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FRACTIONAL ORDER COMPARTMENT MODELS*

CHRISTOPHER N. ANGSTMANNT, AUSTEN M. ERICKSON', BRUCE I. HENRYT, ANNA
V. MCGANN', JOHN M. MURRAY', AND JAMES A. NICHOLST

Abstract. Compartment models have been used to describe the time evolution of a system
undergoing reactions between populations in different compartments. The governing equations are a
set of coupled ordinary differential equations. In recent years fractional order derivatives have been
introduced in compartment models in an ad hoc way, replacing ordinary derivatives with fractional
derivatives. This has been motivated by the utility of fractional derivatives in incorporating history
effects, but the ad hoc inclusion can be problematic for flux balance. To overcome these problems we
have derived fractional order compartment models from an underlying physical stochastic process. In
general, our fractional compartment models differ from ad hoc fractional models and our derivation
ensures that the fractional derivatives have a physical basis in our models. Some illustrative examples,
drawn from epidemiology, pharmacokinetics, and in-host virus dynamics, are provided.
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tic models
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1. Introduction. Compartment models are typically used to model a wide va-
riety of phenomena, including epidemics [21], in-host pathogen dynamics [28], and
pharmacokinetics of active substances in the human body [7, 10]. These models iden-
tify states of the system as compartments, for example, the population of individuals
in a particular state of health (e.g., susceptible, infected, or removed), or the concen-
tration of a drug in different parts of the body (e.g., lungs, liver, or blood).

In a standard compartment model the populations or concentrations of species
are evolved through a set of coupled ordinary differential equations (ODEs). The
model assumes that each compartment is well mixed with a homogeneous population.
The coupling terms in the ODEs model interactions between populations in differ-
ent compartments. These terms may, for example, be simple constant rate removal
processes, or they may represent reactions between multiple populations. In some
compartment models it is important to know when an individual entered a compart-
ment. This leads to age structured integrodifferential models with applications to
both pharmacokinetic [19, 15, 13] and epidemiology [22, 33]. For particular choices of
kernels, these models can be formulated as fractional order differential equations [2].

In recent years there has been a proliferation of compartment models incorpo-
rating fractional derivatives. These include fractional epidemiological, susceptible,
infected, removed (SIR) models [4, 5, 11, 12, 17, 18, 36], as well as fractional pharma-
cokinetic models [13, 15]. Typically, the fractional derivatives are incorporated in an
ad hoc way by replacing integer order time derivatives with noninteger Caputo frac-
tional derivatives. Whilst this may be mathematically interesting, and there is some
motivation in incorporating history effects into the dynamics of compartment models,
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there is no a priori reason ad hoc fractional compartment models provide models of a
physical system. If the fractional derivatives are not incorporated without care there
can be difficulties in interpreting the units of constants [2] and conservation of mass
may be violated [14]. There have been various attempts to address some of these
difficulties [13, 15].

In this paper we derive a general framework for formulating fractional order com-
partment models by considering the governing equations from underlying stochastic
processes. In the stochastic process models, particles enter a compartment, waiting
for a random time, and then leave the compartment. The governing equations we
derive describe the time evolution of an ensemble of particles that are undergoing this
process. If the particles that leave one compartment always enter another compart-
ment, the stochastic process is equivalent to a generalized continuous time random
walk (CTRW) [26] with waiting times moderating transitions between compartments.
As such, this formalism for the compartment model dynamics further extends the
theory of CTRWSs with reactions [20, 16, 35, 1, 27] and it generalizes recent work on
fractional order SIR models [3, 2]. Fractional order compartment models are obtained
when the waiting time in a compartment is governed by a non-Markovian process,
whereby the probability of leaving the compartment is dependent on the length of time
spent in the compartment. The fractional models can be formulated as age structured
integrodifferential models; however, the formulation using fractional derivatives en-
ables ready comparison with the growing literature on fractional order compartment
models. Moreover, the age structured integrodifferential models can be derived from
the underlying stochastic processes considered here.

The remainder of this paper is organized as follows: In section 2, starting with
a stochastic process, we derive the governing equation for an ensemble of particles in
a single compartment. This is reduced to a fractional order differential equation by
considering a power-law distribution for the time that a particle remains in the com-
partment. Fractional order multicompartment models can be constructed by linking
multiple fractional order single compartment models. Details on this are provided
in section 3, and in section 4, where examples of fractional order multicompartment
models are developed.

