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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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STUDY OF A NEW ASYMPTOTIC PRESERVING SCHEME FOR
THE EULER SYSTEM IN THE LOW MACH NUMBER LIMIT

GIACOMO DIMARCO∗, RAPHAËL LOUBÈRE† AND MARIE-HÉLÈNE VIGNAL‡

Abstract. This article deals with the discretization of the compressible Euler system for all
Mach numbers regimes. For highly subsonic flows, since acoustic waves are very fast compared to
the velocity of the fluid, the gas can be considered as incompressible. From the numerical point of
view, when the Mach number tends to zero, the classical Godunov type schemes present two main
drawbacks: they lose consistency and they suffer of severe numerical constraints for stability to be
guaranteed since the time step must follow the acoustic waves speed. In this work, we propose
and analyze a new unconditionally stable an consistent scheme for all Mach number flows, from
compressible to incompressible regimes, stability being only related to the flow speed. A stability
analysis and several one and two dimensional simulations confirm that the proposed method possesses
the sought characteristics.

Keywords: Low Mach number limit, Asymptotic preserving schemes, Euler sys-
tem, stability analysis.

1. Introduction. Almost all fluids can be said to be compressible. However,
there are many situations in which the changes in density are so small to be considered
negligible. We refer to these situations saying that the fluid is in an incompressible
regime. From the mathematical point of view, the difference between compressible and
incompressible situations is that, in the second case, the equation for the conservation
of mass is replaced by the constraint that the divergence of the velocity should be
zero. This is due to the fact that when the Mach number tends to zero, the pressure
waves can be considered to travel at infinite speed. From the theoretical point of view,
researchers try to fill the gap between those two different descriptions by determining
in which sense compressible equations tend to incompressible ones [2, 20, 21, 22, 33].
In this article we are interested in the numerical solution of the Euler system when
used to describe fluid flows where the Mach number strongly varies. This causes the
gas to pass from compressible to almost incompressible situations and consequently it
causes most of the numerical methods build for solving compressible Euler equations
to fail. In fact, when the Mach number tends to zero, it is well known that classical
Godunov type schemes do not work anymore. Indeed, they lose consistency in the
incompressible limit. This means that when close to the limit, the accuracy of theses
schemes is not sufficient to describe the flow. Many efforts have been done in the
recent past in order to correct this main drawback of Godunov schemes, for instance
by using preconditioning methods [34] or by splitting and correcting the pressure
on the collocated meshes [5], [9, 10], [12], [13, 14, 30], [15], [23, 24], [26, 27, 28], or
instead by using staggered grids like in the famous MAC scheme, see for instance [3],
[16], [17], [18], [19], [31]. Unfortunately, even if these approaches permit to bypass
the consistency problem of Godunov methods, they all need to resolve the scale of
the acoustic waves in the fluid in order to remain stable. This means that they
suffer from a restrictive CFL (Courant-Frierichs-Levy) condition which is inversely
proportional to the Mach number value. In this work, we derive a method which
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is able to overcome both drawbacks of standard schemes: the lack of consistency in
the limit and the strong stability requirements for small Mach numbers. For sake
of clarity, we start considering the isentropic/isothermal gas dynamics case and we
extend the results to the case of the full Euler system. The method derived and studied
in this work belongs to the class of schemes called asymptotic preserving (AP). Such
type of schemes have been developed in [4] and in [6, 8] for the specific problem
related to the compressible-incompressible passage. However, in [4] the method is
based on a Lagrange projection method and on a splitting procedure that allows to
decouple the acoustic and the transport phenomenons. While in [8, 6], the authors
split the pressure through the introduction of a numerical parameter which must be
tuned depending on the problem in order for the scheme to work. Here, we use an
alternative approach. Following pioneer works of [7] and of [6, 8], we propose a
discretization based on an explicit/implicit methodology of the compressible Euler
equations and a Godunov type scheme through the use of a simple Rusanov solver
(see [11], [32]). Thanks to a stability analysis on the linearized isentropic system, we
show how the numerical viscosity must be chosen in order to have a method which is
consistent with the incompressible limit and stable for the chosen semi-discretization
in time. Even if the method proposed in this work is only first order accurate in time
and space, the proved result paves the way to high order accurate schemes both in
time and space through the use of similar explicit/implicit time discretizations and
of high order polynomial reconstructions for the space derivatives which employ the
same numerical diffusion needed to assure the stability of the method proposed here.
We show with several numerical tests in one and two dimensions that our scheme
behaves as expected for different regimes ranging from very low to high Mach number
flows. The last part of the paper is sacred to the extension of the scheme proposed for
the isentropic/isothermal case to the full Euler equations. Numerical evidences show
that the approach is fruitful and the scheme performs well on all speed flows.

The article is organized as follows. In Section 2, we present the isentropic/ isother-
mal system of Euler equations and its low Mach number limit. Then, in Section 3,
we introduce a classical explicit semi-discretization in time and our new asymptotic
preserving scheme. We perform in Section 4 a stability analysis on the linearized sys-
tem around a constant solution. This analysis shows how the viscosity of the scheme
must be chosen in order to ensure its uniform stability in the low Mach number limit.
We present the full discretization in Section 5 and the numerical results in Section 6.
Several test problems which prove the accuracy and the strong efficiency of our new
method are discussed in this part. Finally, in Section 7, we extend our method to
the case of the full Euler system and we test this new method on different problems.
This extension is not straightforward due to non linear coupling between equations.
A concluding Section ends the paper.

2. The continuous isentropic/isothermal model and its low Mach num-
ber limit. We start our discussion by considering an isentropic or isothermal flow in
a bounded polygonal (or polyhedral) domain Ω ∈ Rd, d = 1, 2 or 3. The extension
to the full Euler system will be presented in Section 7. We denote by x ∈ Ω the
space variable and by t ≥ 0 the time. Following an usual rescaling and change of vari-
ables [21, 25], the isentropic/isothermal Euler system can be recast in a quasilinear
hyperbolic system depending on the squared Mach number ε as

∂tρ+∇ · (ρU) = 0, (2.1a)

∂t(ρU) +∇ · (ρU ⊗ U) +
1

ε
∇p(ρ) = 0, (2.1b)
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where ρ = ρ(t, x) ∈ [0,+∞[ is the density of the fluid, U = U(t, x) ∈ Rd its velocity
and p(ρ) = ργ the pressure with γ = 1 for isothermal fluids and γ > 1 for isentropic
ones. The above system is supplemented by initial and boundary conditions as for
instance

U(t, x) · ν(x) = 0, for all x ∈ ∂Ω and t > 0, (2.2a)

(ρ, U)(0, x) = (ρ0(x), U0(x)), for all x ∈ Ω, (2.2b)

where ν denotes the unit normal to the boundary ∂Ω, outward to Ω. We suppose
that the flow to be subsonic. This means that only one boundary condition is needed
at each point of the boundary. As observed in [21] well prepared or equivalently
consistent initial data are necessary for system (2.1). Thus, we assume that

ρ0(x) = ρ0 + ε ρ̃0(x) ≥ 0, U0(x) = U0(x) + ε Ũ0(x), ∇ · U0(x) = 0, (2.3)

where we stress that ρ0 > 0 is a constant. Solutions to the isentropic/isothermal Euler
system are known to exist for time intervals independent of the small parameter
ε. For this problem, the low-Mach number limit is also proved rigorously to exist
[1, 21, 22, 25, 33]. In the next Section, we recall the formal low-Mach number limit
ε→ 0 which will be used in the sequel.

