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Global stabilization of linear systems with bounds on the fedback
and its successive derivatives

Jonathan Laporte, Antoine Chaillet and Yacine Chitour

Abstract

We address the global stabilization of linear time-invatr@TI) systems when the magnitude of the control
input and its successive time derivatives, up to an opdeN, are bounded by prescribed values. We propose
a static state feedback that solves this problem for any sxiodé LTI systems, namely for stabilizable
systems whose internal dynamics has no eigenvalue withiy@stal part. This generalizes previous work
done for single-input chains of integrators and rotatingaiyics.

1 Introduction

The study of control systems subject to input constrainteasivated by the fact that signals delivered by
physical actuators may be limited in amplitude, and may wolve arbitrarily fast. An a priori bound on the
amplitude of the control signal is usually referred tdrgsut saturationwhereas a bound on the variation of
control signal is referred to aate saturation(e.g [1]).

Stabilization of linear time-invariant systems (LTI forash) with input saturation has been widely studied
in the literature. Such a system is given by

(S) x=Ax+Bu,

wherex € R", u belongs to a bounded subset®F, A is ann x n matrix andB is ann x mone. Global
stabilization of(S) can be achieved if and only if the LTI system is asymptoticallll controllable with
bounded controls, i.e., it can be stabilized in the absehagat constraint and the eigenvaluesfhave
non positive real parts. Saturating a linear feedback law fa# at globally stabilizing(S) as it was ob-
served first in[[2] and then[3] for the special case of integrahains (i.e., wheA is then-th Jordan block
andB = (0---0 1)T). As shown for instance in [4], optimal control can be usedéfine a globally stabi-
lizing feedback for(S) but, when the dimension is greater than 3, deriving a closad for this stabilizer
becomes extremely difficult. The first globally stabilizifeedback with rather simple closed form (nested
saturations) was provided inl[5] for chains of integratard then in[[6] for the general case. In [7], a global
feedback stabilizer fofS) was built by relying on control Lyapunov functions arisimgrh a mere existence
result. Other globally stabilizing feedback laws f@) have been proposed with an additional property of
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robustness with respect to perturbations/ In [8], using&ma-high gain techniques, a robust stabilizer was
proposed to ensure semiglobal stability, meaning that ¢éiméral gains can be tuned in such a way that the
basin of attraction contains any prescribed compact suigt. This restriction has been removed in [9],
where the authors provided a global feedback stabilizefSpwhich is robust with respect to perturbations,
based on an earlier idea due to Megretsky [10]. Nonethetlresieedback laws of [9] and [10] require
to solve a nonlinear optimization problem at every pairtR", which makes its practical implementation
questionable. In[11], an easily implementable global ket stabilizer fofS) which is robust with respect
to perturbations was proposed but it only covers the maliiplegrator case and it is discontinuous since it
is based on sliding mode techniques. Robust stabilizafigB)ovas also addressed [n [12] by relying on the
control Lyapunov techniques developediin [7].

In contrast to stabilization of LTI systems subject to ingatiuration, there are much less results available
in the literature regarding global stabilization undeersaturation, i.e., when the first time derivative of the
control signal is als@ priori bounded. In[[13], the authors rely on a backstepping praeetubuild a
bounded globally stabilizing feedback with a bounded raite the methodology does not allow &priori
impose a prescribed rate. [n[14], a dynamic feedback lapiied from [10] is constructed and can even
be generalized to take into account constraints on highes tierivatives of the control signal. However,
as mentioned previously, the numerical efficiency of suadliacks is definitely questionable. A rather
involved global feedback stabilizer f¢8) achieving amplitude and rate saturations was also obtair{&8]
for continuous time affine systems with a stable free dynamiibis corresponds in our setting to requiring
that the matrixA is stable, i.e.AT + A < 0 (up to similarity). Finally, let us mention the referendg§],
[17] for semiglobal stabilization results arid [18] for lbstabilization results using LMIs and anti-windup
design. One should also mentidn [19] where a nonlinear sgaall theorem is given for the behaviour
analysis of control systems with saturation.

The results presented here encompass input and rate sataras special cases. More precisely, given
an integem, we construct a globally stabilizing feedback @) such that the control signal and jsfirst
time derivatives, are bounded by arbitrary prescribedtjpesialues, along all trajectories of the closed-loop
system. This problem has already been solved by the authdi2€] for the multiple integrator and skew-
symmetric cases. The solution given in that paper for theipielintegrator case consisted in considering
appropriate nested saturation feedbacks. We also indid¢atf2Q] that these feedbacks fail at ensuring
global stability in the skew-symmetric case and we then idiext anad hocfeedback law for this specific
case. Here, we solve the general case with a unified strategy.

The paper should be seen as a first theoretical step towardathal stabilization of an LTI system when
the input signal is delivered by a dynamical actuator thmait$i the control action in terms of magnitude and
p first time derivatives. Further developments are neededpboitly take into account the dynamics of
such an actuator. Possible extensions of this work may adreas the question of global stabilization by
smooth feedback laws (i.€C;° with respect to time) wheall successive derivatives need to be bounded by
prescribed values.

The paper is organized as follows. In Secfidn 2, we precisilie the problem we want to tackle, the
needed definitions as well as the main results we obtain, lyahteorenil for the single input case and
Theoreni? for the multiple input case. Secfidn 3 containptbef of the main results. In sectibn 311.1 we
show that the proof of Theorelnh 1 is a consequence of two pitipus The first one (cf. Propositidd 1),
we show that the feedback proposed in Thedrém 1 is indeedbalbicstabilizing feedback fofS). We
actually prove a stronger result dealing with robustnesggties of this feedback, as it is required[in [5]
and [6]. The second proposition (cf. Propositidn 2) spealificdeals with bounding the first derivatives
of the control signal by relying on delicate estimates. ®a€3.2.1 contains the proof of Theoré&in 2 which
is a consequence of Proposition 1 and Proposifion 3, ther latbviding estimates on the successive time



derivatives of the control signal. We close the paper by apehglix, where we gather several technical
results used throughout the paper.

Notations : We useR andN to denote the sets of real numbers and the set of non negategeis
respectively. Given a sétC R and a constard € R, we letl>; 1= {x€l : x> a}. Givenmk € N, we
define[mk] := {l e N : | € [m,k]}. For a given seM, the boundary oM is denoted by M. The factorial

of kis denoted bk! and the binomial coefficient is denotéﬁ) = m

Givenk € N andn, p € N>, we say that a functiofi : R" — RP is of classCK(R", RP) if its differentials
up to orderk exist and are continuous, and we ug¥ to denote thek-th order differential off. By
convention,f© := f.

Givenn,me N1, R™™ denotes the set @fx mmatrices with real coefficients. The transpose of a matrix
Ais denoted byAT. The identity matrix of dimension is denoted byl,. We say that an eigenvalue Afis
critical if it has zero real part and we sgfA) := s(A) +z(A) wheres(A) is the number of conjugate pairs of
nonzero purely imaginary eigenvaluesfA{counting multiplicity), andz(A) is the multiplicity of the zero
eigenvalue ofA. We defineAg := (_01 (1)) andbg := (2)

We use||x|| to denote the Euclidean norm of an arbitrary veatarR". Givend > 0 andf : R>o — R",
we say thatf is eventually bounded by, and we write||f(t)|| <ey 0, if there existsT > 0 such that
[f)||<dforallt>T.