2. Single compartment model. In order to develop a general compartment
model we first consider the dynamics of a single compartment. We derive a generalized
master equation that describes the population of the compartment through time, and
show the assumptions that lead to fractional dynamics. We will then combine multiple
single compartments together to form the general model.

In a single compartment we consider an ensemble of particles. We assume that
each member of this ensemble is undergoing a stochastic process in which the following
occurs: they are created, they last for a random amount of time, and then they are
removed from the compartment. In general, new particles can be created in this
ensemble by a number of distinct creation processes, and similarly particles can be
removed from the ensemble by a number of distinct removal processes.

We assume that the creation of the particles in the ensemble is governed by N¢
distinct creation processes. In the mean field, the arrival flux of particles due to the
1th creation process is labeled f;(t). The expected number of particles created in the
compartment by the creation process between times ¢ and ¢ + 0t is 5;(¢)dt + o(dt).
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The total arrival flux, ¢(t), is the sum of the fluxes due to the creation processes,

(1) q(t) = Zﬁi(t).

A particle remains in a compartment until removed by one of the removal pro-
cesses. We allow for an arbitrary number Ni of Markovian removal processes where
the probability of a particle being removed from the ensemble at time ¢ only de-
pends on the state of the system at time ¢. For each individual Markovian removal
process, the probability of surviving, from time ¢y to ¢, is A;(¢,t9). The probabil-
ity of surviving all Markovian removal processes from time ty to ¢ is then given by
O(t,to) = Hf\g Ai(t, tp). As a particle cannot be created and removed in the same
instance, we have O(tg, o) = 1.

In general, the probability that a particle will be removed by the ith Markovian
removal process in the time interval ¢ to t 4+ 0t will be \;(¢)dt 4+ o(dt). This allows us
to write the survival function as

) @wm=w4}£wm@,

where
Nr
(3) wl(t) = 3 M)

From this we can see that the Markovian survival function must obey the semigroup
property,

(4) O(t, to) = O(t,u)O(u,to)
for any tg < u <t. And, furthermore,

) O _ _wme).
t

We also include a non-Markovian removal process, where the probability that a
particle is removed from the ensemble is dependent on the length of time since the
particle entered the compartment, i.e., if the particle entered the compartment at
time tg the process at time t will be dependent on the variable ¢ — t3. The survival
probability for the non-Markovian removal process is given by ®(¢), and we require
that ®(0) = 1. It can be expressed in terms of a waiting time density, ¢(t),

(6) o(t)=1 _/0 o(u) du.

The waiting time density ¢(t) gives the likelihood of waiting in a compartment for
a length of time ¢ having arrived at time 0. From (6) the derivative of the survival
function is
do(t)

7 —— = —¢(t).
(7) = —o(t)

For a particle to be in the compartment at time ¢, it must have entered the
compartment at some earlier time ¢y and survived until time ¢. We assume that the
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various removal processes are independent and hence can say that the probability
of surviving all of the removal processes, given an arrival time of tgy, is given by
O(t — t9)O(t,t0). Thus the number of particles in the compartment at time ¢, p(¢),
can be written

(8) plt) = / B(t — t0)O(t,to) alto) dto

We have assumed that there are no particles in the compartment before time zero,
ie., p(t) =0 for ¢t < 0.

To obtain a differential equation that governs the dynamics of the number of
particles in the compartment, we take the derivative of p. This can be done by using
the Leibniz rule for differentiating under the integral sign provided that the integrand
is continuous [1]. Here, we wish to consider the case where there can be an injection
of flux into the compartment at time ¢t = 0, with the flux a continuous function for
t > 0. Thus we write,

(9) q(t) = iod(t — 07) + ¢ (1),

where g is the initial injection and ¢*(¢) is right continuous at ¢ = 0 and continuous
for all ¢ > 0. Substituting (9) into (8) we can write

(10) p(t) =i ®(1)O(t,0) + /ot D(t — 10)O(t, o) ¢ (to) dio

this ensures that the integrand is continuous for continuous survival functions. Taking
the derivative of (10), applying the Leibniz rule and using (5) and (7), we find that

() = 7 (0) — w(0plt) ~ Folt),

where we have defined

(12) Fy(t) = /Ot Bt —t0)O(t, to)q(to) dto ,

which denotes the outgoing flux due to the non-Markovian process. The outgoing
flux Fy(t) can be expressed in terms of p by using Laplace transform techniques. We
divide (8) and (12) by O(t,0), and using the semigroup property (4), we find

