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Abstract

The commutation principle of Ramirez, Seeger, and Sossa [13] proved in the setting of

Euclidean Jordan algebras says that when the sum of a Fréchet differentiable function Θ(x)

and a spectral function F (x) is minimized over a spectral set Ω, any local minimizer a operator

commutes with the Fréchet derivative Θ′(a). In this paper, we extend this result to sets and

functions which are (just) invariant under algebra automorphisms. We also consider a similar

principle in the setting of normal decomposition systems.
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1 Introduction

Let V be a Euclidean Jordan algebra of rank n [3] and λ : V → Rn denote the eigenvalue map

(which takes x to λ(x), the vector of eigenvalues of x with entries written in the decreasing order).

A set Ω in V is said to be a spectral set [1] if it is of the form Ω = λ−1(Q), where Q is a permutation

invariant set in Rn. A function F : V → R is said to be a spectral function [1] if it is of the form

F = f ◦ λ, where f : Rn → R is a permutation invariant function.

Extending an earlier result of Iusem and Seeger [7] for real symmetric matrices, Ramirez, Seeger,

and Sossa [13] prove the following commutation principle.

Theorem 1. Let V be a Euclidean Jordan algebra, Ω be a spectral set in V, and F : V → R be a

spectral function. Let Θ : V → R be Fréchet differentiable. If a is a local minimizer of

min
Ω

Θ(x) + F (x), (1)

then a and Θ′(a) operator commute in V.

A number of important and interesting applications are mentioned in [13]. The proof of the above

result in [13] is somewhat intricate, deep, and long. In our paper we extend the above result by

assuming only the automorphism invariance of Ω and F , and at the same time provide (perhaps) a

simpler and shorter proof. To elaborate, recall that an (algebra) automorphism on V is an invertible

linear transformation on V that preserves the Jordan product. It is known (see [8], Theorem 2) that

spectral sets and functions are invariant under automorphisms, but the converse may fail unless

the algebra is either Rn or simple. By defining weakly spectral sets/functions as those having this

automorphism invariance property, we extend the above result of Ramirez, Seeger, and Sossa as

follows.

Theorem 2. Let V be a Euclidean Jordan algebra and suppose that Ω in V and F : V → R are

weakly spectral. Let Θ : V → R be Fréchet differentiable. If a is a local minimizer of

min
Ω

Θ(x) + F (x). (2)

then a and Θ′(a) operator commute in V.

By noting that an Euclidean Jordan algebra is an inner product space and the corresponding

automorphism group is a subgroup of the orthogonal group (at least when the algebra is equipped

with the canonical inner product), we state a similar result in the setting of a normal decomposition

system. Such a system was introduced by Lewis [10] to unify various results in convex analysis

on matrices. A normal decomposition system is a triple (X,G, γ) where X is a real inner product

space, G is a (closed) subgroup of the orthogonal group of X, and γ : X → X is a mapping that
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has properties similar to those of λ(x), see Section 4. Our commutation principle on such a system

is as follows.

Theorem 3. Let (X,G, γ) be a normal decomposition system. Let Ω be a convex G-invariant set

in X, F : X → R be a convex G-invariant function, and Θ : X → R be Fréchet differentiable.

Suppose that a is a local minimizer of

min
Ω

Θ(x) + F (x). (3)

Then −Θ′(a) and a commute in (X, G, γ).

The organization of our paper is as follows. We cover some preliminary material in Section 2.

In Section 3, we define weakly spectral sets and present a proof of Theorem 2. In Section 4, we

describe normal decomposition systems and present a proof of Theorem 3. In the Appendix, we

state a structure theorem for the automorphism group of a Euclidean Jordan algebra and show

that weakly spectral sets and spectral sets coincide only in an essentially simple algebra.

2 Preliminaries

2.1 Euclidean Jordan algebras

Throughout this paper, V denotes a Euclidean Jordan algebra [3]. For x, y ∈ V, we denote their

inner product by 〈x, y〉 and Jordan product by x ◦ y. We let e denote the unit element in V and

V+ := {x ◦ x : x ∈ V} denote the corresponding symmetric cone. If V1 and V2 are two Euclidean

Jordan algebras, then, V1 × V2 becomes a Euclidean Jordan algebra under the Jordan and inner

products, defined, respectively by (x1, x2) ◦ (y1, y2) =
(

x1 ◦ y1, x2 ◦ y2

)

and 〈(x1, x2), (y1, y2)〉 =

〈x1, y1〉+ 〈x2, y2〉. A similar definition is made for a product of several Euclidean Jordan algebras.

