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Abstract

Recent research in both the experimental and mathematical communities has focused on bio-
chemical interaction systems that satisfy an “absolute concentration robustness” (ACR) property.
The ACR property was first discovered experimentally when, in a number of different systems, the
concentrations of key system components at equilibrium were observed to be robust to the total
concentration levels of the system. Followup mathematical work focused on deterministic models of
biochemical systems and demonstrated how chemical reaction network theory can be utilized to ex-
plain this robustness. Later mathematical work focused on the behavior of this same class of reaction
networks, though under the assumption that the dynamics were stochastic. Under the stochastic
assumption, it was proven that the system will undergo an extinction event with a probability of
one so long as the system is conservative, showing starkly different long-time behavior than in the
deterministic setting. Here we consider a general class of stochastic models that intersects with the
class of ACR systems studied previously. We consider a specific system scaling over compact time
intervals and prove that in a limit of this scaling the distribution of the abundances of the ACR
species converges to a certain product-form Poisson distribution whose mean is the ACR value of the
deterministic model. This result is in agreement with recent conjectures pertaining to the behavior
of ACR networks endowed with stochastic kinetics, and helps to resolve the conflicting theoretical
results pertaining to deterministic and stochastic models in this setting.

1 Introduction

Biochemical reaction networks are often quite complex and computationally intractable. It is there-
fore important to develop mathematical techniques that relate simple graphical features of the reaction
network, which are easy to check, to the qualitative dynamics of the underlying mathematical model.
This approach dates back to at least [13, 14, 16], where certain graphical characteristics of networks
were shown to ensure uniqueness and local asymptotic stability of the steady states for deterministically
modeled complex-balanced systems.

In this context of relating graphical and dynamical features of models, Shinar and Feinberg provided
graphical conditions that imply certain species satisfy an absolute concentration robustness (ACR) prop-
erty for the associated deterministically modeled system [25]. A species is said to possess ACR if for a
fixed choice of system parameters its concentration is the same at any positive equilibrium point of the
deterministically modeled system. Such a feature has been observed experimentally in several impor-
tant biochemical reaction networks, including signal transduction cascades and gene regulatory networks
[1, 8, 10, 15, 24, 25]. The ACR property provides useful information on the system dynamics since
it indicates a predictable fixed response regardless of changes in the environment. Followup research
pertaining to deterministically modeled systems with ACR species can be found in [19].

Stochastically modeled systems satisfying essentially the same graphical conditions as those detailed
in [25] were considered by Anderson, Enciso, and Johnston in [4]. There it was shown that ACR systems
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in a particular family, if stochastically modeled, undergo an extinction event with a probability of one, so
long as the system is conservative (i.e. there is a positive linear combination of the species that is invariant
to occurrences of reactions). Such a result can be considered an example of a discrepancy between the
limiting behaviour of a deterministic system and the limiting behaviour of the corresponding stochastic
system, with one modeling choice predicting a form of long-term stability and the other predicting long-
term instability. However, in [4] it is pointed out that the extinction event is typically a rare event on
reasonable timeframes and that useful information pertaining to the behaviour of stochastically modeled
ACR systems could be had by better understanding the dynamics of the system on compact time intervals
or via the quasi-stationary distribution. It is conjectured in [4] that the distribution of the ACR species
will be approximately Poisson in either case. Both a simple example pertaining to a model of protein
interactions and a numerical analysis of the two-component EnvZ/OmpR signaling system in Escherichia

coli provide evidence in favor of the conjecture [4].
In this paper we provide an asymptotic result for the stochastic models of a class of reaction systems

that overlaps with ACR reaction systems. In particular, we consider a multiscale setting in which the
abundances of a subset of the ACR species are of order O(1), while the abundances of other species are
of order O(N). We then scale the rate constants in a particular way and let N go to infinity. Under
this limit, we prove that on compact time intervals the ACR species whose abundance is of order O(1)
behave in the way conjectured in [4]. Namely, the distribution of their abundances is well approximated
by a product-form Poisson distribution whose parameter is given by the ACR equilibrium value of
the associated deterministically modeled system. Thus, the results presented here link the qualitative
behaviours of the deterministic and stochastic models. Furthermore, the result fully explains the outcome
of the numerical analysis of the EnvZ/OmpR signaling system performed in [4].

One key observation we utilize in our proofs, and the basis of our Assumption 2, is that a certain
sub-reaction network consisting of only the O(1) species is often weakly reversible and deficiency zero.
This fact, together with the results of [3], allows us to characterize the marginal distribution of the ACR
species as approximately Poisson. We then show that the approximation becomes precise in the limit as
N →∞.

We end this section with two instructive examples that demonstrate our main results.

Example 1.1. Consider the deterministically modeled system with reaction network

A+B
κ1−→ 2B, B

κ2−→ A (1)

and mass action kinetics (see (7) and (8)). The species A exhibits ACR since at each positive equilibrium
the concentration of A is κ2/κ1, regardless of the concentration of the species B [4, 25].

Now consider a sequence {XN}N∈N of continuous time Markov chain models for (1), in which the
counts of species A and B at time t are given by XN

1 (t) and XN
2 (t), respectively. We suppose the

initial conditions are such that XN
1 (0) is a bounded sequence and N−1XN

2 (0) converges to a positive real
number, as N →∞. This choice of initial conditions corresponds to an experiment where the abundance
of the molecules of B is increased, while the magnitude of the count of A is maintened. Our goal will be
to understand the limiting behaviour of XN

1 for N going to infinity.
For the sake of intuition, note that a sub-reaction network for A is

A
κ1X

N
2

⇋
κ2XN

2

∅,

which views XN
2 as simply modulating the speed of the two reactions. Since it is well known that in the

case of the above reaction network with XN
2 fixed, XN

1 will have a stationary distribution that is Poisson
with parameter κ2/κ1 [3], it is intuitively clear that for finite t, XN

1 (t) should be approximately Poisson
if XN

2 is large and fluctuates little.
The above argument will be made precise. Let J be a random variable having a Poisson distribution

with parameter κ2/κ1. Corollary 4.1 will allow us to conclude that for any function g : N → R with at
most polynomial growth rate, the distribution of g(XN

1 (t)) converges on average to the distribution of
g(J) for N going to infinity. Specifically, for any real positive T , we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
g(XN

1 (s))− E[g(J)]
)
ds

∣∣∣∣ −−−−→N→∞
0

2



in probability. Further, if g is bounded, then for any δ > 0

sup
t∈[δ,T ]

∣∣∣E
[
g(XN

1 (t))
]
− E[g(J)]

∣∣∣ −−−−→
N→∞

0. (2)

An immediate consequence of (2) is that XN
1 (t) converges in distribution to J , which has a Poisson

distribution with mean given by the ACR value κ2/κ1. This consequence follows from choosing as g an
indicator function. See Example 4.1 for more details. �

Example 1.2. Our results are also applicable to models that do not utilize mass action kinetics. Consider
the stochastic reaction system

A+ 2B −→ 3B, B
κ1−−⇀↽−−
κ2

C
κ3−→ A, (3)

where the rate of the reaction A+ 2B → 3B is given by

λ(x) = κ0
x1x2(x2 − 1)

1 + x2
, (4)

and where κ0 ∈ R>0. The rate (4) corresponds to an inhibitory effect of the molecules of B on the
production of B itself. If we consider a sequence of such models in which the counts of B and C go to
infinity, then the limiting behaviour of the model (3)-(4) coincides with the limiting behaviour of the
process associated with the reaction network

A+B
κ0−→ 2B, B

κ1−−⇀↽−−
κ2

C
κ3−→ A, (5)

endowed with mass-action kinetics. Due to [25], the reaction system (5) exhibits ACR in the species A,
when deterministically modeled. Let q ∈ R>0 be the ACR value for species A. Due to the connection
between the models (3)-(4) and (5), we anticipate the value q will play a role in the limiting behaviour
of species A of (3)-(4).

We therefore denote by {XN}N∈N a sequence of stochastic processes modeled according to (3)-(4),
with XN

1 (t), XN
2 (t), and XN

3 (t) being the counts at time t for the species A, B, and C, respectively.
We suppose that XN

1 (0) is a bounded sequence and N−1(XN
2 (0), XN

3 (0)) converges to a point in R
2
>0,

as N →∞. Our aim is to understand the limiting behaviour of XN
1 as N goes to infinity.

Let J be a Poisson distribution with parameter q, the ACR value for species A when (5) is modeled
deterministically. By Corollary 4.2, there exits a function g∗ : R>0 → R>0 with g∗(s) → E[g(J)], as
s→∞, such that for any positive real T

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
g(XN

1 (s)) − g∗(s)
)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. Moreover, and as in Example 1.1, we have that XN
1 (t) converges in distribution to a

Poisson random variable whose mean is related to the ACR value. See Example 4.2 for more details. �

2 Necessary Background and Notation

We denote the natural numbers including 0 by N, that is N = {0, 1, 2, . . .}. For any real vector v, we
denote its ith entry by vi. We will write v > 0 if every entry of v is strictly positive. We denote by [v]
the vector of the floor functions of the entries of v; that is, [v]i = ⌊vi⌋. For any real vector α of the same
size as v, and for N > 0, we denote by Nαv the vector satisfying

(Nαv)i = Nαivi.

