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Tropical Fermat-Weber points

Bo Lin and Ruriko Yoshida

Abstract

In a metric space, the Fermat-Weber points of a sample are statistics to
measure the central tendency of the sample and it is well-known that the
Fermat-Weber point of a sample is not necessarily unique in the metric
space. We investigate the computation of Fermat-Weber points under
the tropical metric on the quotient space Rn/R1 with a fixed n ∈ N,
motivated by its application to the space of equidistant phylogenetic trees
with N leaves (in this case n =

(

N

2

)

) realized as the tropical linear space
of all ultrametrics. We show that the set of all tropical Fermat-Weber
points of a finite sample is always a classical convex polytope, and we
present a combinatorial formula for a key value associated to this set. We
identify conditions under which this set is a singleton. We apply numerical
experiments to analyze the set of the tropical Fermat-Weber points within
a space of phylogenetic trees. We discuss the issues in the computation
of the tropical Fermat-Weber points.

1 Introduction

The Fréchet mean and the Fermat-Weber point of a sample are statistics to
measure the central tendency of the sample [7, 14]. For any metric space with
a distance metric d(·, ·) between any two points, the Fréchet population mean
of a distribution ν is defined as follows:

µ = argmin
y

∫

d(y,x)2dν(x),

and thus, the Fréchet sample mean of a sample x1, . . . ,xm is defined as

µ̂ = argmin
y

m
∑

i=1

d(y,xi)
2

The Fermat-Weber point of a distribution ν is defined as follows:

µ = argmin
y

∫

d(y,x)dν(x),

and thus, the Fermat-Weber point of a sample is defined as follows:

µ̂ = argmin
y

m
∑

i=1

d(y,xi).
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In this paper, we consider tropical Fermat-Weber points on the quotient
space Rn/R1 for a fixed positive integer n, that is, Fermat-Weber points on the
quotient space Rn/R1 under the ’tropical metric’ in the max-plus algebra. This
tropical metric is called the generalized Hilbert projective metric [1, §2.2], [8,
§3.3]. It is also known that the geodesic between two points under this metric
may not be unique. For more details on this metric and tropical geometry, see
[13].

Here we focus on the computational aspect of the Fermat-Weber points in
Rn/R1 under the tropical metric in the max-plus algebra, including character-
izing the set of all tropical Fermat-Weber points in Rn/R1. More specifically,
in Section 2, we show an important property of a tropical Fermat-Weber point
of m points v1, . . . ,vm over Rn/R1 in Theorem 3. Then in Proposition 6 we
show that the set of all tropical Fermat-Weber points of m points v1, . . . ,vm

in Rn/R1 forms a classical convex polytope. Therefore, there are many cases
when a set of m points has infinitely many tropical Fermat-Weber points. In
Section 3, we investigate the condition when a random sample of m points has
a unique tropical Fermat-Weber point. If we consider the space of families of m
arbitrary points in Rn/R1 (which corresponds to Rm(n−1)), the points forming
an essential set (Definition 9) with a unique tropical Fermat-Weber point are
contained in a finite union of proper linear subspaces in Rm(n−1) (Theorem 11).
This theorem implies that if we pick a random sample ofm points v1,v2, . . . ,vm

in Rm(n−1), then with probability 1 we get either a set of points such that one
of them is already a unique tropical Fermat-Weber point of the others, or a set
of points that has infinitely many tropical Fermat-Weber points.

One finds an application of tropical Fermat-Weber points in phylogenomics.
In recent decades, the field of phylogenetics has found its applications in analysis
on genomic scale data (phylogenomics). In particular, it has been applied to
analyze the relations between species and populations, genome evolution, as well
as evolutionary processes of speciation and molecular evolution. Today, since
we can generate genomic data relatively cheaply and quickly, we encounter a
new problem in the sheer volume of genomic data and we lack analytical tools
on such data (e.g. [4, 6, 11, 17, 18]). Lin et. al [12] mentioned tropical Fermat-
Weber points on UN , the treespace of rooted equidistant phylogenetic trees
with N leaves as a possible statistical method to summarize genome data sets.
Therefore, in Section 4, we investigate the intersection between the set of tropical

Fermat-Weber points of the sample in R(
N

2 )/R1 and UN for small N ∈ N. We
show by experiments that it is very rare to obtain a unique tropical Fermat-
Weber point of an essential random sample over UN . From our experimental
study, we conjecture that if an essential random sample has a unique tropical
Fermat-Weber point, then the unique tropical Fermat-Weber point is the vector
with all ones in its coordinates.

In Section 5 we generalize the locus of the tropical Fermat-Weber points of
a sample of size k to the k-ellipses under tropical metric. We end this paper
with an open problem regarding the computation of the tropical Fermat-Weber
points of a sample.
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2 The tropical Fermat-Weber point

In this section, we define the tropical metric and derive some basic properties
of the tropical Fermat-Weber point.

For u,v ∈ Rn we define their distance as

dtr(u,v) = max
1≤i<j≤n

{|ui − uj − vi + vj |}. (1)

In other words, let Du,v = {ui − vi|1 ≤ i ≤ n}, then

dtr(u,v) = max
x,y∈Du,v

(|x− y|) = max(Du,v)−min(Du,v). (2)

By definition dtr is reflexive. For any u,v,w ∈ Rn, we have that

dtr(u,w) = max
1≤i<j≤n

{|ui − uj − wi + wj |}

= max
1≤i<j≤n

{|(ui − uj − vi + vj) + (vi − vj − wi + wj)|}

≤ max
1≤i<j≤n

{(|ui − uj − vi + vj |+ |vi − vj − wi + wj |)}

≤ max
1≤i<j≤n

{|ui − uj − vi + vj |}+ max
1≤i<j≤n

{|vi − vj − vi + vj |}

= dtr(u,v) + dtr(v,w).