18) 5.0 = J, 201 gy
W B o

As both these equations are convolutions, taking the Laplace transform gives

(15) c, { @fzf)o)} — L)} L { eq(g’f)o)},
)

o ) e
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Rearranging (15) and substituting into (16), we simplify this to

Fo(t) | _ p(t)
(1) {5} = amo e g |
where we have defined the memory kernel K(t) as

(18) £AK®) = Zgr

Taking the inverse Laplace transform of (17) allows us to express Fy(t) as

(19) Fy(t) = /O Kt — to) O(t, to) plte) dfo -

Using (19) in (11) we write

(20) L= a0~ ot~ [ Kt 0)0(t toota) dt

This is the governing equation for an ensemble of particles in a single compartment,
where the particles are created and removed by underlying stochastic processes. This
equation is true for an arbitrary waiting time distribution for the non-Markovian
removal process. The formulation of (11) relies on the history of ¢(¢) while (20) relies
on the history of p(t). We shall show that, with the appropriate choice of a waiting
time distribution, the convolution over the memory kernel may be expressed as a
fractional derivative.

2.1. Relationship to age-structure models. Age-structured compartment
models [21, 25, 9] allow for the dynamics of the system to depend on “system” time,
as well as the length of time particles have been in a particular compartment. The
governing evolution equation for age-structured dynamics can be shown to be equiv-
alent to the governing evolution equation for an ensemble of particles in a single
compartment, where the particles are created and removed by underlying stochastic
processes. Moreover, the governing evolution equation for age-structured dynamics
can be derived from the underlying stochastic process. In the derivations below we
consider the simplification in which the arrival density ¢(¢) is continuous for ¢ > 0.

2.1.1. Derivation of age-structured dynamics from an underlying sto-
chastic process. Considering the underlying stochastic process for single compart-
ment dynamics introduced in section 2 we define p(t,a) as the number density of
particles in the compartment at time ¢ with age a. Similar to (8) this is given by

(21) Alt,a) = / B(t — t0)0 (1. to)q(to)3(t — to,a) dto,

where the delta function has been introduced to select those particles that arrived in
the compartment at time tg and have age a at time t. The integral over all times t,
leads to

(22) plt,a) = D(@)O(t,t — a)q(t — a).
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The evolution equation for the age-structured number density can now be found
by differentiating (21) with respect to time. This results in

Op(t.a) | Op(t.a) _ d(a)

O(t,t —a)q(t — a)

ot Oa da
(23) +®(a)q(t —a) g@)(tt— )—i—g@(tt— )
a)q a 5 , a %a , a)l,
where we have used the results that
dt _da_
dt  dt

and 3 5
Salt—a) = 5 q(t — )

In general, we can write the survival function as

(24) 20 =exp (- [“2(5)5).
where
(29) ) = 50

is the associated hazard rate dependent on age [3]. Furthermore, recalling

(26) O(t,t —a) = exp (- /t t w(s)ds) ,

—a

it is a simple exercise to show that

(27) %@(t,t —a) + %@(t,t —a) = —w(t)O(t,t — a),
and using (24),
(28) ().

We can now substitute (28) and (27) into (23) and simplify, using (22), to obtain

Op(t,a)  Oplt,a)
ot Oa

which is the governing evolution equation for the number density of particles in an age-
structured model. The terms on the right-hand side of this equation identify a non-
Markovian removal process dependent on the age of the particle, with a corresponding
rate y(a) and a Markovian removal process with rate w(t). It also follows from (22),
(24), and (26) that

(30) p(t,0) = q(t),

so that the flux from creation processes, ¢(t), are incorporated into the model as
a boundary condition. The governing equation, (29), encompasses models such as
Kermack and McKendrick’s structured SIR model [21].

(29) = —(a)p(t,a) — w(t)p(t; ),
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2.2. From age-structured dynamics to stochastic compartment dynam-
ics. We can obtain the evolution equation for the stochastic compartment dynamics
from the governing evolution equation for the number density of particles in an age-
structured model. First, we note that

(31) ott) = [ it da.