We will denote by ‖v‖ the euclidean norm of the vector, by ‖v‖1 its L1-norm and by ‖v‖∞ its L∞-norm,
that is

‖v‖ =

√∑

i

v2i , ‖v‖1 =
∑

i

|vi|, and ‖v‖∞ = max
i
|vi|.
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For two vectors v and w of the same dimension, we write v < w, v ≤ w, v > w or v ≥ w if the inequality
holds component-wise. Furthermore, for any set A we will indicate by |A| its cardinality and by 1A its
indicator function. Finally, for a, b ∈ R, we denote a ∧ b = min{a, b} and a ∨ b = max{a, b}.

We say that a function g : Rn → R has at most polynomial growth rate if there exists a multivariate
polynomial p : Rn → R such that

lim sup
‖x‖→∞

g(x)

p(x)
= 0

Here we give some basic definitions from chemical reaction network theory, see for example [11, 13]
for a more detailed introduction.

A reaction network is a triple G = (X , C,R). X is a finite non-empty ordered set of symbols, referred
to as species, and C is a finite non-empty ordered set of linear combinations of species with non-negative
integer coefficients, referred to as complexes. Any species Si ∈ X can be identified with the vector
ei ∈ R

|X |, whose ith entry is 1 and whose other entries are zero. Therefore, any complex y ∈ C will be
identified with a vector in R

|X | that is linear combination of the vectors ei. Finally, R is a non-empty
ordered subset of C×C, whose elements are called reactions, such that for any y ∈ C, (y, y) /∈ R. Following
the common notation, we will denote any element (yr, y

′
r) ∈ R by yr → y′r ∈ R, in which case we then

call yr the source complex and y′r the product complex of that reaction. It is possible that a complex
y ∈ C is the source (product) complex of different reactions, and that it is both the source complex of one
reaction and the product complex of another reaction. It is commonly required that every species S ∈ X
appears in at least one complex, and that every complex y ∈ C appears as an element in at least one
reaction. It is possible to associate a directed graph to G, where the set of nodes is the set of complexes
C and the arrows are given by the reactions yr → y′r ∈ R. If the graph is such that for any directed path
from y to y′ there exists a directed path from y′ to y, then G is weakly reversible. For the rth reaction,
yr → y′r, we denote by ξr = y′r − yr the corresponding reaction vector. We write Si ∈ ξr (Si ∈ yr) if
ξri 6= 0 (yri 6= 0). For any species S ∈ X , let

RS = {yr → y′r ∈ R : S ∈ ξr}, (6)

the set of reactions that change the amount of species S.

To each reaction yr → y′r ∈ R, we can associate a function λr : R
|X |
≥0 → R≥0. The set consisting

of these function K = {λr}yr→y′
r∈R is referred to as the kinetics, and the functions λr are called rate

functions, or intensity functions, or propensity functions. The pair S = (G,K) is a reaction system,
which can be stochastically or deterministically modeled, as explained below.

In a stochastically modeled reaction system S = (G,K), the counts of molecules of the different
chemical species are considered, and the counts at time t form a vector X(t) ∈ N

|X |. The evolution
in time of the vector X(t) follows a continuous time Markov chain, where in each state x ∈ N

|X | the
obtainable states are {x+ ξr} and transition rates are given by {λr(x)}, with yr → y′r varying in R. If
at time t∗ the reaction yr → y′r occurs, then we have

X(t∗) = X(t∗−) + ξr,

where X(t∗−) denotes the previous state. To stick with the physical meaning of the reactions, we require
that the kinetics is such that for any reaction yr → y′r ∈ R we have λyr→y′

r
(x) > 0 only if x ≥ yr. This

condition prevents the number of molecules present from becoming negative. Moreover, in this setting,
we are only interested in the values of λyr→y′

r
(x), when x ∈ N

|X |, therefore the domain of the rate

function can be restricted to N
|X |. Following the terminology utilized in [5, 6, 12, 20], we can write

X(t) = X(0) +
∑

yr→y′
r∈R

Yr

(∫ t

0

λr(X(s))ds

)
ξr,

where the Yr are i.i.d. unit rate Poisson processes. For any two states x, z ∈ N
|X |, we say that a state z

is obtainable from x if there exists a sequence of reactions (yri → y′ri)
m
i=1 such that

z = x+

m∑

i=1

ξri , with λyri
→y′

ri


x+

i−1∑

j=1

ξrj


 > 0,
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for all i ∈ {1, . . . ,m}. We further say that (G,K) is irreducible if for any two states x, z ∈ N
|X |, z is

obtainable from x and x is obtainable from z. See [22] for more on irreducible reaction networks and for
sufficient conditions implying irreducibility. A popular choice of kinetics for stochastic reaction systems
is given by stochastic mass action kinetics, defined by

λr(x) = κr
x!

(x− yr)!
1{x≥yr},

where κr ∈ R>0 are called rate constants and for any vector v ∈ N
m, v! is defined by v! =

∏m
i=1 vi!,

with the convention 0! = 1. This kinetics is related to the assumption that the system is well-stirred,
so the propensity of each reaction is proportional to the number of possible sets of molecules that can
give rise to an occurrence of the reaction. A stochastic reaction system endowed with stochastic mass
action kinetics is referred to as stochastic mass action system, and will be denoted S = (G, κ). Note
that the property of irreducibility of a mass action system does not depend on the particular choice of
rate constants: indeed, in mass action systems a rate λr(x) is strictly positive if and only if x ≥ yr.

In a deterministically modeled reaction system S = (G,K), the concentrations of the different chem-

ical species are considered, and the concentrations at time t form a vector z(t) ∈ R
|X |
≥0 . The evolution in

time of the vector z(t) obeys the ordinary differential equation (ODE)

z′(t) =
∑

yr→y′
r∈R

ξrλr(z(t)). (7)

As in the stochastic case, we put a restriction on the kinetics and require that for any yr → y′r ∈ R we
have λyr→y′

r
(x) > 0 only if xi > 0 whenever Si ∈ yr. This condition means that a reaction cannot take

place if some necessary chemical species is missing, and it guarantees that the vector z(t) will remain
non-negative. Deterministic mass action kinetics is given by

λr(x) = κrx
yr , (8)

where κr ∈ R>0 are called rate constants and for any two vectors v, w ∈ N
m, vw is defined by

vw =
∏m

i=1 v
wi

i , with the convention 00 = 1. Thus, the rate of each reaction is proportional to the
products of the concentrations of the species appearing in the source complex, according to multiplicity.
As in the stochastic case, this kinetics is chosen for well-stirred systems. A deterministic reaction system
with deterministic mass action kinetics is termed a deterministic mass action system, and will be denoted
by S = (G, κ).

A fruitful notion in chemical reaction network theory, and one that will play a role in the present
work, is that of a complex balanced equilibrium, which is a positive equilibrium point c of a deterministic
mass action system satisfying

∑

yr→y′
r∈R

yr=y

κrc
yr =

∑

yr→y′
r∈R

y′
r=y

κrc
yr for each y ∈ C,

where the sum on the left, respectively right, is over those reactions for which y is the source, respectively
product, complex. We say that a deterministic mass action system is complex balanced if there exists
at least one positive equilibrium point, and if every positive equilibrium point is a complex balanced
equilibrium.

We extend the definition of complex balanced to the stochastic setting by saying that a stochastic
mass action system (G, κ) is complex balanced if the deterministic mass action system (G, κ) is complex
balanced. We may therefore refer to complex balanced mass action systems without specifying whether
they are stochastically or deterministically modeled. In the same fashion, whenever we refer to an equilib-
rium point of a reaction system, we implicitly assume it is an equilibrium point for the deterministically
modeled system. It is interesting to point out that complex balanced stochastic mass action systems can
be fully characterised by properties of their stationary distributions [9].

It is worth noting that under the assumptions detailed above for both deterministic and stochastic
reaction systems, the evolution of the amounts of species present is restricted to

X(t) ∈
(
X(0) + span{ξr}yr→y′

r∈R

)
∩ N

|X | and z(t) ∈
(
z(0) + span{ξr}yr→y′

r∈R

)
∩ R

|X |
≥0 ,

5



regardless of the choice of kinetics K. The sets
(
v + span{ξr}yr→y′

r∈R

)
with v ∈ R

|X | are called the
stoichiometric compatibility classes of G, and the sets

(
v + span{ξr}yr→y′

r∈R

)
∩ R

|X |
≥0 and

(
v + span{ξr}yr→y′

r∈R

)
∩ R

|X |
>0

are called the non-negative stoichiometric compatibility classes and positive stoichiometric compatibility

classes of G. Any vector T ∈ R
|X | that is orthogonal to the stoichiometric compatibility classes of G is a

conservation law for G, and if there exists a positive conservation law for G, then G is called conservative.
Let s = dim

(
span{ξr}yr→y′

r∈R

)
. We define the deficiency of G as δ = |C| − ℓ − s, where ℓ is the

number of connected components of the directed graph associated with G. We end this section by stating
some classical results that can be found in [13, 14, 16], which connect graphical and dynamical features
of the deterministic mass action systems and will be of use to us.

Theorem 2.1. If a deterministic mass action system S = (G, κ) possesses a complex balanced equilib-

rium, then S is complex balanced and G is weakly reversible. Moreover, there exists exactly one complex

balanced equilibrium in every positive stoichiometric compatibility class, and it is locally asymptotically

stable relative to its positive stoichiometric compatibility class.

Theorem 2.2. If G is weakly reversible and has deficiency 0, then for any choice of rate constants the

deterministic mass action system S = (G, κ) is complex balanced.