Thus, dtr satisfies the triangle inequality. Note that dtr(u,v) = 0 if and only if
u − v is a scalar multiple of 1, and for any scalar multiple c1 with a constant
c ∈ R, dtr(u + c1,v) = dtr(u,v). So dtr(u,v) = 0 if and only if u = v in the
quotient space Rn/R1. Then dtr is a metric on Rn/R1. It is called the tropical
metric [1].

Remark 1. The metric dtr is invariant under vector addition in Euclidean
space: for any u,v,w ∈ Rn/R1, by (2), we have dtr(u+w,v+w) = dtr(u,v).

Given vectors v1, . . . ,vm ∈ Rn/R1, the set of their tropical Fermat-Weber
points (if the context is clear, we simply use Fermat-Weber points) is

argmin
u∈Rn/R1

m
∑

i=1

dtr(u,vi). (3)

Definition 2. For points v1,v2, . . . ,vm ∈ Rn/R1, we define the minimal sum
of distances from them as

d(v1,v2, . . . ,vm) = min
u∈Rn/R1

m
∑

i=1

dtr(u,vi). (4)

Then d(v1,v2, . . . ,vm) should be determined by the entries of v1,v2, . . . ,vm.
However, at this point we do not know whether d(v1,v2, . . . ,vm) is well-defined,
nor any explicit formulation of it. In addition, in order to find the set of Fermat-
Weber points of v1,v2, . . . ,vm, we need to know the value of d(v1,v2, . . . ,vm).
The following theorem gives a direct formula of d(v1,v2, . . . ,vm).
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Theorem 3. Let M be an m × n matrix with real entries such that the row
vectors are v1,v2, . . . ,vm. Then

d(v1,v2, . . . ,vm) = max
σ,τ

∣

∣

∣

∣

∣

m
∑

i=1

Mi,σ(i) −
m
∑

i=1

Mi,τ(i)

∣

∣

∣

∣

∣

, (5)

where functions σ, τ : [m] → [n] satisfy σ([m]) = τ([m]) as multisets.

To prove this theorem, we need the following lemmas.

Lemma 4. The right hand side (RHS) of (5) is bounded above by the left hand
side (LHS) of (5).

Proof. Let u be a Fermat-Weber point of v1,v2, . . . ,vm. Suppose σ, τ are func-
tions with the same multiset of values. Since σ and τ are symmetric, we may
assume that

m
∑

i=1

Mi,σ(i) ≥

m
∑

i=1

Mi,τ(i).

Now for 1 ≤ i ≤ m we have

dtr(u,vi) ≥ |(vi)σ(i) − (vi)τ(i) − uσ(i) + uτ(i)| ≥ Mi,σ(i) −Mi,τ(i) − uσ(i) + uτ(i).

Summing up over 1 ≤ i ≤ m, the LHS of the sum is d(v1,v2, . . . ,vm). One
part of the RHS of the sum is

m
∑

i=1

Mi,σ(i) −

m
∑

i=1

Mi,τ(i),

and the other part vanishes because σ([m]) = τ([m]). Hence d(v1,v2, . . . ,vm) ≥
∑m

i=1 Mi,σ(i) −
∑m

i=1 Mi,τ(i).

Lemma 5. If A and B are two m× n matrices that have the same multiset of
entries, then there exist m× n matrices A′ and B′ such that:

(i) for 1 ≤ i ≤ m, the entries of the i-th row of A′ and the entries of the i-th
row of B′ form the same multiset; and

(ii) for 1 ≤ j ≤ n, the entries of the j-th column of A′ and the entries of the j-
th column of A form the same multiset, and the entries of the j-th column
of B′ and the entries of the j-th column of B form the same multiset.

Proof. If the entries of A are not all distinct, then we can label the equal entries
to distinguish them. So we may assume that both A and B have mn distinct
entries. Then we can replace multiset in the statement by set.

We use induction on m. If m = 1, we can take A′ = A and B′ = B. Suppose
Lemma 5 is true when m ≤ k, we consider the case when m = k + 1. If there
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exists m×nmatrices A′′ and B′′ such that (ii) is true and (i) is true for i = 1, let
rA and rB be the vector of first row in A′′ and B′′ respectively, and we denote

A′′ =

[

rA
A2

]

, B′′ =

[

rB
B2

]

.

Then we apply the induction hypothesis of m = k to the matrices A2 and B2.
Suppose we get new matrices A′

2 and B′
2 respectively, then we let

A′ =

[

rA
A′

2

]

, B′ =

[

rB
B′

2

]

.

So A′ and B′ satisfy both (i) and (ii). Now it suffices to show that we can find
such a pair of matrices A′′ and B′′. We denote by s the set of entries in rA (and
also the set of entries in rB). Then the above claim is equivalent to the following
statement: there exists a set s with |s| = n and s has exactly one element in
each column of A and B.

We construct a bipartite graph G = (V,E), where the two parts of V corre-
spond to the columns of A and the columns of B respectively:

V = {a1, a2, · · · , an, b1, b2, · · · , bn}.

For each entry x in the set of entries of A,B, if x is in the i-th column of A
and in the j-th column of B, then we connect an edge between ai and bj. So
|E| = mn. Since each column has m entries, the graph G is m-regular. By
Hall’s Theorem [10], G admits a perfect matching. Then we let s be the set of
n elements corresponding to the edges in this perfect matching. The induction
step is done.