2.1. Low-Mach number limit for the isentropic/isothermal Euler sys-
tem. When ε → 0, the momentum equation (2.1b), yields ∇ρ(t, x) = 0 and so
ρ(t, x) = ρ(t), for all t ≥ 0 and x ∈ Ω. Inserting, this result in the mass equa-
tion (2.1a), integrating on Ω and using the Green formula, gives

|Ω| ρ′(t) + ρ(t)

∫
∂Ω

U · ν = 0,

where |Ω| denotes the measure of Ω. Then, using the initial and boundary condi-
tions (2.2), (2.3) and assuming that

π1 = lim
ε→0

1

ε
(p(ρ)− p(ρ0)) < +∞,

we obtain, the incompressible isentropic Euler system

ρ = ρ0, (2.4a)

∇ · U = 0, (2.4b)

ρ0 ∂tU + ρ0∇ · (U ⊗ U) +∇π1 = 0, (2.4c)

with the well-prepared initial condition U(x, 0) = U0(x) such that ∇·U0(x) = 0. Note
that in system (2.4) the order one correction of the pressure, π1, is determined thanks
to the incompressibility constraint ∇ · U = 0. It is possible to derive an explicit
equation for this pressure subtracting the time derivative of the incompressibility
constraint to the divergence of the momentum equation. Performing these operations,
we obtain

−∆π1 = ρ0∇2 : (U ⊗ U), (2.5)

where ∇2 and : are respectively the tensor of second order derivatives and the con-
tracted product of two tensors. Observe that equations (2.4a), (2.5), (2.4c) are equiv-
alent to the incompressible isentropic Euler system (2.4), since (2.5) and (2.4c) yields
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∂t∇ · U = 0 and the well prepared initial condition gives the incompressibility con-
straint ∇ · U = 0.
We now derive the pressure wave equation which is responsible of the fast waves ap-
pearing in the Euler system. This is obtained by performing the same manipulations
on system (2.1) as those done on the limit system for determining the explicit equa-
tion for the pressure π1. Then, we take the divergence of the momentum equation
and we subtract it to the time derivative of the mass equation, this leads to

∂2
ttρ−

1

ε
∆p(ρ) = ∇2 : (ρU ⊗ U). (2.6)

It is important to note that an explicit discretization of this pressure wave equation
will be constrained by a stability condition of the form ∆t = O(

√
ε) ∆x. This means

that for being unconditionally stable with respect to the Mach number a scheme
should yield an implicit discretization of the previous pressure wave equation.

3. Classical and AP semi-discretizations for the isentropic system. In
the previous Section, we have seen that the low Mach number limit yields numerical
difficulties for the time discretization since the pressure waves are very fast com-
pared to the scale of the fluid motion. This may lead to think that, in order to con-
struct a scheme which is consistent with the incompressible limit and which avoids
too severe time step restrictions to remain stable, one needs to focus on the time
semi-discretization of (2.1). We will see in the next section that, indeed, this is not
sufficient, because the way in which the space derivatives are discretized is crucial
in order to get stability and consistency with the limit equations. In particular, we
will see that the numerical viscosity must be properly chosen in order to guarantee
stability.

3.1. Classical explicit Euler scheme. A standard way to discretize in time
the Euler system relies on the use of explicit time integrator schemes. Among all the
different possibilities, the first and simpler first order accurate scheme reads

ρn+1 − ρn

∆tn
+∇ · (ρU)n = 0, (3.1a)

(ρU)n+1 − (ρU)n

∆tn
+∇ · (ρU ⊗ U)n +

1

ε
∇p(ρn) = 0. (3.1b)

The stability of such discretization, which is the less restrictive among all the possible
explicit time discretizations and which will be frequently used next, is ensured under
a CFL condition of type

∆tn ≤ ∆x

|ui ±
√
p′(ρ)/ε|

= O(
√
ε) −→

ε→0
0, (3.2)

where ∆x measures the size of the space mesh. This leads to obvious stability issues
because the time step ∆tn becomes tremendously small in the low-Mach number limit.
Moreover, in this limit, the consistency of the discretization is not ensured because
system (3.1) is reduced to ∇p(ρn) = 0, which is nothing but a constraint on the
initial condition which may or may not be assured. Instead one would like to relate
the consistency of the scheme to the model and not on the initial datum. Let us now
recover the discretized pressure wave equation we get from the explicit first order time
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discretization. Taking the difference between equation (3.1a) at step n+ 2 and n+ 1,
we get

ρn+2 − ρn+1

∆tn+1
− ρn+1 − ρn

∆tn
+∇ · (ρU)n+1 −∇ · (ρU)n = 0.

Now, subtracting the divergence of equation (3.1b), yields

ρn+2 − ρn+1

∆tn+1
− ρn+1 − ρn

∆tn
− ∆tn

ε
∆p(ρn) = ∆tn∇2 : (ρU ⊗ U)n,

which is indeed an explicit discretization of the pressure equation (2.6), constrained
by a time step of order

√
ε for stability to be assured.

3.2. A new asymptotic preserving scheme for the isentropic/isothermal
Euler equations. The new proposed scheme is based on an explicit/implicit time
discretization strategy like in [7]. It reads

ρn+1 − ρn

∆tn
+∇ · (ρU)n+1 = 0 , (3.3a)

(ρU)n+1 − (ρU)n

∆tn
+∇ · (ρU ⊗ U)n +

1

ε
∇p(ρn+1) = 0 , (3.3b)

where the difference with respect to the full explicit scheme is that now the pressure
term and the density flux are taken as implicit. Let us note that in [8] a similar
algorithm is proposed. However, in this previous work, the term 1/ε∇p(ρn+1) is
substituted by α∇p(ρn) + (1/ε− α)∇p(ρn+1) where α > 0 is a numerical parameter
which must be correctly fixed to ensure stability and which depends on the considered
problem. Here, instead we choose α = 0. We will see that this is enough to ensure
stability and preservation of the asymptotic state provided the numerical viscosity of
the scheme to be properly chosen. We immediately see that this scheme is consistent
for all ε ≥ 0 with systems (2.1) and(2.4). Indeed, the limit ε→ 0 formally gives

∇p(ρn+1) = 0, ⇒ ∇ρn+1 = 0,

which means that the scheme projects the solution over the asymptotic incompressible
limit even if the initial datum is not consistent with this limit. In fact, if we operate
as in the continuous case, integrating the mass equation on the domain and using the
boundary condition Un+1 · ν = 0 on ∂Ω, we obtain ρn+1 = ρn and using the initial
condition we get ρn+1 = ρ0, for all n ≥ 0. Inserting this result in the mass equation, we
recover the incompressibility constraint ∇ · Un+1 = 0 and then, a semi-discretization
in time of the limit system (2.4)

ρn+1 = ρ0,

∇ · Un+1 = 0,

ρ0
Un+1 − Un

∆tn
+ ρ0∇ · (U ⊗ U)n +∇πn+1

1 = 0,

where πn+1
1 = limε→0

1
ε

(
p(ρn+1)− p(ρ0)

)
. Moreover, taking the discrete time deriva-

tive of the mass equation (i.e. the difference between equations (3.1a) at step n + 1
and n) and subtracting the divergence of the momentum equation, we obtain the
following discretization for the pressure wave equation

ρn+1 − ρn

∆tn
− ρn − ρn−1

∆tn−1
− ∆tn

ε
∆p(ρn+1) = ∆tn∇2 : (ρU ⊗ U)n,
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which is an unconstrained implicit discretization of the pressure wave equation (2.6).
A key observation is that the scheme even if it looks fully implicit, it can be solved
partly explicitly by decoupling the mass and the momentum equations. To this aim,
taking the divergence of the momentum equation (3.3b), we get

∇ · (ρU)n+1 = ∇ · (ρU)n −∆tn ∇2 : (ρU ⊗ U)n − ∆tn

ε
∆p(ρn+1),

which further substituted into (3.3a) gives

ρn+1 − ρn

∆tn
+∇ · (ρU)n −∆tn ∇2 : (ρU ⊗ U)n − ∆tn

ε
∆p(ρn+1) = 0 , (3.4a)

(ρU)n+1 − (ρU)n

∆tn
+∇ · (ρU ⊗ U)n +

1

ε
∇p(ρn+1) = 0 . (3.4b)

Thus, one can start by solving the mass equation (3.4a) which is a non linear elliptic
equation determining the density at step tn+1. Then, the momentum equation (3.4b)
provides the momentum at time tn+1 explicitly. This is of great importance when
dealing with multidimensional equations since the computational cost is strongly re-
duced compared to a standard fully implicit discretization.