Recall that a Euclidean Jordan algebra V is simple if it is not a direct sum/product of nonzero

Euclidean Jordan algebras (or equivalently, if it does not contain any non-trivial ideal). It is known,

see [3], that any nonzero Euclidean Jordan algebra is, in a unique way, a direct sum/product of

simple Euclidean Jordan algebras. Moreover, every simple algebra is isomorphic to one of the

following five algebras:

(i) the algebra Sn of n× n real symmetric matrices,

(ii) the algebra Hn of n× n complex Hermitian matrices,

(iii) the algebra Qn of n× n quaternion Hermitian matrices,

(iv) the algebra O3 of 3× 3 octonian Hermitian matrices,

(v) the Jordan spin algebra Ln for n ≥ 3.
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We say that V is essentially simple if it is either Rn or simple.

An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is nonzero and cannot

be written as a sum of two nonzero idempotents. We say a finite set {e1, e2, . . . , en} of primitive

idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i 6= j and

n
∑

i=1

ei = e.

It turns out that the number of elements in any Jordan frame is the same; this common number is

called the rank of V.

Proposition 1 (Spectral decomposition theorem [3]). Suppose V is a Euclidean Jordan algebra of

rank n. Then, for every x ∈ V, there exist uniquely determined real numbers λ1(x), . . . , λn(x)

(called the eigenvalues of x) and a Jordan frame {e1, . . . , en} such that

x = λ1(x)e1 + · · · + λn(x)en.

Conversely, given any Jordan frame {e1, . . . , en} and real numbers λ1, λ2, . . . , λn, the sum λ1e1 +

λ2e2 + · · · + λnen defines an element of V whose eigenvalues are λ1, λ2, . . . , λn.

We define the eigenvalue map λ : V → Rn by

λ(x) =
(

λ1(x), λ2(x), . . . , λn(x)
)

,

where λ1(x) ≥ λ2(x) ≥ . . . ≥ λn(x). This is well-defined and continuous [1].

We define the trace of an element x ∈ V by tr(x) := λ1(x) + · · · + λn(x). Correspondingly, the

canonical (or trace) inner product on V is defined by

〈x, y〉tr := tr(x ◦ y).

This defines an inner product on V that is compatible with the given Jordan structure. With

respect to this inner product, the norm of any primitive element is one.

Throughout this paper, for a linear transformation A : V → V and x ∈ V, we use, depending on

the context, both the function notation A(x) as well as the operator notation Ax.

Given a ∈ V, we define the corresponding transformation La : V → V by La(x) = a◦x. We say that

two elements a and b operator commute in V if La Lb = Lb La. We remark that a and b operator

commute if and only if there exist a Jordan frame {e1, e2, . . . , en} and real numbers a1, a2, . . . , an,

b1, b2, . . . , bn such that

a = a1e1 + a2e2 + · · ·+ anen and b = b1e1 + b2e2 + · · · + bnen,

see [3], Lemma X.2.2. (Note that the ais and bis need not be in the decreasing order.) In particular,
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in Sn or Hn, operator commutativity reduces to the ordinary (matrix) commutativity.

A linear transformation between two Euclidean Jordan algebras is a (Jordan algebra) homomor-

phism if it preserves Jordan products. If it is also one-to-one and onto, then it is an isomorphism.

If the algebras are the same, we call such an isomorphism an automorphism. Thus, a linear trans-

formation A : V → V is an automorphism of V if it is invertible and

A(x ◦ y) = Ax ◦ Ay ∀ x, y ∈ V.

The set of all automorphisms of V is denoted by Aut(V). When V is a product, say, V = V1 × V2,

for φi ∈ Aut(Vi), it is easy to see that φ defined by

φ(x) :=
(

φ1(x1), φ2(x2)
)

, x = (x1, x2) ∈ V1 × V2

belongs to Aut(V). Thus,

Aut(V1)×Aut(V2) ⊆ Aut(V1 × V2).

A similar statement can be made when V is a product of several factors.

When V carries the canonical inner product, every automorphism is inner product preserving and

so, Aut(V) is a closed subgroup of the orthogonal group of V. A linear transformation D : V → V

is a derivation if

D(x ◦ y) = D(x) ◦ y + x ◦D(y) ∀ x, y ∈ V.

We recall the following result from [8] (essentially, [3], Theorem IV.2.5).

Proposition 2. Let V be essentially simple. If {e1, . . . , en} and {e′1, . . . , e
′
n} are any two Jordan

frames in V, then there exists φ ∈ Aut(V) such that φ(ei) = e′i for all i = 1, . . . , n.

