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Abstract. This paper considers a dynamic optimization problem for a class of switched systems
characterized by two key attributes: (i) the switching mechanism is invoked automatically when
the state variables satisfy certain switching conditions; and (ii) the subsystem dynamics involve
time-delays in the state variables. The decision variables in the problem, which must be selected
optimally to minimize system cost, consist of a set of time-invariant system parameters in the initial
state functions. To solve the dynamic optimization problem, we first show that the partial derivatives
of the system state with respect to the system parameters can be expressed in terms of the solution of
a set of variational switched systems. Then, on the basis of this result, we develop a gradient-based
optimization algorithm to determine the optimal parameter values. Finally, we validate the proposed
algorithm by solving an example problem arising in the production of 1,3-propanediol.
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1. Introduction. A switched system operates by switching among different sub-
systems or modes [6, 12, 17, 32, 33]. Such systems are defined by a switching law that
governs the order in which the modes operate (the switching sequence), and the times
at which mode changes occur (the switching times). Switched systems are closely
related to impulsive systems, which experience instantaneous changes in the state
(instead of the mode) at certain time points [30].

Switched systems are optimized by changing some combination of the switching
sequence, switching times, and other input parameters in the mode dynamics. The
switching times and input parameters are normally continuous-valued and can be
determined using gradient-based optimization techniques [18, 19, 21, 23]. In contrast,
the switching sequence is a discrete variable that poses a much greater challenge for
optimization. Since this paper focuses on systems with pre-fixed switching sequence,
we simply mention that methods for optimizing the switching sequence are available—
albeit computationally demanding—and direct the reader to [18] for a survey.

The key idea in applying gradient-based optimization methods is to parameterize
the state—and therefore the cost and constraint functions—in terms of the switch-
ing times and input parameters. This essentially converts the dynamic optimization
problem into a nonlinear programming problem that can be solved using existing meth-
ods [18, 19]. This approach requires the gradients of the cost and constraint functions,
which cannot be expressed in closed form except in the rare case when the switched
system has an analytical solution. More commonly, the cost and constraint gradients
must be numerically evaluated using the variational system, which gives the partial
derivatives of the state with respect to the controllable variables. The existence of the
variational system has been established for many classes of switched and impulsive
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systems; see, for example, references [3, 10, 14, 21, 25, 26]. For these systems, the
optimization procedure is normally applied in conjunction with a time-scaling trans-
formation that maps the switching times into fixed points in a new time scale, thus
yielding an equivalent optimization problem that is easier to solve [18, 25, 37].

The form of the variational system for a switched system depends critically on
whether the switching conditions—which dictate when the system transitions from one
mode to another—are time-dependent or state-dependent. Time-dependent switching
conditions define precise times (either fixed or controllable) at which mode changes
occur. State-dependent switching conditions instead define certain surfaces in the
state space that, when hit by the state trajectory, trigger mode changes. Switched
systems with state-dependent switching conditions are the most challenging because
their switching times are unknown in advance and can only be generated implicitly
as the system is being solved. Dynamic optimization problems for such systems have
been considered in references [8, 27], which present formulas for evaluating the gra-
dients of cost functions in Bolza and Lagrange form. The gradient derivations are
based on the differentiability of the state trajectory with respect to the controllable
parameters—an issue studied in [3, 11, 14, 35] for systems with state-triggered discrete
events. As an alternative to tackling the state-dependent switching conditions directly
(as in [8, 27]), several methods have been proposed for converting the state-dependent
switching conditions into time-dependent switching conditions under additional as-
sumptions and constraints [7, 23, 36]. These methods, however, are not for general
use: reference [7] only considers dual-mode switched systems, reference [23] is focused
on a specific applied problem, and reference [36] proposes a heuristic approach that is
not precisely equivalent to solving the original problem with state-based switchings.

The solution differentiability results mentioned above for systems with state-
dependent discrete events (either mode changes or state jumps) do not allow time-
delays. To the best of our knowledge, the only known results on solution differen-
tiability for systems with both delays and state-dependent discrete events are in [15].
These results extend the work in [16], which considers delays but no discrete events.

In this paper, we derive the variational system for a class of switched delay-
differential equations in which the mode switches are defined by nonlinear equations
of the state variables and the initial state functions depend on controllable parameters.
This variational system matches the one derived in [15] under different technical
conditions and using a different proof strategy (for a more general class of systems
in which the time-delays may depend on the state). Specifically, the results in [15]
rely on a boundedness condition for the right-hand side dynamics, whereas our new
results are based on a less restrictive linear growth condition. As a consequence,
our results apply over an infinite time horizon. The proof in [15] uses the method of
steps to convert the system with time-delays into a sequence of ordinary differential
equations without delays, after which the standard theory for ODEs can be applied.
We instead use a different proof strategy that is based on the equivalent integral form
of the switched system, with the time-delays maintained in all stages of the proof. As
a byproduct, two additional results are obtained that supplement the results in [15]:

• Although the partial derivatives of the state with respect to the decision
parameters usually do not exist at the switching times, the one-sided partial
derivatives always exist; and

• The state is multi-variate continuous with respect to the decision parameters—
this does not follow immediately from the results in [15], because the mere
existence of partial derivatives is not sufficient for full multi-variate continuity.
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The variational system derived in this paper (see Sections 3 and 4) underpins a
gradient-based algorithm for optimizing the decision parameters in the initial state
functions. Furthermore, as we discuss in the paper, our algorithm can be easily ex-
tended to switched systems that also contain decision parameters in the mode dynam-
ics and switching conditions. Section 5 illustrates the application of our approach to
the fed-batch fermentation process for 1,3-propanediol, an organic compound widely
used in the production of paints, adhesives, and laminates [28].

2. Problem formulation. Consider the following switched time-delay system
consisting of N modes operating in succession:

ẋ(t) = f i(x(t), x(t − γ1), . . . , x(t− γm)), t ∈ (τi−1, τi), i = 1, . . . , N,(2.1a)

x(t) = φ(t, ζ), t ≤ 0,(2.1b)

where x(t) ∈ Rn is the state; γj , j = 1, . . . ,m, are given time-delays; ζ ∈ Rp is a vector
of time-invariant system parameters; τi, i = 1, . . . , N − 1, are switching times listed
in increasing order, with τ0 := 0 and τN := ∞; and f i : R(m+1)n → Rn, i = 1, . . . , N,
and φ : R×Rp → Rn are given continuously differentiable functions.

We assume that each f i, i = 1, . . . , N , satisfies the linear growth condition

(2.2) |f i(w0, . . . , wm)| ≤ L(1 + |w0|+ · · ·+ |wm|), (w0, . . . , wm) ∈ R(m+1)n,

where L > 0 is a real constant and | · | denotes the Euclidean norm.
The switching times in (2.1a) specify when the system switches from one mode

to another. Unlike in time-dependent switched systems (which are widespread in the
literature), the switching times here are not independent decision variables, but are
instead governed by a set of state-dependent switching conditions. More specifically,
a switch from mode i− 1 to mode i occurs when the state satisfies

(2.3) gi(x(t)) = 0,

where gi : R
n → R is a given continuously differentiable function. Thus, the switched

system (2.1) evolves as follows. After beginning in state φ(0, ζ) at time t = 0, the
system runs smoothly according to (2.1a) with i = 1 until g1(x(t)) = 0. Then, the
system switches into mode 2 and again runs smoothly according to (2.1a) with i = 2
until g2(x(t)) = 0, and so on. This behaviour implies that the switching sequence—
that is, the order in which the different modes in (2.1a) are activated—is fixed and
known, which is the case in many practical systems, such as the dual-mode fed-batch
fermentation system considered in Section 5 of this paper.

Equation (2.3) is essentially a stopping condition for the ith mode. Hence, given
τi−1 ≥ 0 for some i ≥ 1, the next switching time τi is defined recursively by

(2.4) τi := inf{t > τi−1 : gi(x(t)) = 0},

where τ0 = 0 and τi = ∞ if gi(x(t)) 6= 0 for all t > τi−1.
System (2.1) is controlled by manipulating the time-invariant system parameters.

Define

Z := {ζ ∈ Rp : ak ≤ ζk ≤ bk, k = 1, . . . , p},

where ak and bk are given constants such that ak < bk. Any vector ζ ∈ Z is called a
feasible parameter vector. Although in (2.1) the system parameters only appear in the
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initial function φ, the results in this paper can be easily extended to the case where
the system parameters also appear explicitly in the right-hand side dynamics (2.1a)
and/or the switching functions (2.3). Indeed, ζ can be replaced where necessary by
an auxiliary state vector x̄(t) satisfying ˙̄x(t) = 0 for t > 0 and x̄(t) = ζ for t ≤ 0.

We show in Section 4 that, under the stated conditions on the dynamic func-
tions f i, i = 1, . . . , N , and the initial function φ, system (2.1) with switching times
given by (2.4) has a unique solution x(·|ζ) corresponding to each feasible parameter
vector ζ ∈ Z. This solution satisfies the dynamics (2.1a) almost everywhere on [0,∞),
and the initial condition (2.1b) everywhere on (−∞, 0].

