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Abstract

We develop a quadratic regularization approach for the solution of high–dimensional multi-

stage stochastic optimization problems characterized by a potentially large number of time peri-

ods/stages (e.g. hundreds), a high-dimensional resource state variable, and a Markov information

process. The resulting algorithms are shown to converge to an optimal policy after a finite num-

ber of iterations under mild technical assumptions. Computational experiments are conducted

using the setting of optimizing energy storage over a large transmission grid, which motivates

both the spatial and temporal dimensions of our problem. Our numerical results indicate that the

proposed methods exhibit significantly faster convergence than their classical counterparts, with

greater gains observed for higher–dimensional problems.

1 Introduction

Multistage stochastic problems arise in a wide variety of real-world applications in fields as diverse

as energy, finance, transportation and others. In this paper we consider multistage stochastic linear

programs that satisfy the following conditions: i) the time horizon length T is finite but potentially

large (there may be hundreds of time periods and stages); ii) for each time period, the set of sample

realizations of the exogenous information process is finite (and relatively small); iii) for each stage,

the stage cost is a linear function of the decision.

Pereira and Pinto [19] introduced a powerful algorithmic strategy known as Stochastic Dual Dy-

namic Programming (SDDP) that has received considerable attention for this problem class. Despite

its popularity, SDDP can exhibit slow convergence, especially in the setting of high–dimensional re-

source allocation problems. A separate but important challenge arises when handling problems with

long horizons which introduces algorithmic issues for both the setting of intertemporal indepen-

dence, as well as when there is Markov dependence. Not surprisingly, as practical problems grow

in size, improving the rate of convergence of SDDP–type methods becomes an issue of growing

importance.

Quadratic regularization has been among the most effective techniques for accelerating the con-

vergence of scenario tree–based decomposition methods (see work by Ruszczyǹski [26, 27, 29]).

However, its application to the SDDP framework has not been possible because of the exponential
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growth of the number of required incumbent solutions. In this work, we propose a new regulariza-

tion approach which overcomes that challenge. The method can lead to much faster convergence

by reducing the oscillation of solutions around distant vertices of the feasible regions where the

addition of new cutting hyperplanes might be of little value.

This paper makes the following contributions: i) We adopt notation that bridges the gap be-

tween dynamic programming and classical stochastic programming, which lays the foundation of

our algorithmic strategy by identifying and clarifying the role of the post–decision information

state; ii) We develop the first quadratic regularization method for the SDDP framework, with or

without Markov dependence in the information process, that produces an optimal policy for a sam-

pled model; iii) Unlike existing regularization methods on scenario trees, our approach remains

computationally tractable even for problems that involve long time horizons; iv) Our numerical re-

sults indicate that the proposed approach exhibits faster convergence than classical SDDP and is

especially useful for problems with high–dimensional resource states. That makes the work relevant

to a wide variety of practical applications.

Our numerical work uses the setting of optimizing energy over a fleet of storage devices for a

congested transmission grid. This problem class offers a realistic setting for testing the algorithm

with anywhere from 50 to 500 batteries, allowing us to test the performance of the algorithm for

resource state variables with widely varying dimensionality. A separate challenge is that these prob-

lems exhibit a large number of time periods; our experiments model a day in 5–minute increments,

producing problems with 288 time periods.

2 Literature Review

The decomposition approach of Benders [3] and the L–shaped method of Van Slyke and Wets [35]

originally focused on the solution of two–stage stochastic optimization problems. Eventually, the

idea was extended to the multi–period setting by Birge [5], as well as Donohue and Birge [8] who

considered successive Benders–type approximations of the recourse functions in the nested Benders

decomposition algorithm for multistage problems on scenario trees. Pereira and Pinto [19] further

extended the approach to develop Stochastic Dual Dynamic Programming which has become popu-

lar among practitioners. On one hand, the method provides both lower and upper bounds, as well as

clear convergence guarantees for many of its different versions as has been discussed Shapiro [32],

as well as Linowsky and Philpott [14]. Moreover, it is also very suitable for parallel computing and

can be applied to problems with long time horizons. Despite its progress towards overcoming the

curse of dimensionality, in its essence SDDP is a cutting plane method, a class of algorithms known

to exhibit slow convergence (see [30]), a behavior that is a byproduct of the well–known curse of

dimensionality. In general, their computational complexity grows exponentially with the dimension

of the problem. In the special case of only two time periods, the SDDP algorithm is equivalent

to the well known cutting plane method of Kelley [12] which takes O

(
ln ǫ−1

2 ln 2

[ 2√
3

]n−1
)

itera-

tions to achieve an ǫ–optimal solution on an n–dimensional problem as pointed out by Nesterov and

Nesterov [18].