2 Problem statement and main results
Givenn € N>; andm € N34, consider the LTI system defined by
X = Ax+ B, 1)

wherex € R", u€ R™, A€ R™, andB € R™™. Assume that the paitA, B) is stabilizable and that all the
eigenvalues ofA have non positive real parts. Recall that these assumptioris, B) are necessary and
sufficient for the existence of a bounded continuous statdtfacku = k(x) which globally asymptotically
stabilizes the origin of{1): segl[6].

Given an integep and a(p+ 1)-tuple of positive real numbe(R; )o<j<p, we want to derive a feedback
law whose magnitude arHirst time derivatives are bounded By, j € [0, p].

Definition 1 (feedback law p-bounded BR;)o<j<p). Given ne N>1, me N>, and pe N, let (Rj)o<j<p be
a(p+1)-tuple of positive real numbers. We say thafR" — R™ is afeedback lawp-bounded by(R;)o<j<p
for system[(lL)f it is of class @(R",R™) and, for every trajectory of the closed-loop systemAx+ Bv(x),

the control signal U: R>o — R™, t — U (t) := v(x(t)) satisfiessup-q "U(j)(t)" <Rjforall j €[0,p]. The

functionv : R" — R™ is said to be a feedback law p-bounded for sysfém (1), if teveist (p+ 1)-tuple of
positive real numbergR;)o<j<p such thafu(-) is a feedback law p-bounded Bi; )o<j<p for system[(IL).

Based on this definition, we can write our stabilization peaioof Bounded Higher Derivatives as fol-
lows.

Problem (BHD). Given pe N and a(p+ 1)-tuple of positive real numbers;)o<j<p, design a feedback
law v : R" — R™ such that the origin of the closed-loop system Ax+ Bv(x) is globally asymptotically
stable (GAS for short) and the feedbacls a feedback law p-bounded Bi; )o<j<p for systeml{L).



Our construction to solve Problem (BHD) will often use thegerty of Small Input Small State with
linear gain(SIS$ for short) developed in [6]. We recall below its definition

Definition 2 (SIS$g, [6]). GivenA > 0and N> 0, the control system= f(x,u), with xe R" and uc R™,
is said to beSISS (A, N) if, for all & € (0,A] and all bounded measurable signal B>o — R™ eventually
bounded by, every solution ok = f(x,e) is eventually bounded byd A system is said to bBISS if
it is SIS$(A,N) for someA,N > 0. An input-free system = f(X) is called SISS if the control system
x= f(x)+uis SISE.

Remark 1. It follows readily from this definition that ik = f(x) is SIS, then all solutionsx = f(x)
converge to the origin. Note, however, that the gIB®perty does not necessarily ensure GAS in the
absence of input, as it does not imply stability of its origin

When a feedback law ensures both global asymptotic stakilid SISg, we refer to is an SISS
stabilizing feedback.

Definition 3 (SIS$-stabilizing feedbadk Given a control system= f(x,u) with xe R" and ue R™, we
say that a feedback law : R" — R™ is stabilizingif the origin of the closed-loop systein= f(x,v(x))
is globally asymptotically stable. If, in addition, thisosked-loop system is SIS$hen we say thav is
SIS $-stabilizing

As mentioned before the feedback law giveriin [20], whiclvesIProblem (BHD) for the special case of
multiple integrators, simply made use of nested saturatwith carefully chosen saturation functions. We
recall next why this feedback construction cannot work inegel. For that purpose it is enough to consider
the 2D simple oscillator case which is the control systeregivyx = wAgXx -+ bou, with x = (x1,%2)T,uc R
andw > 0. This system is one of the two basic systems to be stabiigadeans of a bounded feedback,
as explained in[6]. One must then consider a stabilizinglfeek lawu = —o(k"x), wherek = (kg, kp)T
is a fixed vector inR? ando : R — R is a saturation function, i.e., a bounded, continuousliedéhtiable
function satisfyingso (s) > 0 fors## 0 anda(l)(O) > 0. Note thak is chosen so that the linearized system at
(0,0) is Hurwitz. In particular it implies thalt, #~ 0. Pick now the following sequence of initial conditions
(I,—kil /k2)1>1. A straightforward computation yields that the first timeidative of the control along each
trajectory satisfies(0) = —o¥(0)wl (k3 /k2 +kz), which grows unbounded &sends to infinity. Therefore
this feedback can not be a 1-bounded feedback.

In order to solve Problem (BHD) for thelRoscillator, we showed ir_[20] that a feedback law of the
typeuyq = % with k € R? anda > 1/2 does the job and it also solves Problem (BHD) in case the

matrix A in (1) Is stable. However, we are not able to show whethgr stabilizes or not the system in
Ao I
0 A
linear feedback stabilizes or not the abovementioned 4B, ealsich is an open problem. It is therefore not
immediate how to address the general case. This is why TiméBiie a non trivial extension of the solution

of Problem (BHD) provided for the two-dimensional oscitiat

the case wheré .= . It turns out that the previous issue is as difficult as askimgsaturated

2.1 Single input case
For the case of single input systems the solution of ProbRB( is given by the following statement.

Theorem 1(Single input) Given ne N+, consider a single input systeta= Ax+ bu where xc R", Ac R™"
and be R™%. Assume that A has no eigenvalue with positive real part hatithe pair(A, b) is stabilizable.



Then, given any g N and any(p+ 1)-tuple(Rj)o<j<p Of positive real numbers, there exist vectars R"
and matrices Te R™", i € [1, u(A)], such that the feedback lawv: R" — R defined as

KA kJ-Tx

— 2)
le (1+ [ Tix|[?)1/2
is a feedback law p-bounded by )o<j<p and SISE-stabilizing for system = Ax+ bu.

In view of Definition[3, the feedback lavi](2) globally asymgtally stabilizes the origin off{1), and
thus solves Problem (BHD). We stress that, even though thet @omputation of the control gaiksis
quite involved (see proof in Sectidh 3), the structure ofgtheposed feedback lawl(2) is rather simple. It
should also be noted that, unlike the results developedd] {Bis feedback law applies to any admissible
single-input systems in a unified manner.

2.2 Multiple input case
To give the main result for LTI system with multiple input weed this following definition.

Definition 4 (Reduced controllability form)Given ne N and ge N, a LTI system is said to be neduced
controllability formif it reads

>:<0 = AgoXo+Ao1Xe +AgXo + ...+ AogXqg+  Bo1us + bz + . .. + boguyg,

X1 = Ar1Xg +A1X0+ ...+ Aquq+ b1iug +bosup + ... + blquq,
Xo = Apoxo+ ...+ Aquq+ boouy + ... + bquq, (3)
Xq = AqeXat BaqUg;

where, for soméq -+ 1)-tuple (ni)o<i<q+1 IN N x (Nx0)d with 3 ni = n, Ayp € R0 is Hurwitz, for every
i € [1,q] all the eigenvalues ofiAc R™:" are critical, bj € R"! and the pairgAjj, bji) are controllable.

From Lemma 5L in [6], it is then clear that without loss of generality, inraccase, we can consider that
system|[(1l) is already given in the reduced controllabitiyd. We can now establish the solution of Problem
(BHD) for the multiple input case.

Theorem 2 (Multiple input). Let pe N and(p+ 1)-tuple(R;)o<j<p Of positive real numbers. GivenanN
and ge N, consider systeni(3). Then, there exist g feedback#aws. , kq such that:

i) foreveryic [1,q], ki : R" — R is a feedback law p-bounded and S|S®bilizing forx, = Ajx +
bij ui;
i) the feedback law = [y, ..., ig]" given by

Ki (%) .
Hi(Xis. . Xq) = , Vie[lq-1], (4)
T A Pt el PP
Ha(Xq) = Kq(Xq), 5)

is a feedback law p-bounded BiR; )o<j<p and SISE-stabilizing for systen (3).