Now, define a cost function J as follows:

(2.5) J(ζ) := Φ(x(T |ζ)),

where T > 0 is a given terminal time and Φ : Rn → R is a given continuously
differentiable function. We state our dynamic optimization problem as follows.
PROBLEM (P). Find a feasible parameter vector ζ ∈ Z such that the cost function (2.5)
is minimized.

Problem (P) is a unique problem involving two main difficulties: (i) the mode
dynamics in the switched system (2.1) are influenced by multiple state-delays; and
(ii) the mode switches are governed by a state-dependent switching mechanism. We
now develop a gradient-based computational method for solving Problem (P).

3. Main results. Let ek denote the kth unit basis vector in Rp. Furthermore,
let

ZN := {1, . . . , N}, ZN−1 := {1, . . . , N − 1}.

Consider the n× p state variation matrix ∂x(t|ζ)/∂ζ whose kth column is defined by

∂x(t|ζ)

∂ζk
:= lim

ǫ→0

x(t|ζ + ǫek)− x(t|ζ)

ǫ
,

assuming the limit on the right-hand side exists. This limit certainly exists for systems
governed by ordinary differential equations (see, for example, the results in [4] and
other well-known references), but this is not necessarily the case for system (2.1). In
fact, we will show that the state variation matrix for system (2.1) does not exist in
some circumstances, even though the functions defining the system are smooth. This
is due to the presence of time-delays and state-dependent switching conditions.

Notwithstanding, if the state variation matrix does exist at t = T , then the cost
function (2.5) can be differentiated using the chain rule to obtain

(3.1)
∂J(ζ)

∂ζ
=
∂Φ(x(T |ζ))

∂x

∂x(T |ζ)

∂ζ
,

where ∂J(ζ)/∂ζ is a 1 × p row vector whose kth element is the partial derivative
of J with respect to the kth system parameter. This formula, if tractable, can be
incorporated into well-known computational methods such as sequential quadratic
programming to solve Problem (P) as a nonlinear optimization problem.

We now introduce two conditions on the parameter vector that are fundamental
to evaluating equation (3.1).

Condition 3.1. For a given ζ ∈ Z,

gi(x(τi−1|ζ)) 6= 0, i ∈ ZN−1 : τi−1 <∞.
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This condition guarantees that consecutive switching conditions do not occur at
the same time, thus ensuring the switching mechanism in (2.1) is well-defined and
the switching times are distinct. To prove this formally, suppose to the contrary that
Condition 3.1 holds and τi−1 = τi for some i ∈ ZN−1. Then there exists a sequence
{sj}

∞
j=1 ⊂ (τi−1,∞) such that gi(x(sj |ζ)) = 0 for each integer j and sj → τi−1 as

j → ∞. Hence, since gi(·) is continuous,

gi(x(τi−1|ζ)) = lim
j→∞

gi(x(sj |ζ)) = 0,

which contradicts Condition 3.1. This shows that, for any parameter vector satisfying
Condition 3.1, the corresponding switching times are distinct—specifically, τi−1 < τi
for each integer i ∈ ZN−1 with τi−1 <∞. Condition 3.1 is always satisfied in systems
that change mode when the state variables reach critical thresholds, such as the hang
glider in [22] and the fed-batch fermentation process in Section 5.

Condition 3.2. For a given ζ ∈ Z,

∂gi(x(τi|ζ))

∂x
f i(x(τi|ζ), x(τi − γ1|ζ), . . . , x(τi − γm|ζ)) 6= 0, i ∈ ZN−1 : τi <∞.

Condition 3.2 simply states that the dot product of ∂gi/∂x (which is orthogonal to
the switching surface gi) and f

i (which is tangent to the state trajectory) is non-zero
at the ith switching time. This condition thus ensures that the state trajectory does
not approach the switching surfaces at a tangent. Similar conditions are common in
the literature—see, for example, [8, 9, 15, 20, 22, 27].

We are now ready to present formulas for both the state variation matrix and
the derivatives of the switching times with respect to the parameter vector. Here
and elsewhere, we will use the notation ∂x̃j to denote differentiation with respect to
x(t− γj), with ∂x̃

0 denoting differentiation with respect to x(t) (that is, γ0 := 0).
Theorem 3.1. Suppose ζ ∈ Z satisfies Conditions 3.1 and 3.2. Then for each

k = 1, . . . , p,

(3.2)
∂x(t|ζ)

∂ζk
= Λk(t), t ∈ (τi−1, τi), i ∈ ZN ,

and

∂τi(ζ)

∂ζk
= −

∂gi(x(τi))

∂x
Λk(τi−)÷

{

∂gi(x(τi))

∂x
f
i(x(τi), x(τi − γ1), . . . , x(τi − γm))

}

,(3.3)

i ∈ ZN−1 : τi < ∞,

where Λk(·) satisfies the following variational system:

(3.4a) Λ̇k(t) =
m
∑

j=0

∂f
i(x(t), x(t− γ1), . . . , x(t− γm))

∂x̃
j

Λk(t− γj), t ∈ (τi−1, τi), i ∈ ZN ,

with initial conditions

Λk(t) =
∂φ(t, ζ)

∂ζk
, t ≤ 0,(3.4b)

Λk(0+) =
∂φ(0, ζ)

∂ζk
,(3.4c)
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and intermediate jump conditions

Λk(τi+) = Λk(τi−) +
∂τi(ζ)

∂ζk

{

f i(x(τi), x(τi − γ1), . . . , x(τi − γm))(3.4d)

− f i+1(x(τi), x(τi − γ1), . . . , x(τi − γm))
}

, i ∈ ZN−1 : τi <∞.

A detailed proof of Theorem 3.1 is given in Sections 4.2-4.8. Note that Condi-
tion 3.2 ensures the denominator in (3.3) is non-zero.

The switching times t = τi, i ∈ ZN−1, are deliberately excluded from equa-
tion (3.2) in Theorem 3.1. This is because the state variation matrix only exists at
the switching times in rare circumstances, as the next result shows.

Theorem 3.2. Suppose ζ ∈ Z satisfies Conditions 3.1 and 3.2 and let Λk(·)
denote the solution of (3.4) corresponding to ζ. Then for each k = 1, . . . , p and each
i ∈ ZN−1 with τi <∞, one of the following scenarios holds.

• If f i(x(τi), x(τi−γ1), . . . , x(τi−γm)) = f i+1(x(τi), x(τi−γ1), . . . , x(τi−γm))
or ∂τi(ζ)/∂ζk = 0, then

∂x(τi|ζ)

∂ζk
= Λk(τi+) = Λk(τi−).

• If f i(x(τi), x(τi−γ1), . . . , x(τi−γm)) 6= f i+1(x(τi), x(τi−γ1), . . . , x(τi−γm))
and ∂τi(ζ)/∂ζk > 0, then

∂±x(τi|ζ)

∂ζk
:= lim

ǫ→0±

x(τi|ζ + ǫek)− x(τi|ζ)

ǫ
= Λk(τi∓).

• If f i(x(τi), x(τi−γ1), . . . , x(τi−γm)) 6= f i+1(x(τi), x(τi−γ1), . . . , x(τi−γm))
and ∂τi(ζ)/∂ζk < 0, then

∂±x(τi|ζ)

∂ζk
:= lim

ǫ→0±

x(τi|ζ + ǫek)− x(τi|ζ)

ǫ
= Λk(τi±).

Theorem 3.2 is proved in Section 4.9.

In the first scenario of Theorem 3.2, the state variation exists at t = τi. In the
last two scenarios (the more likely scenarios), the state variation does not exist at
t = τi because the left and right partial derivatives of the state with respect to the
kth system parameter are different—a consequence of Λk(·) being discontinuous at
the ith switching time.

We now use Theorems 3.1 and 3.2 to derive the left and right partial derivatives
of the cost function J . First, Taylor’s theorem implies that for each ǫ 6= 0 and
each k = 1, . . . , p, there exists a constant ηǫ,k ∈ (0, 1) such that

J(ζ + ǫek)−J(ζ) =
∂Φ((1− ηǫ,k)x(T |ζ) + ηǫ,kx(T |ζ + ǫek))

∂x

{

x(T |ζ + ǫek)− x(T |ζ)
}

.

Collectively, Theorems 3.1 and 3.2 show that the system state is differentiable from the
left and right with respect to each system parameter, assuming Conditions 3.1 and 3.2
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hold. This implies x(T |ζ + ǫek) → x(T |ζ) as ǫ→ 0±. Thus, for each k = 1, . . . , p,

∂±J(ζ)

∂ζk
:= lim

ǫ→0±

J(ζ + ǫek)− J(ζ)

ǫ
(3.5)

=
∂Φ(x(T |ζ))

∂x
lim

ǫ→0±

x(T |ζ + ǫek)− x(T |ζ)

ǫ

=
∂Φ(x(T |ζ))

∂x











Λk(T |ζ), if τi(ζ) 6= T , i = 1, . . . , N − 1,

Λk(T ∓ |ζ), if τi(ζ) = T and ∂τi(ζ)/∂ζk ≥ 0,

Λk(T ± |ζ), if τi(ζ) = T and ∂τi(ζ)/∂ζk ≤ 0,

where Λk(·|ζ) is the solution of (3.4) corresponding to ζ.