3 Weakly spectral sets and functions

Definition 1. We say that a set E in V is weakly spectral if

A(E) ⊆ E for all A ∈ Aut(V).

A function F : V → R is said to be weakly spectral if

F (Ax) = F (x) for all x ∈ V, A ∈ Aut(V).

Remarks (1) Suppose E is a spectral set, that is, E = λ−1(Q) for some permutation invariant set

Q in Rn. Then,

x ∈ E, y ∈ V, λ(y) = λ(x) ⇒ y ∈ E. (4)

Now, let x ∈ E and A ∈ Aut(V). As A maps Jordan frames to Jordan frames, λ(Ax) = λ(x). From

(4), Ax ∈ E. This proves that E is weakly spectral. Hence, every spectral set is weakly spectral.
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Now suppose F : V → R is a spectral function so that for some permutation invariant function

f : Rn → R, F = f ◦ λ. It follows that F (Ax) = f(λ(Ax)) = f(λ(x)) = F (x) for any A ∈ Aut(V).

Thus, F is weakly spectral. This proves that every spectral function is weakly spectral.

(2) It has been observed in [8], Theorem 2, that in any essentially simple algebra, every weakly

spectral set is spectral. The following example shows that weakly spectral sets/functions can be

different from spectral sets/functions in general algebras.

In the product algebra V = R× S2, let Ω = R+ × S2, and

x =
(

1,
[

−1 0
0 2

]

)

, y =
(

− 1,
[

1 0
0 2

]

)

.

Since x ∈ Ω, y 6∈ Ω, and λ(x) = (2, 1,−1)T = λ(y), we see that Ω cannot be of the form λ−1(Q)

for any (permutation invariant) set Q in R3. Thus, Ω is not a spectral set in V. Now, identity

transformation is the only automorphism of R and any automorphism of S2 is of the form X 7→

UXUT for some orthogonal matrix U . As R and S2 are non-isomorphic Euclidean Jordan algebras,

we see (from Proposition 1 in [4] or Corollary 3 in the Appendix) that automorphisms of V are of

the form (t,X) 7→ (t, UXUT), for some orthogonal matrix U . It follows that Ω is weakly spectral.

The characteristic function of Ω is an example of a weakly spectral function that is not spectral.

(3) As a consequence of Corollary 3 in the Appendix, one can show the following: Suppose V =

V1 × V2 × · · · × Vm where V1,V2, . . . ,Vm are non-isomorphic simple algebras. Let Ei be a spectral

set in Vi, i = 1, 2, . . . ,m. Then, E1 × E2 × · · · × Em is weakly spectral in V. Not every weakly

spectral set in V arises this way: Referring to example given in Remark 2,

{(t,X) ∈ Ω : t+ tr(X) = 0}

is weakly spectral but not a product of two spectral sets.

We also note, as a consequence of Theorem 6 that a product of (weakly) spectral sets need not be

(weakly) spectral. The set {0} × S2 in S2 × S2 is one such example.

(4) It will be shown in Theorem 7 that in any algebra that is not essentially simple, the class of

weakly spectral sets is strictly larger than the class of spectral sets. This shows that Theorem 2 is

applicable to a wider class of sets/functions than Theorem 1.

Proof of Theorem 2. As a is a local minimizer of the problem (2), we have

Θ(a) + F (a) ≤ Θ(x) + F (x) for all x ∈ Na ∩ Ω,

where Na denotes some open ball around a. Let u and v be arbitrary (but fixed) elements of V.

Let D := LuLv − LvLu, where Lu(x) := u ◦ x, etc. Then, Proposition II.4.1. in [3] shows that D

is a derivation on V; hence, as observed in [3], p. 36, etD is an automorphism of V for all t ∈ R.

Therefore, by the continuity of t 7→ etDa and the automorphism invariance of Ω, x := etDa ∈ Na∩Ω
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for all t close to zero in R. Then,

Θ(a) + F (a) ≤ Θ(etDa) + F (etDa) for all t close to 0.

As F (etDa) = F (a) by the automorphism invariance of F , we see that

Θ(a) ≤ Θ(etDa) for all t near 0.

This implies that the derivative of Θ(etDa) at t = 0 is zero. Thus, we have 〈Θ′(a), Da〉 = 0.

Putting b := Θ′(a) and recalling D = LuLv − LvLu, we get

〈b, (LuLv − LvLu)(a)〉 = 0.