For convenience, if σ : [m] → [n] is a function, then we view it as a vector in
[n]m and we define a vector wσ ∈ Nn as follows: the i-th entry of wσ is |σ−1(i)|.
So the sum of entries in wσ is always m. For example, if m = 3, n = 5 and
σ(1) = 4, σ(2) = 3, σ(3) = 3, then wσ = (0, 0, 2, 1, 0).

Proof of Theorem 3. Let M be the value of the RHS in (5). By Lemma 4, it
suffices to show that there exists a point u = (u1, . . . , un) ∈ Rn/R1 such that

m
∑

i=1

dtr(u,vi) = M.

For convenience, we introduce parameters ci to represent dtr(u,vi) and an-
other parameter s to represent their sum. Then

ci ≥ uj − uk −Mi,j +Mi,k ∀1 ≤ j, k ≤ n. (6)

and

s =
m
∑

i=1

ci. (7)
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Equivalently, we can eliminate the parameters ci and we get the following
family of inequalities:

s ≥

m
∑

i=1

Mi,σ(i) −

m
∑

i=1

Mi,τ(i) − u ·wτ + u ·wσ, ∀σ, τ ∈ [n]m. (8)

In other words, (6) and (7) are simultaneously feasible if and only if (8) is
feasible. Now it suffices to show that there exists real numbers u1, . . . , un, s sat-
isfying (8) and s ≤ M . Note that by applying the Fourier-Motzkin Elimination
[19], one may get rid of the variables ui one at a time. After finite steps, the
only variable remaining in the inequalities is s. Apparently s can be arbitrarily
large, so all remaining inequalities are of the form s ≥ l, where the lower bound
l is a constant. Then s could be the maximum of these lower bounds c, and it
suffices to show that any lower bound of s we obtain from the Fourier-Motzkin
Elimination is at most M .

Note that in each step of Fourier-Motzkin Elimination, we obtain a new
inequality as a Q+-linear combination of existing inequalities. Therefore if l
is a lower bound, then s ≥ l is a Q+-linear combination of the inequalities
in (8). Multiplying by a positive integer we may assume that it’s a Z+-linear
combination, therefore we have r ∈ Z+ and functions σ1, . . . , σr, τ1, . . . , τr :
[m] → [n] such that s ≥ l is equivalent to

rs ≥

r
∑

j=1

(

m
∑

i=1

Mi,σj(i) −

m
∑

i=1

Mi,τj(i) − u ·wτj + u ·wσj

)

. (9)

So the RHS of (9) is the constant rl. Therefore

rl =

r
∑

j=1

(

m
∑

i=1

Mi,σj(i) −

m
∑

i=1

Mi,τj(i)

)

, (10)

and
r
∑

j=1

wσj
=

r
∑

j=1

wτj . (11)

Now let A and B be two matrices with the same size r×m, with Aj,i = σj(i)
and Bj,i = τj(i) for 1 ≤ j ≤ r, 1 ≤ i ≤ m. Then the multiset of their entries are
equal because of (11). By Lemma 5 we can obtain matrices A′ and B′ satisfying
the conditions in (i) and (ii). For 1 ≤ j ≤ r, we let σ′

j and τ ′j be functions
mapping from [m] to [n] such that for 1 ≤ i ≤ m, σ′

j(i) = A′
j,i and τ ′j(i) = B′

j,i

Then the condition (i) implies that

wσ′

j
= wτ ′

j
∀1 ≤ j ≤ r.

The condition (ii) implies that for each 1 ≤ i ≤ m, the multisets {σj(i)|1 ≤ j ≤
r} and {σ′

j(i)|1 ≤ j ≤ r} are equal and the multisets {τj(i)|1 ≤ j ≤ r} and

6



{τ ′j(i)|1 ≤ j ≤ r} are equal. Then

r
∑

j=1

m
∑

i=1

Mi,σj(i) =
r
∑

j=1

m
∑

i=1

Mi,σ′

j
(i) (12)

because each entry of M is added by the same number of times in both sides of
(12). Similarly

r
∑

j=1

m
∑

i=1

Mi,τj(i) =

r
∑

j=1

m
∑

i=1

Mi,τ ′

j
(i). (13)

Then the inequality (9) is equivalent to

rs ≥

r
∑

j=1

(

m
∑

i=1

Mi,σ′

j
(i) −

m
∑

i=1

Mi,τ ′

j
(i) − u · vτ ′

j
+ u · vσ′

j
). (14)

Now for each 1 ≤ j ≤ r,

m
∑

i=1

Mi,σ′

j
(i) −

m
∑

i=1

Mi,τ ′

j
(i) − u · vτ ′

j
+ u · vσ′

j
=

m
∑

i=1

Mi,σ′

j
(i) −

m
∑

i=1

Mi,τ ′

j
(i).

In addition σ′
j and τ ′j have the same multiset of values. Then by the definition

of M ,

M ≥

m
∑

i=1

Mi,σ′

j
(i) −

m
∑

i=1

Mi,τ ′

j
(i).

We sum over 1 ≤ j ≤ r, then

rl =

r
∑

j=1

(

m
∑

i=1

Mi,σ′

j
(i) −

m
∑

i=1

Mi,τ ′

j
(i)) ≤

r
∑

j=1

M = rM,

hence l ≤ M . So M is the greatest possible lower bound of s, which means s =
M would make the system of linear inequalities feasible. So d(v1, v2, . . . , vm) =
M .

Proposition 6. [12, Proposition 6.1] Let v1,v2, . . . ,vm be points in Rn/R1.
The set of their Fermat-Weber points is a classical convex polytope in Rn−1 ≃
Rn/R1.