Rockafellar [24] introduced the proximal point algorithm for the minimization of (deterministic)

lower semicontinuous proper convex functions. The quadratic regularization of two–stage linear

stochastic optimization problems was developed by Ruszczyński [25, 29]. The same idea has also

been implemented in the two–stage and multistage versions of the Stochastic Decomposition method

developed by Higle and Sen [10, 31], as well as the decomposition work of Morton [17]. All of these

methods utilize a scenario tree, either explicitly or implicitly (when indexing regularization terms
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by the entire history Ht), and consider separate incumbent solutions for every parent node in the

scenario tree. That limits their applicability to problems with short time horizons. On the other

hand, the method described below is universal and can be applied to problems with a large number

of time periods.

3 Problem Formulation

Given a probability space (Ω,F , P ) with a sigma–algebra F , and a filtration {∅, Ω} = F1 ⊂
F2 ⊂ · · · ⊂ FT = F , we consider a stochastic process {Wt, t = 1, . . . , T } adapted to {Ft, t =
1, . . . , T }. Throughout our presentation, we adopt the convention that any variable indexed by t is

Ft–measurable (surprisingly, this is not a standard assumption). Our goal is to develop new solution

methods for the following multistage linear stochastic programming problem:

min
A0x0=b0
x0≥0

〈c0, x0〉+ E1


min

B0x0+A1x1=b1
x1≥0

〈c1, x1〉+ E2


· · ·+ ET


min

BT−1xT−1+AT xT=bT
xT≥0

〈cT , xT 〉


 . . .




 . (1)

The components of the information processWt = (At, Bt, bt, ct), t = 1, . . . , T are theFt–measurable

random matrices At, Bt and vectors bt, ct, while A0, B0, b0, c0 are assumed to be deterministic com-

ponents of the initial state of the system S0 = (A0, B0, b0, c0). We denote the sets of possible re-

alizations of Wt with Ωt, t = 1, . . . , T . Those correspond to nested partitions of Ω given by the

filtration {Ft, t = 1, . . . , T }, and each w ∈ Ω can be represented as ω = (ω1, ω2, . . . , ωT ) ∈
Ω1 × Ω2 × · · · × ΩT . We assume that each sample set Ωt has a finite number of elements that is

small enough to be enumerated computationally.

Definition 1. The information history at time t is Ht = {S0, ω1, ω2, . . . , ωt}, where Ht ∈ Ht =
{S0} × Ω1 × Ω2×, · · · × Ωt. Further, we define the post–decision information history at time t to

be Hx
t = {S0, x0, ω1, x1, ω2, x2, . . . , ωt, xt}.

Employing a dynamic programming framework, we distinguish between two types of states of

the system, the pre–decision states St and the post–decision states Sx
t .

Definition 2. The (pre–decision) state St of the system at time t ≥ 1 is all the information in

Hx
t−1 ∪ ωt that is necessary and sufficient to make a decision at time t, and model the impact of

Hx
t−1 ∪ ωt on the computation of costs, constraints and transitions from time t onward.

Furthermore, the pre–decision state of the system St can be represented as St = (Rt, It), where

the pre–decision resource state Rt is the amount of resources available at the beginning of time

period t, and It is the pre–decision information state. Please note that Rt depends on both the

decision xt−1 and the random vector bt,

Rt = Bt−1xt−1 − bt.

The information state It contains all the remaining information of St that is necessary and sufficient

to model the system but is not in Rt. Formally, we consider the following model for the evolution

of the system over time:

S0
x0−→ Sx

0
ω1−→ S1

x1−→ Sx
1

ω2−→ . . .
ωT−−→ ST

xT−−→ Sx
T .
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Definition 3. The post–decision state Sx
t , t ≥ 0 of the system at time t is all the information in

the post–decision history Hx
t that is necessary and sufficient to model the impact of Hx

t on the

computation of costs, constraints and transitions from time t onward, after a decision has been

made.

We also represent the post–decision state of the system as Sx
t = (Rx

t , I
x
t ). The post–decision

resource state Rx
t is given by

Rx
t = Btxt,

and the post–decision information state Ixt represents all the information in Sx
t that is not in Rx

t .