4. Stability analysis for the linearized system. In this Section, we show
that for the low Mach limit, it is not sufficient to choose a good time discretization to
get a stable scheme. Indeed space and time discretizations are related and the choice
of the space discretization is crucial in order to ensure uniform stability. We present
a stability analysis for the scheme (3.3) applied to the one dimensional linearized
isentropic system. In particular, we prove L2 and L∞ estimates depending on the
choice of the viscosity coefficient of the implicit part of the flux in the momentum
equation.
Let us start by rewriting system (2.1) on Ω = (0, 1), denoting q = ρU ∈ R and
linearizing the system around the constant state (ρ0, q0 = ρ0 U0) ∈ (0,+∞) × R?.
This leads to

∂tW +Aε ∂xW = 0,

where W = (ρ, q), and Aε = Ae +Aεi , with Ae and Aεi being the explicit and implicit
sub-matrices related to the flux function. Denoting by c0 =

√
p′(ρ0) the sound speed

(for ε = 1), these matrices are given by

Ae =

(
0 0
−U2

0 2U0

)
, and Aεi =

(
0 1

c20/ε 0

)
.

The above system is supplemented by periodic boundary conditions and initial con-
ditions which read {

ρ(t = 0, x) = ρ0 + ε ρ̃0(x),
q(t = 0, x) = q0 +

√
ε q̃0(x).

In the following space and time meshes are chosen uniform for clarity but a more
general choice will not be restrictive for our analysis. Thus, given ∆t and ∆x, the
finite volume discretization of the linearized system is written as

Wn+1
j −Wn

j

∆t
+
Fe(Wn

j ,W
n
j+1)−Fe(Wn

j−1,W
n
j )

∆x
+
Fi(Wn+1

j ,Wn+1
j+1 )−Fi(Wn+1

j−1 ,W
n+1
j )

∆x
=0

(4.1)
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while the initial conditions are W 0
j =

(
ρ0 + ε ρ̃0,j

q0 + ε q̃0,j

)
. In the following the fluxes

are both discretized, the explicit and implicit part separately, with the modified Lax-
Friedrichs flux. A similar analysis with the Godunov solver will give analogous results.
The fluxes are then

Fe(Wn
j ,W

n
j+1) = Ae

Wn
j +Wn

j+1

2
−De

(
Wn
j+1 −Wn

j

)
, (4.2a)

Fi(Wn+1
j ,Wn+1

j+1 ) = Aεi
Wn+1
j +Wn+1

j+1

2
−Dε

i

(
Wn+1
j+1 −W

n+1
j

)
, (4.2b)

where De ≥ 0 and Dε
i ≥ 0 are positive constants which measure the numerical viscos-

ity and which values will be specified later. Assuming periodic boundary conditions,
we also set

Wn
0 = Wn

L , Wn
L+1 = Wn

L , for all n ≥ 0. (4.3)

We are now ready to prove the following result
Theorem 4.1. Let ε > 0 and (ρ0, U0) ∈]0,+∞[×R? such that U0/(c0/

√
ε) ∈

[−1, 1] where c0 =
√
p′(ρ0) (linearization around a subsonic state). If the time step

satisfies

∆t ≤ ∆x

2 |U0|
. (4.4)

and De = |U0|, then scheme (4.1)-(4.3) is
1. L2 stable, if the viscosity of the implicit part is fixed to Dε

i = 0. This means
that the following estimate holds

L∑
j=1

∆x |αn+1
±,j |

2≤ 1

2

L∑
j=1

∆x |αn0,j |2+
1

2

L∑
j=1

∆x |αn2,j |2, for all n ≥ 0. (4.5)

2. L∞ stable, if the viscosity of the implicit part is fixed to Dε
i = c0

2
√
ε
. This

means that the following estimate holds
L

max
j=1
|αn+1
±,j |≤

1

2

L
max
k=1
|αn0,k|+

1

2

L
max
k=1
|αn2,k|, for all n ≥ 0. (4.6)

Where (αn+1
−,j , α

n+1
+,j ) are the coordinates in the right eigenvector basis of Aεi while

(αn+1
0,j , α

n+1
2,j ) are the coordinates in the right eigenvector basis of Ae of Wn+1

j =

(ρn+1
j , qn+1

j ) and L the number of space cells.

Proof: We first need to introduce the following quantities: λε± = ± c0/
√
ε the eigen-

values of Aεi , r
ε
± = (1,±c0/

√
ε), lε± = (±c0/

√
ε, 1) the associated right and left eigen-

vectors, αn+1
−,j = ρn+1

j /2−
√
ε qn+1

j /(2 c0) and αn+1
+,j = ρn+1

j /2+
√
ε qn+1

j /(2 c0) the co-
ordinates in the right eigenvectors basis. Similarly we introduce, λ0 = 0 and λ2 = 2U0

the eigenvalues of Ae, r0 = µ(2, U0) and r2 = (0, U0) with µ a positive constant defined
next the associated right eigenvectors and αn0,j = ρnj /(2µ) and αn2,j = qnj −ρnj U0/2 the
coordinates in the right eigenvector basis (r0, r2).
The scheme (4.1), (4.2) can be rewritten separating the explicit and the implicit terms
as Zn+1

j = Bnj , where

Zn+1
j = Wn+1

j + ∆t Aεi
Wn+1
j+1 −W

n+1
j−1

2 ∆x
− Dε

i ∆t

∆x

(
Wn+1
j+1 − 2Wn+1

j +Wn+1
j−1

)
,

and
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Bnj = Wn
j −∆t Ae

Wn
j+1 −Wn

j−1

2 ∆x
+
De ∆t

∆x

(
Wn
j+1 − 2Wn

j +Wn
j−1

)
.

Passing now to the right eigenvectors basis (rε−, r+ε) for the implicit part leads to

Zn+1
j =[
αn+1
−,j

(
1 +

2Dε
i ∆t

∆x

)
− ∆t

∆x
αn+1
−,j+1

(
c0

2
√
ε

+Dε
i

)
+

∆t

∆x
αn+1
−,j−1

(
c0

2
√
ε
−Dε

i

)]
rε−

+

[
αn+1

+,j

(
1 +

2Dε
i∆t

∆x

)
+

∆t

∆x
αn+1

+,j+1

(
c0

2
√
ε
−Dε

i

)
− ∆t

∆x
αn+1

+,j−1

(
c0

2
√
ε

+Dε
i

)]
rε+,

while choosing Dε
i = 0 and summing over the cells, leads to∑L

j=1 ∆x
Zn+1

j ·lε−
rε−·lε−

αn+1
−,j =∑L

j=1 ∆x |αn+1
−,j |2+ c0 ∆t

2
√
ε∆x

(
−αn+1
−,L+1 α

n+1
−,L + αn+1

−,0 α
n+1
−,1

)
=
∑L
j=1 ∆x |αn+1

−,j |2,

since the boundary conditions are periodic and αn+1
−,L+1 α

n+1
−,L = αn+1

−,1 α
n+1
−,0 . A similar

inequality holds also true for |αn+1
+,j |. Now, performing the same passage to the right

eigenvalues basis for Bnj gives

Bnj =

[
αn0,j

(
1− 2De ∆t

∆x

)
+
De ∆t

∆x
αn0,j+1 +

De ∆t

∆x
αn0,j−1

]
r0+[

αn2,j

(
1− 2De ∆t

∆x

)
+

∆t

2 ∆x
αn2,j+1 (2De − 2U0) +

∆t

2 ∆x
αn2,j−1 (2De + 2U0)

]
r2.