3 The multiscale setting, assumptions and main results

We begin by motivating the scaling presented below. Our goal is to study the behavior of the distribution
of ACR species in the limit as total abundances go to infinity. As the equilibrium value of the ACR
species is independent of total abundances, we will assume a partition in the set of species: some of them
will be allowed to take arbitrarily large abundances in their initial conditions, while the initial conditions
for the others (i.e. the ACR species) will be bounded.

Formally, denote by KN a sequence of stochastic kinetics for G, with N ∈ N>0, and let XN(t) be the
sequence of stochastic processes associated with the system (G,KN ). Assume that there exists a vector
α ∈ {0, 1}|X | such that

lim
N→∞

N−αXN(0) = X0 > 0. (9)

The condition (9) implies a partition of the set of species X in two sets, the discrete species (denoted by
Xd) and the continuous species (denoted by Xc),

• Si ∈ Xd if αi = 0, in which case XN
i (0) = O(1);

• Si ∈ Xc if αi = 1, in which case XN
i (0) = O(N).

Let
πd : R

|X | → R
|Xd| and πc : R

|X | → R
|Xc|

be the projections onto the discrete and continuous species, respectively, and define

XN
disc(t) = πd(X

N(t)) and XN
cont(t) = πc(X

N(t)).

For convenience, we will sometimes consider the rate functions as functions from N
|Xd|×N

|Xc|, and write
λr(v, w), where v and w denote the amounts of the discrete and continuous species, respectively. For
any reaction yr → y′r ∈ R, define

βr = max
Si∈yr

αi.

Note that βr ∈ {0, 1}. We assume that

lim
N→∞

N−βrλNr (v, [Nw]) = λr(v, w) (10)

uniformly on the compact sets of N|Xd|×R
|Xc|
≥0 , where the functions λr are non-zero and locally Lipschitz,

with domain N
|Xd| × R

|Xc|
≥0 . We denote by K the kinetics given by the limiting functions λr. The above

setting is a particular case of the one studied in [7, 17, 23].

6



Remark 3.1. If the kinetics KN are stochastic mass action kinetics for all N ∈ N>0, then by (10) the
sequence

N−βrλNr (v, [Nw]) = N−βrκNr
v!

(v − πd(yr))!

[Nw]!

([Nw]− πc(yr))!

converges to a positive number for some (v, w) ∈ N
|Xd| × R

|Xc|
≥0 . Since the sequence

N−‖πc(yr)‖1
[Nw]!

([Nw]− πc(yr))!

converges to wyr , for any r we have

lim
N→∞

N−βr+‖πc(yr)‖1κNr = κr, (11)

for some positive constant κr.

3.1 Assumptions

While the assumptions we detail in this section are technical in nature, they essentially ensure three
very natural conditions. Assumption 1 ensures that each discrete species is produced and consumed
at high rate. Assumptions 3 and 4 ensure that the processes do not explode in finite time. Finally,
Assumption 2 requires that the reduced system obtained by the deletion of the high abundance species
is complex-balanced.

Assumption 1. For any S ∈ Xd, there exists at least one reaction yr → y′r ∈ RS such that βr = 1 (i.e.
the species S is fast consumed or produced, recall RS defined in (6)).

In order to motivate and explain the above assumption we consider sequences of processes satisfying
the network structures of Examples 1.1 and 1.2.

Consider first the network of Example 1.1 with rate constants κ1 and κ2, and suppose that the total
initial abundance of the system (i.e. the sum of the abundances of species A and B) is large, and that
the system is near the known ACR equilibrium, in which case X1(0) ≈ q = κ2/κ1. Specifically, we
suppose that XN

1 (0) +XN
2 (0) = N for some large N ∈ N and that XN

1 (0) = O(1) in N , in which case
XN

2 (0) = N −XN
1 (0) = O(N). We will be interested in letting N → ∞. In this setting, A is a discrete

species, α1 = 0, and B is a continuous one, α2 = 1. Moreover, for each reaction yr → y′r we have βr = 1,
and Assumption 1 is fulfilled. Furthermore, the limiting rate functions defined in (10) are given by

λA+B→2B(x) = lim
N→∞

N−1λNA+B→2B([N
αx]) = lim

N→∞
N−1κ1x1⌊Nx2⌋ = κ1x1x2

λB→A(x) = lim
N→∞

N−1λNB→A([N
αx]) = lim

N→∞
N−1κ2⌊Nx2⌋ = κ2x2.

Turning to Example 1.2 we suppose the conserved quantity satisfies

XN
1 (0) +XN

2 (0) +XN
3 (0) = N,

where N is large, and that XN(0) is not far from the equilibrium qN , which satisfies

qN1 =
κ0κ1κ3
κ2 + κ3

·
qN2 + 1

qN2 − 1
, qN3 =

κ1
κ2 + κ3

qN2 and qN1 + qN2 + qN3 = N.

Therefore, for N large XN
1 (0) will be near the value q = κ0κ1κ3

κ2+κ3
, while XN

2 (0) and XN
3 (0) go to infinity

as N → ∞. In this context, A is a discrete species, α1 = 0, and B and C are continuous species,
α2 = α3 = 1. Furthermore, βr = 1 for each r, and Assumption 1 holds. In this case, the limiting rate
functions defined in (10) are given by

λA+2B→3B(x) = lim
N→∞

N−1κ0
x1Nx2(Nx2 − 1)

1 +Nx2
= κ0x1x2,

and similarly,

λB→C(x) = κ1x2, λC→B(x) = κ2x3, and λC→A(x) = κ3x3.

7



Returning to the general setting, let R̃ be the set of reactions whose source complex contain a
continuous species, i.e.

R̃ = {y → y′ ∈ R : πc(y) 6= 0}. (12)

Due to (10), the reactions in R̃ have much higher rates than the other reactions, when N is large.
Therefore, they give the major contribution to the dynamics of the stochastic system, and we focus on
them.

We define two reduced systems, one being a projection onto the discrete species space and the other
being the projection onto the continuous species space of the dynamics induced by the reactions in R̃.
We begin by considering the projection onto the discrete species. Define

πd(C) = {πd(y) : y ∈ C},

R̃d = {πd(y)→ πd(y
′) : y → y′ ∈ R̃ and πd(y) 6= πd(y

′)},

and let Gd = (Xd, πd(C), R̃d) be the reaction network associated with the discrete species. For example,
for both Example 1.1 and Example 1.2, the network associated with the discrete species is

A −−⇀↽−− 0,

which has a Poisson stationary distribution. Let zk → z′k ∈ R̃d. For any vector w ∈ R
|Xc|
≥0 we define the

function λwd,k : R|Xd| → R≥0 via

λwd,k(v) =
∑

yr→y′
r∈R̃d,k

λr(v, w), (13)

where R̃d,k = {yr → y′r ∈ R̃ : πd(yr) = zk and πd(y
′
r) = z′k}. Let Kw

d be the kinetics defined by (13),
and define S w

d = (Gd,Kw
d ). Note that the functions λr in (13) are the limit rate functions in (10). The

sum in (13) is needed, as the cardinality of R̃d,k is not necessarily 1. Consider for example the following
modification of Example 1.1:

A+B
κ1−→ 2B

κ3−−⇀↽−−
κ4

A+ 2B, B
κ2−→ A.

The reactions 2B → A + 2B and B → A collapse to the same reaction in R̃d, and the same happens
to A + 2B → 2B and A + B → 2B. In this case, if w denotes the concentration of the species B, the
system S w

d is given by

A
κ1w+κ4w

2

−−−−−−−⇀↽−−−−−−−
κ2w+κ3w2

0.

We make a key structural assumption on our models.

Assumption 2. For any yr → y′r ∈ R̃,

λr(v, w) = κr(w)
v!

(v − πd(yr))!
,

for some functions κr such that κr(w) > 0 whenever w > 0. It follows that for any w > 0 the system
S w

d is endowed with stochastic mass action kinetics. Further, we assume that for any w > 0 the system
is complex balanced. We also require that Gd endowed with mass action kinetics is irreducible.

For the systems in Examples 1.1 and 1.2, S w
d is given, respectively, by the stochastic mass action

systems

A
κ1w−−−⇀↽−−−
κ2w

0 and A
κ0w1−−−⇀↽−−−
κ3w2

0, (14)

where in the first system w represents the amount of species B and in the second system w1 and w2

represent the amounts of species B and C, respectively. In both cases, Assumption 2 holds, due to
Theorem 2.2.
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Thanks to Assumption 2 and Theorem 2.1, we know that for any positive w there is precisely one
complex balanced equilibrium of the system S w

d , which we denote by qwd . For example, for the first
system in (14) associated with Example 1.1 we have qwd = κ2/κ1, whereas for the second system in (14)
associated with Example 1.2 we have qwd = κ3w2/κ0w1.

Assumption 2 is the last structural assumption we require for our main results. Now we impose some
conditions ensuring that the systems are “well-behaved.” Specifically, we want that the magnitude of
the counts of each species is maintened constant in a compact interval of time. In particular, we want
to rule out the possibility of a blow up or of a zeroing of the concentrations of the continuous species,
and we want the counts of the discrete species to be bounded, in some sense.