This statement provides a unified control law solving Prob{BHD) for all admissible LTI systems. It
allows in particular multi-input systems, which was notewd in [20].



3 Proof of the main results
3.1 Proof of Theorem1

In this section, we prove Theordm 1. For that purpose, we fidtice the argument to establishing of
Propositions[ 1L and 2 given below. The first one indicatesttrafeedback given in Theordm 1 is S|SS
stabilizing for(S) in the case of single input. The second proposition provégiesstimate of the successive
time derivatives of the control signal.

3.1.1 Reduction of the proof of TheoreniL to the proofs of Propsitions[d and2

Letne N>g, pe N and(Rj)o<j<p be a(p+ 1)-tuple of positive real numbers. Defif:= min;cjo o R;-
Consider a single input linear system="Ax+ bu wherex € R", A andb aren x n andn x 1 matrices
respectively. We assume that the g@irb) is stabilizable and that all the eigenvalue#\dfave non positive
real parts. As observed inl[6], it is sufficient to consider tiase where the pdiA, b) is controllable and all
eigenvalues oA are critical. Indeed, sinc@\, b) is stabilizable there exists a linear change of coordinates
A1 0
0 A
the pair(Ag,by) is controllable. Then, it is immediate to see that we onlyent/treat the case where
has only critical eigenvalues. From now on, we thereforamssthatA has only eigenvalues with zero real
parts, and that the paiA, b) is controllable.

Our construction uses the following linear change of camatés given byl [6, Lemma 5.2]. This de-
composition puts the original system in a triangular formdmaf one-dimensional integrators and two-
dimensional oscillators.

transformingA andb into > and (El) whereA; is Hurwitz, the eigenvalues &, are critical and
2

Lemma 1(Lemmab52in [6]). Letx = Ax+bu, xe R", ue R, be a controllable single input linear system.
Assume that all the eigenvalues of A are critical. ity .. ., +iwsa) be the nonzero eigenvalues of A. Let
(a2,...,ay(a)) be a family of positive numbers. Define

Bk = 1, for k=i+1,
k-2

Ok = []Yan, for i+2<k<up(A)+1. 6)
h=i

Then there is a linear change of coordinates that putsAx+ bu in the form

. S(A) H(A) )
Yi = wAoyi+bo 6 kbg Vi + bo B kYk+ 6 pu(ayabou,  1=1,....8(A),
K1 k=s(A) +1
_ u(A) )
Yi= Y Gkt Oupl i=sA)+1,... uA)-1, (7)
k=i+1
Yum) = U

whereyc R2fori=1,...,5(A),andy € Rfori=s(A)+1,...,u(A).
With no loss of generality, we prove Theoren 1 for systemwhgre the positive constar(@&, . . ., a,a))



will be fixed later. Leta; be a positive constant. We rely on a candidate feedbad" — R under the form

s(A) . blyv: u(A) ! .
K(y)=— Qiu(a)PoYi B Z Qi uaYi ’ ®)

L L(A) 172 . u(A) 1/2
i (1+ mz:i ||YmH2) i=s(A)+1 (1+ mz:i Hym”Z)

with
H(A)
Qiua=1[la. 9
i (A) D

It therefore remains to choose the positive constaqts ., a,(a) such that the feedback laldl (8) is a feedback
law p-bounded by(R;)o<j<p, andSIS$-stabilizing for system[{7). For that aim, we rely on the nisw
propositions, respectively proven in Sectibns 3.1.2[afid3.

Proposition 1. Letx = Ax+bu, xe R", u€ R, be a controllable single input linear system. Assume that a
the eigenvalues of A are critical. Leticy,...,+iwya) be the nonzero eigenvalues of A. Then, there exist
U(A) — 1functionsg : R.o — R0, i € [1, 4(A) — 1] such that for any constants a..,a,,(a) satisfying

au(A) € (O’ 1]7 a € (Ovai(ai+1)]a Vie [[L“(A) - lﬂ,
the feedback lavi{8) is SISStabilizing for systeni{7).

Proposition 2. Letx = Ax+ bu, xe R", u € R, be a controllable single input linear system. Assume that
all the eigenvalues of A are critical. Leticy, .. .,iiws(A) be the nonzero eigenvalues of A. Letiac
[1,u(A)], be positive constants if0, 1]. Then, there exist a positive constapt end continuous functions
G: Rig“" — Rso, i € [1,u(A) — 1], such that for any trajectory of the closed-loop systEm (i the
feedback law({8), the control signal LIR-o — R defined by Ut) := v(y(t)) for all t > 0 satisfies, for all
ke [0,p],
‘ u(A)-1
‘u< >(t)‘ < auCyp) + Z aici(ay(a),---»ai11), Vt=0.
=
Pickaya) € (0,1] in such a way that

R
(P+1)cuna)
Choose recursivelg; € (0,1],i = u(A) —1,...,1, such that

ay(a)

R
a < @a(@+1), ac< — ;
(@) (p+1)ci(aya;---»ai+1)

where the functions; appearing above are defined in Propositibn 2. By Propoéftitine feedback lavi18)
is SIS$-stabilizing for systen{7). Moreover, as a consequenceabpdsition 2, for any trajectory of the
closed-loop systen|(7) with the feedback laW (8), the cdstgmalU : R>o — R defined byJ (t) := v(y(t))

for all t > O satisfies syp, ‘U ) (t)’ < Rforall ke [0,p]. Thus, the feedback lai](8) is a feedback law

p-bounded by(R;)o<j<p for system[(¥). Since there is a linear change of coordineteTx) that puts[(V)
into the original formx'= Ax+ bu, the feedback law defined given [0 (2) can be picked as

V(x) :=K(Tx)

and it is a feedback law-bounded by(R;)o<j<p, andSISSL-stabilizing for [1). To sum up, the proof of
Theorent ] boils down to establishing Propositiohs 1[dnd 2.



3.1.2 Proof of Propositiorl

Propositior 1L is proved by induction gn(A). More precisely, we show that the following property holds
true for every positive integer.

(Py): Givenanyu € N>, lets,ze N be such thas+z= p andw, . .., ws be positive constants. Then there
existy — 1 functionss; : R.o — R-o, i € [1,u — 1] such that for any constards, ..., a satisfying
alle(oal]a aje(o,aj(aj+1)], Vie[[lau_l]]a

the feedback law[{8) iSISS$-stabilizing for system[{7), withu(A) = u, s(A) =s, andz(A) =z
Moreover the linearization of this closed-loop system acbthe origin is asymptotically stable.

In order to start the argument, we give intermediate resuitsse proofs are given in Appendix and which
will be used for the initialization step of the induction ah@ inductive step. The first statement establishes
SIS$ for the one-dimensional integrator.

Lemma 2. Lete > 1. For everyf3 > 0, the scalar system given by

x=—p

X

RSO 4o

is SISS(%, %), its origin is GAS and its linearisation around zero is AS.

The next lemma guarantees that the two-dimensional osxiilgSIS$.

Lemma 3. For everyw > 0, there exist™,N > 0 such that for any3 € (0, 1] the two-dimensional system
given by

bdx
(1+x|[%)%/2

is SISS(BT, %), its origin is GAS and its linearisation around zero is AS.