Equation (3.5) shows that the left and right partial derivatives of J exist at all
ζ ∈ Z satisfying Conditions 3.1 and 3.2. In practice, these conditions can be easily
checked for a given ζ ∈ Z by numerically solving the switched time-delay system (2.1).
Note that if T coincides with a switching time satisfying one of the last two scenarios
in Theorem 3.2, then the left and right partial derivatives of J with respect to ζk may
differ, since in this case Λk(T−) 6= Λk(T+).

Since J has well-defined left and right partial derivatives (under Conditions 3.1
and 3.2), it is clearly individually continuous with respect to each parameter. In fact,
as we show in Section 4.10, Conditions 3.1 and 3.2 imply full continuity of J , and
thus if these conditions hold at every point in the compact set Z, then Problem (P)
is guaranteed to admit an optimal solution. This result is summarized below.

Theorem 3.3. Suppose Conditions 3.1 and 3.2 hold at every point ζ ∈ Z. Then
Problem (P) admits an optimal solution.

The left and right partial derivatives of J , as defined in (3.5), can be used to iden-
tify search directions for optimizing the parameter vector. Indeed, if ∂+J(ζ)/∂ζk < 0,
then ek is a descent direction of J at ζ , and if ∂−J(ζ)/∂ζk > 0, then −ek is a descent
direction of J at ζ. Performing a line search along a descent direction will yield an
improved point with lower cost [29].

If none of the switching times coincide with the terminal time, or if the conditions
for the first scenario in Theorem 3.2 are satisfied at the terminal time, then the left
and right partial derivatives of J derived above become the full partial derivatives as
shown in (3.1). We now present the following line search optimization algorithm for
solving Problem (P) to local optimality.

1. Choose an initial point ζ ∈ Z.
2. Form an expanded switched time-delay system by combining the state system

(2.1) with the variational system (3.4) for each k = 1, . . . , p.
3. Solve the expanded system mode by mode, checking Conditions 3.1 and 3.2

at the start and end of each mode. If these conditions are violated at any
stage, then stop with error.

4. Use x(·|ζ) and Λk(·|ζ), k = 1, . . . , p, to determine the left and right partial
derivatives of J according to equation (3.5).

5. Use ∂±J(ζ)/∂ζk, k = 1, . . . , p, to check local optimality conditions at ζ. If
the local optimality conditions hold, then stop; otherwise, continue to Step 6.

6. Use ∂±J(ζ)/∂ζk, k = 1, . . . , p, to define a search direction.
7. Perform a line search along the direction from Step 6 to determine a new

point ζ′ ∈ Z.
8. Set ζ′ → ζ and return to Step 2.
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In most cases, the partial derivatives of J will exist and Steps 5-7 can be imple-
mented using well-known methods in nonlinear optimization [29]. For example, the
negative gradient can be used as the search direction. We refer readers to [19, 34] for
a detailed discussion on solving optimal control and dynamic optimization problems
using this approach. If any of the full partial derivatives of J do not exist—that is,
a mode switch satisfying one of the last two scenarios in Theorem 3.2 occurs at the
terminal time—then the signs of the left and right partial derivatives can be used to
identify an appropriate descent direction along one of the coordinate axes.

4. Proofs of the main results. This section proves four key results stated
earlier: existence and uniqueness of x(·|ζ) (Section 4.1), Theorem 3.1 on the state
variation matrix (Sections 4.2-4.8), Theorem 3.2 on the state variation matrix at the
switching times (Section 4.9), and continuity of the cost function J (Section 4.10).

4.1. Solution existence and uniqueness for (2.1). For a given ζ ∈ Z, define
a set of auxiliary systems recursively as follows:

żi(t) = f i(zi(t), zi(t− γ1), . . . , z
i(t− γm)), t > ρi−1,(4.1a)

zi(t) = zi−1(t), t ≤ ρi−1,(4.1b)

and

(4.2) ρi =

{

inf{ t > ρi−1 : gi(z
i(t)) = 0 }, if i ≤ N − 1,

∞, if i = N,

where z0(t) := φ(t, ζ) and ρ0 := 0. Given ρi−1 and zi−1(·) for some i ∈ ZN , existence
of a unique solution to (4.1) can be deduced by dividing [ρi−1,∞) into consecu-
tive subintervals of length min{γ1, . . . , γm}, and then applying known existence and
uniqueness results for non-delay systems (see [1, 2]) on each subinterval. The con-
tinuity and differentiability assumptions on φ and f i, i = 1, . . . , N , and the linear
growth condition (2.2), ensure that the results in [1, 2] are applicable here. Using
z0(t) = φ(t, ζ) and ρ0 = 0 as the base case, it follows from induction that zi(·) and ρi
are well-defined for each i ∈ ZN ; in fact, zN (·) satisfies (2.1) with ρi = τi, i = 0, . . . , N ,
and zN (·) is the only solution of (2.1) because each zi(·) is unique.

4.2. Preliminaries for Theorem 3.1. Let ζ ∈ Z and k ∈ {1, . . . , p} be arbi-
trary and consider the perturbed parameter vector ζ+ǫek, where ǫ ∈ [ak−ζk, bk−ζk] to
ensure that ζ + ǫek ∈ Z. Let zi,ǫ(·), i ∈ ZN , denote the trajectories obtained by solv-
ing (4.1) recursively for parameter vector ζ + ǫek, starting with z0,ǫ(t) = φ(t, ζ + ǫek)
and ρ0 = 0. Based on the arguments in Section 4.1, ρi defined by (4.2) for ζ + ǫek is
equal to τ ǫi := τi(ζ + ǫek), and zi,ǫ(t) = x(t|ζ + ǫek) for all t ≤ τ ǫi .

For any function ψ of ǫ, we write ψ(ǫ) = O(ǫd) if there exists a real numberM > 0
such that |ψ(ǫ)| ≤ M |ǫ|d for all ǫ of sufficiently small magnitude, and ψ(ǫ) = θ(ǫ) if
ψ(ǫ) → 0 as ǫ → 0. In particular, ψ(ǫ) = O(1) means that ψ is uniformly bounded
with respect to ǫ.

Let γ̄ := max{γ1, . . . , γm} and

µi,ǫ(t) := zi,ǫ(t)− zi,0(t), i = 0, . . . , N.
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We will show by induction that, for each integer i,

max
t∈[−γ̄,Tmax]

∣

∣zi,ǫ(t)
∣

∣ = O(1) for every Tmax > 0,(4.3)

max
t∈[−γ̄,Tmax]

∣

∣µi,ǫ(t)
∣

∣ = O(ǫ) for every Tmax > 0,(4.4)

lim
ǫ→0

ǫ−1µi,ǫ(t) = Λk(t−), t ∈ (−∞, τ0i ] \

i−1
⋃

l=0

{τ0l },(4.5)

lim
ǫ→0

τ ǫi = τ0i ,(4.6)

and, when τ0i is finite,

lim
ǫ→0

τ ǫi − τ0i
ǫ

(4.7)

=























0, if i = 0,

−
∂gi(z

i,0(τ0i ))

∂x
Λk(τ

0
i −)

÷

{

∂gi(z
i,0(τ0i ))

∂x
f i(zi,0(τ0i ), z

i,0(τ0i − γ1), . . . , z
i,0(τ0i − γm))

}

, if i ≥ 1.

Equation (4.3) means that the solution of (4.1) for ζ + ǫek is uniformly bounded with
respect to ǫ, and equations (4.4) and (4.5) mean that the solution is continuous and
differentiable at ζ with respect to the kth system parameter. Equations (4.6) and (4.7)
mean that the switching times are continuous and differentiable at ζ with respect to
the kth system parameter.

If equations (4.5) and (4.6) hold, then given any t ∈ (τi−1, τi), i ∈ ZN , we have
t < τ ǫi for all ǫ of sufficiently small magnitude, and hence x(t|ζ + ǫek) = zi,ǫ(t),
implying

∂x(t|ζ)

∂ζk
= lim

ǫ→0

x(t|ζ + ǫek)− x(t|ζ)

ǫ
= lim

ǫ→0
ǫ−1µi,ǫ(t) = Λk(t−) = Λk(t),

which proves equation (3.2). In addition, for each i ∈ ZN−1 with τi finite, if (4.7)
holds, then since zi,0(τ0i − γj) = x(τi − γj |ζ), j = 0, . . . ,m,

∂τi(ζ)

∂ζk
= lim

ǫ→0

τ
ǫ
i − τ

0
i

ǫ

= −
∂gi(z

i,0(τ 0
i ))

∂x
Λk(τ

0
i −)÷

{

∂gi(z
i,0(τ 0

i ))

∂x
f
i(zi,0(τ 0

i ), z
i,0(τ 0

i − γ1), . . . , z
i,0(τ 0

i − γm))

}

= −
∂gi(x(τi))

∂x
Λk(τi−)÷

{

∂gi(x(τi))

∂x
f
i(x(τi), x(τi − γ1), . . . , x(τi − γm))

}

,

which proves equation (3.3). Theorem 3.1 thus follows immediately from equations
(4.5)-(4.7), which must be proved in conjunction with equations (4.3) and (4.4).