We start by considering the projection onto the continuous species. Let

πc(C) = {πc(y) : y ∈ C},

R̃c = {πc(y)→ πc(y
′) : y → y′ ∈ R̃ and πc(y) 6= πc(y

′)},

and define Gc = (Xc, πc(C), R̃c). We now define the kinetics for the network Gc. For any yr → y′r ∈ R̃,
define

λ̃r(v, w) = κr(w)v
πd(yr), (15)

where the κr(w) are as in Assumption 2. Note we are assuming that the intensities λ̃r(v, w) take the

form of deterministic mass action kinetics and not stochastic mass action. For any zk → z′k ∈ R̃c, we
then define the function λc,k : R|Xd| → R≥0 via

λc,k(w) =
∑

yr→y′
r∈R̃c,k

1{w>0}λ̃r(q
w
d , w), (16)

where R̃c,k = {yr → y′r ∈ R̃ : πc(yr) = zk and πc(y
′
r) = z′k}. Let Kc denote the kinetics defined by the

above rate functions, and define Sc = (Gc,Kc). Finally, fix a finite time T > 0 and a point X0 ∈ R
|X |
>0 .

Assumption 3. Assume that the deterministic solution z(t) of the system Sc, with initial condition
πc(X0), exists for any t ∈ [0, T ]. Moreover, assume that for all t ∈ [0, T ] we have z(t) > 0.

Remark 3.2. A slightly more general scenario than that given by Assumption 3 could be considered.
Specifically, we could allow z(t) to be equal to zero for some t ∈ [0, T ]. In fact, for our purposes it is
enough that (i) the deterministic solution z(t) exists and (ii) that the reaction rates λr are of the form
described in Assumption 2 and (iii) S w

d is complex balanced for any w in a neighborhood of {z(t)}t∈[0,T ]

(relative to the non-negative orthant). For Corollary 3.2 to hold, we will further need to assume that for
w varying in such a neighborhood, the quantities κr(w) introduced in Assumption 2 are bounded from
below by a positive constant.

Consider Example 1.1. In this case, for any w ∈ R>0 we have qwd = κ2/κ1, and the system Sc is
given by

0
κ2←− B

κ2−→ 2B. (17)

Hence, in this case the deterministic solution z(t) is constantly equal to πc(X0).
Consider now Example 1.2. Here, for any w ∈ R

2
>0, q

w
d is given by κ3w2/κ0w1. Therefore, the system

Sc is

2B −→ 3B, B
κ1−−⇀↽−−
κ2

C
κ3−→ 0,

with λ2B→3B(w) = κ3w2. When deterministically modeled, the dynamics of the system is equivalent to
that of the deterministic mass action system

B
κ1−−−−⇀↽−−−−

κ2+κ3

C (18)

and it can be easily shown that Assumption 3 holds, since πc(X0) > 0.
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Assumption 4. There exists a locally bounded function ψ : R
|Xd|
≥0 → R≥1 satisfying

(i) lim
‖v‖→∞

ψ(v) =∞ and (ii) sup
N∈N>0

sup
t∈[0,T ]

E
[
ψ(XN

disc(s))
]
<∞,

such that for any reaction yr → y′r ∈ R and any compact set Γ ⊂ R
|Xc|
≥0

(iii) sup
w∈Γ

sup
v∈R

|Xd|

>0

λr(v, w)

ψ(v)
<∞.

Remark 3.3. For any reaction yr → y′r ∈ R and any N ∈ N assume that λr has at most polynomial
growth rate in v. Let p : R|Xd| → R be a polynomial satisfying

max
yr→y′

r∈R
lim sup
‖v‖→∞

λr(v, w)

p(v)
= 0 for any w ∈ R

|Xc|
≥0 ,

and let d be the degree of p. Then, a candidate for ψ is

ψ(v) = 1 +
∑

Si∈Xd

vdi .

With this choice, ψ automatically satisfies (i) and (iii).

We now state and prove the theorem which provides the backbone for our results in the setting of
absolute concentration robustness.

Theorem 3.1. If Assumptions 1 to 4 hold, then

sup
t∈[0,T ]

∣∣N−1XN
cont(t)− z(t)

∣∣ −−−−→
N→∞

0

in probability, where z is defined as in Assumption 3.

Moreover, if Pois(q) denotes a product-form Poisson distribution with parameter q, then for any

continuous function g : R
|Xd|
≥0 → R satisfying

lim sup
‖v‖→∞

|g(v)|

ψ(v)
= 0 (19)

we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds

∣∣∣∣ −−−−→N→∞
0

in probability and for each δ ∈ (0, T )

sup
t∈[δ,T ]

∣∣∣E[g(XN
disc(t))]− E[g(Jz(t))]

∣∣∣ −−−−→
N→∞

0. (20)

where Jz(s) ∼ Pois(q
z(s)
d ).

Remark 3.4. If Assumption 2 is not satisfied, but we know that for any w ∈ R
|Xc|
>0 the stochastic system

S
w
d possesses a unique stationary distribution µw with

Eµw [λr(v, w)] =
∑

v∈N
Xd

λr(v, w)µ
w(v) <∞ for every yr → y′r ∈ R,

then Theorem 3.1 still holds, provided that every occurrence of λr(q
w
d , w) is replaced by Eµw [λr(v, w)].

The proof of Theorem 3.1, with small changes, also covers this generalization. In regard to this broader
setting, see also the results in [17, 23].
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Proof. For the sake of simplicity, throughout the proof we will write t instead of t ∧ T , but it is always
implicitly assumed that t ∈ [0, T ].

We follow the arguments of [17, 23], which rely on the techniques developed in [21]. We will first
prove the theorem under the assumption that

sup
N
P

(
sup

t∈[0,T ]

N−1‖XN
cont(t)‖∞ > M

)
= 0, (21)

for a certain constant M satisfying
sup

t∈[0,T ]

‖z(t)‖∞ < M.

The above assumption holds when a positive linear combination of the species is conserved, or if we study
the process up to the time when the concentration of a continuous species exceeds a given threshold. We
will then drop the assumption (21).

Define the occupation measures ΓN on R
|Xd| × [0, T ] by

ΓN (D × [a, b]) =

∫ b

a

1D(XN
disc(s))ds.

Note that
dΓN (v, s) = dγNs (v)ds, (22)

where γNs = δXN
disc

(s), with δx denoting the usual Dirac measure on R
|Xd|. By part (ii) in Assumption 4,

we have that for any ε > 0 there exists a constant Mε > 0 such that

sup
N∈N>0

sup
s∈[0,T ]

P (ψ(XN
disc(s)) < Mε) > 1− ε.

It follows that
E
[
ΓN (ψ−1([0,Mε])× [0, T ])

]
≥ (1− ε)T.

By part (i) in Assumption 4, we have that ψ−1([0,Mε]) is compact, and Lemma 1.3 in [21] implies that
the sequence of random measures ΓN is relatively compact (see also Lemma 2.9 in [18]). Let Γ be a weak
limit point.

Consider the generator LN for the process N−αXN(t), defined by

LNf(x) =
∑

yr→y′
r∈R

λNr (Nαx)
(
f
(
x+N−α(y′ − y)

)
− f(x)

)
, for Nαx ∈ N

|X |.

From the generator LN we can obtain two generators, one related to the limiting behaviour of the
concentrations of the continuous species (whose changes take place at the time scale t) and the other
one related to the discrete species (whose changes take place at the time scale N−1t). For any function
h ∈ C2

c (R
|Xc|) and x ∈ N

|Xd| × R
|Xc|, define

Lch(x) = lim
N→∞

LN(h ◦ πc)(N
−α[Nαx])

=
∑

yr→y′
r∈R

lim
N→∞

λNr ([Nαx])
(
h
(
πc(N

−α[Nαx]) +N−1πc(y
′ − y)

)
− h
(
πc(N

−α[Nαx])
))

=
∑

yr→y′
r∈R̃

λr(x)πc(y
′ − y) · ∇h(πc(x)),

where we made use of Assumption 1 to compute the limit, and · denotes the scalar product. Note that
Lch ∈ C1

c (R
|X |) and that LN (h◦πc)(N−α[Nαx]) converges uniformly to Lch(x) on x (which follows from

the fact that h has compact support). Lc can be interpreted as the generator of the limiting behaviour
of the concentrations of the continuous species.
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On the other hand, for any function g ∈ Cc(N
|Xd|) and x ∈ N

|Xd| × R
|Xc|, define

Ldg(x) = lim
N→∞

N−1LN (g ◦ πd)(N
−α[Nαx])

=
∑

yr→y′
r∈R

lim
N→∞

N−1λNr ([Nαx])
(
g
(
πd(x) + πd(y

′ − y)
)
− g
(
πd(x)

))

=
∑

yr→y′
r∈R̃

λr(x)
(
g
(
πd(x) + πd(y

′ − y)
)
− g
(
πd(x)

))
.

The convergence is uniform in x. Ld can be interpreted as the generator of the limiting behavior of the

discrete species on the timescale N−1t. For any w ∈ R
|Xc|
≥0 we can define the operator Lw

d by

Lw
d g(v) = Ldg(v, w) ∀v ∈ N

|Xd|,

which corresponds to the generator of the system S w
d .

For any h ∈ C2
c (R

|Xc|), the process

MN
h (t) = h(N−1XN

cont(t))− h(N
−1XN

cont(0))−

∫ t

0

LN (h ◦ πc)(N
−αXN(s))ds (23)

is a martingale. Let

δNh (t) =

∫ t

0

(
Lch− L

N (h ◦ πc)
)
(N−αXN(s))ds.