X = wAgX— Bbg (12)

We now start the inductive proof ¢P,). Foru = 1, we have to consider two cases. Eitker 1 and
s= 0 corresponding to the simple integrator

. . Y1
yi=u, with u=k(y1)= _alW7 (12)
ors= 1 andz= 0 corresponding to the simple oscillator
bgy1
(L+lyal|?)¥/2°
for someaw, > 0. In both casegP;) can be readily deduced by invoking Leminia 2 Bhd 3 respecti@en

U € N+, assume thatP,;) holds. In order to establisfP, 1), it is sufficient to consider the following two
cases:

y1=wAoy1+bou, with u=k(y;) =—a (13)

casei)z=pu+1,i.e, all the eigenvalues éfare zero (multiple integrator);

caseii)s> 1, i.e some eigenvalues &f have non zero imaginary part (multiple integrator with tioig
modes).

In both cases we reduce our problem to the choice of only onstanta; using the inductive hypothesis.



casei) Let(ay,...,a,1) be a set of positive numbers to be chosen later. Consider tittgota integrator
given by

u+1
Yi: Z 6I,kyk+el,u+2ua i:]-a"'al-'la
k=1+1
Yur1=Uu,

wherey; e Rfori=1,...,u+1. Lety=[y,...,Yu+1]". We then can rewrite this system as

1
1= Bxyk+ 62U,
2,

§=Ay+bu,

for some matrices\ and b of appropriate dimensions. From the inductive hypothehiste existu — 1
functionsg; : R.o — R for i € [2,u] such that for any set of positive constaags. ..,a, 1 satisfying
a,...,a,1 satisfyinga,11 € (0,1] and 0< & < &(aj;1) , for each € [2, u], the feedback lav : R* — R
defined by

p+1

s Qipr1Yi
k() =- ; u+f+
= (@43 w2

is SIS$-stabilizing fory = Ay + bu. Choosegay, ..., ay1) satisfying the above conditions. The feedback

law (8) is then given by y
1

p+1 )
(1+ 3 lyml[*)?2
m=1

K(y) = —K(¥) —a1Qz 1

Sinceby 4 2Qx ut1 = Bik for all k € [2, u + 1] (see((6) and(9)), the closed-loop system can be rewritten as

Y1

y1= —alw +aipa(y) +0u(y),
§=Ay— bR (9) —bay f1(y), (14)
with
yi (1+ llyalP)+2
P = e (1+“§1||ym|2)1/2)’ o)
p+1 1m:1
a(y) = k; BO1iy(1— ( ) (16)

u+1
1+ 3 [lym||?)2?
m=k

f(y) = Q2 ut1y1

e 17)
1+ 3 llyml%)¥2
m=1

We now move to the other case where the dynamics involvesptaiibtegrators with rotating modes.



caseii) Let(as,...,a,.1) be aset of positive constants to be chosen laterskeN -1, andz € N be such
thaty =s+z Letwy,...,wsbe a set of non zero real numbers. Consider the followingtigentrol system

s H+1
Vi=@Aoyi+bo Y GkbgYk+bo Y Gkt Busobou, i=1,....8
k=1+1 k=s+1
. p+1 .
Vi = Z ei,kyk+el,u+2u7 |:S+1a"'7ua
k=141
y“+1 =u,

wherey, e R? fori =1,...,s, andy; e R fori =s+1,...,u+1. Lety=[ys,...,yu1]". We then can
rewrite this system as follows

s u+1
y1=@Aoyr+bo 3 6, kg Y + bo > Gkt B p2bou,
k=1+1 k=s+1

¥ =Ay+ bu
From the inductive hypothesis, there exist- 1 functionsg; : R-o — R for i € [2, u] such that for any
set of positive constarab, ..., a1 satisfyinga,1 € (0,1] and 0< & < g(aj;1) , for eachi € [2, u], the
feedback lawk : R* — R defined by

+1
A Qipr1Vi

k(y>=—_i Qi1 oy 18)
22

pt+1 o u+1
1+ 3 lymlH¥2 =143 flyml?)22
m=i m=I

is SIS$-stabilizing fory = Ay + bu. Chooseay, ... ,a,1 satisfying the above conditions. The feedback law
(@) is then given by
bgy1

+1 2r s
1+ 3 llyml%)Y2
m=1

K(y) = —K(¥) —a1Qz ps1

By noticing that6; ;1 2Qx 11 = 61k for all k € [2, u + 1] (seel(B) and(9)), the closed-loop system can be
rewritten as

. bly1
V1 = wAgys — o ——— 27— + aybop (Y) + bogs(¥),
(1+ [lya]|®)V/2
¥ = Ay — bk (y) — bay f1(y), (19)

10



with

pl(y) _ bgyl ( . (1+ Hy1||2)1/2 (20)
(1+ [lyal[?)1/2 it 2y1/2 7
1+ 3 llymll)
m=1
. S - 1 p+1 1
1Y) = 3 Oriboy(l— —— )+ Y Okl —— ); (21)
N Rt PN HE
bl
fo(y) = Qopraboyr (22)

P+l
1+ 3 [lyml*)2/2
m=1

In both cases, it remains to show that there exists a funagisnch that ifa; € (0,az] then the closed-loop
systems[(14) and (19) aBiS$, globally asymptotically stable with respect to the orjgind theirs respec-
tive linearizations at zero are asymptotically stables Rufficient to prove that the closed-loop systems are
SIS$ and their linearization at zero are asymptotically stabieeed, from Remarkl 1, th®&lS$ property
guarantees the convergence of any solution of the closgusath no input. If moreover the linearized
system is asymptotically stable, then the globally asymigpstability of zero follows readily.

For anya; > 0, the linearization at zero of thg-subsystem i (14) (respectivelﬂlQ)) is asymptotically
stable since it is given by; = —apy; (respectivelyy; = (Ao — albob )y1). Moreover, the linearization
at zero of thQ/-subsystem in(14) (respectively {19)) is givensby: (A — bkD( 0))y— albyl (respectively
y=(A—brk(0))y— albbgyl) Due to the inductive hypothesis, the originjot: A— bk (1) (0))§ is asymp-
totically stable. Thus, local asymptotic stability bf [1a#)d [19) follows easily.

It remains to prove that systenis{14) and (19)@¥8$. In both cases, using that11/(1+9)Y2<s
for all s> 0, it holds from [[1B) and(21) that

u+1 u+1 ’ 3u+l
la@l < Oulivil ( 5 llyml ) <9Iy Ouk, (23)
k=2 m= k=2

and from [I5) and(20) that
loa(y)| < 191 (24)
Recall that, due to the inductive hypothesis; Ay — bk(y) is SIS$(A,N) for someA > 0 andN > 0.
We next prove th&1S$ property forcase ii)

Let
C = N(Qau1|b]+1), (25)
p+1
C, = C2+C} k;e.,k. (26)

From LemmaB (withw = ¢y), there exist 1, Ny > 0 such that for angy € (0, 1] the systeny; = w1 Aoy1 —
is SIS$(IMa1,N;/a1). Define

. M
= 27
al m'”{ Wz, V 4Q2u+1NHbHN1(32} @)

11
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and choosey € (0,3;). Let
A= min{alTrl,al}. (28)

Givend < A, lete; : R>o — R? ande; : R>o — R?t2-2 pe two bounded measurable functions, eventually
bounded byd. Consider any trajectory1(-),¥(-)) of the following system

byy1
(1+ [lya]|?)1/2
y=Ay—bK(§) —bai f1(y) + e, (29)
In view of (19), [20), [21L),[(22) and (18) the above systemésdy forward complete. We next show that

there exists a constait > 0 such thaf|y,(t)|| <ev NS and |[§i(t)|| <eyNS. From [22) and recalling that
|Ibo|| = 1, a straightforward computation yields

y1 = wiAoy1 — aibp +agbop1(y) + bogi(¥) + €1,

laabf1(y) | < @1Qa 11 B
Sincel|ex(t)]] <ev 9, it follows that
[a1bf(y(t)) + ex(t)|| <evarQa 1 |bl| + 5.
Moreover from[(2]),[{28) and it follows that
|aeb f1(y(t)) +€x(t)|| <evar(Qz s ||b|| +1) < a1Cy/N <A,

whereC; is defined in[[25). Using th8I1S$(A,N) property of Systeny = Ay — bk (), it follows that the
solution of [29) satisfies
VO] <evaiCi.