Since Lu and Lv are self-adjoint, the above expression can be rewritten as

〈v ◦ a, u ◦ b〉 − 〈u ◦ a, v ◦ b〉 = 0.

This, upon rearrangement, leads to 〈(LbLa − LaLb)u, v〉 = 0. As this equation holds for all u and

v, we see that LbLa = LaLb, proving the operator commutativity of a and b (= Θ′(a)) in V.

An immediate special case of Theorem 2 is obtained by taking F = 0: If Ω is weakly spectral and Θ

is Fréchet differentiable, then any local minimizer a of minΩ Θ(x) operator commutes with Θ′(a).

This can further be specialized by assuming that Θ is linear, that is, of the form Θ(x) = 〈b, x〉.

A number of applications mentioned in [13] have analogs for weakly spectral sets and functions.

We mention one application that is especially important.

Theorem 4. Suppose Ω ⊆ V and F : V → R are weakly spectral. Let G : V → V be arbitrary.

Consider the variational inequality problem VI(G,Ω, F ): Find x∗ ∈ Ω such that

〈G(x∗), x− x∗〉+ F (x)− F (x∗) ≥ 0 for all x ∈ Ω.

If a solves VI(G,Ω, F ), then a operator commutes with G(a).

Proof. The proof is similar to the one given in [13], Proposition 1.9. If a solves VI(G,Ω, F ), then

〈G(a), x − a〉+ F (x)− F (a) ≥ 0 for all x ∈ Ω.

This implies

〈G(a), x〉 + F (x) ≥ 〈G(a), a〉 + F (a) for all x ∈ Ω.

So, a minimizes 〈G(a), x〉 + F (x) over Ω. By Theorem 2 applied to Θ(x) := 〈G(a), x〉, we see that

a commutes with G(a).

As an illustration of the above result, let K be a closed convex cone in V and G : V → V be

arbitrary. Consider the cone complementarity problem CP(G,K) of finding an x∗ ∈ K such that

x∗ ∈ K, G(x∗) ∈ K∗, and 〈x∗, G(x∗)〉 = 0

7



where K∗ is the dual of K defined by K∗ = {y ∈ V : 〈y, x〉 ≥ 0 for all x ∈ K}.

Corollary 1. Suppose K is weakly spectral. If a solves the cone complementarity problem

CP(G,K), then a commutes with G(a).

Remark (5) The above corollary yields the following: Suppose K is a closed convex cone in V

that is weakly spectral. If a ∈ K and b ∈ K∗ satisfy 〈a, b〉 = 0, then a and b operator commute.

Such a result for K = V+ (the symmetric cone of V) is well-known, see Proposition 6 in [5].

4 Normal decomposition systems

Before giving a proof of Theorem 3, we briefly recall the definition of a normal decomposition

system and mention relevant properties.

Definition 2. Let X be a real inner product space, G be a closed subgroup of the orthogonal group

of X, and γ : X → X be a mapping satisfying the following properties:

(a) γ is G-invariant, that is, γ(Ax) = γ(x) for all x ∈ X, A ∈ G.

(b) For each x ∈ X, there exists A ∈ G such that x = Aγ(x), and

(c) For all x,w ∈ X, we have 〈x, w〉 ≤ 〈γ(x), γ(w)〉.

Then, (X, G, γ) is called a normal decomposition system [10]. In such a system, a set Ω ⊂ X is

said to be G-invariant if A(Ω) ⊆ Ω for all A ∈ G; a function F : X → R is said to be G-invariant

if F (Ax) = F (x) for all x ∈ X and A ∈ G.

In [10], various results on normal decomposition systems are given. In particular, the following is

proved:

Proposition 3 ([10], Proposition 2.3). In a normal decomposition system, for any two elements x

and w, we have

max
A∈G

〈Ax, w〉 = 〈γ(x), γ(w)〉 .

Also, 〈x, w〉 = 〈γ(x), γ(w)〉 holds for two elements x and w if and only if there exists an A ∈ G

such that x = Aγ(x) and w = Aγ(w).

Motivated by the above proposition, we say that x and w commute in (X,G, γ) if there exists an

A ∈ G such that x = Aγ(x) and w = Aγ(w).

Now consider an essentially simple Euclidean Jordan algebra V. We assume that V carries the
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canonical inner product and let G = Aut(V). Let {e1, . . . , en} be a fixed Jordan frame in V (with

specified order). Define for any x ∈ V,

γ(x) :=
n
∑

i=1

λi(x)ei, (5)

where λi(x) are components of λ(x). As eigenvalues are preserved under automorphisms, we see

that γ satisfies condition (a) in the definition of normal decomposition system. Since V is essentially

simple, any Jordan frame can be mapped onto any other by an element of G (by Proposition 2).