By the uniform convergence of LN(h ◦ πc)(N−α[Nαx]) to Lch(x) with respect to x, we have that

lim
N→∞

E

[
sup

t∈[0,T ]

|δNh (t)|

]
= 0. (24)

Moreover, (ii) and (iii) in Assumption 4, together with (21), imply that

sup
N
E

[∫ T

0

|Lch(N
−αXN (s))|ds

]
<∞. (25)

Since (23) is a martingale, tightness of the processes XN
cont stopped at T follows from (21), (24) and (25),

and by Theorems 3.9.1 and 3.9.4 in [12].∗

Let (W,Γ) be a weak limit of (XN
cont(· ∧ T ),Γ

N). By the same arguments as in the proof of Theorem
2.1 in [21], we have that

Mh(t) = h(W (t))− h(W (0))−

∫

R
|Xd|×[0,t]

Lch(v,W (s))dΓ(v, s)

is a martingale. On the other hand, for any g ∈ C2
c (R

|Xd|), the process

M̂N
g (t) = N−1

[
g(XN

disc(t)) − g(X
N
disc(0))−

∫ t

0

LN(g ◦ πd)(N
−αXN(s))ds

]

is also a martingale. Since the function g is bounded and by using uniform convergence of N−1LN (g◦πd)

to Ldg, we have that a weak limit point for M̂N
g is given by

M̂g(t) = −

∫

R
|Xd|×[0,t]

Ldg(v,W (s))dΓ(v, s),

∗To be specific, the processes to which we apply Theorem 3.9.4 in [12] are,

Zn(t) = Lch(N
−αXN (t)), and Yn(t) =MN

h
(t) +

∫
t

0

Zn(s)ds,

where Zn, Yn is the notation utilized in [12]. This notation is now dropped throughout the remainder of this paper.
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which is therefore a martingale. By (22) we have

dΓ(v, s) = dγs(v)ds, (26)

for a family of measures γs. Therefore, M̂g(t) is continuous and for any t1 < t2
∫

R|Xd|×[t1,t2]

|Ldg(v,W (s))| dΓ(v, s) ≤ (t2 − t1) sup
x∈RX

|Ldg(x)| ,

which implies that M̂g(t) has finite variation paths. This in turn implies that M̂g(t) is constantly equal

to M̂g(0) = 0 for any t ∈ [0, T ] with probability one. Therefore, almost surely, for almost every s ∈ [0, T ]

∫

R
|Xd|

L
W (s)
d g(v)dγs(v) = 0,

where γs is as in (26). Since C2
c (R

|X |) is separable, we have that, for almost every s ∈ [0, T ],

∫

R
|Xd|

L
W (s)
d g(v)dγs(v) = 0, ∀g ∈ C2

c (R
|Xd|).

Thus, for almost every s such that W (s) > 0 with probability one, the measure γs is equal to the

unique stationary distribution of the system S
W (s)
d . Due to Assumption 2 and by Theorem 4.1 in [3], it

corresponds to the product form Poisson distribution Pois(q
W (s)
d ). Therefore we can write

γs = 1{W (s)>0}Pois(q
W (s)
d ) + (1− 1{W (s)>0})γs.

The weak limit process W (t) is a solution to the martingale problem

Mh(t) =h(W (t)) − h(W (0))−

∫ t

0

∫

R
|Xd|

Lch(v,W (s))dγs(v)ds

=h(W (t)) − h(W (0))−
∑

yr→y′
r∈R̃

∫ t

0

1{W (s)>0}λr(q
W (s)
d ,W (s))πc(y

′ − y) · ∇h(W (s))ds

−

∫ t

0

(1− 1{W (s)>0})

∫

R
|Xd|

Lch(v,W (s))dγs(v)ds,

where in the last equality we used that if V is a product form Poisson random variable with mean q,
then for any non-negative integer vector y of the same dimension of V

E

[
V !

(V − y)!

]
= qy.

This in turn implies that E [λr(V,w)] = λ̃r(q, w), where λ̃r are as defined in (15). By Assumption 3,
W (t) is uniquely determined by the solution to

W (0) =πc(X0)

W (t) =W (0) +
∑

yr→y′
r∈R̃

∫ t

0

1{W (s)>0}λ̃r(q
W (s)
d ,W (s))πc(y

′ − y)ds+

+

∫ t

0

(1 − 1{W (s)>0})

∫

R|Xd|

Lcid(v,W (s))dγs(v)ds

=W (0) +
∑

yr→y′
r∈R̃

∫ t

0

λ̃r(q
W (s)
d ,W (s))πc(y

′ − y)ds,

which is given by z(t). The first part of the theorem is therefore proved. The second part follows from
Lemma 2.9 in [18].
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To prove that the first two parts of the theorem hold without assuming (21), fix two positive constants
M and δ with the property

sup
t∈[0,T ]

‖z(t)‖∞ < M − δ,

and consider the stopping time

τN = inf{t ∈ [0, T ] : N−1‖XN
cont(t)‖∞ > M}.

Note that N−1Xcont(τ
N ) is also uniformly bounded in N , as

N−1‖XN
cont(τ

N )‖∞ ≤M +max
r
{‖ξr‖∞} =M ′.

Therefore, (21) holds up to time τN with the constant M ′, which means that for any ε there exists Nε

such that for any N > Nε

P

(
sup

t∈[0,τN ]

‖N−1XN
cont(t)− z(t)‖ > δ

)
< ε.

Since {τN < T } ⊂ {‖N−1XN
cont(τ

N )− z(τN )‖ > δ} ⊂ {supt∈[0,τN ] ‖N
−1XN

cont(t)− z(t)‖ > δ}, it follows

that for N large enough P (τN < T ) < ε. We conclude our argument by the arbitrariness of ε, since for
N large enough

P

(
sup

t∈[0,T ]

‖N−1XN
cont(t)− z(t)‖ > η

)
≤ P

(
sup

t∈[0,τN ]

‖N−1XN
cont(t)− z(t)‖ > η

)
+ ε,

P

(
sup

t∈[0,T ]

∫ t

0

(
g(XN

disc(s)) − E[g(Jz(s))]
)
ds > η

)
≤ P

(
sup

t∈[0,τN ]

∫ t

0

(
g(XN

disc(s)) − E[g(Jz(s))]
)
ds > η

)
+ ε.

To show the last part of the theorem, namely (20), consider a converging sequence {tN} in [δ, T ] with
limit t. Fix a positive real number r0 and for any r ≤ r0 and any N > r0/δ define

Y N
r0 (r) = XN

disc

(
tN +

r − r0
N

)
.

By Assumption 4 (ii), the sequence Y N
r0 (0) is relatively compact. Let Yr0(r) be a process with generator

L
z(t)
d and such that Yr0(0) is the weak limit point of a subsequence Y Nm

r0 (0). By using again Assumption
4 (ii) and the weak convergence of N−1XN

cont(s) to z(s), for any function g : NXd 7→ R≥0 that satisfies
(19) we have

lim
m→∞

E
[
g
(
XNm

disc (tNm
)
)]

= lim
m→∞

E
[
g
(
Y Nm

r0 (r0)
)]

= lim
m→∞

E
[
g
(
Y Nm

r0 (0)
)]

+ lim
m→∞

∫ r0

0

Nm
−1E

[
LNm(g ◦ πd)

(
Y Nm

r0 (r), XNm

cont

(
tNm

+
r − r0
Nm

))]
dr

=E [g (Yr0(0))] +

∫ r0

0

E
[
L
z(t)
d g(Yr0(r))

]
dr.

Note that the left-hand side of the above equation does not depend on r0. Moreover, Assumption 4(ii)
implies that the limit E [g (Yr0(0))] is bounded from above, independently of r0. Therefore, we can
consider a weakly convergent sequence g

(
Yrn

0
(0)
)
with rn0 →∞ as n →∞. Letting g(Y (0)) denote the

weak limit, we have

lim
m→∞

E
[
g
(
XNm

disc (tNm
)
)]

= E [g(Y (0))] +

∫ ∞

0

E
[
L
z(t)
d g(Y (r))

]
dr.

Since Lz(t) is the generator of a stochastic process with stationary distribution Pois(q
z(t)
d ), we must have

lim
m→∞

E
[
g
(
XNm

disc (tNm
)
)]

= E
[
g(Jz(t)

q )
]
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Moreover, since the limit does not depend either on the particular subsequence Nm or on the converging
sequence tN , we conclude

sup
t∈[δ,T ]

∣∣∣E[g(XN
disc(t))]− E[g(Jz(t))]

∣∣∣ −−−−→
N→∞

0.

which is (20).

In some cases Assumption 4 can be difficult to check, even if it seems natural for the analysed
system. For this reason, we state here a corollary of Theorem 3.1 concerning a particular case for which
Assumption 4 is automatically satisfied.