Observe that for each term to be a convex combination it is enough to assure that

1− 2De ∆t

∆x
≥ 0, and 2De ≥ 2 |U0|.

Choosing finally De = |U0|, leads to condition (4.4) while summing over the cells
Zn+1
j = Bnj and using the Cauchy-Schwarz and the Young inequalities, we obtain

L∑
j=1

∆x |αn+1
±,j |

2≤ 1

2

L∑
j=1

∆x |αn+1
±,j |

2

(∣∣∣∣ r0 · lε±
rε± · lε±

∣∣∣∣+

∣∣∣∣ r2 · lε±
rε± · lε±

∣∣∣∣)+
1

2

∣∣∣∣ r0 · lε±
rε± · lε±

∣∣∣∣ L∑
j=1

∆x |αn0,j |2
(

1− 2 |U0|∆t
∆x

)
+

L+1∑
j=2

∆x |αn0,j |2
|U0|∆t

∆x
+

L−1∑
j=0

∆x |αn0,j |2
|U0|∆t

∆x


+

1

2

∣∣∣∣ r2 · lε±
rε± · lε±

∣∣∣∣
 L∑
j=1

∆x |αn2,j |2
(

1− 2 |U0|∆t
∆x

)
+

L+1∑
j=2

∆x |αn2,j |2 (|U0|−U0) +

L−1∑
j=0

∆x |αn2,j |2 (|U0|+U0)

 .
Finally, since the regime is subsonic and thus U0/(c0/

√
ε) ∈ [−1, 1] we have

r0 · lε±
rε± · lε±

= µ

(
1± U0

2 c0
√
ε

)
∈ [µ/2, 3µ/2],

r2 · lε±
rε± · lε±

= ± U0

2 c0
√
ε
∈ [−1/2, 1/2]. (4.7)
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which choosing µ = 1/3 leads to∣∣∣∣ r0 · lε±
rε± · lε±

∣∣∣∣+

∣∣∣∣ r2 · lε±
rε± · lε±

∣∣∣∣ ≤ 1.

Using, in conclusion, the periodic boundary conditions we obtain (4.5) which proves
the first part of Theorem.
Now, let us turn to the second part of the theorem, setting Dε

i = c0/(2
√
ε) gives

Zn+1
j =

[
αn+1
−,j +

c0 ∆t√
ε∆x

(
αn+1
−,j − α

n+1
−,j+1

)]
rε−

+

[
αn+1

+,j +
c0 ∆t√
ε∆x

(
αn+1

+,j − α
n+1
+,j−1

)]
rε+.

Denoting by j0 ∈ {1, · · · , L} the integer such that |αn+1
−,j0 |= maxLj=1|α

n+1
−,j |= maxL+1

j=0

|αn+1
−,j |, since αn+1

−,j0 and αn+1
−,j0−α

n+1
−,j0+1 have the same sign, we get for all j ∈ {1, · · · , L}

|αn+1
−,j |≤ |α

n+1
−,j0 |≤

∣∣∣∣αn+1
−,j0 +

c0 ∆t√
ε∆x

(
αn+1
−,j0 − α

n+1
−,j0+1

)∣∣∣∣ =
|Zn+1
j0
· l−|

|r− · l−|
,

where, as before, a similar inequality holds for |αn+1
+,j |. Using the expression for Bnj ,

Zn+1
j = Bnj and (4.7), the previous inequalities and remarking that

|Bnj · l0|
|l0 · r0|

≤ L+1
max
k=0
|αn0,k|=

L
max
k=1
|αn0,k|,

|Bnj · l2|
|l2 · r2|

≤ L
max
k=1
|αn2,k|,

we get (4.6) which concludes the proof.

5. The full Cartesian discretization for the non linear two-dimensional
isentropic Euler system. In this Section, we focus on the space discretization of
the two-dimensional system (2.1) discretized in time by scheme (3.3). This scheme
can be recast in the uncoupled system (3.4) which has clearly advantages in terms
of computational cost. This leads to consider two alternatives for the full space-
time discretization both permitting to maintain the decoupled structure of the semi-
discrete scheme proposed. The first possibility is to discretize the space derivative in
equations (3.3) and successively reformulate the system as done in the semi-discrete
case. Alternatively, we can directly discretize equations (3.4) which naturally gives
an uncoupled fully discretized scheme. Even if the first choice seems more natural,
it typically yields to space discretizations with larger stencils being the full scheme
obtained by two consecutive applications of the discrete Lax-Friedrichs flux functions.
Instead, the second choice permits to get less diffusive schemes since the order two
terms ∇2 : and ∆ can be directly discretized by using compact stencils. In this work,
we pursue the second possibility. To this aim, we rewrite system (3.4) as

Wn+1 −Wn

∆tn
+∇·Fe(Wn)+∇·Fi(Wn+1/2)+

 ∆p(ρ)n+1

ε
+∇2 : (ρU ⊗ U)n

0
0

 = 0,

where W = (ρ, ρ u, ρ v), Fe(W ) = (0, ρ U ⊗U), Fi(W
n+1/2) = ((ρU)n, pn+1/ε Id) and

U = (u, v). We consider now a rectangular domain Ω and we define by (x, y) ∈ Ω
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the components of the space variables. We discretize on a non uniform Cartesian
mesh with Lx and Ly the number of cells in the two spatial directions. For all
t ≥ 0 the unknown W (x, t) is approximated by the piecewise constant approximation
Wn
k,j = (ρnk,j , (ρ u)nk,j , (ρ v)nk,j) with mesh steps respectively ∆xk = xk+1/2 − xk−1/2

and ∆yj = yj+1/2 − yj−1/2 with k = 1, · · ·Lx and j = 1, · · ·Ly. In this setting, the
full discretized scheme reads

∆xk ∆yj
Wn+1
k,j −Wn

k,j

∆tn
+ (Fe)nk+1/2,j − (Fe)nk−1/2,j + (Fe)nk,j+1/2 − (Fe)nk,j−1/2

+(Fi)n+1/2
k+1/2,j − (Fi)n+1/2

k−1/2,j + (Fi)n+1/2
k,j+1/2 − (Fi)n+1/2

k,j−1/2

−∆tn ∆xk ∆yj

(
(∆p(ρ))n+1

k,j

ε
+ (∇2 : (ρU ⊗ U))nk,j , 0, 0

)
= 0,

for all k = 1, · · · , Lx and all j = 1, · · · , Ly. In the above equation, the explicit fluxes
considered are the Rusanov or modified Lax-Friedrichs solvers. They read

(Fe)nk+1/2,j = ∆yj

(
Fe(W

n
k,j) + Fe(W

n
k+1,j)

2
− (De)

n
k+1/2,j

(
Wn
k+1,j −Wn

k,j

))
,

where (De)
n
k+1/2,j is the viscosity coefficient defined thanks to the eigenvalues of the

Jacobian matrix associated to the explicit flux Fe

(De)
n
k+1/2,j =


max(|unk+1,j |, |unk,j |), for the Rusanov solver,

max
k=1,···,Lx
j=1,···,Ly

|unk,j |, for the modified Lax-Friedrichs solver.