The basis step i = 0 for (4.3)-(4.7) is easily established. Indeed, equations (4.3)
and (4.5)-(4.7) for i = 0 are a direct consequence of τ ǫ0 = 0 and z0,ǫ(t) = φ(t, ζ + ǫek).
For equation (4.4), since φ is continuously differentiable on [−γ̄, Tmax]×Z,

max
t∈[−γ̄,Tmax]

∣

∣µ0,ǫ(t)
∣

∣ = max
t∈[−γ̄,Tmax]

∣

∣φ(t, ζ + ǫek)− φ(t, ζ)
∣

∣

≤ |ǫ| max
t∈[−γ̄,Tmax]

∫ 1

0

∣

∣

∣

∣

∂φ(t, ζ + ǫηek)

∂ζk

∣

∣

∣

∣

dη = O(ǫ).
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Now, for our inductive hypothesis, suppose that equations (4.3)-(4.7) hold for each
i = 1, . . . , q, where q ≤ N−1. If τ0q = ∞, then clearly (4.3)-(4.6) also hold for i = q+1
(with (4.7) irrelevant) because zq+1,ǫ(t) = zq,ǫ(t) when |ǫ| is small. Thus, it suffices
to prove (4.3)-(4.7) for i = q + 1 when τ0q <∞. This is done in Sections 4.3-4.8.

4.3. Inductive step for equation (4.3). For each i = 0, . . . , q + 1, define

f̂
i,ǫ(s, η) :=

{

f i(zi,0(s− γ0) + ηµi,ǫ(s− γ0), . . . , z
i,0(s− γm) + ηµi,ǫ(s− γm)), if i ≥ 1,

φ̇(s, ζ + ǫηek), if i = 0,

and, for i ≥ 1, let ∂f̂ i,ǫ(s, η)/∂x̃j denote the respective partial derivatives.
From (4.1) for i = q + 1, we have

zq+1,ǫ(t) =











zq,ǫ(τ ǫq ) +

∫ t

τǫ
q

f̂ q+1,ǫ(s, 1)ds, if t ∈ [τ ǫq , Tmax],

zq,ǫ(t), if t ∈ [−γ̄, τ ǫq ].

Thus, for t ∈ [−γ̄, τ ǫq ],

(4.8)
∣

∣zq+1,ǫ(t)
∣

∣ =
∣

∣zq,ǫ(t)
∣

∣ ≤ max
s∈[−γ̄,Tmax]

∣

∣zq,ǫ(s)
∣

∣,

and for t ∈ [τ ǫq , Tmax], using the linear growth condition (2.2),

∣

∣zq+1,ǫ(t)
∣

∣ ≤
∣

∣zq,ǫ(τ ǫq )
∣

∣+

∫ t

τǫ
q

∣

∣f̂ q+1,ǫ(s, 1)
∣

∣ds(4.9)

≤ max
s∈[−γ̄,Tmax]

∣

∣zq,ǫ(s)
∣

∣+ LTmax +

m
∑

j=0

∫ t

τǫ
q

L
∣

∣zq+1,ǫ(s− γj)
∣

∣ds

≤ max
s∈[−γ̄,Tmax]

∣

∣zq,ǫ(s)
∣

∣+ LTmax +

∫ t

−γ̄

(m+ 1)L
∣

∣zq+1,ǫ(s)
∣

∣ds.

Combining (4.8) and (4.9), it follows from (4.3) for i = q that

∣

∣zq+1,ǫ(t)
∣

∣ ≤ O(1) +

∫ t

−γ̄

(m+ 1)L
∣

∣zq+1,ǫ(s)
∣

∣ds, t ∈ [−γ̄, Tmax].

Finally, from the Gronwall inequality [2],

∣

∣zq+1,ǫ(t)
∣

∣ ≤ O(1) exp(L(m+ 1)(Tmax + γ̄)) = O(1), t ∈ [−γ̄, Tmax],

which proves equation (4.3) for i = q + 1.

4.4. Inductive step for equation (4.4). It follows from equation (4.7) for
i = q that

(4.10)
∣

∣τ ǫq − τ0q
∣

∣ = |ǫ| ·

∣

∣

∣

∣

τ ǫq − τ0q
ǫ

− lim
ǫ→0

τ ǫq − τ0q
ǫ

+ lim
ǫ→0

τ ǫq − τ0q
ǫ

∣

∣

∣

∣

= O(ǫ).

There are four cases to consider for t ∈ [−γ̄, Tmax]:

(i) t < min(τ ǫq , τ
0
q ) (ii) τ0q ≤ t < τ ǫq (iii) τ ǫq ≤ t < τ0q (iv) t ≥ max(τ ǫq , τ

0
q ).
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Using (4.1) and the fundamental theorem of calculus, we can derive the following
formula for µq+1,ǫ(t) = zq+1,ǫ(t)− zq+1,0(t) that covers all four cases:

µq+1,ǫ(t) = µq,ǫ(t) + αqt

∫ t

τǫ
q

{

f̂ q+1,ǫ(s, 1)− f̂ q,ǫ(s, 1)
}

ds(4.11)

+ βqt

∫ t

τ0
q

{

f̂ q,0(s, 0)− f̂ q+1,0(s, 0)
}

ds,

where αqt and βqt are binary parameters indicating whether t ≥ τ ǫq and t ≥ τ0q ,
respectively.

If at most one of t ≥ τ ǫq and t ≥ τ0q holds (cases (i)-(iii) above), then from (4.11),

∣

∣µq+1,ǫ(t)
∣

∣ ≤
∣

∣µq,ǫ(t)
∣

∣+ (f q
max + f q+1

max)(max(τ ǫq , τ
0
q )−min(τ ǫq , τ

0
q ))(4.12)

=
∣

∣µq,ǫ(t)
∣

∣+ (f q
max + f q+1

max)
∣

∣τ ǫq − τ0q
∣

∣,

where f q
max and f q+1

max are upper bounds for the norms of f̂ q,ǫ(s, η) and f̂ q+1,ǫ(s, η),
respectively. These upper bounds exist because, by virtue of the inductive hypothesis
and Section 4.3, both zq,ǫ(·) and zq+1,ǫ(·) are uniformly bounded on [−γ̄, Tmax] with
respect to ǫ, and f q and f q+1 are continuous functions.

On the other hand, if both t ≥ τ ǫq and t ≥ τ0q (case (iv) above), then (4.11)
becomes

µ
q+1,ǫ(t) = µ

q,ǫ(t) +

∫ t

τǫ
q

{

f̂
q+1,ǫ(s, 1)− f̂

q,ǫ(s, 1)
}

ds+

∫ t

τ0
q

{

f̂
q,0(s, 0)− f̂

q+1,0(s, 0)
}

ds

= z
q,ǫ(τ ǫ

q )− z
q,0(τ 0

q ) +

∫ t

τǫ
q

f̂
q+1,ǫ(s, 1)ds−

∫ t

τ0
q

f̂
q+1,0(s, 0)ds

= µ
q,ǫ(τ 0

q ) +

∫ τǫ
q

τ0
q

{

f̂
q,ǫ(s, 1)− f̂

q+1,ǫ(s, 1)
}

ds+

∫ t

τ0
q

{

f̂
q+1,ǫ(s, 1) − f̂

q+1,0(s, 0)
}

ds,

provided that τ ǫq−1 < τ0q when q ≥ 1. Thus, using the mean value theorem,

µq+1,ǫ(t) = µq,ǫ(τ0q ) +

∫ τǫ
q

τ0
q

{

f̂ q,ǫ(s, 1)− f̂ q+1,ǫ(s, 1)
}

ds(4.13)

+

m
∑

j=0

∫ t

τ0
q

∫ 1

0

∂f̂ q+1,ǫ(s, η)

∂x̃j
µq+1,ǫ(s− γj)dηds.

Taking the norm of both sides gives

∣

∣µq+1,ǫ(t)
∣

∣ ≤
∣

∣µq,ǫ(τ0q )
∣

∣ + (f q
max + f q+1

max)
∣

∣τ ǫq − τ0q
∣

∣(4.14)

+
m
∑

j=0

∫ t

τ0
q

∂f q+1
max

∣

∣µq+1,ǫ(s− γj)
∣

∣ds,

where ∂f q+1
max is an upper bound for the norm of ∂f̂ q+1,ǫ(s, η)/∂x̃j (again, an upper

bound exists because zq+1,ǫ(·) is uniformly bounded and f q+1 is continuously differ-
entiable). Recall that this inequality requires τ ǫq−1 < τ0q when q ≥ 1. By the inductive
hypothesis and Condition 3.1,

lim
ǫ→0

τ ǫq−1 = τ0q−1 = τq−1(ζ) < τq(ζ) = τ0q .
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Hence, when ǫ is of sufficiently small magnitude, τ ǫq−1 < τ0q and so inequality (4.14)
is valid.

Now, combining (4.12) and (4.14) and shifting the time variable in the integral
gives, for all t ∈ [−γ̄, Tmax],

∣

∣µ
q+1,ǫ(t)

∣

∣ ≤ max
s∈[−γ̄,Tmax]

∣

∣µ
q,ǫ(s)

∣

∣+ (fq
max + f

q+1
max)

∣

∣τ
ǫ
q − τ

0
q

∣

∣+

∫ t

−γ̄

(m+ 1)∂fq+1
max

∣

∣µ
q+1,ǫ(s)

∣

∣ds.