Proof. Let x = (x1, . . . , xn) be a point in Rn/R1. Then x is a Fermat-Weber
point of v1,v2, . . . ,vm if and only if for all choices of indices ji, ki ∈ [n], 1 ≤ i ≤
m,

m
∑

i=1

(xji − xki
+ vi,ki

− vi,ji ) ≤ d(v1,v2, . . . ,vm). (15)

Then the set is a polyhedron in Rn. Finally in Rn/R1 we may assume x1 = 0,
and thus xi is bounded for 2 ≤ i ≤ n.

7



Example 7. The polytope of the following three points in R3/R1 ≃ R2

(0, 0, 0), (0, 3, 1), (0, 2, 5)

is the triangle with vertices

(0, 1, 1), (0, 2, 1), (0, 2, 2).

In Figure 1, we draw the coordinates x2 and x3 since the first coordinate x1 = 0.

(0, 0)

(3, 1)

(2, 5)

Figure 1: The Fermat-Weber points of three points in Example 7 is a closed
triangle (blue).

3 Uniqueness of a Fermat-Weber point under

the tropical metric

In the previous section we have shown that in some cases, there are infinitely
many Fermat-Weber points of a given set of m points in Rn/R1. But how often
does this case happen? In this section we investigate conditions on the set of
points in Rn/R1 that has a unique Fermat-Weber point in Rn/R1, i.e., we study
when a random sample of m points in Rn/R1 has a unique Fermat-Weber point
in Rn/R1.

Lemma 8. Let v1,v2, . . . ,vm be points in Rn/R1 and v0 be a Fermat-Weber
point of them. Then v0,v1, . . . ,vm have a unique Fermat-Weber point, which
is v0.

Proof. For any point x ∈ Rn/R1, suppose x and v0 are not the same point in
Rn/R1. Then we have

dtr(x,v0) > 0 = dtr(v0,v0). (16)

8



Since v0 is a Fermat-Weber point of v1,v2, . . . ,vm, we have

m
∑

i=1

dtr(x,vi) ≥

m
∑

i=1

dtr(v0,vi). (17)

So
m
∑

i=0

dtr(x,vi) >
m
∑

i=0

dtr(v0,vi). (18)

Hence, by definition, v0 is the unique Fermat-Weber point in Rn/R1.

The situation in Lemma 8 is not desirable, because we don’t know whether
v1,v2, . . . ,vm have a unique Fermat-Weber point in Rn/R1. So we introduce
the following definition.

Definition 9. Let S = {v1,v2, . . . ,vm} be a set of points in Rn/R1. The set
S is essential if for 1 ≤ i ≤ m, the point vi is not a Fermat-Weber point of the
points in S − {vi}.

Now we consider the following question: in Rn/R1, what is the smallest
integer u(n) such that there exist an essential set of u(n) points with a unique
Fermat-Weber point in Rn/R1?

Proposition 10. For n ≥ 3, u(n) ≤ n.

Proof. First we suppose n ≥ 4. Then we claim that the row vectors in the
following n× n matrix M represent n points v1, · · · ,vn that form an essential
set and have a unique Fermat-Weber point in Rn/R1.

Mi,j =











1, if j − i ≡ 0, 1 mod n;

−1, if j − i ≡ 2, 3 mod n;

0, otherwise.

Note that for 1 ≤ i ≤ n we have dtr(vi,0) = 1− (−1) = 2. Thus,

n
∑

i=1

dtr(vi,0) = 2n. (19)

Now suppose a = (a1, · · · , an) ∈ Rn/R1 is a Fermat-Weber point of v1, · · · ,vn.
For convenience we denote that ai+n = ai for all i. By (2), for 1 ≤ i ≤ n we
have

dtr(a,vi) = max
1≤j≤n

{aj −Mi,j} − min
1≤j≤n

{aj −Mi,j}. (20)

Then for 1 ≤ i ≤ n, note that the i-th and (i + 1)-th coordinates of vi are 1.
Thus,

max
1≤j≤n

{aj −Mi,j} ≥ 1−min{ai, ai+1}.

9



Similarly, since the (i + 2)-th and (i+ 3)-th coordinates of vi are −1,

min
1≤j≤n

{aj −Mi,j} ≤ −1−max{ai+2, ai+3}.

Then we have

dtr(vi, a) ≥ (1−min{ai, ai+1})− (−1−max{ai+2, ai+3})

= 2 +max{ai+2, ai+3} −min{ai, ai+1}.

Summing over i, we get

n
∑

i=1

dtr(vi, a) ≥ 2n+

n
∑

i=1

[max{ai, ai+1} −min{ai, ai+1}] ≥ 2n. (21)

By (19) and (21), we know that 0 is a Fermat-Weber point. Since a is also
a Fermat-Weber point, all equalities in (21) hold. Hence max{ai, ai+1} =
min{ai, ai+1} for all i, which means ai = ai+1 for all i. So a = 0 in Rn/R1.
Then v1, · · · ,vn have a unique Fermat-Weber point in Rn/R1. Finally since
vi 6= 0 for each i = 1, . . . , n in Rn/R1, the set of points v1, · · · ,vn forms an
essential set.

As for the case when n = 3, we have the following example of three points
in R3/R1:

(−1, 1, 1), (1,−1, 1), (1, 1,−1).

By simple computation we get that they have a unique Fermat-Weber point
(0, 0, 0) in R3/R1 and thus they form an essential set.

Proposition 10 shows the existence of essential sets of points with a unique
Fermat-Weber point. However, the following theorem tells us that this case is
very rare.