Consequently, using (24) arfd {23), it follows that
lazbopa (y(t)) + bog1(J(t)) || <evaiCo. (30)
Using [2T7), we have$C, < 21, Moreover[[28) ensures thi: ()| <ev 252. So it follows that

l[azbopa (y(t)) + boge (¥(t)) +ex(t)|| <evauli.

TheSIS$(Ma1,N1/a;1) property ofy; = wAgy1 — albom@% ensures that
1
N1, 5
lya(t)]] Seva—l(alcz+5) <Nil';. (31)
Now let 8 > 0 be defined as
6 := limsup||y(t)]| . (32)

t—oo0

Then ||¥(t)|| <ev26. There are two cases to consider, eith@r2a;C; or 1C; < 28. In the case when
20 < a;C4, we have
lazbopa (y(t)) + bog1 (J(t)) + ex(t)|| <ev26aiCz/Cy.

12



by

So invoking again th&1S$(p;M1a1,N/a;) property ofys = wiAgyr — albOW,
1

solution of [29) satisfies

one gets that the

N;  20a2C,

<y —
0] <ev 5 (5

In the case when;C < 20, the estimatel (33) follows readily from (31). Exploitingeag theSIS$(A,N)
property of Systeny = Ay — bk (), it follows that

+ ). (33)

. < (e 20a3C
YOI <ev N(HbHQz,qulNl( Ci 2

9 2Q241N [b]| NaadC,
C1

+8)+8)

+ 5N(H6H Q2 u+1N1+1).

It then follows from [27) that

1)1 <eu 3+ SN [B] Q2 psaMs +1).
Taking the limsup of the above estimate, we get frbm (32) that
6 < 26N(||b|| Qz 1Ny +1).
Consequently, we obtain that
IO <ev 2N(]|b]| Q2 ps1Ne + 1),

N; ZaECZ
< =
[ya®)[l  <ev 2a1( C

+1DN(N; +1)8,

which finishes to establistP,.,1) for the casei). Proceeding as in cadi¢, it can be shown that system {14)
is SISS. This end the inductive proof @¢P,).

3.1.3 Proof of Propositior 2

Fix 4 € N>1. Letsandzbe two integers such that-z= p, w,.. ., ws be positive constant numbers, and
ai,...,ay be positive numbers less than or equal to 1. Consider thersyi§) with the feedback laW(8),
wherep(A) = U, s(A) = sandz(A) = z We establish Propositidi 2 by induction pnMore precisely we
prove the following statement:

(Hp) : For eachp € N, there exist a positive constagi and continuous functions : Rggi — R.g, i €
[1, 1 — 1], such that for any trajectory(-) of the closed-loop systerfil(7) with the feedback I&Wv (8),
the control signall : R>o — R defined byJ (t) := k (y(t)) for all t > O satisfies, for alk € [0, p],

u—1
‘U(@(t)‘ <auCy+ Za;ci(a,,,,...,am), vt > 0.
i=

13



For p = 0, this statementHp) holds trivially. Indeed, it is easy to see that for any tcégey of the
closed-loop systeni{7) with the feedback & (8) we have

u-1
V)| <au+ Zi aQir1y, VE>0.
i=

Now, assume thgiH)) holds true for some € N. We next prove thatH, 1) also holds true. To that aim,
let y(-) be any trajectory of the closed-loop systdr (7) with the Iieett law [8), and the control signal
U(t) := k(y(t)), vt > 0. By the induction hypothesis, there exist a positive camist), and continuous

functionsY; : RYo" — R.q, i € [1, 4 — 1], such that for everi € [0, p] it holds that
u—-1
’U(k)(t)’ <a,Yy+ ZlaiYi(au,...,aHl), vt > 0. (34)
i=
It is sufficient to show that there exist a positive consﬁi@tand continuous function¥ : Rggi — R-o,
i €1, u—1], such that
u—1

‘U<p+1>(t)‘ <a, ¥+ Zlaifri(a“,...,ai+l), vt > 0. (35)
i=

Indeed, the desired results will be obtained by settipg= max{Y;;, Y}, andci(-) := max{Yi(-), Yi(:)} for
i € [1,u—1]. In order to establish (35), we start by defining the follogviruxiliary functions:

g(s):=s Y2, Vvs>0 (36)
and, for allt > 0,
u .
fit) = 1+Z|\y| O, ieLu]. 37)
=i
Then, we can rewritd (-) as
u
U =-F U, %20 (38)
i=
where, for every € 1, u],
Ui(t) = Qiubgyi(Hg(fi(t)), vt=>0, (39)
wherebg; = by for all i € [1,s] andbp; = 1 otherwise, and); , is defined in[(D). Th&p+ 1)-th time
derivative of the control signal (-) is given, for allt > 0, byUP3(t) = — s*_ UP*V(t). Therefore to

prove(Hp 1), it is sufficient to show that, for eadke [1, u], there exists continuous functioqg : R‘;g' —
R0, € [1,i], such that, for alt > 0,

i
‘Ui<p+1)(t)‘ < > aci(ay,..-.a1), (40)
=1

Cu is actually a constant independentapf, we write it asci , (ay,ay1) for the sake of notation homo-
geneity.
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Fori € [1, 1], we apply Leibniz’s rule to[{39) with respect bé)iyi (t) andg(fi(t)) and obtain that the
(p+ 1)-th time derivative ofJ;(-) is given, for allt > 0, by

Ui(p+1) O - aQuiy <Pil <p|‘i1‘ 1) baiyi(mlfll) (t)[go ;)" (t)) .

11=0

To obtain [4D), it is sufficient to prove that for eack [1, ], andl; € [0, p+ 1] there exist continuous
functionsf; | |, :R‘;g' — R forl € [1,i] such that, for alt >0,

i—1
Ey P 0lge 0] < Bun(@u a4 3 ABun@uan). @D
=1

In order to getl{Zi1) we next provide, for eaioh [1, ], estimates ofly ' (t)|], | £ (t)| and[go f;] (1) (t)
forl; € [1,p+1]. One can observe that, for eaich [1, 1], y; depends on the constarss 1, ...,a,, the
statesy;,...,y, and the feedback = k(y). By an induction argument using differentiation of systéfj (
one can obtain the following statement: for dog [1, p+ 1], i € [1, 1], there exist continuous functions

Wi 0 RY S Reo, lefi+Lul, O RY SR, 1€ [0,p]

such that, for all positive times, it holds that

Hyi(k)(t)H < ﬁwk’” @y, a1) [y (1)) +kz:cbk,i,| CT ™ ’Um(t)\ ,
= =

where, by conventiont¥y; , are constant functions independentagf for k € [1,p+ 1] andi € [1, u].
Using [34) in the above estimate, one gets that, forka@y1, p+ 1] andi € [1, u — 1], there exist functions