Similarly in the y direction we have

(Fe)nk,j+1/2 = ∆xk

(
Fe(W

n
k,j) + Fe(W

n
k,j+1)

2
− (De)

n
k,j+1/2

(
Wn
k,j+1 −Wn

k,j

))
,

with

(De)
n
k,j+1/2 =


max(|vnk,j+1|, |vnk,j |), for the Rusanov solver,

max
k=1,···,Lx
j=1,···,Ly

|vnk,j |, for the modified Lax-Friedrichs solver.

The implicit fluxes are discretized by the same type of numerical fluxes used for the
explicit part where, however, the choice of the numerical diffusion is done accordingly
to the results of the previous section. They read, in the x direction

(Fi)n+1/2
k+1/2,j = ∆yj

(
Fi(W

n+1/2
k,j ) + Fi(W

n+1/2
k+1,j )

2
− (Di)

n
k+1/2,j

(
Wn+1
k+1,j −W

n+1
k,j

))
,

where the viscosity coefficient can be either zero (Di)
n
k+1/2,j = 0 (we expect in this

case an L2 stable scheme) or defined through the use of the eigenvalues of the Jacobian
matrix associated to the implicit flux Fi (we expect in this case an L∞ stable scheme)

(Di)
n
k+1/2,j =

1

2


max(

√
p′(ρnk+1,j)/ε,

√
p′(ρnk,j)/ε), for the Rusanov solver,

max
k=1,···,Lx
j=1,···,Ly

√
p′(ρnk,j)/ε, for the modified L-F solver.
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Similarly, in the y direction

(Fi)n+1/2
k,j+1/2 = ∆xk

(
Fi(W

n+1/2
k,j ) + Fi(W

n+1/2
k,j+1 )

2
− (Di)

n
k,j+1/2

(
Wn+1
k,j+1 −W

n+1
k,j

))
,

with (Di)
n
k,j+1/2 = 0 or

(Di)
n
k,j+1/2 =

1

2


max(

√
p′(ρnk,j+1)/ε,

√
p′(ρnk,j)/ε), for the Rusanov solver,

max
k=1,···,Lx
j=1,···,Ly

√
p′(ρnk,j)/ε, for the modified L-F solver.

Finally, concerning the discretization of the elliptic operator for the pressure, we set

(∆p(ρ))n+1
k,j =

1

∆xk

(
p(ρn+1

k+1,j)− p(ρ
n+1
k,j )

∆xk+1/2
−
p(ρn+1

k,j )− p(ρn+1
k−1,j)

∆xk−1/2

)

+
1

∆yj

(
p(ρn+1

k,j+1)− p(ρn+1
k,j )

∆yj+1/2
−
p(ρn+1

k,j )− p(ρn+1
k,j−1)

∆yj−1/2

)
,

while the last operator is discretized by two consecutive applications of a central
difference scheme

(∇2 : (ρU ⊗ U))nk,j =
1

∆xk

(
(ρ u2)nk+1,j − (ρ u2)nk,j

∆xk+1/2
−

(ρ u2)nk,j − (ρ u2)nk−1,j

∆xk−1/12

)

+
1

∆xk ∆yj

(
(ρ u v)n+1

k+1,j+1 − (ρ u v)n+1
k+1,j−1

2
−

(ρ u v)n+1
k−1,j+1 − (ρ u v)n+1

k−1,j−1

2

)

+
1

∆yj

(
(ρ v2)nk,j+1 − (ρ v2)nk,j

∆yj+1/2
−

(ρ v2)nk,j − (ρ v2)nk,j−1

∆uj−1/12

)
,

where ∆xk+1/2 = (∆xk+1 + ∆xk)/2 for all k = 1, · · · , Lx − 1, ∆x1/2 = ∆x1/2 and
∆xLx+1/2 = ∆xLx/2. Similarly, ∆yj+1/2 = (∆yj+1 +∆yj)/2 for all j = 1, · · · , Ly−1,
∆y1/2 = ∆y1/2 and ∆yLx+1/2 = ∆yLy/2.

6. Numerical results. In this part, we present several numerical test cases
to illustrate the main features of the new method proposed, the differences and the
improvements with respect to classical explicit discretization schemes as the one dis-
cussed in (3.1). The explicit scheme employed for comparisons uses the same Rusanov
numerical flux of our AP method where, however, standard numerical viscosity de-
pending on the eigenvalues of the compressible Euler equation is used. We refer to
this method to as the classical scheme (CL). We test our new method against the CL
method on two one dimensional problems and on a two dimensional one. For every
test studied well prepared initial and boundary conditions are employed [8, 21]. The
analysis of numerical schemes for non well prepared initial data are postponed to a
future work. The CL and the AP, introduced in (3.3), schemes are run for differ-
ent choices of the Mach number ranging from compressible to incompressible flows.
Simulations in compressible regimes permits to observe the behavior of our scheme in
situations in which explicit schemes can be employed with acceptable time step sizes.
Simulations in incompressible regimes permits to observe the capability of our method
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to capture the limit solution without the burden of solving all micro-structures due
to the presence of fast waves in the fluid. For this last situation, we also study the
possibility for the AP scheme to retrieve the fast scale behavior when the time step
is artificially reduced. For all problems considered, we compare the numerical results,
the number of time steps needed to get the final solution and the evolution of the
time step in time for the CL and the AP schemes. This permits to extrapolate the
computational costs related to the two methods.

6.1. Riemann problem from Degond-Tang [8]. We consider the same case
test studied in [8]. The initial data are

ρ0(x) =


1 if x ∈ [0, 0.2]
1 + ε if x ∈]0.2, 0.3]
1 if x ∈]0.3, 0.7]
1− ε if x ∈]0.7, 0.8[
1 if x ∈ [0.8, 1]

(ρu)0(x) =


1− ε/2 if x ∈ [0, 0.2]
1 if x ∈]0.2, 0.3]
1 + ε/2 if x ∈]0.3, 0.7]
1 if x ∈]0.7, 0.8[
1− ε/2 if x ∈ [0.8, 1].

We choose an equation of state with γ = 2, which gives p(ρ) = ρ2 for the pressure.
The final time is fixed to Tf = 0.051 and 300 space cells are employed. In Figure 6.1,
top panels, we report the solutions for the density on the left and the momentum on
the right for the CL (red line) and the AP (blue line) schemes when the numerical
viscosity is fixed equal to zero for the implicit terms in AP, i.e. Di = 0. A reference
solution is also present which has been computed by the CL scheme with 3000 spatial
cells. We observe that our scheme is able to reproduce the same results of the CL
scheme with a slightly larger numerical diffusion due to its semi-implicit character.
In addition, we clearly see some small overshoots after the shock on the left part of
the domain (around x ' 0.14). These overshoots not only remain bounded but their
intensity diminishes in time. They are linked to the choice of Di = 0. This result is
expected since our stability result affirms that we can only assure L2 stability with
Di = 0 and not L∞ stability. Figure 6.1 bottom panels presents the results of the
same simulation where now the numerical diffusion of the implicit terms is not zero
anymore, instead it has been fixed proportional to the Mach number as demanded to
guarantee L∞ stability. As before, we report the results for the density on the left
and the momentum on the right. As expected, since the diffusion now is larger some
additional dissipation is observed in the AP scheme but the spurious overshoots have
completely disappeared, the scheme is L∞ stable. The price to pay in order to have
a scheme which assures a stronger stability results is that the momentum equation
requires the resolution of a linear system since the viscosity terms are implicit which
may become costly in higher spatial dimensions.