As ¢(t) is continuous, p(t,a) is also continuous and we can differentiate with respect
to time using Leibniz rule to arrive at

(32) dfc’li(tt): /0 %dﬁ AL 1),

Taking the integral of the evolution equation for age-structured dynamics, (29), with
respect to a, we obtain,

[ P o gt - p(e.0) = (o) [ flta)da [ s@pita)de.

The results in (31), (32), and (33) can be combined to arrive at

3 0 p1t.0) = ~t0ptt) - [ @ity

We now replace 5(t,a) and 5(t,0) using (22) and (30), respectively. This results in
@) ) - wwn - [ @@t - it —a)do

and after a change of variables a =t — t,

) D ) - ~ [ - )00~ )00 toatto) o

It follows from (25) that
(37) V(T = to)®(t —to) = &(t — to),

so that we can use the same sequence of steps as (15)—(19) to arrive at the governing
evolution equation for stochastic compartment dynamics

(38) L ) = w09l - [ Kt~ )00t t0)pttn) o,

which is equivalent to (20) in the case on continuous ¢(t).

2.3. Fractional order single compartment model. The inclusion of a frac-
tional derivative in the governing equations requires a power-law tailed waiting time
distribution for the non-Markovian removal process. The use of such a distribution
implies that the longer particles have been in a compartment the slower their rate of
removal by this process. If there are no other removal processes, this is akin to particles
becoming trapped in the compartment as the expected time until removal diverges.
To obtain the fractional derivatives at all times, rather then simply asymptotically,
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we will take the non-Markovain waiting time to be Mittag—Lefller distributed. This
distribution has a power-law asymptotic decay [6] as t — oo, i.e., ¢(t) ~ t~1=%. The
survival function of a Mittag—Leffler distribution is easily expressed in terms of a
Mittag—Leffler function,

(39) o)~ £as (~ (1)),

for an exponent 0 < a < 1, and time scale parameter 7 > 0. When o = 1 the
survival function reduces to an exponential, and the distribution to an exponential
distribution. The two parameter Mittag—Leffler function is defined as

40 Eop(t) =  ———

(40) 50=3 s

Taking the Laplace transform of the Mittag—Leffler survival function from ¢ to s gives
1

(41) LAD()}

- s(1+4 (78)=@)

The Laplace transform of the corresponding memory kernel K, calculated from (18),
is

(42) LAK(t)} =T17s'7",

where we have used (6) and the fact that £L{¢} =1 — sL{D}.
Again using Laplace transforms, we can rewrite the outgoing flux due to the
non-Markovian removal process, Fy(t), as

Folt) = [ K(t~ta)0t.to) plta) o

— O(t,0) /Ot K(t —to) @fzi?)o) dto

(43) — ot 0)L;"! {T—asl—act { @‘ES)O) }} .

This Laplace space representation of the flux can be related to a Riemann-Liouville
fractional derivative, allowing us to write the governing equation as a fractional order
differential equation.

A Riemann—Liouville fractional integral of order o, with o > 0, is defined by

N S ()
oD S0 = 5 |, e

A Riemann—Liouville fractional derivative of order 1 — «, with 0 < a < 1, is defined
by [29],

l—« _ 1 d K f(t())
oD f(t) = F(a)&/o —to) @ dto.

As this definition is a convolution, we can express the Laplace transform of the
Riemann—Liouville fractional derivative as [24]

(44) LoDy (1)} = s LS ()} = oD7 * f(B)o-
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We assume that f(t) = @p((tt?)) is continuous for ¢ > 0 in which case we have [24],

(45) o (g | =

Using (44) we can simplify (43) to

(46) Fy(t) = 7611, 0) OD,}_“< plt) )

Finally, substituting this into (20), we have

(47) B = a0 - w(p(t) - 700000} (g )

This is the fractional order governing equation for a single compartment model. We
will use this to construct general compartment models. It should be noted that the
regularity condition given in (45) can be relaxed by considering a Griinwald—Letnikov
derivative in place of the Riemann-Liouville derivative; see, for example, [35].

2.4. Equilibrium state analysis. The inclusion of the fractional derivative
leads to some complication with the calculation of equilibrium states. This is due
to the fact that the Riemann-Liouville derivate of a constant is nonzero. A further
complication is the explicit ¢ dependence in the ©(t,0) function. As such, to find the
equilibrium behavior of the model we need to consider the behavior of solutions as
t — oo. The system approaches an equilibrium solution if the limit

(48) A p(t) = p

exists. It should be noted that this limit may be dependent on the initial condi-
tion of the system, and hence multiple equilibrium solutions are possible. The first
requirement for the existence of an equilibrium is that the rates associated with the
Markovian removal processes and the incoming flux all approach a constant as ¢t — oo,
ie.,

(49) tgrgo w(t) =w",
. + %
(50) Jm g™ (t) = g".