Therefore, since µq,ǫ(s) = O(ǫ) and τ ǫq −τ
0
q = O(ǫ) from (4.4) and (4.10), respectively,

∣

∣µq+1,ǫ(t)
∣

∣ ≤ O(ǫ) +

∫ t

−γ̄

(m+ 1)∂f q+1
max

∣

∣µq+1,ǫ(s)
∣

∣ds, t ∈ [−γ̄, Tmax].

Finally, applying the Gronwall inequality [2] gives

∣

∣µq+1,ǫ(t)
∣

∣ ≤ O(ǫ) exp((m+ 1)(Tmax + γ̄)∂f q+1
max) = O(ǫ), t ∈ [−γ̄, Tmax],

from which we immediately infer equation (4.4) for i = q + 1.

4.5. Some auxiliary results. We now prove some auxiliary results that are
needed in the next subsection. We have already shown in Sections 4.3 and 4.4 that
for any Tmax > 0, zq+1,ǫ(·) is uniformly bounded on [−γ̄, Tmax] with respect to ǫ,
and zq+1,ǫ(·) → zq+1,0(·) uniformly on [−γ̄, Tmax] as ǫ → 0. Thus, since f q+1 is a
continuously differentiable function, the following limit holds uniformly with respect
to s ∈ [0, Tmax] and η ∈ [0, 1]:

lim
ǫ→0

∂f̂ q+1,ǫ(s, η)

∂x̃j
=
∂f̂ q+1,0(s, 0)

∂x̃j
, j = 0, . . . ,m.

This implies that, for any Tmax > 0,

max
s∈[0,Tmax]

∫ 1

0

∣

∣

∣

∣

∂f̂ q+1,ǫ(s, η)

∂x̃j
−
∂f̂ q+1,0(s, 0)

∂x̃j

∣

∣

∣

∣

dη = θ(ǫ), j = 0, . . . ,m.(4.15)

Now, for s ∈ [0, Tmax] and q ≥ 1, by the mean value theorem,

∣

∣f̂ q,ǫ(s, 1)− f̂ q,0(s, 0)
∣

∣ ≤

m
∑

j=0

∫ 1

0

∣

∣

∣

∣

∂f̂ q,ǫ(s, η)

∂x̃j

∣

∣

∣

∣

·
∣

∣µq,ǫ(s− γj)
∣

∣dη(4.16)

≤ (m+ 1)∂f q
maxO(ǫ) = O(ǫ),

where ∂f q
max is an upper bound for the norm of ∂f̂ q,ǫ(s, η)/∂x̃j . Furthermore, for

s′, s′′ ∈ [0, Tmax] and q ≥ 1,

∣

∣f̂ q,0(s′′, 0)− f̂ q,0(s′, 0)
∣

∣ ≤
m
∑

j=0

∫ s′′

s′

∣

∣

∣

∣

∂f̂ q,0(s, 0)

∂x̃j

∣

∣

∣

∣

·
∣

∣żq,0(s− γj)
∣

∣ds(4.17)

≤ (m+ 1)∂f q
max max

i=0,...,q
f i
max

∣

∣s′′ − s′
∣

∣

= O(1)
∣

∣s′′ − s′
∣

∣,

where, for each i = 0, . . . , q, the upper bound f i
max for the norm of f̂ i,ǫ(s, η) exists

because zi,ǫ(·) is uniformly bounded and f i and φ are continuous functions. Choosing
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Tmax > max(τ ǫq , τ
0
q ) and using (4.10), (4.16) and (4.17) gives

∫ max(τǫ
q ,τ

0
q )

min(τǫ
q ,τ

0
q )

∣

∣f̂ q,ǫ(s, 1)− f̂ q,0(τ0q , 0)
∣

∣ds(4.18)

≤

∫ max(τǫ
q ,τ

0
q )

min(τǫ
q ,τ

0
q )

{

∣

∣f̂ q,ǫ(s, 1)− f̂ q,0(s, 0)
∣

∣+
∣

∣f̂ q,0(s, 0)− f̂ q,0(τ0q , 0)
∣

∣

}

ds

≤
{

O(ǫ) +O(1)
∣

∣τ ǫq − τ0q
∣

∣

}

∣

∣τ ǫq − τ0q
∣

∣ = O(ǫ2).

Similarly, by an almost identical proof,

∫ max(τǫ
q ,τ

0
q )

min(τǫ
q ,τ

0
q )

∣

∣f̂ q+1,ǫ(s, 1)− f̂ q+1,0(τ0q , 0)
∣

∣ds = O(ǫ2).(4.19)

Finally, for our last auxiliary result,

∫ max(τǫ
q ,τ

0
q )

−γ̄

∣

∣ǫ−1µq+1,ǫ(s)− Λk(s)
∣

∣ds ≤

∫ τ0
q

−γ̄

∣

∣ǫ−1µq+1,ǫ(s)− Λk(s)
∣

∣ds

+

∫ max(τǫ
q ,τ

0
q )

τ0
q

∣

∣ǫ−1µq+1,ǫ(s)− Λk(s)
∣

∣ds.

Choosing Tmax > max(τ ǫq , τ
0
q ), we know from Section 4.4 that ǫ−1µq+1,ǫ(·) = O(1)

uniformly on [−γ̄,max(τ ǫq , τ
0
q )]. Moreover, by virtue of (4.5) and (4.6) for i = q, for

almost every s ∈ [−γ̄, τ0q ), we have ǫ−1µq+1,ǫ(s) = ǫ−1µq,ǫ(s) → Λk(s) as ǫ → 0.
Hence, by the Lebesgue dominated convergence theorem [5], the first integral on the
right-hand side above converges to zero as ǫ → 0, and by (4.10), the second integral
is of order O(ǫ):

∫ max(τǫ
q ,τ

0
q )

−γ̄

∣

∣ǫ−1µq+1,ǫ(s)− Λk(s)
∣

∣ds(4.20)

≤ θ(ǫ) +
{

O(1) + max
s∈[−γ̄,Tmax]

∣

∣Λk(s)
∣

∣

}

·
∣

∣τ ǫq − τ0q
∣

∣ = θ(ǫ) +O(ǫ) = θ(ǫ).

Identities (4.15) and (4.18)-(4.20) are used to prove equation (4.5) for i = q+1 in the
next subsection.

4.6. Inductive step for equation (4.5). If t < τ0q , then (4.6) for i = q implies
that t < τ ǫq for all ǫ of sufficiently small magnitude and thus zq+1,ǫ(t) = zq,ǫ(t). Hence,
if t 6= τ0l , l = 0, . . . , q − 1, then (4.5) for i = q implies

lim
ǫ→0

zq+1,ǫ(t)− zq+1,0(t)

ǫ
= lim

ǫ→0

zq,ǫ(t)− zq,0(t)

ǫ
= lim

ǫ→0
ǫ−1µq,ǫ(t) = Λk(t−),

which proves (4.5) for i = q + 1 in the case t < τ0q . We now consider the case t > τ0q .
From (4.13), for all t ≥ max(τ ǫq , τ

0
q ),

µq+1,ǫ(t) = µq,ǫ(τ0q ) +

∫ τǫ
q

τ0
q

{

f̂ q,ǫ(s, 1)− f̂ q+1,ǫ(s, 1)
}

ds

+
m
∑

j=0

∫ t

τ0
q

∫ 1

0

∂f̂ q+1,ǫ(s, η)

∂x̃j
µq+1,ǫ(s− γj)dηds,
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provided that τ0q > τ ǫq−1 when q ≥ 1, which holds when ǫ is of sufficiently small
magnitude (see Section 4.4). Now, choose an arbitrary Tmax > max(τ ǫq , τ

0
q ). Then for

all t ≤ Tmax, it follows from (4.15) and the result in Section 4.4 that

∫ t

τ0
q

∫ 1

0

∂f̂ q+1,ǫ(s, η)

∂x̃j
µq+1,ǫ(s− γj)dηds(4.21)

=

∫ t

τ0
q

∂f̂ q+1,0(s, 0)

∂x̃j
µq+1,ǫ(s− γj)ds+ θ(ǫ)O(ǫ).

Furthermore, it follows from (4.18) and (4.19) that

∫ τǫ
q

τ0
q

{

f̂ q,ǫ(s, 1)− f̂ q+1,ǫ(s, 1)
}

ds(4.22)

= (τ ǫq − τ0q )
{

f̂ q,0(τ0q , 0)− f̂ q+1,0(τ0q , 0)
}

+O(ǫ2).

Using equations (4.21) and (4.22) to simplify the expression for µq+1,ǫ(t) gives, for all
times t satisfying max(τ ǫq , τ

0
q ) ≤ t ≤ Tmax,

µq+1,ǫ(t) = µq,ǫ(τ0q ) + (τ ǫq − τ0q )
{

f̂ q,0(τ0q , 0)− f̂ q+1,0(τ0q , 0)
}

(4.23)

+

m
∑

j=0

∫ t

τ0
q

∂f̂ q+1,0(s, 0)

∂x̃j
µq+1,ǫ(s− γj)ds+O(ǫ2) + θ(ǫ)O(ǫ).

Now, the solution of the variational system on (τ0q , τ
0
q+1] can be expressed as

(4.24) Λk(t−) = Λk(τ
0
q+) +

m
∑

j=0

∫ t

τ0
q

∂f̂ q+1,0(s, 0)

∂x̃j
Λk(s− γj)ds, t ∈ (τ0q , τ

0
q+1].