In Figure 6.1 are also reported the values of the time steps ∆tn for the the CL and
the AP schemes (with and without extra implicit dissipation). We observe that for
this relatively large Mach numbers, our scheme already demands smaller time steps
compared to explicit discretizations. On the other hand, the time steps restrictions
for the L2 and the L∞ schemes are almost the same. In Figure 6.2, we report the
behaviors of our scheme when the mesh is refined. In particular, we show simulation
results for 300, 900 and 1500 cells. We observe that the numerical solution does
converge towards the reference solution as expected.
We focus now on a low Mach regime. In Figure 6.3 are presented the results for the
two schemes, CL and AP, when a 300 cell mesh is employed. Blue line for the AP, red
line for CL, reference solution black line. The reference solution has been computed
by using the CL scheme with 3000 cells. On the left top panel the density is reported
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Fig. 6.1. Solution of the Riemann problem at t = 0.051 for 300 cells and ε = 0.99. Left panel
density ρ, middle panel momentum (ρu), right panel time steps ∆t as a function of time. Reference
solution in black line, classical explicit scheme CL in red and AP scheme in blue. Top panels:
AP scheme without extra implicit dissipation (Di = 0). Bottom panels: AP scheme with implicit
dissipation (Di 6= 0).
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Fig. 6.2. Solution of the Riemann problem at t = 0.051 for ε = 0.99. The number of cells
employed is 300 (red), 900 (blue) and 1500 (green). Left panel density ρ, right panel momentum
(ρu). Convergence for the L∞ stable AP scheme. Reference solution is in black line.

while on the top right panel the momentum. In this case, the Mach number is 10−4

which gives ε = 0.01. The asymptotic stable scheme projects the solution to the limit
incompressible solution faster than the explicit scheme. This is exactly the scope of
the method, we want to avoid to capture the micro-structures of the solution, instead
the goal is to capture the limit solution at reasonable costs. To this aim, we report
the size of time steps in the bottom panel of Figure 6.3. The time steps of the AP
scheme are around seventy time smaller than the ones required by an explicit method.
This shows that the AP scheme can employ time steps which are independent with
respect the small parameter ε while time steps of explicit schemes remain close to the
Mach number values. In order to prove that the AP scheme converges to the correct
solution we report in Figure 6.4 the same results as in Figure 6.3 but with a small
time step for the AP scheme. The AP scheme employs 604 time steps to capture
this new solution shown in the Figure while the CL scheme 684 time steps. From the
results we can conclude that the AP scheme is able to compute the correct rate of
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Fig. 6.3. Solution of the Riemann problem at t = 0.008 for ε = 0.01 and 300 cells for the AP
and CL schemes. Left panel density ρ, middle panel momentum (ρu), right panel time steps ∆t as
a function of time. Reference solution in black line, CL scheme red line and AP scheme blue line.

convergence to the limit solution if the time step is reduced and made closer to the
time step of the explicit method.
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Fig. 6.4. Solution of the Riemann problem at t = 0.008 for ε = 0.01 and 300 cells for the AP
and the CL schemes. Left panel density ρ, right panel momentum (ρu). Reference solution in black
line, CL red line and AP scheme blue line. The time step of the AP scheme is reduced to the order
of the time step of the explicit scheme.

We finally measure in table 6.1 the number of time steps and the CPU times needed
to reach the final time for different values of the Mach number, from compressible to
incompressible situations.

Mach #
# time steps Ratio CPU time Ratio
CL AP CL/AP CL AP CL/AP

3
0
0
c
e
ll
s

ε = 1 150 245 0.6 0.076s 0.12 s 0.63
ε = 0.9 51 94 0.5 0.066 s 0.0083 s 0.8
ε = 0.75 24 39 0.6 0.035 s 0.0060 s 0.58
ε = 0.5 18 20 0.9 0.031 s 0.0033 s 0.94
ε = 0.25 21 16 1.3 0.031 s 0.0025 s 1.2
ε = 10−1 28 14 2.0 0.039 s 0.0033 s 1.2
ε = 10−2 74 11 6.7 0.078 s 0.0057 s 1.4
ε = 10−3 220 10 22 0.085 s 0.0055 s 1.6
ε = 10−4 684 11 62 0.092 s 0.0054 s 1.7
ε = 10−5 2152 11 196 0.29 s 0.0051 s 5.7
ε = 10−6 6797 11 618 0.83 s 0.0027 s 30.7
ε = 10−7 21472 11 1952 2.58 s 0.0024 s 108
ε = 10−8 67688 10 6768 8.10 s 0.0026 s 311.5

Table 6.1
Number of time steps and CPU time needed for the CL and the AP schemes to reach t = 0.008

for the Riemann problem for different values of ε.

As expected, we observe that in the case of large ε the cost of our AP scheme
is more important that the classical one, even if the costs are still comparable. This
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is due to the time needed to invert the linear system which characterize the AP
scheme. However, when ε becomes small enough then the AP scheme only needs 11
cycles to get to the final time whereas the number of iterations for the CL scheme
increases indefinitely. The CPU time needed to update one AP cell in one time step
is about constant of the order 4.265× 10−6s whereas for the CL scheme is obviously
less expensive and of the order of 2.5× 10−7 with our implementation.

6.2. Time varying Mach number test. In this part we consider a Riemann
problem where the Mach number changes with time. In these cases, if one is interested
only to the main features described by the limit incompressible solution and not to
the fast scale dynamics which ends in the limit problem, the use of an Asymptotic
Preserving scheme is indicated since it permits to bypass the solution of the fast waves
without losing the asymptotic behaviors. In Figure 6.5, on the left panel, is shown
the value of ε(t) as a function of time in logarithmic scale. The schemes, CL and
AP, use both 600 spatial cells to furnish a solution. On the right panel is shown
the time steps needed by the two methods as a function of time in logarithmic scale.
As expected while the explicit scheme has a time step which follows the variation of
ε(t), the AP scheme is able to maintain a relative constant time step throughout the
simulation. The total number of time steps needed by our scheme is 163 while an
explicit method needs 24897 steps in order to remain stable. In Figure 6.6 we report
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Fig. 6.5. Riemann problem with time varying Mach number at t = 0.06 for 600 cells. Left
panel shows the value of ε(t) as a function of time. Right panel shows time steps as a function of
time. The scales are logarithmic. The number of time steps is 163 for the AP scheme and 24897
for the classical explicit scheme.

the density profiles for eight intermediate times for both schemes with embedded a
Figure showing the squared Mach number ε(t) with a vertical line showing the current
time of the plot. Up to time t = 0.05 the AP scheme still captures the main structures
of the solution but with additional dissipation (first two rows). However, we see that
a larger time step can be used compared to CL. When ε jumps to small values (third
row) then the AP scheme bypasses the solution of the small scale dynamics and starts
to project the solution to the limit incompressible solution but still it remains able
to capture the main phenomena. Finally, when ε decreases to 0, our scheme captures
the limit solution which is 1, while the CL scheme still tries to solve the small scale
paying the price of extremely small time steps.

6.3. Double rarefaction test problem. In this test we measure the errors
produced by our scheme. To this aim, we have computed an exact solution of the
isentropic Euler equations composed by two rarefaction waves emanating from the
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Fig. 6.6. Time varying Mach number test. CL (red line) and AP (blue line), 600 cells. Snap-
shots of the density at different times. From left to right: eight different intermediate times corre-
sponding to different ε(t) values (straight vertical green line on the embedded panels).

following initial condition

ρ0(x) =

{
1 + ε if x ∈ [0, 0.5],
1 if x ∈]0.5, 1.0],

(ρu)0(x) =

{
(1 + ε)(1−

√
ε) if x ∈ [0, 0.5],

1 +
√
ε if x ∈]0.5, 1.0].