Thus, given any x ∈ V with its spectral decomposition x =
∑n

1 λi(x)fi, we can find A ∈ G such

that A(ei) = fi for all i. Then,

x = A

(

n
∑

i=1

λi(x)ei

)

= Aγ(x).

This verifies condition (b) in the definition of normal decomposition system. Finally, for all x, w ∈

X, we have the so-called Theobald- von Neumann inequality 〈x, w〉 ≤ 〈γ(x), γ(w)〉, see for example,

[12], [1], or [6]. Putting all these together, we have the following result:

Proposition 4. Every essentially simple Euclidean Jordan algebra V is a normal decomposition

system with X = V, G = Aut(V), and γ : V → V defined as in (5).

In this setting, two elements x, y ∈ X commute if and only if there exists a Jordan frame

{f1, f2, . . . , fn} such that

x =

n
∑

1

λi(x)fi and y =

n
∑

1

λi(y)fi. (6)

We note that this is stronger than the operator commutativity of x and y. For example, in V = R2,

x = (1, 0)T and y = (0, 1)T operator commute but does not commute in the above sense.

Remark (6) Lim, Kim, and Faybusovich ([12], Corollary 4), show that when V is a simple Eu-

clidean Jordan algebra, (V,K, γ) is a normal decomposition system, where K is the connected

component of identity in Aut(V) and γ is defined as in (5).

In [10], Lewis provides numerous examples of normal decomposition systems. In particular, the

algebras Sn and Hn (see Section 2) are normal decomposition systems where G is the corresponding

automorphism group, γ(X) is the diagonal matrix with λ(X) as the diagonal. Another example is

the space Mm,n of all real m×n matrices with inner product 〈X,Y 〉 := tr(XTY ), with G consisting

of transformations of the form X 7→ UXV T , where U and V are orthogonal matrices, and γ(X) is

an m × n matrix with diagonal consisting of singular values of X written in the decreasing order

and zeros elsewhere.
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Proof of Theorem 3. Since a is a local minimizer of the problem (3), we have

Θ(a) + F (a) ≤ Θ(x) + F (x) for all x ∈ Na ∩ Ω,

where Na denotes (some) neighborhood of a. Let A be an arbitrary element of G. As Ω is convex

and G-invariant, we have, for all positive t near zero, (1− t)a+ tAa ∈ Na ∩ Ω. Thus,

Θ(a) + F (a) ≤ Θ
(

(1− t)a+ tAa
)

+ F
(

(1− t)a+ tAa
)

,

for all positive t near 0. As F is convex and G-invariant,

F
(

(1− t)a+ tAa
)

≤ (1− t)F (a) + tF (Aa) = (1− t)F (a) + tF (a) = F (a);

hence,

Θ(a) ≤ Θ
(

(1− t)a+ tAa
)

for all positive t near 0. This implies that 〈Θ′(a), Aa− a〉 ≥ 0, that is, 〈Θ′(a), Aa〉 ≥ 〈Θ′(a), a〉.

Now let b := −Θ′(a) so that 〈b, Aa〉 ≤ 〈b, a〉. Then, as A ∈ G is arbitrary, we have

max
A∈G

〈b, Aa〉 ≤ 〈b, a〉 .

Using Proposition 3, we see that 〈γ(b), γ(a)〉 ≤ 〈b, a〉. Since the reverse inequality always holds in

a normal decomposition system, the above inequality turns into an equality. By Proposition 3, a

and b commute in (X, G, γ).

Remark (7) One might ask if the commutativity of a and −Θ′(a) in the above theorem could be

replaced by that of a and Θ′(a). To answer this, we consider X = R2 with the usual inner product,

let G be the set of all 2×2 signed permutation matrices (having exactly one nonzero entry, either 1

or −1, in each row/column), and γ(x) = |x|↓ (which is the vector of absolute values of entries of x

written in the decreasing order). Let a = (−1, 1)T and b = (3,−2)T, Ω := convex-hull{Aa : A ∈ G},

Θ(x) = 〈b, x〉, and F = 0. Then, it is easy to see that a minimizes Θ over Ω and commutes with

−b (which is −Θ′(a)), but does not commute with b.

We now state analogs of Theorem 4 and Corollary 1 in normal decomposition systems.

Theorem 5. Suppose Ω ⊆ X and F : X → R are convex and G-invariant. Let G : X → X be

arbitrary. Consider the variational inequality problem VI(G,Ω, F ) on X: Find x∗ ∈ Ω such that

〈G(x∗), x− x∗〉+ F (x)− F (x∗) ≥ 0 for all x ∈ Ω.