Corollary 3.2. Assume Assumptions 1 to 3 hold. Assume also that

N−βrλNr (v, [Nw]) ≤ ĥr(w)v
πd(yr) for any yr → y′r ∈ R, (27)

for some continuous positive functions ĥr : R
|Xc| → R, and that

N−βrλNr (v, [Nw]) ≥ hr(w)w
πc(yr)vπd(yr) for any yr → y′r ∈ R̃, (28)

for some continuous positive functions hr : R
|Xc| → R. Furthermore, assume that in the support of any

complex y ∈ C at most one discrete species appears, and its stoichiometric coefficient is 1. Then, for any

continuous function g : R
|Xd|
≥0 → R with at most polynomial growth rate we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
g(XN

disc(s))− E[g(Jz(s))]
)
ds

∣∣∣∣ −−−−→N→∞
0

in probability, where Jw ∼ Pois(qwd ) and z(t) is as in Assumption 3. Moreover, for any continuous

bounded function ϕ : R
|Xd|
≥0 → R and any δ ∈ (0, T ), we have

sup
t∈[δ,T ]

∣∣∣E[ϕ(XN
disc(t))]− E[ϕ(Jz(t))]

∣∣∣ −−−−→
N→∞

0.

Remark 3.5. Assume that KN is mass action kinetics and at most one discrete species appear in the
support of any complex y ∈ C. If the rate constants are rescaled according to (11), then(27) and (28)
are automatically satisfied. Indeed,

N−βrλNr (v, [Nw]) = (κr + ε1N )(wπc(yr) + ε2N(w))vπd(yr),

for some sequence ε1N converging to zero, and some function ε2N (w) converging to zero uniformly on w.
In this regard, see Remark 3.1.

Proof. By Assumption 3, we can choose two positive constants m < M such that

inf
Si∈Xc,t∈[0,T ]

zi(t) > m and sup
Si∈Xc,t∈[0,T ]

zi(t) < M. (29)

For any N ∈ N>0, consider the function πN : R|X | → R
|X | defined by

(πN (x))i =

{
(Nm ∨ xi) ∧NM if Si ∈ Xc

xi otherwise.

Consider the modified family of kinetics K
N

defined by

λ
N

r (x) = λNr
(
πN (x)

)
for x ∈ N

|X |.

We have
lim

N→∞
N−βrλ

N

r ([Nαx]) = λr(x) = λr
(
π1(x)

)
,
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where the limit is uniform on compact sets. Furthermore, λr is locally Lipschitz. Let K be the kinetics
defined by the functions λr. Our first aim is to prove that for a suitable choice of ψ, Assumption 4

holds for the modified kinetics. We then apply Theorem 3.1 to the reaction systems (G,K
N
). Let X

N
(t)

denote the stochastic process associated with (G,K
N
). Define

σN (t) =
∑

Si∈Xd

X
N

i (t) =
∑

Si∈Xd

XN
i (t) and ∆r =

∑

Si∈Xd

ξri.

Since the complexes y are non-negative vectors, we have

∆r =
∑

Si∈Xd

(y′ri − yri) = ‖πd(y
′
r)‖1 − ‖πd(yr)‖1.

By hypothesis, for any complex y ∈ C we have ‖πd(y)‖1 ≤ 1, which implies that −1 ≤ ∆r ≤ 1 for any
yr → y′r ∈ R. Moreover, we have

∆r = 1 =⇒ ‖πd(yr)‖1 = 0
∆r = −1 =⇒ ‖πd(yr)‖1 = 1.

(30)

Furthermore,

σN (t) = σN (0) +
∑

yr→y′
r∈R

∆rYr

(∫ t

0

λ
N

r

(
X

N
(s)
)
ds

)

= σN (0) +
∑

yr→y′
r∈R

∆r=1

Yr

(∫ t

0

λ
N

r

(
X

N
(s)
)
ds

)
−

∑

yr→y′
r∈R

∆r=−1

Yr

(∫ t

0

λ
N

r

(
X

N
(s)
)
ds

)
(31)

Define
M∗ = max

yr→y′
r∈R

max
m≤w≤M

ĥr(w) and m∗ = min
yr→y′

r∈R
min

m≤w≤M
hr(w)w

πc(yr),

which are both positive constants. By (30) and (27), whenever ∆r = 1 we have

λ
N

r (v,Nw) ≤ NM∗.

On the other hand, by (28), if yr → y′r ∈ R̃ and ∆r = −1 then

λ
N

r (v,Nw) ≥ Nβrm∗vi for some Si ∈ Xd.

By Assumption 1, all the species in Xd are either produced or consumed by a reaction in R̃d. Moreover,
by Assumption 2 the system S w

d is complex balanced, which implies that it is weakly reversible by

Theorem 2.1. Therefore, all the species in Xd are both produced and consumed by some reaction in R̃d.
In particular, for any Si ∈ Xd we can choose a reaction yr(i) → y′r(i) ∈ R̃ such that ξr(i)i = −1. We have
that ∑

yr→y′
r∈R

∆r=−1

Yr

(∫ t

0

λ
N

r

(
X

N
(s)
)
ds

)
≥
∑

Si∈Xd

Yr(i)

(∫ t

0

Nm∗X
N

i (s)ds

)
.

Then, from (31) it follows that

σN (t) ≤ σN (0) +
∑

yr→y′
r∈R

Yr

(∫ t

0

NM∗ds

)
−
∑

Si∈Xd

Yr(i)

(∫ t

0

Nm∗X
N

i (s)ds

)
,

which implies that σN (t) is stochastically bounded by

B(t) = σN (0) + Y ′
(
|R| ·M∗t

)
− Y ′′

(∫ t

0

m∗B(s)ds

)
,
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where Y ′ and Y ′′ are two i.i.d. unit-rate Poisson processes. That is, for all u ≥ 0

P

(
sup

t∈[0,T ]

σN (t) ≥ u

)
≤ P

(
sup

t∈[0,T ]

B(Nt) ≥ u

)
.

It follows that
sup

t∈[0,T ]

E[σN (t)n] ≤ sup
t∈[0,T ]

E[B(Nt)n].

Then, for any n ∈ N

sup
t∈[0,T ]
N∈N>0

E[σN (t)n] ≤ sup
t∈[0,∞)

E[B(t)n] <∞. (32)

The last inequality is due to ergodic properties of the birth-death process B(t). For any n > 1, we define

ψn : R
|Xd|
≥0 → R≥1 via

ψn(v) = 1 +
∑

Si∈Xd

vni .

Due to (27), λNr has at most polynomial growth rate in v, for any reaction yr → y′r ∈ R and any N ∈ N.
By (10), the condition (27) also implies that the rate functions λr have at most polynomial growth rate.
By Remark 3.3, if n is large enough, ψn satisfies (i) and (iii) in Assumption 4. Moreover,

E
[
ψn(X

N

disc(s))ds
]
≤ E

[
σN (s)nds

]
,

hence, due to (32), part (ii) in Assumption 4 is verified, as well. Assumptions 1 to 3 also hold for the
systems with modified rates. Moreover, due to (29), the solution of the deterministic system (Gc,Kc)
coincide with z, the solution of the deterministic system Sc. Therefore, Assumption 3 is satisfied as well

and we can apply Theorem 3.1 to the modified reaction systems (Gc,K
N
). We have

sup
t∈[0,T ]

∣∣∣N−1X
N

cont(t)− z(t)
∣∣∣ −−−−→

N→∞
0 (33)

in probability. Since by definition any function g : R
|Xd|
≥0 → R with at most polynomial growth rate

satisfies

lim sup
‖v‖→∞

|g(v)|

ψn(v)
= 0

for n large enough, we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
g(X

N

disc(s)) − E[g(Jz(s))]
)
ds

∣∣∣∣ −−−−→N→∞
0

in probability. Moreover, for any continuous bounded function ϕ : R
|Xd|
≥0 → R and any δ ∈ (0, T ) we have

sup
t∈[δ,T ]

∣∣∣E[ϕ(X
N

disc(t))] − E[ϕ(Jz(t))]
∣∣∣ −−−−→

N→∞
0.

The proof is completed by noting that if the path of X
N

disc is different from the path of XN
disc, then we

have
inf

Si∈Xc,t∈[0,T ]
N−1X

N

i (t) ≤ m or sup
Si∈Xc,t∈[0,T ]

N−1Xi(t) ≥M.

However, by (29) and (33), we have

P

(
inf

Si∈Xc,t∈[0,T ]
N−1X

N

i (t) ≤ m or sup
Si∈Xc,t∈[0,T ]

N−1Xi(t) ≥M

)
−−−−→
N→∞

0.
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4 ACR setting

We turn to the ACR setting and start with the formal definition of absolute concentration robustness
(ACR).

Definition 4.1. Let S = (G,K) be a reaction system. We say that a species Si possesses absolute

concentration robustness (ACR) in S if for any two positive equilibria q, q′ of the deterministically
modeled system S , we have qi = q′i. In this case, the species Si is called an ACR species and, if a
positive equilibrium q exists, qi is called an ACR value. If a system S possesses a non empty set of ACR
species, we call it an ACR system.

Consider a reaction system S that has no equilibria or a unique equilibrium. According to Definition
4.1, all the species of S are ACR species, however in these cases the ACR property is not particularly
meaningful.

Definition 4.2. We say that a system S is a non-degenerate ACR system if it is an ACR system and
possesses at least two positive equilibria. If an ACR system exhibits less than two positive equilibria, we
call it a degenerate ACR system.

We will focus on non-degenerate ACR systems. Note that in such systems not all species can be ACR
species.

In non-degenerate ACR systems, the ACR species maintain their steady-state concentration regardless
of the total amount of molecules present in the system. Our goal is to study the behaviour of the system
when the abundances of species that do not exhibit ACR tend to infinity. It is therefore natural to use
the setting developed in the Section 3 and let the ACR species, or at least a chosen subset of them, be
discrete species. We further assume that the rate functions are rescaled consistently with the hypotheses
of Section 3, such that (10) holds uniformly on compact sets.