Uiki i RS — Reg, forl € [i +1,u], and® i ; : RY,' — R such that, for alt > 0,

u ~ i
Hyi(k)(t)H < Zwk,i,l(aua---aai+1)HyI(t)H+q)k,i(aua---aai+1)+Zalvl,k,i(aua---aahrl)-
= I=1

Setting, fori € [1, 1],

Wi(ay,...,a1) = max{Wi(ay,...,ai+1) : ke [1,p+1],1 € [i+1,u]},
Di(ay,...,ai+1) = max{Pyi(ay,...,a1) : ke [Lp+1]},
Vii(ag,...,a41) = max{Vigi(ay,...,a1) : ke [1,p+1]}, €[],

one can obtain that, for dlle [1,p+1], alli € [1, 1], and allt > 0,

Hyf“(t)Hs¢i<au,...,au+1>é||y|<t>|+6i<au,...,a+1>+|§avl,i<au,...,am). (42)

It follows that [41) forl; = 0 holds true. For anye< [1,u] andk € [1, p+ 1], thek-th time derivative of
fi(+), defined in[(3Fr), is given, for atl> 0, by

K u
o= 3 (1) oo,

11=0 15=i

15



Thus, one can get that

‘fi(k)(t)’ < ZZHy|2 H’y|2 H+|1 1() ‘yl(il H‘yl; ) H
< Izz_i(Hy|2<t>Hz+\yf:><t>H)+|lzl<ll)zz_<]yf; |+ o).

From {42), and using the fact th{t S Xy |> <m Z xI one can obtain that for eadh € [1,u] and

i1=1 i1=1

I1 € [1, p+ 1] it holds that, for alk > O,
u
I1) T — -
W0 <+ <w|2<au,...,au2+1>2 > IO+ P2 )+ 5 @1 32))°
5, I=1

(43)
Since the right-hand side df (#3) is independeniypfinda; < 1 for all | € [1, 1], one can gets that there
exist continuous functions

I2

ﬁ : Rig' —Reg, €[ u],
o Rig' —Rao, €[],
By, © RM S Reo, lpe[LulleL ],
such that, for ank € [1, p] and allt > 0, it holds

adl H = i ~
0] < Pa@ 20 MO+ B a0) + 5 @l (@)
= =1

A trivial estimate for ank € [1, p+ 1], anyi € [1, 4], and allt > 0 is given by
~ ~ i
90 < Wi, i) i)+ Bilap, 802 + Y AT (@ 812) (44)
=1
By the Faa di Bruno’s formula (given in Lemrhh 5 in Appendig),eachi € [1, 1], andl; € [1, p+ 1],

thel;-th time derivative ofjo fi(+) is given forallt > 0, by

l1—lp+1

Of |1 |2 f(l) d’
9 Zg 5§ % [ (170

I=1

whereZ, |, denotes the set @f; — >+ 1)—tuplesd := (61, %, ..., §,-1,41) Of positive integers satisfying
On+&%+...+9,,r1=landd+2%+...+ (It — 12+ 1), 1,41 = 1. Observe that thk-th derivative
of the functiong defined in[(36) reads

g (s) =des Y%K vs>0, (45)

k-1
with dy = (—1)% ] (1/2+1). Using [45), and taking the absolute value, one can get/ifora0,
1=0

foesto] < 3 a3, @ 10
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Using [44), one can obtain that, for ahye [1, p+ 1], anyl, € [1,1;] and for allt > 0,

li—lo+1 n 3 ~ ~
> G r! ‘fi (t)‘ < (Wi (@us-- - a) fi(t) + Pi(ay, ..., a11)
6Ey|l,|2 I=

N

i |
+ Z a13v|3,i(aua"'7ai+l)) Z 05'
I3=1

5€W|1,|2

It follows that, for alll; € [1,p+1],t >0,

| > G
‘[ of-]('l)(t)’ < ¥ g T
90 < 2% )
@i(au,...,a4+1)fi(t)+$i(au,...,a4+1)+||2:1a43\:/|3,i(au,...,a4+1) "
fi(t) ) ’

> GCs
|1 d 5€W|1,|2
2% )2

. I

~ ~ |

Lpi(aU7"'7ai+l)+q)i(aU7---aai+1)+ Z al3\_/|3,i(aua"'7ai+l)> 3
I3=1

Thus, it can be seen that, for everg [1,u] andl, € [1, p+ 1], there exist continuous functiofs), :
RMST— Rogandliy, i RYy' = Rug, | € [1,i + 1], such that, for alt > 0,

1

‘[go fi](ll> (t)‘ < W

(riJl(aIJa oo 7ai+l) + z a-iri,|1,| (alb e 7ai+l)> . (46)
=1

Then, from[[46) and{42) it follows thdt (#1) holds true foydne [1, p+ 1]. This ends the inductive proof
of (Hp).

3.2 Proof of Theorem2

3.2.1 Reduction of the proof of Theoreni P to the proof of Propsitions[d and3

We prove Theorernl2 by induction on the number of ingut&Ve show that the inductive step reduces to
Propositio L and Propositioh 3 which is proven in Sedtiéhzs.

Forq = 1, the conclusion follows from Theordm 1. For a givea N>; assume that Theordm 2 holds.
We show that Theorem 2 then holds for LTI systems given in #dukiced controllability form withg+ 1
inputs. Letp € N and (Rj)o<j<p be a(p+ 1)-tuple of positive real numbers. Defife:= minjcjo,p R;-

17



Givenn € N>, consider a LTI system given in the reduced controllabilitsni with G := q+ 1 inputs by

>:<0 = AooXo+Ao1Xe +AgXo + ...+ AogXg+  bo1us + bz + . .. + bogug,

X1 = Ar11Xg +A1X0+ ...+ Aquq—i- b1iug +bosup + ... + blqu(j,
Xo = Apoxo+ ...+ Aquq-l- boouy + ... + bquq,
Xq = AgaXart b,

wherex € R™ anduy; € R for eachi € [[0,q-+ 1]}, Ago is Hurwitz, for everyi € [1,q+ 1] all the eigenvalues
of A; are critical, and the pair@\, bji) are controllable.

SinceAgo is Hurwitz, if we find a feedback lavp-bounded by(R;)o<j<p, and SIS$-stabilizing for
(X1,...,%q+1) —Subsystem then, clearly, this feedback does the job fordhgptete system. From now on,
we only consider théxy, ..., Xq+1)—subsystem and we rewrite it compactly as

X1 = A11Xg + braug + AZ-F EU, (47a)

z= Az+ B, (47b)
wherez:= [Xa,...,Xq1] T, U= [Up, ..., Ugs1]
We next provide a key technical lemma.

Lemma 4. Letx = Ax+ bu, xe R", u € R, be a controllable single input linear system. Assume tliat a
the eigenvalues of A are critical. Letico, ..., +iwy ) be the nonzero eigenvalues of(Ag, ..., a,a)) be a
sequence of positive numbers angR"" be such that the linear change of coordinate y x transforms
X = Ax+ bu into systeni{7) compactly written yas- Jy+ bu. Rewrite T as

T= [T17 s 7TS(A)7TS(A)+17 ce aT/J(A)]T

where Te R?"ifi € [1,5(A)] otherwise T RL". Then T has the following property
(F): Ty isindependent ofay, .. . ,a,(a)), and each iTdepend only ofi@; 1, . ., au(a))-

Moreover, given ik € N, let M € R"" be independent of the constants then the matrices TM andT
satisfy property.¥).