Multiplying (4.23) by ǫ−1 and then subtracting (4.24) gives

ǫ
−1

µ
q+1,ǫ(t)− Λk(t−) = ǫ

−1
µ
q,ǫ(τ 0

q )− Λk(τ
0
q+) + ǫ

−1(τ ǫ
q − τ

0
q )
{

f̂
q,0(τ 0

q , 0) − f̂
q+1,0(τ 0

q , 0)
}

+
m
∑

j=0

∫ t

τ0
q

∂f̂
q+1,0(s, 0)

∂x̃
j

{

ǫ
−1

µ
q+1,ǫ(s− γj)− Λk(s− γj)

}

ds+ θ(ǫ),

t ∈ (max(τ ǫ
q , τ

0
q ),min(τ 0

q+1, Tmax)],

which holds when ǫ is of sufficiently small magnitude. Hence, by taking the norm of
both sides and changing the variable of integration in the last integral, we obtain

∣

∣ǫ−1µq+1,ǫ(t)− Λk(t−)
∣

∣ ≤ λq,ǫ +

∫ t

−γ̄

(m+ 1)∂f q+1
max

∣

∣ǫ−1µq+1,ǫ(s)− Λk(s)
∣

∣ds+ θ(ǫ),

t ∈ (max(τ ǫq , τ
0
q ),min(τ0q+1, Tmax)],

where ∂f q+1
max is as defined in Section 4.4 and

λq,ǫ :=

∣

∣

∣

∣

ǫ−1µq,ǫ(τ0q )− Λk(τ
0
q+) + ǫ−1(τ ǫq − τ0q )

{

f̂ q,0(τ0q , 0)− f̂ q+1,0(τ0q , 0)
}

∣

∣

∣

∣

.



DYNAMIC OPTIMIZATION WITH DELAYS AND STATE-BASED SWITCHING 15

Clearly, by equations (4.5) and (4.7) for i = q and the jump condition in the variational
system,

lim
ǫ→0

λ
q,ǫ = lim

ǫ→0

∣

∣

∣

∣

ǫ
−1

µ
q,ǫ(τ 0

q )− Λk(τ
0
q−)(4.25)

+
{τ

ǫ
q − τ

0
q

ǫ
−

∂τq(ζ)

∂ζk

}

·
{

f̂
q,0(τ 0

q , 0)− f̂
q+1,0(τ 0

q , 0)
}

∣

∣

∣

∣

= 0.

Using (4.20) and (4.25), we obtain

∣

∣ǫ−1µq+1,ǫ(t)− Λk(t−)
∣

∣ ≤ θ(ǫ) +

∫ t

max(τǫ
q ,τ

0
q )

(m+ 1)∂f q+1
max

∣

∣ǫ−1µq+1,ǫ(s)− Λk(s)
∣

∣ds,

t ∈ (max(τ ǫq , τ
0
q ),min(τ0q+1, Tmax)].

Now, applying the Gronwall inequality [2] gives

∣

∣ǫ−1µq+1,ǫ(t)− Λk(t−)
∣

∣ ≤ θ(ǫ) exp((m+ 1)∂f q+1
maxTmax),(4.26)

t ∈ (max(τ ǫq , τ
0
q ),min(τ0q+1, Tmax)],

which holds for all ǫ of sufficiently small magnitude. Finally, for any fixed time point
t ∈ (τ0q , τ

0
q+1], we can choose Tmax > t so that t ∈ (τ ǫq ,min(τ0q+1, Tmax)] when the

magnitude of ǫ is sufficiently small, and then by (4.26) we have ǫ−1µq+1,ǫ(t) → Λk(t−),
which completes the proof of equation (4.5) for i = q + 1.

4.7. Inductive step for equation (4.6). If q = N − 1, then τ ǫq+1 = τ0q+1 = ∞
and thus equation (4.6) for i = q+1 clearly holds. Hence, we assume that q < N − 1.

Condition 3.1 and the definition of τ0q+1 imply that there exists δ > 0 such that
τ0q − δ < τ0q < τ0q+1 − δ and

(4.27) gq+1(z
q+1,0(t)) 6= 0, t ∈ [τ0q − δ, τ0q+1 − δ],

where τ0q+1 − δ = ∞ if τ0q+1 = ∞. For any Tmax > τ0q , we know from Section 4.4 that
zq+1,ǫ(t) → zq+1,0(t) uniformly on [−γ̄, Tmax] as ǫ → 0. Thus, from (4.6), when ǫ is
of sufficiently small magnitude,

(4.28) gq+1(z
q+1,ǫ(t)) 6= 0, t ∈ [τ ǫq ,min(τ0q+1 − δ, Tmax)].

If τ0q+1 = ∞, then this becomes

gq+1(z
q+1,ǫ(t)) 6= 0, t ∈ [τ ǫq , Tmax],

which implies τ ǫq+1 ≥ Tmax. Since Tmax was chosen arbitrarily, we can take Tmax → ∞
to yield τ ǫq+1 → ∞ as ǫ→ 0, proving (4.6) for i = q + 1.

We now consider the case τ0q+1 <∞. Clearly,

(4.29) gq+1(z
q+1,0(τ0q+1)) = 0.

Furthermore, by Condition 3.2,

∂gq+1(z
q+1,0(τ0q+1))

∂x
f̂ q+1,0(τ0q+1, 0)

=
∂gq+1(x(τ

0
q+1|ζ))

∂x
f q+1(x(τ0q+1|ζ), x(τ

0
q+1 − γ1|ζ), . . . , x(τ

0
q+1 − γm|ζ)) 6= 0.
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Thus, by continuity, we may assume that δ > 0 in (4.27) also satisfies

d

dt

{

gq+1(z
q+1,0(t))

}

=
∂gq+1(z

q+1,0(t))

∂x
ż
q+1,0(t)(4.30)

=
∂gq+1(z

q+1,0(t))

∂x
f̂
q+1,0(t, 0) 6= 0, t ∈ (τ 0

q+1 − δ, τ
0
q+1 + δ).

This shows that gq+1(z
q+1,0(·)) is either strictly increasing or strictly decreasing on

(τ0q+1−δ, τ
0
q+1+δ). Therefore, in view of (4.29) and (4.30), gq+1(z

q+1,0(·)) has different
sign at τ0q+1 − δ and τ0q+1 + δ:

gq+1(z
q+1,0(τ0q+1 − δ)) · gq+1(z

q+1,0(τ0q+1 + δ)) < 0.

Choosing Tmax > τ0q+1 + δ, since zq+1,ǫ(t) → zq+1,0(t) uniformly on [−γ̄, Tmax] as
ǫ→ 0, when ǫ is sufficiently small,

(4.31) gq+1(z
q+1,ǫ(τ0q+1 − δ)) · gq+1(z

q+1,ǫ(τ0q+1 + δ)) < 0,

which implies that gq+1(z
q+1,ǫ(·)), like gq+1(z

q+1,0(·)), has different sign at τ0q+1 − δ
and τ0q+1 + δ. Combining (4.28) and (4.31) gives τ0q+1 − δ < τ ǫq+1 < τ0q+1 + δ. The
proof is completed by taking δ → 0.

4.8. Inductive step for equation (4.7). We assume that q < N − 1, since
equation (4.7) is not applicable when i = N . First, define

ĝǫq+1(η) := gq+1(ηz
q+1,ǫ(τ ǫq+1) + (1 − η)zq+1,0(τ0q+1))

and let ∂ĝǫq+1(η)/∂x denote the respective derivative. By Taylor’s theorem, there
exists a constant ηǫ ∈ (0, 1) such that

0 = ĝǫq+1(1)− ĝ0q+1(0) =
∂ĝǫq+1(ηǫ)

∂x

{

zq+1,ǫ(τ ǫq+1)− zq+1,0(τ0q+1)
}

.(4.32)

Now, since τ ǫq → τ0q < τ0q+1 as ǫ→ 0, we have τ ǫq < τ0q+1 when ǫ is of sufficiently small
magnitude, and thus

zq+1,ǫ(τ ǫq+1)− zq+1,0(τ0q+1) = zq+1,ǫ(τ ǫq+1)− zq+1,ǫ(τ0q+1) + µq+1,ǫ(τ0q+1)(4.33)

=

∫ τǫ
q+1

τ0
q+1

f̂ q+1,ǫ(s, 1)ds+ µq+1,ǫ(τ0q+1)

= (τ ǫq+1 − τ0q+1)

∫ 1

0

f̂ q+1,ǫ(ητ ǫq+1 + (1− η)τ0q+1, 1)dη + µq+1,ǫ(τ0q+1).