Theorem 11. Fix positive integers m and n. Consider the space Rm(n−1) of
m points v1,v2, . . . ,vm in Rn/R1. Then the points representing an essential
set of points with a unique Fermat-Weber point are contained in a finite union
of proper linear subspaces in Rm(n−1).

Definition 12. Let u = (u1, . . . , un),v = (v1, . . . , vn) be two points in Rn/R1
and d = dtr(u,v) > 0. The peaks and valleys of u,v are the following subsets
of [n]:

peak(u,v) = argmax
1≤i≤n

{ui − vi} , valley(u,v) = argmin
1≤i≤n

{ui − vi}.

.

We prove a few lemmas before we prove Theorem 11.

Lemma 13. Let u = (u1, . . . , un),v = (v1, . . . , vn) be two points in Rn/R1 and
d = dtr(u,v) > 0. Let ǫ be a positive real number less than the minimum of the
set

{|(ui − vi)− (uj − vj)| : 1 ≤ i < j ≤ n} − {0}.

10



(Since d > 0, the above set is nonempty.) For 1 ≤ i ≤ n, we denote ǫi as the
vector in Rn/R1 whose i-th entry is ǫ and other entries are zero. Then we have

dtr(u+ ǫi,v) =



















d, if i /∈ peak(u,v) ∪ valley(u,v);

d+ ǫ, if i ∈ peak(u,v);

d− ǫ, if i ∈ valley(u,v) and | valley(u,v)| = 1;

d if i ∈ valley(u,v) and | valley(u,v)| ≥ 2.

(22)

Similarly,

dtr(u− ǫi,v) =



















d, if i /∈ peak(u,v) ∪ valley(u,v);

d+ ǫ, if i ∈ valley(u,v);

d− ǫ, if i ∈ peak(u,v) and | peak(u,v)| = 1;

d if i ∈ peak(u,v) and | peak(u,v)| ≥ 2.

(23)

Proof. We use formula (2). Let Du,v be the set {ui − vi|1 ≤ i ≤ n} for any two
vectors u,v ∈ Rn/R1.

We consider dtr(u+ ǫi,v) first. If i /∈ peak(u,v)∪ valley(u,v), then ui − vi
is between the maximum and minimum of Du,v. So Du+ǫi,v has the same max-
imum and minimum as Du,v, then dtr(u+ ǫi,v) = dtr(u,v). If i ∈ peak(u,v),
then Du+ǫi,v has the same minimum as Du,v, but max(Du+ǫi,v) = max(Du,v)+
ǫ. So dtr(u+ ǫi,v) = dtr(u,v) + ǫ.

If i ∈ valley(u,v), then ui − vi is the minimum of Du,v. So Du+ǫi,v has
the same maximum as Du,v. As for the minimum, if |valley(u,v)| ≥ 2, then
there exists k 6= i with uk − vk = ui − vi. Then uk − vk ∈ Du+ǫi,v and Du+ǫi,v

has the same minimum as Du,v. As a result, dtr(u + ǫi,v) = dtr(u,v). If
|valley(u,v)| = 1, then all other elements in Du,v are strictly greater than
ui − vi, thus min(Du+ǫi,v) = min(Du,v) + ǫ. So dtr(u+ ǫi,v) = dtr(u,v)− ǫ.

The cases of dtr(u− ǫi,v) could be analyzed in the same way.

Next, for (22) and (23), if we sum over i, we get the following corollary.

Corollary 14. Let u,v be two points in Rn/R1. Let d, e and ǫi be the same as
in Lemma 13. Then

n
∑

i=1

(dtr(u+ ǫi,v) + dtr(u− ǫi,v)) = 2n·d+[f(|peak(u,v)|)+f(|valley(u,v)|)]·e,

where f is the function defined on Z+ by

f(n) =

{

0, if n = 1;

n, if n ≥ 2.
.

Definition 15. Let m and n be positive integers. Two subsets S, T ⊂ [m]× [n]
are called similar if for 1 ≤ i ≤ m we have

|{k|(i, k) ∈ S}| = |{k|(i, k) ∈ T }|

11



and for 1 ≤ j ≤ n we have

|{k|(k, j) ∈ S}| = |{k|(k, j) ∈ T }|.

In other words, S and T are similar if and only if given any row or column of
M , they have the same number of elements in it.

The following lemma explicitly tells us the defining equations of the finite
union of proper linear subspaces.

Lemma 16. Let X = (xi,j)1≤i≤m,1≤j≤n be an m × n matrix. For any set
S ⊂ [m]× [n], let

xS =
∑

(i,j)∈S

xi,j .

If the row vectors of X ∈ Rm(n−1) form an essential set with a unique Fermat-
Weber point in Rn/R1, then there exist disjoint S, T ⊂ [m] × [n] such that S
and T are similar and xS = xT .