If a solves VI(G,Ω, F ), then a operator commutes with −G(a).

When Ω = K is a closed convex cone and F = 0, we write CP(G,K) for VI(G,Ω, F ).

10



Corollary 2. SupposeK is closed convex cone inX that is G-invariant and G : V → V be arbitrary.

If a solves the cone complementarity problem CP(G,K), then a commutes with −G(a).

Remarks (8) The above corollary yields the following: Suppose K is a closed convex cone in X

that is G-invariant. If a ∈ K and b ∈ K∗ satisfy 〈a, b〉 = 0, then a and −b commute.

(9) We specialize the above remark to essentially simple algebras. Let V be such an algebra and

let K be a spectral cone (which is a closed convex cone that is spectral) in V. If a ∈ K and b ∈ K∗

satisfy 〈a, b〉 = 0, then there exists a Jordan frame {f1, f2, . . . , fn} such that

a =
n
∑

1

λi(a)fi, b =
n
∑

1

λn+1−i(b)fi, and
n
∑

1

λi(a)λn+1−i(b) = 0.

This comes from (6) by noting −λi(−b) = λn+1−i(b) and 〈a, b〉 = 0.

(10) Another consequence of Remark (8) is the following: Suppose (X,G, γ) is a normal decom-

position system where

〈γ(x), γ(y)〉 = 0 ⇒ x = 0 or y = 0.

(We note that Mm,n and the system considered in Remark (7) are such systems.) If K is a

closed convex cone in X that is G-invariant, then K = {0} or X. This can be seen as follows.

Suppose K is different from {0} and X. Let a be a nonzero element in the boundary of K. By

an application of the supporting hyperplane theorem, we can find a nonzero b ∈ K∗ such that

〈a, b〉 = 0. By Remark (8), a and −b commute, hence, a = Aγ(a), −b = Aγ(−b) for some A ∈ G.

Then, 〈γ(a), γ(−b)〉 = 〈a,−b〉 = 0. It follows that a = 0 or b = 0 leading to a contradiction.

5 Appendix

Here, we describe a result on the automorphism group of a Euclidean Jordan algebra which is

written as a product of simple algebras. While this result can be deduced from Theorem VI.18 in

[9], for completeness, we present a direct (perhaps, elementary) proof. Using this result, we show

that a Euclidean Jordan algebra V is essentially simple if and only if every weakly spectral set in

V is spectral.

Consider a (general) Euclidean Jordan algebra V. We assume that V is product of distinct non-

isomorphic simple algebras V1,V2, . . . ,Vm (with possible repetitions). Regrouping the factors, we

assume that

V =
(

V1 × V1 × · · · × V1

)

×
(

V2 × V2 × · · · × V2

)

× · · · ×
(

Vm × Vm × · · · × Vm

)

. (7)

By letting Wi := Vi × Vi × · · · × Vi, we write

V = W1 ×W2 × · · · ×Wm. (8)

11



Theorem 6.

Aut(V) = Aut(W1)×Aut(W2)× · · · ×Aut(Wm).

Moreover, any automorphism φ of Aut(Wi) has the following form:

φ =
(

φ1, φ2, . . . , φk

)

◦ σ,

where k is the number of factors in Wi, φj ∈ Aut(Vi), j = 1, 2, . . . , k and σ is a k × k permutation

matrix.

Note: The explicit form of the automorphism φ written with a permutation σ is:

φ(x) =
(

φ1(xσ(1)), φ2(xσ(2)), . . . , φk(xσ(k))
)

for all x = (x1, x2, . . . , xk) ∈ Vi × Vi × · · · × Vi.

Before giving a proof, we present two lemmas. In what follows, we write dim(X) for the dimension

of a space X.

Lemma 1. Suppose that V and W are simple Euclidean Jordan algebras and A : V → W is a

non-zero Jordan homomorphism. Then:

(i) dim(V) ≤ dim(W).

(ii) If dim(V) = dim(W), A is an isomorphism.

(iii) If dim(V) < dim(W), then zero is the only homomorphism from W to V.

Proof. (i) Since the kernel of a homomorphism is an ideal of V and V is simple, we see that either

A is zero or one-to-one. Since our A is nonzero, its kernel is {0}; hence it is one-to-one and so

dim(V) ≤ dim(W).

(ii) When dim(V) = dim(W), this A is also onto; hence it is an isomorphism.

