figure 12: A comparison of the recovered solution ρ∗(x) (with guarantee α = 0.54) for the
two dimensional periodic potential in equation (7.1) and parameters (L,G) = (0.5, 1.5), with
a discrete steady state gradient flow. Figure (a) shows the support of ρ∗(x). The support
contains 0.9894 of the mass of ρ∗(x). Figure (b) shows the steady state solution of equation
(1.6) with N = 1000 particles.

of the new condition that may be solved using well-known methods.
Analytically, the sufficient condition arises a lower bound to the minimum energy of the non-

convex objective function. The new lower bound then provides a way to quantify how optimal
a candidate minimizer is. The utility of the approach is demonstrated by the computation of a
phase diagram for the periodic Morse potential, and also with the computation of minimizers
for numerous interaction potentials in one and two dimensions. For example, a lattice of
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Dirac masses is shown to be the global minimum, for specific parameter values, in the periodic
Morse potential. Verifying that a lattice is a global minimizer to a non-local energy is a difficult
problem in mathematical physics, with great practical interest (see Remark 9). Hence, new
approaches that can show when a lattice minimizes a non-local energy are of theoretical interest.

Lastly, a fundamental problem in the minimization of pairwise energies over probabilities
is to identify sets S∗ where the functional E(ρ) is convex, whenever the support of ρ(x) is
contained in S∗. To this end, our approach provides one way to identify such sets by exploiting
a dual optimization problem. Specifically, the dual formulation results in an optimal decom-
position of the energy functional E(ρ) into the sum of a convex and non-convex functional.
The resulting convex/non-convex splitting can then be used to analytically identify supports
in which E(ρ) is convex. From a physical perspective, this dual decomposition provides new
insight into the natural length scales that many particle systems may self-assemble into; and
may eventually help in designing and controlling pattern formation in many particle systems.
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the Simons Foundation (#359610, David Shirokoff); and partial support through the National
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Appendix A: Cases where the lower bound (R) is sharp

There are several straightforward cases where the lower bound (R) is sharp, and the recovery
ρ∗(x) is guaranteed to be the exact global minimum–even when E(ρ) is non-convex. In this
section we outline the known cases where (R) is sharp. We also characterize the corresponding
dual decomposition obtained from (D) in the known exact cases.

Proposition 8.1. For a W (x) satisfying properties (W1)–(W4), ρ0(x) = δ(x) is a global
minimizer to (P) if and only if W (0) ≤W (x) for all x ∈ Ω.

Proof. If W (0) ≤W (x) for all x ∈ Ω, set ρ0(x) = δ(x). Then for any probability distribution
ρ(x):

E(ρ) =
1

2

∫
Ω

∫
Ω
W (x− y)ρ(x)ρ(y) dx dy,

≥ 1

2
W (0)

∫
Ω

∫
Ω
ρ(x)ρ(y) dx dy = E(ρ0).

Hence ρ0(x) solves (P). To show the converse, take ρ0(x) = δ(x) as a global minimizer to (P)
and assume by contradiction there exists an s 6= 0 such that W (s) < W (0). Testing the energy
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with a candidate ρ∗(x) = 1
2(δ(x) + δ(x− s)) yields

E(ρ∗) =
1

4

(
W (0) +W (s)

)
, (8.1)

<
1

2
W (0) = E(ρ0). (8.2)

Hence, ρ0(x) cannot be a global minimizer and therefore W (0) ≤W (s) for all s ∈ Ω.

Remark 15. What is interesting about Proposition 8.1 is that the condition on W (x) does
not at all imply that E(ρ) is a convex functional. As an example, take W (x) = − cos(x) −
cos(2x) + 0.1 cos(3x). Here W (0) is the minimum value of W (x) yet E(ρ) is non-convex.

The following simple proposition is known in the literature, however we repeat it here for
completion.

Proposition 8.2. Suppose W (x) satisfies properties (W1)–(W4) and in addition satisfies
property (5.3), i.e., ∑

k∈Zd
Ŵ (k) <∞, where Ŵ (k) := 〈W, cos(2πk · x)〉. (8.3)

and W (x) =
∑
k∈Zd

Ŵ (k) cos(2πk · x). (8.4)

Then the function ρ0(x) = 1 is a global minimizer to (P) if and only if Ŵ (k) ≥ 0 for all
k ∈ Zd.