We choose an equation of state with γ = 2, which gives p(ρ) = ρ2 for the pressure. The
structure of the exact solution is constituted of left and right moving rarefaction waves
separated by a constant state. We choose three different values for the squared Mach
number, i.e. ε = 0.99, 0.1, 0.001. For these three values we compute the solution up to
final times 0.1, 0.05 and 0.007 respectively for the AP and the CL schemes employing
1000 spatial cells on the domain (0, 1). The results are provided in Figure 6.7 against
the exact solution. The ratio between the number of cycles needed by the two schemes
are respectively 984/798, 579/264, 641/30 for the three cases that is about 1.23, 2.19,
21.4. The L2 norms of the errors are displayed in Figure 6.8 for the three values
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Fig. 6.7. Double rarefaction test case. Density as a function of x at final time, 1000 spatial
cells. Left panel ε = 0.99, central panel ε = 0.1, right panel ε = 0.001. Red line classical explicit
scheme, blue line AP scheme, black line exact solution.

of ε = 0.99, 0.1, 0.001 as a function of the ratio between the time step used and the
maximum time step allowed for stability to be guaranteed (CFL in the Figure). We
clearly observe that while the error for AP scheme is reduced when the time step
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decreases, this is not the case for the explicit scheme for any value of the Mach
number.
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Fig. 6.8. Double rarefaction test case. 1000 cell simulations. L2 norms of the error for the
density for the CL and the AP schemes as a function of the ratio between the time step used and the
maximum time step allowed for ε = 0.99, 0.1, 0.001. Red line explicit scheme, blue line AP scheme.

6.4. 2D isentropic cylindrical explosion problem. In this section we focus
on a genuinely 2D cylindrical problem with γ = 1. The computational domain is set
to Ω = [0, 1]2 paved with Lx × Ly uniform cells. The initial density is given by

ρk,j =

{
1 + ε if r2

k,j ≤ 1/4

1 else
,

where rk,j is the distance from the cell center. The velocity is set as uk,j = −αk,jxi
/(rk,jρk,j), vk,j = −αk,jyj/(rk,jρk,j), where the coefficients αk,j are given by αk,j =

max(0, 1−rk,j)(1−e−16r2k,j ) and we set uk,j = vk,j = 0 if rk,j ≤ 10−15, see figure 6.9 for
a representation of the initial data. Periodic boundary conditions are set everywhere.
We take 200 cells in both directions. We compute the solution for different values of
the squared Mach number ε by using our AP scheme and the CL scheme for ε = 1
and ε = 10−4. The AP scheme uses Di = 0 which means that we consider the L2

stable scheme. In Figures 6.10-6.11 are presented the density variable and the velocity

Density field
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Fig. 6.9. 2D cylindrical problem for ε = 1. Initial density left panel, (ρu) and (ρv) as a function
of the distance from the center middle panel, two dimensional velocity field right panel.

field for the CL and the AP schemes (top and bottom panels respectively) for ε = 1.0
at t = 0.1 (short time), t = 0.24 (focusing of waves) and tfinal = 0.5 the final time.
From these Figures, we can observe that the AP scheme can reproduce the numerical
results of a classical explicit scheme in the case ε = 1. Concerning the time steps, the
explicit scheme demands 144 iterations while the AP scheme needs only 64 iterations
to get to the final solution. However the AP scheme scheme being more expensive
due to its implicit character, the ratio of CPU time is still of order 3 in favor of the
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Fig. 6.10. 2D cylindrical problem for ε = 1 at t = 0.1 left panel, t = 0.24 middle panel and
tfinal = 0.5 right panel. Top images show the density profile for the CL scheme. Bottom images
show the density profile for the AP scheme.
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Fig. 6.11. 2D cylindrical problem for ε = 1 at t = 0.1 left panel, t = 0.24 middle panel and
tfinal = 0.5 right panel. Top images show the velocity field for the CL scheme. Bottom images show
the velocity field for the AP scheme.

explicit method. Finally, in Figures 6.12 are presented the density variable and the
velocity field for the CL and AP schemes (top and bottom panels respectively) for
ε = 10−4, i.e. close to the incompressible limit for a final time tfinal = 0.05. In this
case, the classical explicit scheme demands 1109 time steps while the AP scheme only
needs 3 time steps to get to the final solution. From the computational point of view,
the AP scheme is 5 time less expensive in our implementation. From the images, we
see that while the AP scheme has captured the limit solution the explicit scheme is
still resolving small waves dynamic. The difference in time steps between the two
schemes being of the order of the Mach number

√
ε.
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Fig. 6.12. 2D cylindrical problem for ε = 10−4 at tfinal = 0.05. Top panel density for the CL
and the AP schemes. Bottom panel velocity field.

7. Extension to the full Euler system. In this Section we study the extension
of our scheme to the case of the full Euler system. This system in rescaled variables
reads

∂tρ+∇ · (ρU) = 0, (7.1a)

∂t(ρU) +∇ · (ρU ⊗ U) +
1

ε
∇p = 0, (7.1b)

∂tE +∇ · ((E + p)U) = 0, (7.1c)

supplemented with the following equation of state

p = (γ − 1)

(
E − ε ρ|U |

2

2

)
, (7.1d)

where γ ≥ 1 is the ratio of specific heats. Like for the isentropic case, appropriate
initial and boundary values should be provided

U(t, x) · ν(x) = 0, for all x ∈ ∂Ω and t > 0, (7.1e)

(ρ, U, p)(0, x) = (ρ0(x), U0(x), p0(x)), for all x ∈ Ω, (7.1f)

where the initial condition is well prepared to the low-Mach number regime

p0(x) = p0+ε p̃0(x) ≥ 0, and U0(x) = U0(x)+
√
ε Ũ0(x), ∇·U0(x) = 0, (7.1g)

with p0 > 0 a given constant. In this case, the low Mach number limit gives the
incompressible Euler system, see [25], [1]

∂tρ+∇ · (ρU) = 0, ∇ · U = 0, ∂t(ρU) +∇ · (ρU ⊗ U) +∇π1 = 0,

with the pressure given by p(t, x) = (γ−1)E(t, x) = p0, where π1 = limε→0
1
ε (p− p0) <

+∞ is implicitly defined by the constraint ∇·U = 0 and explicitly given by the equa-
tion −∆π1 = ρ0∇2 : (U ⊗ U).
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7.1. The semi AP discretization in time. The scheme for the full Euler
system follows the isentropic case strategy. The direct extension to this previous
scheme to the full Euler case reads

ρn+1 − ρn

∆t
+∇ · qn = 0,

qn+1 − qn

∆t
+∇ ·

(
q ⊗ q
ρ

)n
− γ − 1

2
∇
(
|q|2

ρ

)n
+
γ − 1

ε
En+1 = 0,

En+1 − En

∆t
+∇ ·

(
γ E q

ρ

)n+1

−∇ ·
(

(γ − 1) ε

2

|q|2 q
ρ2

)n
= 0,

pn+1 = (γ − 1)

(
En+1 − ε (ρ u2)n

2

)
.