In order to study the limiting behaviour of ACR systems, we first introduce the system S̃ = (X , C, R̃, K̃),

where the set of reaction R̃ is as defined in (12), namely

R̃ = {y → y′ ∈ R : πc(y) 6= 0}.

Furthermore, the kinetics K̃ is given by the functions λ̃r defined in (15). For convenience, we repeat here

the definition: for any yr → y′r ∈ R̃

λ̃r(v, w) = κr(w)v
πd(yr),

where the κr(w) are as in Assumption 2. We now state some corollaries of Theorem 3.1, assuming the
next assumption is satisfied.

Assumption 5. We assume that S̃ is a non-degenerate ACR system, and that at least one of the ACR
species is a discrete species.

Consider Example 1.1. The system S̃ coincides with the system introduced in the example itself,

namely (1), and it is a non-degenerate ACR system. On the other hand, in Example 1.2 the system S̃

is given by

A+ 2B −→ 3B, B
κ1−−⇀↽−−
κ2

C
κ3−→ A,

with λA+2B→3B(x) = κ0x1x2. Therefore, the dynamics of S̃ , if deterministically modeled, coincide with
that of the mass action system

A+B
κ0−→ 2B, B

κ1−−⇀↽−−
κ2

C
κ3−→ A, (34)

which is a non-degenerate ACR system with equilibria determined by the equations

x1 =
κ1κ3

κ0(κ2 + κ3)
and x2 =

κ2 + κ3
κ1

x3.
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When Assumption 5 is fulfilled, denote by XACR the set of discrete ACR species. Let πACR : R|Xd| → R
|XACR|

be the projection onto the species of XACR, and let XACR(t) = πACR(Xd(t)). Finally, let q be the vector
of the ACR values for the species in XACR, and let

J ∼ Pois(q). (35)

Corollary 4.1. Suppose that Assumptions 1, to 3 and 5 hold. Moreover, assume that (27) and (28)
hold, and that in the support of any complex y ∈ C at most one discrete species appears, and appears

with stoichiometric coefficient 1. Let πc(X0) be a positive equilibrium point for Sc, and let J be as in

(35). Then, for any continuous function ĝ : R
|XACR|
≥0 → R with at most polynomial growth rate we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
ĝ(XN

ACR(s)) − E[ĝ(J)]
)
ds

∣∣∣∣ −−−−→N→∞
0 (36)

in probability. Moreover, for any continuous bounded function ϕ̂ : R
|XACR|
≥0 → R and any δ ∈ (0, T ), we

have

sup
t∈[δ,T ]

∣∣E[ϕ̂(XN
ACR(t))] − E[ϕ̂(J)]

∣∣ −−−−→
N→∞

0.

The corollary is expressed in standard probabilistic terms, however its meaning might be more intu-
itively clear with a particular choice of functions ĝ and ϕ̂. For example, if ĝ is taken to be the translated
projection xi − qi, we obtain

sup
t∈[0,T ]

∫ t

0

(
XN

ACR(s)− q
)
ds −−−−→

N→∞
0

in probability, where the integral is to be interpreted component-wise. The latter means that on average
the counts of the discrete ACR species are well approximated by their ACR value. Moreover, if we let ϕ̂
be the indicator function 1A for a set A ⊆ N

|XACR|, we have

sup
t∈[δ,T ]

∣∣P
(
XN

ACR(t) ∈ A
)
− P (J ∈ A)

∣∣ −−−−→
N→∞

0.

Proof. Since πc(X0) is an equilibrium point for Sc, we have z(t) = πc(X0) for any t ∈ [0, T ]. Moreover,

by definition qwd is the complex balancing equilibrium point of the system S w
d . By the definition of K̃,

(q
πc(X0)
d , πc(X0)) is a positive equilibrium point for S̃ . Hence, πACR

(
q
πc(X0)
d

)
= q and the result follows

from Corollary 3.2, applied to the functions g = ĝ ◦ πACR and ϕ = ϕ̂ ◦ πACR.

Example 4.1. Consider the reaction network in (1). Sc is given by (17), for which any non-negative real
point is an equilibrium point. We choose a sequence of starting points such that XN

1 (0) is bounded and
N−1XN

2 (0) tends to a positive real number. Therefore, the hypotheses of Corollary 4.1 are fulfilled for
any positive T . In this case there is only one ACR species, namely A, and it is the only discrete species.
Hence, as N →∞ the distribution of the counts of species A tends to a Poisson distribution with mean
given by the ACR value q = κ2/κ1. The convergence is both on average and at fixed time points, in the
sense of Corollary 4.1. �

Corollary 4.2. Suppose that Assumptions 1, to 3 and 5 hold. Moreover, assume that (27) and (28)
hold, and that in the support of any complex y ∈ C at most one discrete species appears, and appears with

stoichiometric coefficient 1. Assume that πc(X0) is in the basin of attraction of an equilibrium point of

Sc. Then, for any continuous function ĝ : R
|XACR|
≥0 → R with at most polynomial growth rate, E[ĝ(Jz(s))]

tends to E[ĝ(J)] for s→∞, where J is as in (35). Moreover,

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
ĝ(XN

ACR(s))− E[ĝ(Jz(s))]
)
ds

∣∣∣∣ −−−−→N→∞
0 (37)

in probability, where Jw ∼ Pois(qwd ) and z(t) is as in Assumption 3. Finally, for any continuous bounded

function ϕ̂ : R
|XACR|
≥0 → R and any δ ∈ (0, T ), we have

sup
t∈[δ,T ]

∣∣∣E[ϕ̂(XN
ACR(t))]− E[ϕ̂(Jz(t))]

∣∣∣ −−−−→
N→∞

0.
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The result implies that E
[
Jz(s)

]
= q

z(s)
d tends to q for s→∞, where J is as in (35). Moreover,

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
XN

ACR(s)− q
z(s)
d

)
ds

∣∣∣∣ −−−−→N→∞
0 (38)

in probability. That is, the discrete ACR species are well approximated on average by their ACR value,
after a certain time. Finally, for a set A ⊆ N

|XACR|

sup
t∈[δ,T ]

∣∣∣P
(
XN

ACR(t) ∈ A
)
− P

(
Jz(t) ∈ A

)∣∣∣ −−−−→
N→∞

0

and the parameter of Jz(t), which is q
z(t)
d , tends to q.

Proof. For the sake of simplicity, throughout this proof w will denote a vector varying in R
|Xc|
>0 , even if

not explicitly stated.
First, recall that, regardless of the value w > 0, the complex balanced equilibrium qwd is the unique

solution of a system of multivariate polynomial equations, and as such, it is continuous in the coefficients
of the polynomials [27, Chapter 8]. In particular, it is a continuous function of w > 0.

Consider a sequence of vectors (wn)n∈N ⊂ R
|Xc|
>0 converging to w∗ > 0. Therefore, the sequence

(qwn

d )n∈N converges to qw
∗

d and by Lebesgue’s Dominated Convergence Theorem we have that

E[ĝ(πACR(J
wn))] −−−−→

n→∞
E[ĝ(πACR(J

w∗

))],

where Jw ∼ Pois(qwd ). This implies that E[ĝ(πACR(J
w))] is a continuous function of w.

Let w∗ be the equilibrium point of Sc whose basin of attraction contains πc(X0). Since (qw
∗

d , w∗)

is an equilibrium point of the system S̃ considered in Assumption 5, we have that πACR(q
w∗

d ) = q. In
particular, πACR(J

w∗

) ∼ J and E[ĝ(Jz(s))] tends to E[ĝ(J)] for s→∞.
The conclusion of the proof follows directly from Corollary 3.2.

Example 4.2. Consider Example 1.2. Let XN
1 (0) be a bounded sequence, and let N−1(XN

2 (0), XN
3 (0))

tend to a positive real vector. The continuous system Sc, when deterministically modeled, is equivalent
to (18). Therefore the hypotheses of Corollary 4.2 are fulfilled, since any (b, c) ∈ R

2
>0 is in the basin of

attraction of

w∗ =

(
(κ2 + κ3)(b+ c)

κ1 + κ2 + κ3
,

κ1(b + c)

κ1 + κ2 + κ3

)
.

Let q be the ACR value for A in the system (34). Therefore, after some time the counts of A are
approximately distributed, both on average and at any fixed time point, as a Poisson random variable
with mean q, in the sense of Corollary 4.2. �

We conclude this section with two examples that do not fit in our theory. However, the examples are
still tractable with the techniques we presented.

Example 4.3. Consider the stochastic mass action system

2A+B
κ1−→ 3B, B

κ2−→ A

Due to [25], we know that A possesses ACR and the system is a non-degenerate ACR system. The
discrete system S w

d is given by

2A
κ1w−−→ 0

κ2w−−→ A.

Therefore, the discrete system is not weakly reversible and by Theorem 2.1 it cannot be complex balanced.
It follows that Assumption 2 does not hold, and by [9] we know that the S

w
d , stochastically modeled,

cannot exhibit a Poisson stationary distribution. However, a stationary distribution µw can be shown to
exist by standard methods. By following the proofs of the results in this paper, we can still argue that,
if XN(0) = (a, bN) and Jw ∼ µw, for any continuous function g : R≥0 → R with at most polynomial
growth rate we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
g(XN

1 (s))− E[g(Jz(s))]
)
ds

∣∣∣∣ −−−−→N→∞
0 (39)
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in probability. Moreover, for any continuous bounded function ϕ : R≥0 → R and any δ ∈ (0, T ), we have

sup
t∈[δ,T ]

∣∣∣E[ϕ(XN
1 (t))]− E[ϕ(Jz(t))]

∣∣∣ −−−−→
N→∞

0.