Substituting (4.33) into (4.32) and rearranging gives

(τ ǫq+1 − τ0q+1)
∂ĝǫq+1(ηǫ)

∂x

∫ 1

0

f̂ q+1,ǫ(ητ ǫq+1 + (1− η)τ0q+1, 1)dη(4.34)

= −
∂ĝǫq+1(ηǫ)

∂x
µq+1,ǫ(τ0q+1),

which holds for all ǫ of sufficiently small magnitude.
Clearly, since τ ǫq+1 → τ0q+1 as ǫ → 0, we can choose Tmax > max(τ ǫq+1, τ

0
q+1), and

thus by Condition 3.2 and the results in Section 4.4,

lim
ǫ→0

∂ĝǫq+1(ηǫ)

∂x

∫ 1

0

f̂ q+1,ǫ(ητ ǫq+1 + (1− η)τ0q+1, 1)dη =
∂ĝ0q+1(0)

∂x
f̂ q+1,0(τ0q+1, 0) 6= 0.
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This ensures that we can rearrange (4.34) to give

τ
ǫ
q+1 − τ

0
q+1 = −

∂ĝ
ǫ
q+1(ηǫ)

∂x
µ
q+1,ǫ(τ 0

q+1)÷

{

∂ĝ
ǫ
q+1(ηǫ)

∂x

∫ 1

0

f̂
q+1,ǫ(ητ ǫ

q+1 + (1− η)τ 0
q+1, 1)dη

}

.

Next, dividing both sides by ǫ yields

τ ǫq+1 − τ0q+1

ǫ
= −

∂ĝǫq+1(ηǫ)

∂x

{

ǫ−1µq+1,ǫ(τ0q+1)
}

÷

{

∂ĝǫq+1(ηǫ)

∂x

∫ 1

0

f̂ q+1,ǫ(ητ ǫq+1 + (1− η)τ0q+1, 1)dη

}

.

Thus, using the result from Section 4.6, we obtain

lim
ǫ→0

τ ǫq+1 − τ0q+1

ǫ
= −

∂ĝ0q+1(0)

∂x
Λk(τ

0
q+1−)÷

{

∂ĝ0q+1(0)

∂x
f̂ q+1,0(τ0q+1, 0)

}

,

which proves equation (4.7) for i = q + 1, as required.

4.9. Proof of Theorem 3.2. With Theorem 3.1 proved, we now turn our at-
tention to Theorem 3.2. Consider i ∈ ZN−1 with τi <∞ and let k ∈ {1, . . . , p}. Then
from the auxiliary system (4.1), when |ǫ| is sufficiently small so that τ0i < τ ǫi+1,

x(τ0i |ζ + ǫek)− x(τ0i |ζ) = zi,ǫ(τ0i )− zi,0(τ0i ) +

∫ τ0
i

min(τǫ
i
,τ0

i
)

{

f̂ i+1,ǫ(s, 1)− f̂ i,ǫ(s, 1)
}

ds

= µi,ǫ(τ0i ) +

∫ τ0
i

min(τǫ
i
,τ0

i
)

{

f̂ i+1,ǫ(s, 1)− f̂ i,ǫ(s, 1)
}

ds.

Therefore, from identities (4.18) and (4.19) in Section 4.5,

x(τ 0
i |ζ + ǫe

k)−x(τ 0
i |ζ) = µ

i,ǫ(τ 0
i )+

{

τ
0
i −min(τ ǫ

i , τ
0
i )
}

·
{

f̂
i+1,0(τ 0

i , 0)− f̂
i,0(τ 0

i , 0)
}

+O(ǫ2).

Hence,

x(τ 0
i |ζ + ǫe

k)− x(τ 0
i |ζ)

ǫ
= ǫ

−1
µ
i,ǫ(τ 0

i )+
τ
0
i −min(τ ǫ

i , τ
0
i )

ǫ
·
{

f̂
i+1,0(τ 0

i , 0)− f̂
i,0(τ 0

i , 0)
}

+O(ǫ).

If ∂τi/∂ζk > 0, then τ ǫi → τ0i ± as ǫ→ 0±, and consequently,

lim
ǫ→0+

τ0i −min(τ ǫi , τ
0
i )

ǫ
= 0, lim

ǫ→0−

τ0i −min(τ ǫi , τ
0
i )

ǫ
= −

∂τi
∂ζk

.

Thus, since ǫ−1µi,ǫ(τ0i ) → Λk(τ
0
i −) by (4.5),

lim
ǫ→0+

x(τ0i |ζ + ǫek)− x(τ0i |ζ)

ǫ
= Λk(τ

0
i −)

and

lim
ǫ→0−

x(τ 0
i |ζ + ǫe

k)− x(τ 0
i |ζ)

ǫ
= Λk(τ

0
i −) +

∂τi(ζ)

∂ζk
·
{

f̂
i,0(τ 0

i , 0)− f̂
i+1,0(τ 0

i , 0)
}

= Λk(τ
0
i +).

Similarly, if ∂τi/∂ζk < 0, then

lim
ǫ→0+

x(τ 0
i |ζ + ǫe

k)− x(τ 0
i |ζ)

ǫ
= Λk(τ

0
i −) +

∂τi(ζ)

∂ζk
·
{

f̂
i,0(τ 0

i , 0)− f̂
i+1,0(τ 0

i , 0)
}

= Λk(τ
0
i +)
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and

lim
ǫ→0−

x(τ0i |ζ + ǫek)− x(τ0i |ζ)

ǫ
= Λk(τ

0
i −).

Finally, if either ∂τi/∂ζk = 0 or f̂ i+1,0(τ0i , 0) = f̂ i,0(τ0i , 0), then clearly we have
Λk(τ

0
i +) = Λk(τ

0
i −) and

∂x(τ0i |ζ)

∂ζk
= lim

ǫ→0

x(τ0i |ζ + ǫek)− x(τ0i |ζ)

ǫ
= Λk(τ

0
i −) = Λk(τ

0
i +).

4.10. Continuity of the cost function. Let ζ ∈ Z be an arbitrary parameter
vector satisfying Conditions 3.1 and 3.2. Equations (4.4) and (4.6) show that zi(·),
i ∈ ZN , and τi(·), i ∈ ZN−1, are individually continuous with respect to each system
parameter at ζ, but this does not necessarily imply full continuity (in the space Rp)
at ζ. Nevertheless, full continuity can be derived as follows. Consider a perturbed
parameter vector ζ + σ ∈ Z and let zi,σ(·), τσi (·), and µ

i,σ(·) denote the analogues of
zi,ǫ(·), τ ǫi (·), and µ

i,ǫ(·) with σ instead of ǫek. Then the proofs in Sections 4.3, 4.4,
and 4.7 can be easily modified to derive the following variations of equations (4.3),
(4.4), and (4.6) for each i:

max
t∈[−γ̄,Tmax]

∣

∣zi,σ(t)
∣

∣ = O(1) for every Tmax > 0,(4.35)

max
t∈[−γ̄,Tmax]

∣

∣µi,σ(t)
∣

∣ = θ(σ) for every Tmax > 0,(4.36)

lim
σ→0

τσi = τ0i ,(4.37)

where O(1) in (4.35) means that the left-hand side is uniformly bounded with respect
to σ, and θ(σ) in (4.36) means that the left-hand side converges to zero as σ → 0. In
(4.36) and (4.37), the convergence σ → 0 can be along any path to the origin, but
in the corresponding results (4.4) and (4.6), the convergence is restricted to be along
one of the coordinate axes. Choosing Tmax > T , equation (4.36) for i = N gives

∣

∣x(T |ζ + σ)− x(T |ζ)
∣

∣ =
∣

∣zN,σ(T )− zN,0(T )
∣

∣

=
∣

∣µN,σ(T )
∣

∣ ≤ max
t∈[−γ̄,Tmax]

∣

∣µN,σ(t)
∣

∣ = θ(σ),

which shows that x(T |ζ + σ) → x(T |ζ) as σ → 0. Hence, since Φ is continuous, we
also have J(ζ + σ) = Φ(x(T |ζ + σ)) → Φ(x(T |ζ)) = J(ζ) as σ → 0, as required.
Note that equation (4.36) is the key continuity result here; this result must be proved
simultaneously with (4.35) and (4.37) via induction.

5. Numerical example. We consider a fed-batch fermentation process for con-
verting glycerol to 1,3-propanediol (1,3-PD). This process oscillates between two
modes: batch mode (during which there is no input feed) and feeding mode (during
which glycerol and alkali are added continuously to the fermentor). Mode switches
occur when the concentration of glycerol reaches certain lower and upper thresholds.
Moreover, the fermentation process involves a time-delay because nutrient metabo-
lization does not immediately lead to the production of new biomass.

The model is based on the work in [24, 28]. Let x(t) = (x1(t), x2(t), x3(t), x4(t))
⊤,

where t is time (hours), x1(t) is the biomass concentration (gL−1), x2(t) is the glycerol
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Table 5.1
Model parameters in equations (5.3)-(5.5).