The proof of Lemma&l follows from a careful examination of greofs of Lemmas A and 51 in [6].

Let (ap,...,ay(a,,)) be asequence of positive numbers (to be chosen later). betthe linear change of
coordinate that transforms= A11x+ by1u; into the form of systeni{7) compactly written us="Jy+ bu.
We now make the following changes of coordinatesT x, and systeni{47) is then given by

y=Jy+bu + TAz+ TE, (48a)
z=Az+Bu (48b)
Letk be a feedback law-bounded feedback law lyR; /2)o<j<p, andSISS(N»,Ay)-stabilizing for subsys-

tem [48b), for somé\,, A, > 0 (thanks to the inductive hypothesis, we know that this hee# exists). Let
a; > 0, to be chosen later. We seek the following feedback:

_ MY
D e e
Uu(z) .=k (2), (49b)

18



wherepi(y) is defined in[(B). We now show that there exist positive caristay, ay, ... , 8 (A1) SUch that
the feedback law (49) is a feedback laabounded an&1S$-stabilizing for system[{48). This choice is
based on Propositidd 1 and the following statement whichdsen in Sectioh 3.2]12.

Proposition 3 (p-bounded feedbagkLet a, for i € [1, t(A11)], be positive constants if0,1]. Consider
system[(48) with the feedback ldw1(49). Assume #hiata feedback law p-bounded b; /2)o<<p, and
SIS$(Ny, Az)-stabilizing for subsysterh (4Bb). Then, there exist a @stonstant ga,,), and continuous

functions ¢: Rﬁ(oAll)fi — Rao, i € [1,u(A11) — 1], such that for any trajectory of the closed-loop system

(@8) with the feedback laiz(#9), the control signal iR>¢ — R defined by (t) := uy(y(t),z(t)) for all
t > 0 satisfies, for all ke [0, p],

® H(A11)-1
‘Ul (t)‘ S a[,lcu(All) =+ Z aiCi (au(All)v e 7ai+1)7 Vt Z O
i=

Pickaya,,) € (0,1] in such a way that

R
Bl = 2(p+ 1_)Cu(A11>'
Choose recursivelg; € (0,1], i = p(A11) — 1,...,1, such that
a < @@41), a< = ;
2(p+)ci(ayay,--->ait1)
where the functions; appearing above are defined in Proposifibn 3 and the furecipare defined in
Propositiori L. By Propositidd 1, the feedback lagy) is SIS $-stabilizing for systenx = Jx+ bu. We now

prove that the closed-loop systeim](48) with the feedblacki48IS$ (now, all the coefficients have been
chosen). To that aim, first notice that there exigta, > 0 such that, for all|z|| < 1,

|TAz+TBk(2)|| < oallZl,

1
||bH(Y)<1—m>|| < azZ).

) 1 Ay
A=min{l Ay —, ———= L
{ 2N, (a2+a1)N2+1}

Given 0 < A, let e1,e be two bounded measurable functions of the appropriaterdioe, eventually
bounded byd. Consider any trajectorfy(-),z(-)) of the following system

Let

y = Jy-+bp(y) —bu(y)(1- p) +TAz+TBk(2) + e, (50)

(1+121%)
7=Az+Bk(2) + ey, (51)

From theSIS$(A2,Ny) property ofz-subsystem it follows thatz(t)|| <eyN2d < 1. Thus, using the above
estimate, it is immediate to see that

Hbu(y(t))(l— )+ TAZ) + TBK (1)) + ex(t)]| evB((0n+a2)No +1) <25

-
(14 )120)]%)
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Therefore, invoking th&1S$ (A1, Ny ) property ofk= Jx+bp(y), it follows that||y(t) | <evd((a1+a2)Na+

1) N;. So, the closed-loop system {48) with the feedback (49) 8. Moreover, as a consequence of Propo-
sition[3 and of the inductive hypothesis, for any trajectofyhe closed-loop systernl(7) with the feedback
law (49), the control signdll : R>o — R™, defined byU () := [Uy(-),Uz(-)]T with Ug(t) := ug(y(t), z(t))
andU;(t) := k(z(t)) for all t > 0, satisfies

sup
t>0

Ut <R
forallk € [0, p]. Thus, the feedback lal (49) is a feedback lvounded by(R;)o<j<p for system([(4B).

3.2.2 Proof of Propositior 3

For the sake of notation compactnessilet Li(A;1). To prove Propositionl3, we establish by induction on
k that the following property holds, for ati€ [0, p]:

(Hy) : There exist a positive constagg, and continuous functions : Rigi — Rso, i € [1,u —1], such
that for any trajectory of the closed-loop systdm] (48) with feedback law(49), the control signal
Ui :R>o — R defined byJs(t) := up(y(t),z(t)) for all t > O satisfies, for alj € [0,k],

. p-1
U )] < auc + 2, dG(a,a), =0
i=

Fork = 0, the statemen#{p) holds trivially. Now, assume thgHy) holds true for somé& € [0, p — 1].
We next prove thatHy, 1) also holds true. Lety(-),z(-)) be any trajectory of the closed-loop systéml (48)
with the feedback law{49), and the control sigbialt) := ui (y(t),z(t))) andU,(t) := k(z(t)), vt > 0. As
in the proof of Propositioql2, it is sufficient to prove thagth exist a positive constafﬁp and continuous
functionsY; : R¥," — R0, i € [1,u — 1], such that

’Uj(.kJrl)(t)’ S auYu+ 21 a{Y.I(auaaaiJrl)? Vt 2 O (52)
i=

Letq(s) := s (P*D, for all s > 0. Defineh(t) := 1+ ||z(t)||?, for allt > 0. With the same notation given in
the proof of Propositiohl2, one can wrltg () as

Ul(t) = —.iuli (t), vt >0, (53)

where, for every € 1, u],

Ui(t) = Qiubgi¥i(t)[ge fil(t) [Goh(t), Wt>0. (54)
As in the proof of Propositioh]2, we next show that for eaeh[1, 1]}, there exist continuous functions
Ci :R‘;g' — R-o, | €[1,i], such that, for alt > 0,

i
‘Ul(:(+1)(t)’ <> aci(@u,...,a1), (55)
=1
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Cu is actually a constant independentapf, we write it asci , (ay,ay+1) for the sake of notation homo-
geneity. Foii € [1, 1], we apply Leibniz’s rule td(84) and obtain that tfiet+ 1)-th time derivative ofJy;(-)
is given, for allt > 0, by
kil 1 /k+1 -
T = aq”“<z > (0 (1) W”lmmMomMam&wlmm>'
11=01,=0
Then, to get[(B5), it is sufficient to show that :

a) there exist€ > 0 such that, for any/ e [0,k+ 1] and for allt > 0,
16000 )] < clgo (o).

b) for each € [[1,u], there existV;, ©;, ®; :Rigi — R.o, andv; :R‘;aj — Roofor j € [1,i] such that,
for anyl € [0,k+ 1] and for allt > 0,

~ u i
170 < e ) 3 IO+ 81 ) 20+ B 80)+ 5 @ (1)

c) foreachi € [1,u], there exisf;, 6 :Rggi — Rw, andl | :Rggj — Rog for j € [1,i] such that, for
anyl € [0,k+ 1] and for allt > 0,

‘[go fi](r)(t)‘ <[go fi](t)(ri(au,...,a+1)+l_lzla4v|,i(a“,...,a4+1)+e.(a,l,...,am) ||z(t)|\2r).