For simplicity we will consider the case where w(t) = w* for all time so that
(51) O(t,0) = exp (—w™t).

Consider the limit of (47),

(52)  lim % — lim (q+(t) — w(t)p(t) — 76V, 0) Opg—a( Pt) >)

t—oo dt t—00 @(t, 0)

From (48) the left-hand side is zero, and the first two terms on the right-hand side
simplify trivially leaving

(53) 0=¢" —wp" =77 lim exp (—w"t) oD~ (exp (w't) p(t)).-
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To evaluate the last term on the right-hand side of (53), we take the Laplace transform,
and apply the well-known shift identity, as well as the binomial expansion, to yield

(—w*t) (DI~ (exp (w7t) p(1)) }
— £ { D} (exp (wt) p(t)) 55 + "}
— (s 4w Ly {exp (w°) plt); s + ')
— (s+w")'"L; {p(t); s}
= Lo{p(t)} (@)= + (1 - a) (W) s + O(s?).

This equation can be inverted term-by-term due to the linearity of the Laplace trans-
form. Hence we find

(54) ﬁt {eX

(55)

exp (1) oD}~ (exp (1) p(1) = () ~0(0) + (1~ @)w") "L 1 £, {O()}.
Thus in the limit we find

(56) Tim exp (—"t) oD (exp (1) p(t)) = ()"

Note that this is the same result as simply substituting a constant p* in to the original
expression, the key point that we have demonstrated being that the nonlocality of the
fractional derivative is not unduly affected by preasymptotic behavior. Substituting
(56) into (53) and taking the limit gives

*

q
w* 4177 (w*)l_a

(57) pr=

Analysis of the stability of the equilibrium points is possible; however, this is diffi-
cult in a general setting. The specific example of a fractional order SIR model has
previously been considered [3].

3. Fractional order multiple compartment model. In general, any number
of fractional order single compartment models can be composed together to form a
fractional order multiple compartment model. The exact nature of how the com-
partments are joined is system dependent. Consider a set of N compartments, the
dynamics of each compartment will be governed by a governing equation of the form

68) = g0 —alm(0) - 7 Ou(1,0) 0D} (ekéﬂm)

where k£ =1,..., N indicates the compartment.

In a multiple compartment model the flux entering a compartment, g (), may be
dependent on the flux leaving another compartment. This is achieved by matching
removal processes from a compartment to creation processes in another. It is also
possible to have creation processes that do not depend on removal processes from
other compartments. The Markovian rates, wg(t), are general functions of time and
hence may depend on the population in any compartment.

Using this approach we can build the governing equations for any given compart-
ment model, with fractional dynamics. Further demonstration is best done by way of
examples and reductions to existing models.
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4. Examples of fractional order compartment models. The general frame-
work which we have established in this paper can be used to create specific examples
of fractional order compartment models. With the appropriate choice of fluxes, rates,
and fractional parameters the general governing equation reduces to the fractional
recovery SIR model [3]. We provide fractional models for epidemiological, pharma-
cokinetic, and in-host disease dynamics, with figures demonstrating the fluxes between
compartments. In these figures we have defined Markovian transitions with a regular
arrow and anomalous transitions with a dashed arrow.

4.1. Reduction to the fractional recovery SIR model. The fractional re-
covery SIR model [3] is an extension of the standard SIR epidemiological model where
there is a fractional order recovery of individuals from the disease. This model repro-
duces the observed behavior of a disease with chronic infection, where a proportion
of individuals fail to recover from the disease. This model comprises three com-
partments, susceptible S, infected I, and recovered R. An individual begins as a
susceptible, with a mass action Markovian transition into the infected compartment,
BS1. Infected individuals recover with a fractional order, o, and rate p. The model
includes vital dynamics that comprise a death rate, -, from each compartment and a
birth rate, A, into the S compartment, as can be seen in Figure 1.

3 3 3
~vS ~I YR

Fic. 1. Flux flow of fractional SIR model.