Proof. If Ŵ (k∗) < 0 for some k∗ 6= 0, then ρ∗(x) = 1 + cos(2πx · k∗) has energy

E(ρ∗) =
1

4
〈W, cos(2πk∗ · x)〉 < 0 = E(1).

Therefore the constant state is not the global minimum. To show the converse, substitute the
cosine series expansion for W (x) into E(ρ):

E(ρ) =
1

2

∑
k∈Zd

Ŵ (k)
(
〈ρ, cos(2πk · x)〉2 + 〈ρ, sin(2πk · x)〉2

)
≥ 0.

This series is justified by the regularity assumption in (8.3). Since Ŵ (k) ≥ 0, the series
expansion for E(ρ) over k is always non-negative. Hence E(ρ) ≥ 0 = E(1).

Proposition 8.3. Assume that W (x) satisfies (W1)–(W4) and property (8.3). Then, the
lower bound (R) is sharp when ρ∗(x) = 1 or ρ∗(x) = δ(x) is a global minimum to (P).

Proof. When ρ∗(x) = 1, W (x) has non-negative cosine modes. The lower bound functional in
(R) may then be expanded in a cosine series (again which is justified by (8.3)):

〈F,W 〉 =
∑
k∈Zd

F̂ (k)Ŵ (k) ≥ 0 = 〈1,W 〉 = E0.
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Hence F (x) = 1 is the minimizer to (R) over continuous functions, and FR(x) = 1 solves (R).
Alternatively, if ρ∗(x) = δ(x) is a global minimizer to (P), W (0) ≤W (x) for all x ∈ Ω. Hence,
for any probability distribution F (x):

E0 =
1

2
W (0) =

1

2
〈δ(x),W (x)〉 ≤ 〈F,W 〉.

Therefore FR(x) = δ(x) solves (R) and is sharp.
In both cases, when FR(x) = 1 and FR(x) = δ(x), the solution FR(x) satisfies FR◦FR = FR.

Hence, taking ρ∗(x) = FR(x), yields an exact recovery: FR(x) = ρ∗ ◦ ρ∗.

Remark 16. The cases discussed in Proposition 8.3 result in simple optimal dual decomposi-
tions:

• When FR(x) = 1 solves (R), the optimal dual decomposition is

W+
R (x) = 0, KR(x) = W (x), ER = 0.

• When FR(x) = δ(x) solves (R) the optimal dual decomposition is

W+
R (x) = W (x)−W (0), KR(x) = 0, ER =

1

2
W (0).

9 Appendix B: Numerical solution of (R)

In this section we present numerical details regarding the solution of (R) and dual decomposi-
tion (D). We discuss explicit details in dimension d = 1 and note that the extension to higher
dimensions follows in a straightforward manner. To solve the relaxed problem, we use MAT-
LAB’s built in optimization routines, which require the construction of matrices representing
the linear constraints in (R).

Here we adopt the convention that vectors and matrices start with an index of 0 (as opposed
to MATLAB) so that row indices coincide with Fourier mode numbers. For the general problem
(R) we discretize space with an even number, n > 0, of points on an equispaced grid:

h =
1

n
, xj = jh, for 0 ≤ j ≤ n− 1.

The functions W (x) and F (x) are then taken as n dimensional vectors w, f ∈ Rn so that:

wj ≈W (xj), fj ≈ F (xj).

There are two choices for imposing the mirror (or odd) symmetry of f . One can do it
directly and set fj = fn−j , which will allow for a reduction in the number of variables to n/2;
or one can build and enforce a sine constraint matrix. For efficiency reasons, we adopt the
direct approach, however also describe how to construct the sine constraint matrix.

To build the matrices representing the sine and cosine constraints in (R), one may use
the rows in the discrete Fourier transform matrix obtained via the fast Fourier transform.
Meanwhile, for the non-negativity constraint in (R), one may either use the MATLAB’s built in
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non-negativity constraint option, or directly enforce non-negativity by passing the MATLAB
routine a constraint matrix. Regardless of the option one uses, the three n × n constraint
matrices can be constructed as follows:

Non-negative constraint matrix: Plj = −δlj , 0 ≤ l, j ≤ n− 1,

Cosine mode matrix: Cl,: = −real(fft(el)), 0 ≤ l ≤ n− 1,

Sine mode matrix: Sl,: = imag(fft(el)), 0 ≤ l ≤ n− 1.