We now establisla). From an argument of induction using differentiatioreefubsysteni(48b) coupled
with the fact thak is p-bounded feedback law, it can easily be shown that there¢ €xi€; > 0 such that
for anyl € [1,k+ 1] and for anyt > 0,

|00 <co+cafzn.
Using the Leibniz rule, it can be establish that there é%ist; > 0 such that, for anf/e [1,k+1],
IO 0)] < o+ Caflatt) 2,

for allt > 0. Thanks to Faa Di Bruno Formula (Lemfma 5) applie¢ttoh], item a) follows.

We now deal with itenb). From Lemma} and an induction argument using differemtiatif system
(48a), one can obtain the following statement: for &ng [1,k+ 1], i € [1, u], there exist continuous
functions@lhu : Rial .—> R<o, | € [[I +1, [.l]] ,6|l,i,| . Rial — R<o, |l € [[0, pﬂ, 6|1’i’| . Rial — R<o, S
[0,p], and=), ;; : R ' = R.o, | € [0,p], such that, for alt >0,

u
PO < 3 Puia A IO+ Bir @350 0]

=
+ chbhuau, ,aiy1) ’U ‘ —|1,i,|(au7---,ai+1)HU2(|1>('[)H-

So, using the inductive hypothesis and the fact thasta p-bounded feedback law, one can obtain item
Proceeding as in Propositibh 2, one can get it¢nThis ends the proof of Propositidh 3.

21



4  Appendix
4.1 Proof of Lemmal2

Lete > 1 andB > 0. We first prove forward completeness of

X

X=-p m +d; (56)
in response to any locally bounded functiyf-). For this, letV (x) := x?/2. Its derivative along trajectories
of (B6) satisfies

X2

(1)1

Then, a straightforward computation lead¥/tex) < V(x) -+ dy(t)? and forward completeness follows using
classical comparison results. Moreover whigr= 0, (54) ensures that the origin ¢f {56) is G.A.S.

We then prove th&IS$(8/2, %) property of the systeni (b6) with respectdg(-). Givend < 3/2,
let d; be a bounded measurable function®gy eventually bounded by. Since the system is forward
complete, we can consider without loss of generality thét) < J for allt > 0. From [5Y) and the fact that
(1+x?)1/2 < 14 |x|, one can obtain that

V(X)=-B +xTdy(t). (57)

. X2 1
V) =B o + e (1K + e O)e).
Observing that , ,
|da (t)[ Bx
(1+x2)1/2 = 2(14x2)1/2 58)
it follows that N 5
: X

Consequentlyy <0 whenevefx| > 2’7‘5. It follows that every trajectory of (10) eventually entarsd remains

inthe setS= {xeR : x> < 52(2’75)2} (indeedyV < 0 for allx ¢ Sandx € dS). Thus Lemm&R can be easily
established.

4.2 Proof of Lemmal3

Let w > 0. Given any 0< B < 1, letAg 1= whAg — Bbob], which is Hurwitz sinced, is skew-symmetric
and (Ao, bp) is controllable. Therefore there exists a symmetric pasitiefinite matrixP satisfying the
following Lyapunov equation

PsAg +ApPs = —Ta. (60)

) |

A simple computation gives
Lz 4+ 1
Po=| 2y P

2w

'mlHléJ|l—‘

22



The smallest and largest eigenvalue§pfienoted byoz andap respectively are given by

_ 2 B
ag = B|[Psbol|” = 55 l[Psboll

= . B
O = B||Pabo]| "+ 5; ||Pabol .

[ 1 1

Og+0
V(X) = xTPBX+L3_B) ((1+||x||2)3/2_1), vx € R2, (61)

with

DefineV:R? — Rp as

GivenC > 1, leta; andas be class’, functions given by

ar(r) = (E%Qﬁ)max{rz,rs},
ax(r) = C(op+0ag)maxr?ri}.

There exist& > 1 such that
ay([xl) <V(x) < az(|I]), xeR?
Moreover, there exists a constant> 0, independent o8, such that
a;toan(r) <Mr, VWr>o0. (62)
Proceeding as in the proof of Lemia 2, forward completenkss o

T
bgx

— - +d 63
A+ xPvz (©3)

X = wAgX— Bbg
can easily be derived in response to any locally measurahladed functiord;. We next show that the
system[(6B) iSISS(BIr,N/B) with respect tal;, for someN > 0 and with

1
Mr=——. 64
8(7= +1) (64)

Since[(€38) is forward complete, we can assume without logeérality thatl; satisfieg|d, ()] <o, Wt>
0, for somed < BI. Consider the Lyapunov function: R? — R defined in[(61l). By noticing thaf (63) can
be rewritten as

1
X = AgX+ Bbobix | 1— ——=— | +dy,
B B (0] ( (1—|—|X||2)1/2> 1
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one gets that the time derivative\éfalong trajectories of (63) satisfies

. 1 1
T T _ TAT T T _ T
V =x'Pg <A3x+ Bbobox(l T ||x|\2)1/2) +d1> + <x Ag + Bbybgx(1 7(1+ ”X|2)1/2)+d1> Ppx

@+t M2 (—p 0 g,
e (L+ X))/ |

SincePg is a symmetric matrix satisfying the Lyapunov equatlor (@dpllows that

1

V =— X%+ 28X  Pgbobgx(1— ——————
I~ pbobix( (1+ [xD)Y/2

) +2XT Pyds — (T + 0 (B5X)2 + (0 + ) (L+ x| X",

By completing the squares it holds that, fortalt O,

2
ZBXTPBbong(l— 1 ) < I

2B2||Pgbol|? (BT x)2.
x| 2 T B*[|Psbo]|” (b5 x)

Therefore, one can get that
. 1
V=-—3 [1X][? + 2x" Pdh + 2B || Pho|| (14 [|X[|*)"/x" ..
Using the fact thatl + ||x||*)%/2 < 1+ ||x|| for all x € R2, and exploiting[(B4), it follows that
- 1.2 2, B
V< LI+ 208 <2ﬁ |Pabol*+ 2 ||P3b0||> |

Consequently, it holds that < 0 whenevet|x|| > 85(2p ||PBbo||2+ £ ||Psbo]|). Letp > 1 and set :=

8u(2B HPBbOHZJr £ ||Psbo|)). DefineS:= {x€ R?: V(x) < ax(rd)}. If x¢ Sthen||x|| > r&. Consequently,
any trajectory eventually enters and staySinMoreover, we have that; (||x(t)]|) <evV(X(t)) < az2(rd) .
From [62), it follows that|x(t)|| <evrMd. Moreover, one can see that there exists a conflant0 such
that for anyB < 1 we have < %. So we obtain

NS
B )

[X(t)[| <ev
for someN > 0, which concludes the proof.

4.3 Faa Di Bruno’s Formula

Lemma 5 (Faa Di Bruno’s formula[[21], p. 96)For k € N, let ¢ € C¥(R>0,R) andp € CX(R,R). Then
the k-th order derivative of the composite functmn @ is given by

k
Podl®) =5 p@(@)Bea( (1), 0" * (1)),

a=1
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where R , is the Bell polynomial given by

Bra(0V(0), 0 VW)= ¥ c ||1 ((p(”(t))a,

5€yk.a
whereZ, , denotes the set ¢k — a+ 1)—tuplesd := (81, d, ..., &_as1) Of positive integers satisfying

A+O+...+& ar1=2,
0+2%+...+(k—a+1)d ar1=k
k!

P o B el (10 (k—at D)
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