(iii) Assume dim(V) < dim(W). If there is a nonzero Jordan homomorphism from W to V, by (i),

dim(W) ≤ dim(V). This is a contradiction.

Lemma 2. Consider a product Euclidean Jordan algebra Z = Z1 × Z2 · · · × Zm. Let A : Z → Z

be a linear transformation written in the matrix form A = [Aij ], where Aij : Zj → Zi is linear. If

A is a Jordan homomorphism, then so is Aij for any i, j. Furthermore, AT

ik Ail = 0 for all i and

k 6= l.

Proof. For x, y ∈ Z, we have A(x ◦ y) = Ax ◦ Ay. Taking x = (0, . . . , 0, xj , 0, . . . , 0)
T and

y = (0, . . . , 0, yj , 0, . . . , 0)
T, we get, for any i, j, Aij(xj ◦ yj) = Aijxj ◦ Aijyj. This proves that

Aij is a homomorphism. Now suppose k 6= l and let x = (0, . . . , 0, xk, 0, . . . , 0)
T and y =

(0, . . . , 0, yl, 0, . . . , 0)
T. Then A(x ◦ y) = Ax ◦ Ay yields, 0 = Aikxk ◦ Ailyl. This leads to

〈Aikxk, Ailyl〉 = 0 and to 〈xk, A
T

ik Ail yl〉 = 0. As xk and yl are arbitrary, we get AT

ik Ail = 0.
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Proof of Theorem 6. We may assume without loss of generality that all algebras involved carry

canonical inner products. Since Aut(W1)×Aut(W2)×· · ·×Aut(Wm) ⊆ Aut(V), it is enough to prove

the reverse inclusion. As the result is obvious for m = 1, we assume that m ≥ 2. Let A ∈ Aut(V).

Since we are given V by (7) and (8), we think of A as a matrix of linear transformations A = [Aij],

where each Aij is a linear transformation from some Vk to Vl. By partitioning this matrix, we write

A = [Bkl], where (each block) Bkl : Wl → Wk is a linear transformation. The main part of our

proof consists in showing

B1j = 0 for all j ≥ 2. (9)

Once we establish this, the same argument can then be used for AT (which is the inverse of A as we

are using the canonical inner product). This results in Bj1 = 0 for all j ≥ 2. It then follows that

B11 ∈ Aut(W1) and A could be viewed as an element of Aut(W1) × Aut(W2 × W3 × · · · × Wm).

We then invoke the induction principle to see that A ∈ Aut(W1)×Aut(W2)× · · · ×Aut(Wm).

Now towards proving (9), we make the following claims:

Claim 1:

(a) If for some k 6= l, (the off-diagonal block) Bkl has a nonzero entry, then, dim(Vl) < dim(Vk)

and Blk = 0.

(b) If Aij is a nonzero entry in (a diagonal block) Bkk, then all other entries in the row/column

of A containing Aij are zero, that is, Ail = 0 and Ali = 0 for all l 6= j.

To see (a), suppose Aij is a nonzero entry in Bkl. Then, Aij from Vl to Vk is a nonzero homo-

morphism (by Lemma 2). As Vl and Vk are simple and non-isomorphic, by Lemma 1, dim(Vl) <

dim(Vk). Lemma 1 also shows that there cannot be a nonzero homomorphism from Vk to Vl. Thus,

every entry in Blk is zero.

To see (b), suppose that Aij is a nonzero entry in a diagonal block Bkk. Then, by Lemma 2,

Aij : Vk → Vk is an isomorphism. From the same lemma, for l 6= j, we have AT

ij Ail = 0 and so

Ail = 0. Thus, in the row containing Aij , all other entries are zero. By working with the transpose

of A, we see that the column containing Aij is zero except for the Aijth entry. This proves the

claim.

Claim 2: Suppose for some l with 1 ≤ l ≤ m−1, B12,B23, . . . ,Bl l+1 are nonzero. Then, l < m−1

and there exists j > l + 1 such that Bl+1 j is nonzero.

If this were not true, then either l = m − 1 or l < m − 1 and Bl+1 j = 0 for all j > l + 1. From

Claim 1(a), dim(Vl+1) < dim(Vl) < · · · < dim(V1). From Lemma 1(iii), Bl+11,Bl+12, . . . ,Bl+1 l are

all zero. This means that in the matrix with entries Bij , in the l+1 row, all entries except possibly

Bl+1 l+1, are zero. As A is invertible, this lone entry Bl+1 l+1 cannot be zero. In fact, no row in

the matrix Bl+1 l+1 can be zero. By Claim 1(b), each row of Bl+1 l+1 contains exactly one nonzero

entry. This implies that in the square matrix Bl+1 l+1, each column will also contain exactly one
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nonzero entry. By Claim 1(b), all columns of Bl l+1 will be zero. This contradicts our assumption

that Bl l+1 is nonzero. This proves our claim.