Here Cl,: and Sl,: are the entire lth matrix row, δlj is the Kronecker delta, and el is the lth

row of the n× n identity matrix:

δlj =

{
1 if l = j,
0 if l 6= j.

el =
[
0, 0, . . . , 0, 1, 0, . . . , 0

]
.

By construction, the matrices have components Ckj = − cos(2πkjh), Skj = sin(2πkjh) so that
cosine and sine integrals are approximated via

−〈cos(2πkx), F (x)〉 ≈ h
n−1∑
j=0

Ckjfj , 〈sin(2πkx), F (x)〉 ≈ h
n−1∑
j=0

Skjfj . (9.1)

To write the mass constraint in (R) explicitly, we also introduce the unit vector

1 =
[
1, 1, 1, . . . , 1

]T ∈ Rn.

Finally, note that by symmetry, the bottom half of the rows in matrices C and S are redundant.
It is therefore sufficient to enforce constraints for only the rows of l with 1 ≤ l ≤ bn2 c where⌊n

2

⌋
=

{
n
2 if n is even,

n−1
2 if n is odd.

The problem (R) then takes the discrete standard form:

(Rh) Minimize
1

2
wT f

subject to P f ≤ 0,

Ck,: f ≤ 0, 1 ≤ k ≤
⌊n

2

⌋
,

Sk,: f = 0, 1 ≤ k ≤
⌊n

2

⌋
,

h 1T f = 1.

Problem (Rh) is then solved using a standard linear programming package with an interior-
point algorithm. We use MATLAB’s linprog routine, with a tolerance set to 10−8. In
pseudo-code, the command takes the form:

[fR, ER, W+, K] = linprog(w, constraint matrices P,C,S,1).

The output then consists of the optimal solution vector fR, the optimal solution value ER, as
well as the dual decomposition vectors W+ and K. In other words, the dual decomposition
comes for free.

We identify two qualitatively different solutions fR to problem (Rh):
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Case 1. The solution fR converges as h → 0, to a C0(Ω) function with no Dirac mass singu-
larities. In this case, the procedure from Section 4 is used to recover a discrete ρ∗(x)
from fR. The vector ρ∗(x) is discretized using n grid points on the same lattice as
fR. The integrals in the continuous Schulz-Snyder algorithm are also computed using
vectorized dot products (the standard midpoint rule is spectrally accurate for smooth
solutions on periodic domains and lower order for non-smooth solutions FR(x)). The
discrete ρ∗(x) is computed to within steady-state tolerances tol1, tol2 so that the
discrete quantities satisfy

F(ρn)−F(ρn+1) < tol1, ||ρn+1 − ρn||L1(Ωh) < tol2. (9.2)

where ||f ||L1(Ωh) := h
n−1∑
j=0

|fj |. (9.3)

Case 2. The solution f → FR(x) converges in distribution to a set of delta distributions as
h → 0. Namely, for any smooth function u(x) and corresponding discrete vector u,
the value h(uT f)→ 〈u(x), FR(x)〉 converges as h→ 0.

Remark 17. In case 2, one may obtain Delta masses in fR with a support of one mesh point
each by modifying the grid size h to naturally accommodate the spacings between the Delta
masses. To do this: (i) Obtain a solution fR (that may have Delta masses smeared over a few
grid points) to (Rh) with a suitably fine mesh h; (ii) Estimate the distance between the Dirac
masses in fR; (iii) Take a new grid spacing h′, such that the distance between Delta masses is
an integer multiple of h′; (iv) Resolve the discrete problem (Rh′) using the new grid h′ to obtain
improved convergence. Improvements in the linear programming time were also observed when
choosing a grid spacing h′ that is commensurate with the spacings of the Dirac deltas.

Remark 18. In two dimensions, we found that the solution fR to the linear program (Rh) can
become sensitive to the exact number n, the prescribed tolerance, and the allowable number of
interior point iterations.

Remark 19. We systematically ran hundreds of recovery tests and found that the Schulz-
Snyder algorithm often converged to the same value F(ρ∞) within numerical error. We did,
however observe that when FR(x) was a discrete probability measure in two dimensions, there
were multiple ρ∗(x) that minimized F(ρ). The different ρ∗(x) had almost the same recovery
guarantees α to within ±0.02.