Proof. Suppose X is an m×n matrix with entries xi,j such that the row vectors
v1, . . . ,vm of X form an essential set of points in Rn/R1 with a unique Fermat-
Weber point c ∈ Rn/R1. Then the points v1 − c, . . . ,vm − c also form an
essential set and they have a unique Fermat-Weber point 0. Let X ′ = (x′

i,j)
be the corresponding matrix of these points. Then x′

i,j = xi,j − cj for any
1 ≤ i ≤ m, 1 ≤ j ≤ n. Note that for S, T ⊂ [m] × [n], if S and T are similar,
then xS = xT if and only if x′

S = x′
T . Then we may assume the unique Fermat-

Weber point of v1, . . . ,vm is 0.
Now we construct an undirected graph G = (V,E). Let V = [n]. For

1 ≤ i ≤ m, let Pi = peak(0,vi) and Qi = valley(0,vi). Then Pi, Qi ⊂ [n]. For
1 ≤ i ≤ n, we choose an arbitrary tree TPi

whose set of vertices is Pi and include
its edges into E and we choose an arbitrary tree TQi

whose set of vertices is Qi

and include its edges into E. Note that if |Pi| = 1 then TPi
has no edge. Here

we allow parallel edges in G, because Pi may equal to Pj for different i and j.
It suffices to show that G contains a cycle. Suppose one minimal cycle in G

has r distinct vertices j1, j2, . . . , jr ∈ [n], where for each 1 ≤ t ≤ r there is an
edge connecting jt and jt+1 (we denote jr+1 = j1). By definition, there exists
it ∈ [m] such that {jt, jt+1} ⊂ Pit or {jt, jt+1} ⊂ Qit . In either case we have
that

xit,jt = xit,jt+1
. (24)

Then we define the two subsets S, T of [m]× [n] as follows:

S = {(it, jt)|1 ≤ t ≤ r} , T = {(it, jt+1)|1 ≤ t ≤ r}.

Then xS = xT follows from (24). In addition, for j ∈ [n], if j = jt for some t
then both S and T have one element in the j-th column of M ; otherwise both
S and T have no elements in the j-th column of M . For i ∈ [m], both S and
T have |{t|it = i}| elements in the i-th row of M . Then S and T are similar.

12



Next we show that S 6= T . Suppose S = T , then for each 1 ≤ t ≤ r, the
unique element of S in the jt-th column is equal to the unique element of T
in the jt-th column, which means (it, jt) = (it−1, jt). Then we have it = it−1.
So i1 = i2 = . . . = ir, which means all r vertices in the cycle are chosen from
Pi ∪ Qi. Since Pi and Qi are disjoint, either all vertices are chosen from Pi or
all vertices are chosen from Qi. Then in either case, the edges in the cycles
are either all chosen from TP,i or all chosen from TQ,i, which contradicts the
fact that both TP,i and TQ,i are trees. Therefore S 6= T . Finally if S and T
have common elements, then we can delete them to get another pair of similar
subsets S′, T ′, and we still have xS′ = xT ′ . So we can choose disjoint S and T .

Finally we show that G contains a cycle. We compute the following sum

K =
m
∑

i=1

n
∑

j=1

(dtr(ǫj ,vi) + dtr(−ǫj ,vi)).

On one hand, since v1, . . . ,vm have a unique Fermat-Weber point 0, we have

m
∑

i=1

dtr(w,vi) >
m
∑

i=1

dtr(0,vi) (25)

for any nonzero vector w ∈ Rn/R1. By (22) and (23), for 1 ≤ i ≤ m

dtr(±ǫj ,vi)− dtr(0,vi)

is ±ǫ or zero. Then difference between the LHS and the RHS of (25) is an
integer multiple of ǫ. Hence

m
∑

i=1

dtr(w,vi)−
m
∑

i=1

dtr(0,vi) ≥ ǫ (26)

for w = ±ǫj . Summing over j, we have

K ≥ 2n

m
∑

i=1

dtr(0,vi) + 2n · ǫ. (27)

On the other hand, by Corollary 14 we have

n
∑

j=1

(dtr(ǫj ,vi) + dtr(−ǫj ,vi)) = 2n · dtr(0,vi) + [f(|Pi|) + f(|Qi|)] · ǫ.

Summing over i we have

K = 2n

m
∑

i=1

dtr(0,vi) +

[

m
∑

i=1

(f(|Pi|) + f(|Qi|))

]

· ǫ. (28)

Comparing (27) and (28), we get

m
∑

i=1

(f(|Pi|) + f(|Qi|)) ≥ 2n. (29)

13



Next, for x ≥ 2 we have

x− 1 ≥
x

2
=

1

2
f(x)

and when x = 1 both x− 1 and f(x) are zero. Then

m
∑

i=1

(|Pi| − 1) + (|Qi| − 1) ≥
1

2

m
∑

i=1

(f(|Pi|) + f(|Qi|)) ≥ n.

So the graph G has at least n edges and it contains a cycle.

Proof of Theorem 11. For (i, j) ∈ [m] × [n], let Xi,j be variables. For S ⊂
[m]× [n], let

XS =
∑

(i,j)∈S

Xi,j .

We define the polynomial

F =
∏

S,T⊂[m]×[n]
S 6=T

S,T are similar

(XS −XT ).

Then F ∈ R[X1,1, X1,2, . . . , Xm,n]. By Lemma 16, if anm×nmatrixM = (mi,j)
corresponds to an essential set of m points with a unique Fermat-Weber point
in Rn/R1, then there exist distinct S, T ⊂ [m] × [n] such that S and T are
similar and MS = MT . So F ((mi,j)) = 0. As a result, the points of Rm(n−1)

corresponding to an essential set of m points with a unique Fermat-Weber point
in Rn/R1 are contained in the union of proper linear subspaces V (F ).

The immediate consequence of Theorem 11 is as follows:

Corollary 17. If we choose a random sample in the moduli space Rm(n−1) with
any distribution ν with ν(L) = 0 for any L ⊂ Rm(n−1) with the dimension of L
is strictly less than m(n− 1), then we have probability 1 to get either a random
sample that is not essential, or a random sample that has more than one (thus
infinitely many) Fermat-Weber points.