To obtain this model from the general fractional order multiple compartment
model, (58), we consider three compartments, p; = S, p2 = I, and p3 = R. Taking
q1(t) = so(t — 0F) 4+ X\ gives ¢ (t) = \, setting w;(t) = v + BI, and assuming no
non-Markovian removal process (i.e., ®1(t) = 1), gives the equation for the susceptible
compartment,

ds
(59) T A—~S—pBSI.

The flux into the I compartment originates in the S compartment, hence g2(t) =
i00(t — 0F) + g5 (t) with g5 (t) = BSI. The Markovian removals from the I compart-
ment are due to the death of an individual, and we take wa(t) = 7. O2(t,0) can be
found from (2). The non-Markovian removals from the I compartment correspond to
the recovery of an individual from the disease, and we take o = o and 75 *? = p.
This gives the governing equation for the infectious compartment as

dr

(60) < = BST =1 — pexp (—1) oD} (exp (yt) I).

Finally, for the R compartment we have the incoming flux from the infectious com-
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partment,

(61) g (t) = pexp (=) oDy~ (exp (yt) I) .

The only removal process is again the Markovian death process, so ws(t) = v, and
75 “®* = 0. The governing equation is then

dR .
(62) T = e (=7t) oDy (exp (v) I) = VR,

The equations (59), (60), and (62), subject to the initial conditions S(0) = s¢, I(0) =
i9, and R(0) = 0, correspond to the frSIR model.

4.2. An SIS model with fractional resusceptibility. Similar to the frac-
tional recovery SIR model, a fractional, susceptible, infected, susceptible (SIS) model
is a generalization of the standard SIS model. This model splits the population into
a susceptible compartment, S, and an infected compartment, I. Individuals start in
the susceptible compartment, then transition into the infected compartment through a
mass action term, as in the SIR model. Subsequently, individuals undergo an anoma-
lous transition back into the susceptible compartment, as represented in Figure 2.

F1a. 2. Fluz flow of fractional SIS model.

We obtain this model from (58). Here, we have two compartments, p; = S and
p2 = I. We take the flux into the infected compartment to be g5 (t) = 3SI. There is
no Markovian removal process from the infected compartment, so that ws(t) = 0, and,
using (2), ©(t,0) = 1. In the fractional SIS model we are considering an anomalous
resusceptibility, we define g = o and 7, ® = v. This yields the governing evolution
equation for the infected compartment,

dl
(63) i BST — v oD, (I).
Taking ¢; (t) = voD} (), w; = BS, and, as there is no non-Markovian removal
process, i.e., ®1(t) = 1, we can define the governing equation for the susceptible
compartment,
ds
(64) — = —BSI+ voD;~(I).

There are no vital dynamics in this model so that the total population is constant for
all time, and S(t) + I(t) = N, where N is the total population. Equations (63) and
(64), subject to the initial conditions S(0) = s¢ and I(0) = ig, define the complete
dynamics of the fractional SIS model. While we have constructed this model as an
epidemic model, the standard SIS model has been used for general applications such
as changing opinion dynamics [34] and it is feasible that the fractional SIS model
could be used in a similar way where the time spent in a state affects the probability
of switching states.
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4.3. A compartment model for in vivo dynamics of HIV. Many mathe-
matical models have been developed to study HIV infection and drug treatment in
vivo, and the response of the immune system to the infection. These models are typ-
ically concerned with modeling the population of CD4+ T cells, the primary target
of HIV, and the population of the virus itself [30].

Here we present a simplistic two-compartment model for the population dynamics
of the virus and infected CD4+ T-cells. We consider the case of combined antiretrovi-
ral therapy with 100% efficacy, meaning there will be no replenishment of the infected
T-cells from uninfected stock. We let I denote the number of infected CD4+ T cells
and V' the number of HIV virions. Virions from long-lived infected cells are typically
observed after treatment has begun [31]. To model this we will have a fractional death
of infected cells using (58) with py(t) = I(t) and p2(t) = V(t); see Figure 3.

8% oD} 1

oV
———————— 3 V |+

Fic. 3. Flux flow of fractional HIV model.