Appendix C: Periodic effects for the solution to (R)

The purpose of this section is to examine a simple sub-class of minimizers FR(x) to (R) in
one dimension. We show that provided W (x) satisifies a few regularity properties, minimizers
within this sub-class always have spacings that are commensurate with a discrete lattice. This
will turn out to be a direct result of the periodic domain Ω.
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In this section, we consider the restricted set of probabilities

F (x) = αδ(x) + βδ(x− s) + βδ(x+ s), (9.4)

α+ 2β = 1, 0 ≤ s ≤ 1

2
.

The subclass (9.4) is then completely characterized by two parameters (s, β). The lower bound
problem (R), restricted to the probabilities (9.4) with three delta masses, is:

(R3) minimize
1

2
〈W (x), F (x)〉 =

1

2
W (0) + β

(
W (s)−W (0)

)
.

We now outline why unique minimizers of the form (9.4) to (R3), characterized by values
(s∗, β∗), often have support commensurate with a lattice: that is s∗ ∈ Q is a rational number.

First optimize the energy (R3) at a fixed s, over the weight β, thereby yielding a function
only of s:

E(s) :=
1

2
W (0) + inf

β

[
β
(
W (s)−W (0)

)]
.

If W (0) ≤ W (s) then E(s) = 1
2W (0), which occurs when β = 0. If W (0) > W (s), then E(s)

takes the following form

E(s) =
1

2
W (0) + θ(s)

(
W (s)−W (0)

)
,

θ(s) := supβ, subject to (1− 2β)δ(x) + βδ(x− s) + βδ(x+ s) ∈ C. (9.5)

The function θ(s) can be computed by examining the convex cone constraint F (x) ∈ C:

〈F, cos(2πkx)〉 = 1− 2β + 2β cos(2πks) ≥ 0, for all k ∈ Z \ 0.

Hence,

0 ≤ β ≤ 1

2(1− cos(2πks))
for all k ∈ Z \ 0.

It follows that,

θ(s) = inf
k∈Z\0

1

2(1− cos(2πks))
.

When the value of s is irrational (denote by Q), cos(2πks) can be made arbitrarily close to
−1:

θ(s) =
1

4
for s ∈ Q, θ(s) = min

0≤k≤p

1

2(1− cos(2πks))
for s =

q

p
∈ Q.

An immediate consequence is that θ(q/p) ≥ θ(s) for all q/p ∈ Q (rational) and s ∈ Q (irra-
tional). The function θ(s) also has interesting continuity properties:

Proposition 9.1. The function θ(s), for 0 < s < 1
2 , is continuous at all s ∈ Q ∪ Qe, and

discontinuous at all s ∈ Qo, where Q = Qe ∪Qo,

Qe = {q/p ∈ Q : gcd(q, p) = 1, p even}, Qo = {q/p ∈ Q : gcd(q, p) = 1, p odd}.
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Proof. For simplicity in the proof first introduce

θ̃(s) := −1 for s ∈ Q, θ̃(s) = min
0≤k≤p

cos(2πks) for s :=
q

p
∈ Q.

Since θ(s) is a composition of a continuous function with θ̃(s), it is sufficient to prove Propo-
sition 9.1 for the modified function θ̃(s) instead of θ(s).

First we remark on the value of θ̃(q/p) for integers q, p with gcd(q, p) = 1: there exists an
integer k∗ > 0 such that

k∗q ≡ p

2
(mod p) if p is even,

k∗q ≡ p+ 1

2
(mod p) if p is odd.

Hence the optimal value of θ̃(s) is given by

θ̃(q/p) = cos
(2πk∗q

p

)
= cos(π) = −1, if p is even,

θ̃(q/p) = cos
(2πk∗q

p

)
= cos

(
π +

π

p

)
= − cos

(π
p

)
, if p is odd.

If s0 ∈ Qo, then any sequence sj → s0 with sj ∈ Q has

θ̃(s0)− θ̃(sj) = θ̃(s0) + 1 > δ > 0, for some δ.

Hence θ̃(s) is discontinuous at Qo.
For continuity at a point s0 ∈ Q ∪Qe, let ε > 0. Clearly for any s ∈ Q ∪Qe,

|θ̃(s)− θ̃(s0)| = 0 < ε.