Proof. Let C be the random sample in Rm(n−1) that corresponds to an essential
set ofm points with a unique Fermat-Weber point. Then it suffices to show that
the measure of C is zero. By Theorem 11, C is contained in the finite union of
hypersurfaces V (XS −XT ), where S, T ⊂ [m] × [n], S and T are distinct and
similar. Then for each pair of such S and T , the hypersurface V (XS −XT ) is
isomorphic to Rm(n−1)−1. So it has measure zero. Thus, the measure of this
finite union is still zero, and so is C.

Definition 18 (Tropical Determinant). Let X = (xij) be an n×n matrix with
real entries. Then its tropical determinant is defined as follows:

tropdetX = min
π∈Sn

n
∑

i=1

xiπ(i). (30)
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A matrix X is tropically singular if the minimum is attained at least twice in
(30).

In the proof of Lemma 16, the subsets S and T are very similar to the terms
in the tropical determinant of matrices. However the following example shows
that the matrix does not need to have a minor whose tropical determinant
contains two equal terms.

Example 19. [No equal terms in the tropical determinant of all minors] The
following five points in R3/R1

(1,−1,−1), (−1, 1,−1), (1, 1,−1), (0,−1, 1), (−1, 0, 1)

form an essential set and they have a unique Fermat-Weber point (0, 0, 0) in
R3/R1. However, let M be the corresponding 5× 3 matrix. No minor of M is
tropically singular. In addition, for every minor of M , its tropical determinant
has no equal terms.

Remark 20. The converse of Theorem 11 is not true in general. The following
three points in R4/R1

(0, 0, 0, 5), (0, 0, 3, 1), (0, 4, 5, 7)

correspond to a point in the finite union of proper linear subspaces of R9 as
in Lemma 16, because we can take S = {(1, 1), (2, 2)} and T = {(1, 2), (2, 1)}.
However, their polytope of Fermat-Weber point is a line segment in R4/R1 with
endpoints

(0, 2, 3, 5), (0, 3, 3, 5).

So these three points form an essential set and they have more than one Fermat-
Weber points.

4 The Fermat-Weber points within treespaces

In this section we focus on the space of phylogenetic trees. An equidistant tree is
a weighted rooted phylogenetic tree whose distance from the root to each leaf is
the same real number for all its leaves. Suppose UN is the space of all equidistant
trees with N leaves, i.e., the set of leaves is {1, 2, . . . , N}. For positive integer
N , we denote by [N ] the set {1, 2, . . . , N}.

Definition 21. The distance Dij(T ), between two leaves i and j in T ∈ UN ,
is the length of a unique path between leaves i and j. The distance matrix of
T ∈ UN is a N × N matrix D(T ) = (Dij)1≤i,j≤N ∀i, j (1 ≤ i, j ≤ N), where
N is the number of leaves in the tree T . The metric of T ∈ UN , denoted by
D = (Dij)1≤i<j≤N , is a vector with

(

n
2

)

entries.

Distance matrices of equidistant trees in UN satisfy the following strength-
ening of the triangle inequalities:

Dik ≤ max(Dij , Djk) for all i, j, k ∈ [N ]. (31)
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If (31) holds, then the metric D is called an ultrametric. The set of all ultramet-
rics contains the ray R≥01 spanned by the all-one metric 1, defined by Dij = 1
for 1 ≤ i < j ≤ N . The image of the set of ultrametrics in the quotient space

R(
N

2 )/R1 is called the space of ultrametrics. This is the image of ultrametrics in
the quotient space using the extrinsic metric, via the tropical metric [3].

Suppose we have a set of equidistant phylogenetic trees with N leaves. They

are represented by their metrics D in R(
N

2 ) so that the space of equidistant
phylogenetic trees UN with fixed number of leaves N can be represented by

a union of polyhedra in R(
N

2 ). In the previous sections, we have shown that
there might be infinitely many Fermat-Weber points of them. However, many
of those points may not correspond to any phylogenetic tree. In this section,
for a sample of points in UN , we consider the set of their Fermat-Weber points
within UN .

The spaces of equidistant phylogenetic trees UN withN leaves have (2N−3)!!
maximal polyhedra with dimension N − 2 [5, 16, 12]. The intersection of each
maximal polyhedron and the polytope of Fermat-Weber points is either empty
or a polytope. Here we investigate the set of equidistant phylogenetic trees such
that they form an essential set and there exists a unique equidistant phylogenetic
tree that is a Fermat-Weber point of them.

We conducted simulations on Fermat-Weber points of a sample in UN for
N = 4. We generated 60 equidistant phylogenetic trees with N = 4 leaves using
the R package ape [15]. Due to the computational time, we set 60 as a sample
size. Among these 60 trees, we sampled randomly subsets of sizes 4, 5 and 6.
For each subsample, we computed its Fermat-Weber points within treespaces
by using MapleTM 2015 [2]. We counted the maximal dimension of the set of
Fermat-Weber points, which is a finite union of classical convex polytopes in R5

by Proposition 6. The result is shown in Table 1.

Sample size \Max Dim. 0 1 2
4 2 7 51
5 6 15 39
6 10 21 29

Table 1: The maximal dimension of the set of Fermat-Weber points within the
treespace: Samples with size 4, 5, or 6 phylogenetic trees with 4 leaves.

Example 22. The polytope of Fermat-Weber points of the following four trees
with 4 leaves

(32/109, 1, 124/673, 1, 32/109, 1), (1, 6/85, 1, 1, 203/445, 1),

(1, 1, 1, 310/783, 310/783, 1/265), (47/510, 1, 1, 1, 1, 125/151).

is 2-dimensional, while there is a unique Fermat-Weber point that corresponds
a phylogenetic tree, which is (1, 1, 1, 1, 1, 1).