As no new infected cells are created, ¢; (¢) = 0 and the only flux into the infected
compartment occurs as the initial conditions, we assume there is no Markovian re-
moval process of infected cells hence, wy(t) = 0. We take a; = o and 7y = 1/§;. This
gives us the governing equation for infected cells,

I .
(63) L

subject to the initial conditions I(0) = i9. Upon the death of an infected cell,
virions are released. This occurs through a burst event and we will assume that
on average N virions are created from each infected cell death. As such we take
¢ (t) = N&% oD}~ I, and assuming no long lived virions, we will only consider a
Markovian death rate of virions. Hence, wy(t) = dy, i.e., the governing evolution
equation for the number of virions is

dVv

(66) a

= No¢ oD, T -6V,

subject to the initial conditions V' (0) = V.
The well-known solution [32] of (65) is

(67) I(t) = InEa (—(0rt)”) .

Substituting (67) into (66) we can then use an integrating factor method to solve for
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V()

V(t) = 6_5vtI()N ([1 — eévtEa}l (—(5[t)a)] + 5\//0 eésta,l (—((518)“) ds)
(68) + Voe vt

4.4. A compartment model for chromium clearance in mice. A frac-
tional order compartment model can be used to model the clearance of chromium in
mice. When chromium enters the body a variety of processes may cause it to become
trapped. This includes chemical reactions and the physical trapping of chromium
within red blood cells [23]. We can use (47) to model the whole-body clearance of
chromium in mice. In this model we consider a single compartment model which
represents the concentration of chromium remaining in the cell; see Figure 4.

Fic. 4. Flux flow of chromium clearance.

In this example, p = ¢ and we consider the only flux into the compartment to
occur as an initial dose, i.e., ig = ¢g and ¢ (¢) = 0. We assume that there are no
Markovian removal processes, hence w(t) = 0 which yields the equation

de — —«
(69) & oDl o),
where ¢(0) = ¢o.
We can solve (69), as we did in (65), to give us the solution for the chromium

content in the mouse body over time, hence

(70) o(t) = coBu (- C)a) .

We compare this model to the experiment by Bryson and Goodall [8], in which the
whole-body chromium clearance of mice is observed over time. In this experiment, a
high dose of Cr(VI), as potassium dichromate, is injected into a cohort of mice at time
t = 0. Mice were sacrificed at three, seven, and twenty one days after the initial dose
and the total whole body chromium concentration was measured. The experimental
results reveal that whole-body clearance of chromium from mice is observed to be
rapid during the first week, with 31% of the initial dose remaining after three days
and 16% after seven days. Clearance then slows dramatically, at 21 days 7.5% of the
initial dose remains [8]. Using a least squares fit, we found the best parameters for
the Mittag-Leffler solution in (70) to be o« = 0.71 and 7 = 1.60. We compare this
fit to the solution of a standard constant-decay ODE model for which the solution is
an exponential function, ¢(t) = ¢yexp(—t/7), i.e., « = 1. Plots of the solutions are
shown in Figure 5. The Mittag—LefHler solution shows excellent agreement with the
experimental data.
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Percent Initial Cr(VI) Dosage Remaining

t(days)

F1G. 5. Percentage of initial chromium dose remaining in mice after a time (dots), the ODE
single compartment prediction (dashed), and fractional order single compartment prediction (full).

5. Conclusion. We have derived the governing evolution equations for compart-
ment model dynamics from the stochastic process of particles undergoing a continuous
time random walk. The resulting dynamics are represented by a coupled set of master
equations, (58), derived through sections 2 and 3. Under a natural, power law, the
choice of waiting time probabilities of these master equations become coupled ODEs
with fractional dynamics, as demonstrated in section 2.3.

The use of fractional derivatives in compartment models has attracted increasing
levels of interest in recent years. It is easy to construct fractional order compartment
models by including fractional derivatives in an ad hoc manner, e.g., simply replacing
integer order derivatives with fractional order derivatives. The approach for devel-
oping fractional order compartment models in this paper starts by considering an
underlying stochastic process and fractional order evolution equations are obtained
systematically by considering power law distributed waiting times in compartments.
The ad hoc inclusion of fractional derivatives in compartment models can result in
equations that are unphysical; they may violate conservation of mass. In (58) we ob-
serve an entanglement of the Markovian removal waiting times in the non-Markovian
removal processes. This ensures a conservation of probability or mass between the
local operators and the nonlocal fractional derivative operator. Furthermore, in a
given physical system, it is to be expected that only some reactions will experience
trapping or power-law waiting time. Our derivation accommodates this.

Finally, we have provided some simple examples of fractional order multicom-
partment models whose governing evolution equations have been obtained using the
methods of this paper.
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