To examine the behavior of s ∈ Qo, fix t = dε−1e as the smallest integer larger than ε−1. Note
that there are only a finite number of rational numbers q/p with p ≤ t (and greatest common
divisor gcd(q, p) = 1) in the interval s0− 1 < q/p < s0 + 1. Hence, for any ε > 0, one may take
δ = δ(ε) small enough so that rational value q/p satisfying |s0 − q/p| < δ, must have p > t.
Consequently for any rational q/p ∈ Qo:

=⇒
∣∣∣θ̃(q/p)− θ̃(s0)

∣∣∣ =
∣∣∣ cos

(
π +

π

p

)
− cos(π)

∣∣∣ ≤ π

p
≤ π

t
≤ πε.

In the last line we have used a Lipschitz constant of 1 for cosine. This concludes the proof.

Proposition 9.1 now leads to the following result: if W (s) is smooth enough, s∗ must be
rational.

Proposition 9.2. Suppose W (s) satisfies (W1)–(W4) and has bounded second derivative on
(0, 1). Assume also that W (0) > min0<x<1W (x) is not strict minimum value of W (x). Fix
0 < s∗ < 1

2 with s∗ ∈ Q ∪Qe. Then s∗ does not minimize E(s).
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Proof. We assume that s∗ ∈ Q∪Qe minimizes E(s), and then arrive at a contradiction. First
observe that if s∗ ∈ Q ∪Qe and minimizes E(s), then s∗ must also minimize W (s). This is
because E(s∗) = 1

4(W (s∗) + W (0)) whenever s∗ ∈ Q ∪ Qe. Hence, by continuity of W (s),
s∗ must minimize W (s) and therefore W ′(s∗) = 0. Using Taylor’s remainder theorem, there
exists a constant C such that for any s in the neighborhood of s∗,

|W (s)−W (s∗)| ≤ C|s− s∗|2.

We now argue that one can find a rational point close to s∗ that has a lower value of E(s) than
E(s∗). Using basic properties of cosine, as well as the result from Proposition 9.1, one has for
any rational point q/p ∈ Qo in the neighborhood of s∗, there exists a c1 > 0 such that∣∣∣θ̃(q/p)− θ̃(s∗)∣∣∣ =

∣∣∣ cos
(π
p

+ π
)
− cos(π)

∣∣∣ ≥ c1

p2
.

Now consider a sequence of approximating rational points sj = qj/pj → s∗, for j > 0 with
sj ∈ Q that by a well-known theorem from continued fractions [31] satisfy∣∣∣ qj

pj
− s∗

∣∣∣ ≤ c2

p2
j

.

An important remark, is that the sequence of pj generated via continued fractions have pj
odd infinitely often. Therefore, without loss of generality we may restrict the sequence sj to a
sub-sequence on Qo that has pj odd10.

Hence, combining the previous two inequalities, on this sequence sj ∈ Qo∣∣θ(sj)− θ(s∗)∣∣ ≥ c3

∣∣sj − s∗∣∣.
By direct calculation, for j sufficiently large,

E(sj)− E(s∗) = θ(sj)
(
W (sj)−W (s∗)

)
+
(
θ(sj)− θ(s∗)

)(
W (s∗)−W (0)

)
, (9.6)

≤ A1|sj − s∗|2 −A2|sj − s∗|, (9.7)

where A1 > 0 is an upper bound on θ(sj) and the Taylor constant, A2 = c3(W (0)−W (s∗)) > 0.
Finally, for sufficiently large j one has A2|sj − s∗| > A1|sj − s∗|2 implying

E(sj) < E(s∗).

Thus, s∗ cannot minimize E(s).

The purpose of Proposition 9.2 is to observe that if W (s) is smooth enough on (0, 1), then
minimizes of the form (9.4) must have rational spacings.

10An infinite continued fraction can be represented as a unique sequence of positive integers (a0, a1, a2, . . .).
The rational sj = qj/pj approximations satisfy the recursion relations q0 = a0, p0 = 1, q1 = a1a0 + 1, p1 = a1,
and qj = ajqj−1 + qj−2, pj = ajpj−1 + pj−2, for j ≥ 2. Therefore using an induction argument, one can show
that if (pj−1, pj) has at least one odd term, then (pj+1, pj+2) also has one odd term. Since (p0, p1) = (1, a1),
the result follows.
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