Now suppose, if possible, (9) is false so that B1j 6= 0 for some j ≥ 2. We may assume, by relabeling,

that j = 2, so B12 is nonzero. By Claim 2 (with l = 1), 2 < m and there exists j > 2 such that

B2j is nonzero. Relabeling, we may assume that j = 3 so that B23 is nonzero. We can use Claim

2 again, to see that B34 is nonzero, etc. Claim 2 allows us to repeat this process; however, as m

is finite, this cannot continue forever. Thus, we reach a contradiction. Hence, (9) holds and as

discussed before, leads to the completion of the proof of the first part of the theorem.

We now come to the second part of the theorem. For simplicity, we let i = 1. We need to describe

the matrix A which is now B11. As A is invertible, each row of B11 is nonzero. By Claim 1(b),

each row of B11 contains exactly one nonzero entry which, by Lemma 1, is an automorphism of V1.

(This means that each column of B11 also has the same property.) Thus, B11 can be regarded as a

permutation of a diagonal matrix of transformations where each diagonal entry is an automorphism

of V1. This gives the stated assertion.

The following is immediate.

Corollary 3. Suppose V = V1×V2×· · ·×Vm, where V1, . . . ,Vm are non-isomorphic simple algebras.

Then,

Aut(V) = Aut(V1)×Aut(V2)× · · · ×Aut(Vm).

As an application of the above results, we prove the following.

Theorem 7. V is essentially simple if and only if every weakly spectral set in V is spectral.

Proof. The ‘only if’ part has been observed in [8], Theorem 2. We prove the ‘if’ part. Suppose, if

possible, V is not essentially simple; let V be given by (7) and (8). We consider two cases:

Case 1: V = W1×W2×· · ·×Wm, m ≥ 2. For i = 1, 2, . . . ,m, let rank(Wi) = ni, Pi denote the set

of all primitive idempotents in Wi, and 0 denote the zero element in any Wi. Since automorphisms

map primitive idempotents to primitive idempotents, P1 is invariant under automorphisms of W1,

and so, by Theorem 6, Ω := P1 × {0} × {0} . . .×{0} is weakly spectral in V. Let c1 ∈ P1, c2 ∈ P2,

x =
(

c1, 0, 0, . . . , 0
)

and y =
(

0, c2, 0, 0 . . . , 0
)

.

As both x and y have eigenvalues 1 (appearing once) and 0 (appearing n1+n2+ . . .+nm−1 times),

we see that λ(x) = λ(y). However, x ∈ Ω while y 6∈ Ω. Thus, Ω cannot be of the form λ−1(Q) for

any (permutation invariant) set Q.

Case 2: V = W1 = V1 × V1 × · · · × V1, where V1 is a simple algebra of rank at least 2 and the

number of factors in this product, say, m, is more than one. Let n = rank(V1). In Rn, let si denote

the coordinate vector containing 1 in its ith slot and zeros elsewhere; let Q = {s1, s2, . . . , sn}. As
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Q is permutation invariant, the set P1 := λ−1(Q) (which equals the set of all primitive elements

in V1) is a spectral set in V1, where λ : V1 → Rn is the eigenvalue map. As P1 is invariant under

automorphisms of V1, an application of Theorem 6 shows that the set Ω := P1 × P1 × · · · × P1

is weakly spectral in V. We now claim that Ω is not a spectral set in V. Let e denote the unit

vector in V1 and {e1, e2 . . . , en} be a Jordan frame in V1. Then, λ(e1) = (1, 0, 0, . . . , 0)T and so the

vector x := (e1, e1, . . . , e1) in Ω has eigenvalues 1 (repeated m times) and 0 (repeated m(n − 1)

times). When m ≤ n, let y :=
(

e1 + e2 + · · · + em, 0, 0, . . . , 0
)

∈ V. We see that y 6∈ Ω while

λ(y) = λ(x). On the other hand, when n < m, we write m = nk + l with 0 ≤ l < n and define

y :=
(

e, e, . . . , e, e1 + e2 + · · ·+ el, 0, 0 . . . , 0
)

, where e is repeated k times. We see that y 6∈ Ω while

λ(y) = λ(x). Thus, Ω is not a spectral set. This completes the proof.
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