We observe that in [6] a similar algorithm is proposed but the term 1/ε∇En+1 is
changed by α∇En + (1/ε − α)∇En+1 where α > 0 is a numerical parameter which
must be correctly fixed to ensure the uniform stability. Here, like in the isentropic
case, we choose α = 0 and we carefully choose the numerical space viscosity of the
scheme in order to be stable. However, unfortunately, this approach has the main
drawback that the Jacobian matrix associated to the explicit flux may have complex
eigenvalues. In order to avoid this problem, we choose instead the following non
conservative discretization

ρn+1 − ρn

∆t
+∇ · qn+1 = 0,

qn+1 − qn

∆t
+∇ ·

(
q ⊗ q
ρ

)n
− γ − 1

2
∇
(
|q|2

ρ

)n
+
γ − 1

ε
∇En+1 = 0,

En+1 − En

∆t
+∇ ·

(
γ En qn+1

ρn

)
−∇ ·

(
(γ − 1) ε

2

|q|2 q
ρ2

)n
= 0,

pn+1 = (γ − 1)

(
En+1 − ε (ρ u2)n

2

)
.

Now, this semi-discretization can be rewritten in a compact form as

Wn+1 −Wn

∆t
+Ae(W

n,Wn+1)∂xW
n +Ai(W

n,Wn+1) ∂yW
n+1 = 0,

where Ae and Ai have real eigenvalues. This scheme, as the one proposed for the
isentropic system, has an uncoupled formulation. This can be obtained by inserting
the value of qn+1 given by the momentum equation into the energy equation. This
gives a linear parabolic equation for the energy at time n+ 1 which furnishes the en-
ergy En+1. Then, using the knowledge of the energy, one can update the momentum
equation to get qn+1 and finally the mass equation gives ρn+1. This decoupled for-
mulation is of fundamental importance when dealing with multidimensional problems
since it avoids the inversion of very large linear systems.

7.2. Numerical tests. In this last part, we present two numerical test cases
to illustrate the behavior of this new scheme for the full Euler system in the one
dimensional setting. We use the same Rusanov numerical fluxes employed for the
isentropic case and a CFL condition related to the eigenvalues of the explicit Jacobian
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matrix Ae. This gives a time step limitation of type

∆tn ≤ ∆x

max
(
|(3− γ)Un|, γ |Un|

) .
7.2.1. Riemann like problem. In this problem, the computational domain

is set to Ω = (0, 1) with periodic boundary conditions on both sides. Density and
pressure are uniforms and set to 1 with γ = 7/5. The velocity is defined by u(x) =
1 − ε/2 if x ≤ 0.2 or x ≥ 0.8, 1 + ε/2 if x ≤ 0.75 or x ≥ 0.25 and 1 elsewhere.
The total energy E is deduced from the equation of state when ε is fixed as p =

(γ − 1)
(
E − ε2 ρu

2

2

)
. The computations are stopped at the final time tfinal = 0.05

and the square of the Mach number ε is chosen equal to 0.99 and 10−4. In Figure 7.1
are depicted the pressure and velocity variables for the explicit classical (first order
explicit Euler scheme) and AP schemes when 300 cells are employed. A reference
solution is also present which has been obtained with the CL scheme and 10000
cells. From these Figures, we observe that both schemes produce rather equivalent
numerical solutions although the AP scheme is a little bit more dissipative. The AP
scheme demands 40 cycles while the CL one 45. The CPU time is about 0.08 for the
AP scheme and 0.02 for the CL. The right panel of Figure 7.1 presents the time steps
as a function of time in logarithmic scale for both schemes showing that, as expected,
∆t is of the same order in the case ε = 0.99. In Figure 7.2 are reported the same

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

Ref. CL 10000
CL 300 cells - 45 cycles
AP 300 cells - 40 cycles

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

Ref. CL 10000
CL 300 cells - 45 cycles
AP 300 cells - 40 cycles

Fig. 7.1. Riemann problem for the one dimensional Euler system for ε = 0.99 at tfinal = 0.05
for 300 cells. Left panel show the pressure profile, middle panel show the velocity profile. CL scheme
is depicted in red while the AP scheme is depicted in blue. Reference solution is in black.

result as in Figure 7.1 with a Mach number squared of ε = 10−4. The AP scheme
demands only 27 cycles to furnish a solution while the CL 2177 time steps. The
CPU time is about 1.02 for the CL scheme and 0.07 for the AP one. Moreover, we
can observe in the panels that the AP scheme has captured the limit incompressible
solution while the explicit scheme is still resolving the small scale dynamic. The time
step employed by the AP scheme is of the order ∆t = 1.9×10−3, while the CL scheme
is restricted to ∆t = 2.3×10−5 leading to a ratio of

√
ε = 10−2 for the two time steps.

We finally consider the solution of the Riemann problem in which our scheme is used
with a restricted time step, i.e. ∆t to 10−5. In this case, we observe that we are able
to retrieve the small scale structures of the solution lost in the case of larger time
steps. The results are reported in Figure 7.3 where a comparison between the explicit
results and those of the AP scheme is shown. In this case the AP scheme demands
5000 cycles for a CPU time of the order of 6.2.

7.2.2. Colliding acoustic pulses. The last test we consider is a weakly com-
pressible problem from [23, 29]. The computational domain is Ω = (−L,L) with
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Fig. 7.2. Riemann problem for the one dimensional Euler system for ε = 10−4 at tfinal = 0.05
for 300 cells. Left panel show the pressure profile, middle panel show the velocity profile. CL scheme
is depicted in red while the AP scheme is depicted in blue. Reference solution is in black.
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Fig. 7.3. Riemann problem for the one dimensional Euler system for ε = 10−4 at tfinal = 0.05
for 300 cells. Left panel show the pressure profile, right panel show the velocity profile. CL scheme
is depicted in red while the AP scheme is depicted in blue. Reference solution is in black. The
AP scheme employs a fixed time step ∆t = 10−5 whereas the Classical scheme employs a stability
restricted time step like in the previous figure.

L = 2
ε . The initial setup consists of two colliding acoustic pulses in a weakly com-

pressible regime

ρ(x, 0) = ρ0 +
ε

2
ρ1α(x), u(x, 0) =

−u0

2
sign(x) ερ1α(x), p(x, 0) = p0 +

ε

2
p1α(x),

where α(x) = 1 − cos
(

2πx
L

)
, ρ0 = 0.955, ρ1 = 2, u0 = 2

√
γ, p0 = 1 and p1 = 2γ.

In Figure 7.4 we report the results in term of density, velocity and energy at an
intermediate time t = 0.815 and at the final time t = 1.63 along with the initial data
for the CL and the AP schemes using 440 cells and ε = 1/11. We can observe that
the AP scheme is a little more dissipative but capture the main physical phenomena.
The CL scheme needs 1030 cycles to reach the final time while the AP scheme only
demands 224 time steps leading to a ratio of about 4.6.

8. Conclusions. The purpose of this article is the development and the analysis
of a new Asymptotic Preserving scheme which is able to deal with low Mach number
fluid flows bypassing the resolution of the fast waves dynamics. We have proven the
good behaviors of our scheme by performing a stability analysis for the isentropic Euler
equations. We have successively extended the proposed scheme to the case of the full
Euler system. The numerical results show that the scheme possesses the demanded
properties. It is L2 stable or L∞ stable depending on the choice of the numerical
diffusion and consistent with the low Mach number limit. Close to incompressible
regimes this new scheme permits to compute solutions of low Mach number flows
at a much lower computational costs. This reduction being much more important
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Fig. 7.4. Colliding acoustic pulses problem for the one dimensional Euler system for ε = 1/11
at t = 0.815 (top panels) and t = 1.63 (bottom panels) for 440 cells. Left panel show the density
profile, middle panel shows the velocity profile, right panel show the energy profile. CL scheme is
depicted in red while the AP scheme is depicted in blue. Initial condition is in black.

when dealing with multidimensional problems. However, results also indicate that
the scheme in intermediate regimes is more diffusive than explicit methods. For this
reason, we plan to develop in future works high order schemes in time and space
which will permit to get more accurate results without losing the nice properties of
the scheme here presented.
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