In this regard, see also Remark 3.4, where this situation is discussed.
Unfortunately, there are not many methods available that explicitly calculate stationary distributions

for non-complex balanced systems. Thus, most examples not fulfilling Assumption 2 are analytically
intractable. However, for some calculations of stationary distributions for non-complex balanced systems,
see [2]. �

Example 4.4. The results in this section rely on Corollary 3.2, whose assumptions are easy to check.
However, here we show how the same conclusions can be derived directly from Theorem 3.1, provided
that Assumption 4 can be checked for the process or for a convenient modification thereof. Consider the
deterministic mass action system given by

A+B
κ1−→ 2A+ C

κ2−→ A+D
κ3←− B

κ4←− A+ C

B
κ5←− D

κ5−→ C
(40)

with the constraint that κ1/κ2 = κ3/κ4. The species A is the only ACR species, and its ACR value is

q =

√
κ3κ4
κ1κ2

=
κ4
κ2
,

where the last equality derives from κ1/κ2 = κ3/κ4. If we let A be the discrete species and B, C and

D be the continuous species, then Assumption 1 is fulfilled. In this case, the system S̃ coincides with
the above mass action system (40), and Assumption 5 is also satisfied. Let w = (w1, w2, w3) denote the
concentrations of the species B, C and D respectively. Then, the system S w

d is given by the stochastic
mass action system

0
κ3w1−−−⇀↽−−−
κ4w2

A
κ1w1−−−⇀↽−−−
κ2w2

2A,

which is complex balanced for any positive w due to the assumption κ1/κ2 = κ3/κ4. The system S w
d is

also irreducible. Therefore, Assumption 2 is fulfilled and the complex balanced equilibrium is given by

qwd =
κ1w1

κ2w2
.

The system Sc is given by

B −−⇀↽−− C −−⇀↽−−
κ5

D
κ5−−⇀↽−−
κ3

B,

where

λB→C(w) = λC→D(w) =
κ21w

2
1

κ2w2
and λC→B(w) =

κ1κ4w1

κ2
.

For simplicity, we choose our initial condition equal to an equilibrium of (40)

XN (0) =

(
κ4
κ2
, N,

κ1
κ4
N,

κ3
κ5
N

)
.

In this case, we have that z(t) is constantly equal to z(0) = (1, κ1/κ4, κ3/κ5) and Assumption 3 is clearly
satisfied.

Following the proof of Corollary 3.2, we can modify the kinetics of the original system by

λ
N

r (x) = λNr
(
πN (x)

)
for x ∈ N

|X |.

We can derive the same conclusions as in Corollary 3.2 by noting that S w
d defines a birth-death process

whose moments are all uniformly bounded in time, and a uniform bound can be found also by letting w
vary in a compact set. Therefore, the counts of the ACR species A are well approximated by a Poisson
random variable with mean the ACR value κ4/κ2. The approximation is both on average and at finite
time intervals, in the sense of Corollary 4.1. If, on the other hand, πc(X

N(0)) does not converge to an
equilibrium point of Sc, then we can still control the behaviour of the species A in the sense of Corollary
4.2.
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5 EnvZ/OmpR signaling system

As another application of our results, we consider the two-component EnvZ/OmpR osmoregulatory
signaling system in Escherichia coli, using the model proposed in [26] and considered in [4, 25]. The
model corresponds to the following mass action system, where [D] and [T ] are constants describing the
concentration of some slowly interacting chemical species:

XD
κ1−−−−⇀↽−−−−

κ2[D]
X

κ3[T ]
−−−−⇀↽−−−−

κ4

XT
κ5−→ Xp

Xp + Y
κ6−−⇀↽−−
κ7

XpY
κ8−→ X + Yp

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y ,

where X = EnvZ, Y = OmpR, Xp = EnvZ-P, Yp = OmpR-P, D = ADP, and T = ATP. The abundances
of both ADP and ATP are assumed to be large enough so that their consumption in the first chain of
reactions only negligibly changes their concentration. The first chain of reactions describes the phospho-
rylization of EnvZ, the second chain corresponds to the transfer of the phosphate group from EnvZ to
OmpR, and finally the third chain describes the dephosphorylization of OmpR.

Due to [4, 25], it is known that the species Yp exhibits ACR. Moreover, Yp is the only ACR species.
For simplicity, instead of ordering the species, here we will denote by zS the concentration of the species
S. At equilibrium

zYp
=
κ1κ3κ5(κ10 + κ11)[T ]

κ2(κ4 + κ5)κ9κ11[D]
= q

zXT =
κ3[T ]

κ4 + κ5
zX =

κ1
κ4 + κ5

zXD =
κ8
κ5
zXpY =

κ11
κ5

zXDYp

zXp
zY =

κ7
κ6
zXpY +

κ11
κ6

zXDYp
.

There are two quantities that are conserved at any time point, namely

c1 = zY (t) + zYp
(t) + zXpY (t) + zXDYp

(t)

c2 = zXp
(t) + zXT (t) + zX(t) + zXD(t) + zXpY (t) + zXDYp

(t),

for some positive constants c1, c2 depending on the initial conditions. If the amounts c1 and c2 are
increased, then the equilibrium concentrations of all the species not exhibiting ACR are increased as
well, except for Xp and Y , the equilibrium concentration of one of which could remain small.

Consider now the above reaction system in the stochastic setting. We want to know what happens if
we increase the initial counts of the species such that the conserved amounts are equally increased and
the initial condition is in a neighbourhood of an equilibrium point of the system. Therefore, we uniformly
increase the counts of the species not exhibiting ACR, and we choose to keep Xp or Y small. We consider
a sequence of processes XN indexed by N ∈ N, which are associated with the above reaction system.
We assume that XN(0) is such that the entries relative to Yp and Y , denoted by XN

Yp
(0) and XN

Y (0)
respectively, are bounded by a constant B, and that all the other entries, if rescaled by N , converge to
some positive number. In this setting, the discrete species are Y and Yp, we have βr = 1 for any reaction
yr → y′r of the system and Assumption 1 is fulfilled. For any positive vector w of continuous species
concentrations, the system S

w
d is given by

0
κ7wXpY +κ11wXDYp

−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−
κ6wXp

Y 0
κ8wXpY +κ10wXDYp

−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−
κ9wXD

Yp, (41)

and Assumption 2 holds thanks to Theorem 2.2. It is not difficult to check that the mass action system
(41) is irreducible, since every state of possible counts of Y and Yp is accessible from any other state.
The complex balanced equilibrium qwd is given by

qwd =

(
κ7wXpY + κ11wXDYp

κ6wXp

,
κ8wXpY + κ10wXDYp

κ9wXD

)
,
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where the first entry refers to Y and the second one to Yp. The system Sc is given by

XD
κ1−−−−⇀↽−−−−

κ2[D]
X

κ3[T ]
−−−−⇀↽−−−−

κ4

XT
κ5−→ Xp

Xp −−⇀↽−−
κ7

XpY
κ8−→ X

XD −−⇀↽−−
κ10

XDYp
κ11−−→ XD ,

with

λXp→XpY (w) = κ7wXpY + κ11wXDYp

λXD→XDYp
(w) = κ8wXpY + κ10wXDYp

.

The equilibria of the system are the positive vectors w∗ that satisfy

w∗
XT =

κ3[T ]

κ4 + κ5
w∗

X =
κ1

κ4 + κ5
w∗

XD =
κ8
κ5
w∗

XpY =
κ11
κ5

w∗
XDYp

.

If πc(X
N(0)) is such a vector w∗, or belongs to its basin of attraction, then Assumption 3 holds. As-

sumption 5 also holds, since the system S̃ corresponds to the original EnvZ/OmpR signaling system,
and the unique ACR species Yp is discrete. By making use of the fact that the original system is mass
action kinetics and by Remark 3.5, it is easy to see that the remaining assumptions of Corollary 4.1 (if
πc(X

N (0)) is an equilibrium w∗) or of Corollary 4.2 (if πc(X
N(0)) is in the basin of attraction of an

equilibrium w∗) are fulfilled, and the results can be applied. Therefore, XN
Yp
(t) can be approximated by

a Poisson random variable J with mean q, both on average and at any fixed time point, in the sense of
Corollary 4.1 or Corollary 4.2. The results are in accordance with the simulations in [4].

Alternatively, we could have applied the results of this paper to the signaling network by considering
Yp as the only discrete species, therefore increasing the initial counts of all other species, and by letting
XN be the process associated with

XD
κ1−−−−⇀↽−−−−

κ2[D]
X

κ3[T ]
−−−−⇀↽−−−−

κ4

XT
κ5−→ Xp

Xp + Y
κ6/N
−−−−⇀↽−−−−

κ7

XpY
κ8−→ X + Yp

XD + Yp
κ9−−⇀↽−−
κ10

XDYp
κ11−−→ XD + Y ,

where κ6 has been rescaled. With this choice of rescaling, due to Remark 3.1, we have that βr = 1 for
any reaction yr → y′r of the system. Our results can be used to draw the same conclusion as before in
this different setting.
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