∆1 k1 m1 Y1 ∆2 k2 m2 Y2 ∆3 k3

0.8037 0.4856 0.2977 144.9120 7.8367 9.4632 12.2577 80.8439 20.2757 38.7500

concentration (mmolL−1), x3(t) is the 1,3-PD concentration (mmolL−1), and x4(t) is
the fluid volume (L). The process dynamics due to natural fermentation are

(5.1)









ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)









=









µ(x2(t), x3(t))x1(t− γ1)
−q2(x2(t), x3(t))x1(t− γ1)
q3(x2(t), x3(t))x1(t− γ1)

0









:= f ferm(x(t), x1(t− γ1)),

where γ1 = 0.1568 is the time-delay; µ(·, ·) is the cell growth rate; q2(·, ·) is the
substrate consumption rate; and q3(·, ·) is the 1,3-PD formation rate. The process
dynamics due to the input feed are

(5.2)









ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)









=
u(t)

x4(t)









−x1(t)
rcs0 − x2(t)

−x3(t)
x4(t)









:= f feed(x(t), u(t)),

where u(t) is the input feeding rate (Lh−1); r = 0.5714 is the proportion of glycerol
in the input feed; and cs0 = 10762 mmolL−1 is the concentration of glycerol in the
input feed. The functions µ(·, ·), q2(·, ·) and q3(·, ·) in (5.1) are

µ(x2(t), x3(t)) =
∆1x2(t)

x2(t) + k1

(

1−
x2(t)

x∗2

)(

1−
x3(t)

x∗3

)3

,(5.3)

q2(x2(t), x3(t)) = m1 + Y1µ(x2(t), x3(t)) +
∆2x2(t)

x2(t) + k2
,(5.4)

q3(x2(t), x3(t)) = −m2 + Y2µ(x2(t), x3(t)) +
∆3x2(t)

x2(t) + k3
,(5.5)

where x∗2 = 2039 mmolL−1 and x∗3 = 1036 mmolL−1 are, respectively, the critical
concentrations of glycerol and 1,3-PD, and the values of the other parameters are
given in Table 5.1.

Let Nfeed be an upper bound for the number of feeding modes. Then the total
number of potential modes is N = 2Nfeed + 1 (consisting of Nfeed feeding modes and
Nfeed + 1 batch modes, since the process starts and finishes in batch mode). During
batch mode, there is no input and the process is governed by (5.1) only. During
feeding mode, the process is governed by both (5.1) and (5.2). Thus,

ẋ(t) =

{

f ferm(x(t), x1(t− γ1)), for batch mode,

f ferm(x(t), x1(t− γ1)) + f feed(x(t), ζi), for ith feeding mode,
(5.6)

where ζi is the feeding rate during the ith feeding mode, with

(5.7) 1.0043 ≤ ζi ≤ 1.9266.
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Glycerol is consumed as the biomass grows. During batch mode, no new glycerol is
added and eventually the glycerol concentration will become too low, necessitating a
switch into feeding mode. The corresponding switching condition is

x2(t)− ζNfeed+1 = 0,

where ζNfeed+1 is the lower switching concentration (a parameter to be optimized).
On the other hand, when the glycerol concentration becomes too high during feeding
mode, cell growth is inhibited. Thus, if too much glycerol is added, then the process
must switch back into batch mode. The corresponding switching condition is

x2(t)− ζNfeed+2 = 0,

where ζNfeed+2 is the upper switching concentration (another parameter to be opti-
mized). The bound constraints on ζNfeed+1 and ζNfeed+2 are

(5.8) 50 ≤ ζNfeed+1 ≤ 260, 300 ≤ ζNfeed+2 ≤ 600.

Note that the system parameters in this example appear explicitly in the dynamics and
switching conditions. Thus, to apply Theorem 3.1, we replace the system parameters
with auxiliary state variables x4+k(t), k = 1, . . . , Nfeed + 2, where ẋ4+k(t) = 0, t > 0,
and x4+k(t) = ζk, t ≤ 0. Letting δki denote the Kronecker delta function and ∂x
and ∂x̃1 denote differentiation with respect to x(t) and x1(t − γ1), respectively, the
variational system corresponding to ζk is

Λ̇k(t) =



















∂f
ferm

∂x
Λk(t) +

∂f
ferm

∂x̃1
Λk1(t− γ1), batch mode,

∂f
ferm

∂x
Λk(t) +

∂f
ferm

∂x̃1
Λk1(t− γ1) +

∂f
feed

∂x
Λk(t) + δki

∂f
feed

∂u
, ith feeding mode,

with jump conditions

Λk(τi+) =











Λk(τi−)−
∂τi
∂ζk

f feed(x(τi), ζ(i+1)/2), if mode i = batch,

Λk(τi−) +
∂τi
∂ζk

f feed(x(τi), ζi/2), if mode i = feeding.

Furthermore, for a switch from batch mode to feeding mode,

∂τi
∂ζk

=

{

(1− Λk2(τi−))÷ f ferm
2 (x(τi), x1(τi − γ1)), if k = Nfeed + 1,

−Λk2(τi−)÷ f ferm
2 (x(τi), x1(τi − γ1)), otherwise.

Similarly, for a switch from feeding mode to batch mode,

∂τi

∂ζk
=

{

(1− Λk2(τi−))÷
{

f ferm
2 (x(τi), x1(τi − γ1)) + f feed

2 (x(τi), ζi/2)
}

, if k = Nfeed + 2,

−Λk2(τi−)÷
{

f ferm
2 (x(τi), x1(τi − γ1)) + f feed

2 (x(τi), ζi/2)
}

, otherwise.

Since the bounds in (5.8) ensure ζNfeed+1 < ζNfeed+2, Condition 3.1 is clearly satisfied
at all feasible points. For Condition 3.2, we require

0 6=







−q2(x2(τi), x3(τi))x1(τi − γ1), if mode i = batch,

−q2(x2(τi), x3(τi))x1(τi − γ1) +
ζi/2(rcs0 − x2(τi))

x4(τi)
, if mode i = feeding.
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Table 5.2
Optimal control parameters for the example: ζ1, . . . , ζ4 are the optimal feeding rates and ζ49

and ζ50 are the optimal switching concentrations. The optimal values of ζ5, . . . , ζ48 are irrelevant
because they represent feeding rates after the terminal time.

Parameter ζ1 ζ2 ζ3 ζ4 ζ49 ζ50

Optimal value 1.62662 1.36951 1.45283 1.64830 245.76512 581.35390

Table 5.3
Optimal mode durations for the example.

Duration

i = 1 i = 2 i = 3 i = 4 i = 5

Batch mode i 5.25482 2.76659 3.18638 4.95994 7.05542
Feeding mode i 0.19745 0.25777 0.25193 0.22971 −

The expression above for batch mode is always non-zero because in practice both q2
and x1 are non-zero. The expression for feeding mode is also non-zero because, during
feeding mode, the glycerol loss from natural fermentation (first term) is dominated by
the glycerol addition from the input feed (second term). The linear growth condition
is also satisfied in this example because x4 is non-decreasing and, for biologically
meaningful trajectories, µ(·, ·) is bounded.

The initial function φ for the dynamics (5.6) was obtained by applying cubic spline
interpolation to the experimental data in [28]. The terminal time for the fermentation
process is T = 24.16 hours [24] and our chosen upper bound for the number of feeding
modes is Nfeed = 48. The aim is to maximize the concentration of 1,3-PD at the
terminal time. Thus, the dynamic optimization problem is: choose the parameters
ζk, k = 1, . . . , Nfeed + 2, to minimize the cost function −x3(T ) subject to the bound
constraints (5.7) and (5.8).

This problem was solved using a Fortran program that implements the gradient-
based optimization procedure in Section 3. The program uses NLPQLP [31] to per-
form the optimization iterations (optimality check and line search), and LSODAR [13]
to solve the differential equations. Our gradient-based optimization strategy gener-
ates critical points satisfying local optimality conditions, but global optimality is not
guaranteed. Hence, to achieve a good estimate of the global solution, it is necessary
to repeat the optimization process from different starting points. We performed 100
test runs, with each run starting from a different randomly-selected initial point. The
average optimal cost over all runs was −977.12854, and the best result of −986.16815
was achieved on run 73 with the control parameters in Table 5.2. This control strategy
produces 8 switches (5 batch modes and 4 feeding modes) and the corresponding mode
durations are listed in Table 5.3. Fig. 5.1 shows both the optimal state trajectories
(in bold red) and the intermediate state trajectories at every fifth iteration (in blue).
The concentrations of biomass and 1,3-PD decrease during feeding modes 2-4 because
of the dilution effect from the new input feed. The control strategy in Table 5.2 is
essentially a state feedback strategy that produces more 1,3-PD compared with the
time-dependent switching strategy in [24] (an increase of 5.789%), but with far fewer
switches—in fact, the method in [24] requires over 1000 switches. Fig. 5.2 shows how
the optimal 1,3-PD concentration varies over the 100 test runs.
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(a) Biomass concentration.
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(b) Glycerol concentration.
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(c) 1,3-PD concentration.
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(d) Volume of culture fluid.

Fig. 5.1. Convergence of the state trajectories; the bold red lines are the optimal trajectories,
the blue lines are intermediate trajectories, and the dashed lines in (b) are the switching surfaces.

6. Conclusion. This paper has considered a class of dynamic optimization prob-
lems for a general switched time-delay system with state-dependent switching condi-
tions. Our main result shows that the state variation matrix in such problems can be
computed by solving a certain variational system, and this forms the foundation of
a gradient-based optimization method for generating locally-optimal solutions. Nu-
merical results for an example problem arising in 1,3-propanediol production show
that the method is effective. The complexity of the gradient derivation in Section 4
is due to the switching times depending implicitly on the control parameters, as well
as the presence of multiple state-delays. The gradient derivation required two tech-
nical conditions (see Section 3), which are reasonable in practice and are similar to
assumptions in previous related work. Importantly, our results show that the state
variation matrix often does not exist at the switching points. This is different to
time-dependent switched systems, where the state variation with respect to system
parameters always exists, even at the switching points [18, 19].
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