We have the following conjecture based on our simulations.
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Conjecture 23. A sample in UN like in Example 22 is the only case of a unique
tree as Fermat-Weber point. In other words, if a sample in UN has a unique
Fermat-Weber point, then its unique Fermat-Weber point is the all-one vector
1.

Remark 24. We have tried to conduct similar experiments for N ≥ 5 but the
computational time was not feasible. The computational time complexity for our
simulation study does not come from the number of polyhedra in the treespace,
but comes from the difficulty of computing the polytope of Fermat-Weber points.
See Section 6 for details.

5 The k-ellipses under the tropical metric

Let k be a positive integer. Given a sample of k points v1,v2, . . . ,vk ∈ Rn/R1,
the locus of points u ∈ Rn/R1 such that

k
∑

i=1

dtr(u,vi) = d(v1,v2, . . . ,vk) (32)

is the polytope of Fermat-Weber points of v1,v2, . . . ,vk. In this section we
generalize this locus and discuss the k-ellipses under the tropical metric.

Definition 25. Let v1,v2, . . . ,vk ∈ Rn/R1 and a ≥ d(v1,v2, . . . ,vk). Then
the k-ellipse with foci v1,v2, . . . ,vk and mean radius a

k is the follow set of points
in Rn/R1:

{u ∈ Rn/R1|

k
∑

i=1

dtr(u,vi) = a}. (33)

Proposition 26. Let v1,v2, . . . ,vk ∈ Rn/R1 and a ≥ d(v1,v2, . . . ,vk). Then
the k-ellipse with foci v1,v2, . . . ,vk and mean radius a

k is a classical convex
polytope in Rn−1 ≃ Rn/R1.

Proof. The proof is very similar to the one of Proposition 6. Note that we can
still eliminate the parameters ci, and now the inequalities in (15) become

m
∑

i=1

(xji − xki
+ vi,ki

− vi,ji ) ≤ a. (34)

So this k-ellipse is also a polyhedron in Rn−1 and for the same reason it is
bounded.

Example 27. We consider Example 7 again. Let v1 = (0, 0, 0),v2 = (0, 3, 1),
v3 = (0, 2, 5). Then by Theorem 3, we have d(v1,v2,v3) = (0 + 3 + 5)− (0 +
1 + 0) = 7. We consider a = 8, 10, 50, 100. Figure 2 shows the 3-ellipses with
foci v1,v2,v3 and mean radius a

3 .
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The 3-ellipse with a = 8. It is a hexagon. The 3-ellipse with a = 10. It is a 13-gon.

The 3-ellipse with a = 50. It is an 18-gon. The 3-ellipse with a = 100. It is an 18-gon.

Figure 2: Four 3-ellipses with foci v1,v2,v3 and different mean radii.

6 Computing the Fermat-Weber points under

the tropical metric

In this section we explain our method of computing the set of all Fermat-Weber
points of a sample and discuss some computational issues. Suppose points in a
sample are v1,v2, . . . ,vm ∈ Rn/R1. Then our method consists of two steps:

(a) to compute d = d(v1,v2, . . . ,vm);

(b) given d, to compute the set of Fermat-Weber points of v1,v2, . . . ,vm.

One way to compute step (a) is to use Theorem 3. But then we have to
compute all possible functions σ, τ : [m] → [n] such that σ([m]) = τ([m]) as
multisets. The number of such functions is nm, which means the time com-
plexity of this step would be exponential in m. In practice we use a method
of linear programming, which minimizes d such that all inequalities in (6) and
d ≥

∑m
i=1 ci are feasible simultaneously.

However, for step (b), even if we have d, there are still many inequalities
that define the polytope of Fermat-Weber points. In the proof of Proposition
6, if we eliminated the parameters ci, then there are

(

n
2

)m
inequalities in (15);

otherwise we may keep the parameters ci and get another polytope in the am-
bient space Rn+m−1 and then project it to Rn−1, but for each ci there are still
2
(

n
2

)

= n(n−1) inequalities, so we need mn(n−1)+1 inequalities to define this
polytope. From the computations with polymake [9], there seem to be some re-
dundant inequalities but we do not know an efficient method for step (b). Note
that we used polymake since this software is one of the most efficient software
to deal with polyhedral geometry. In this paper, the time complexity of our
computation of all Fermat-Weber points from a given sample is not very effi-
cient. But still we do not know the computational time complexity, i.e., finding
a tropical Fermat-Weber point of the given sample is not known.
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Question 28. What is the time complexity to compute the set of tropical Fermat-
Weber points of a sample of m points in Rn/R1 in m and n? Is there a
polynomial time algorithm to compute the vertices of the polytope of tropical
Fermat-Weber points of a sample of m points in Rn/R1 in m and n?

Note that the linear system which we present here has many redundant in-
equalities because we simply followed the definition, without any simplification.
This leads to the following question:

Question 29. In terms of polyhedral geometry, what are the facets defining
a polytope for all tropical Fermat-Weber points of a given sample as well as
the number of the facets of the polytope, i.e., the number of the minimal set
of inequalities needed to define the set of all tropical Fermat-Weber points of a
given sample?

As we have discussed above, it is very hard to compute the set of all tropical
Fermat-Weber points over treespaces because of its computational time. At this
moment, we can compute the Fermat-Weber points on treespaces of at most 4
leaves. As future research projects, it will be interesting to compare the set of
all tropical Fermat-Weber points with summary/consensus trees, such as the
majority-rules consensus tree as well as the Fréchet mean over treespaces.
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