Moreover, we refer to the rank of the matrix Bt as the dimension of the post–decision resource state.

If we define

C(St, xt) := 〈ct, xt〉
and the set Xt(St) is such that the following conditions are satisfied,

Xt(St) :=

{
xt ∈ R

nt : Atxt = bt, if t = 0
xt ∈ R

nt : Bt−1xt−1 +Atxt = bt, if t > 0

then we can rewrite problem (1) using dynamic programming notation as follows,

min
x0∈X0(S0)
C(S0, x0) + E1

[
min

x1∈X1(S1)
C(S1, x1) + E2

[
· · ·+ ET

[
min

xT∈XT (ST )
C(ST , xT )

]
. . .

]]
. (2)

Since the problem is stochastic, its optimal solution is not a vector but rather a policy π, which is

a function that maps states St to decisions xt ∈ Xt(St). Thus, we can consider the optimization

problem (2) to be a search for an optimal policy π∗ over the set Π consisting of all feasible and

implementable policies

min
π∈Π

E

[
T∑

t=0

C(St, X
π
t (St))

]
. (3)

We refer to equation (3) as the base model, and we can solve it by constructing an optimal looka-

head policy. In that case, the optimal decisions X∗
t (St) corresponding to π∗ satisfy the following

optimality equation:

X∗
t (St) ∈ argmin

xt∈Xt(St)

(
C(St, xt) + min

π∈Π
E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣S
x
t

})
. (4)

Therefore, we can also specify an optimal lookahead policy π∗ by employing its corresponding

post–decision value functions V ∗
t (S

x
t ),

V ∗
t (S

x
t ) = min

π∈Π
E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣S
x
t

}
(5)

Remark 1. It is common for practitioners to employ a scenario tree in order to construct an ap-

proximate lookahead policy for problem (2) as follows:

X∗
t (St) ∈ argmin

xt∈Xt(St)



C(St, xt) + min
π∈Π

E





t′′∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣∣
Sx
t







 . (6)
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When t′′ < T the optimality of the approximate lookahead policy given by (6) cannot be estab-

lished. In addition, lower and upper bounds to the optimal value of problem (2) might not be readily

available (due to approximation errors stemming from the stage reduction). Nonetheless, lookahead

models can produce high-quality solutions in selected problems (see [9]).

Thus, at any time period t = 0, . . . , T , the optimal decision X∗
t (St) for problem (2) can be

computed as

X∗
t (St) ∈ argmin

xt∈Xt(St)

{C(St, xt) + V ∗
t (S

x
t )}.

Hence, the search for an optimal policy π∗ is equivalent to the computation of optimal post–decision

value functions V ∗
t (S

x
t ), t = 0, . . . , T . One of the well–known methods that allows us to construct

such value functions is Stochastic Dual Dynamic Programming.

4 Stochastic Dual Dynamic Programming

Typically, stochastic programming techniques model the flow of information by utilizing a scenario

tree that involves the entire set Ht = {S0} × Ω1 × · · · × Ωt. While such an approach is useful for

analytical purposes, its practical applicability is limited by the exponential growth of the number

of nodes in the scenario tree when the length of the time horizon T increases. To overcome that

challenge, Pereira and Pinto [19] introduced the Stochastic Dual Dynamic Programming (SDDP)

method for the solution of multistage stochastic linear optimization problems over long time hori-

zons. SDDP overcomes the combinatorial explosion of the information state by exploiting (a key

and limiting assumption of) stagewise independence as P(ωt+1|Ht) = P(ωt+1), and therefore all

post–decision states Sx
t share a single information state Ixt . Hence, Sx

t = Rx
t and the optimal value

functions V ∗
t (S

x
t ) only depend on the post–decision resource states Rx

t ,

V ∗
t (S

x
t ) = V ∗

t (R
x
t ), t = 0, . . . , T.

The convexity of the optimal value functions V ∗
t (R

x
t ) is the key property that allows one to partially

escape the curse of dimensionality arising from partitioning the resource space. Instead, V ∗
t (R

x
t )

can be approximated with lower–bounding convex outer approximations V
k

t (R
x
t ) whose functional

form is the maximum over a collection of affine functions. Those are commonly known as cutting

hyperplanes or Benders cuts, and are constructed at the resource points R
x,j
t that are visited during

the j–th forward pass,

V
k

t (R
x
t ) := max

j≤k

{
α
j
t + 〈βj

t , R
x
t −R

x,j
t 〉}. (7)

For example, at iteration k we would obtain R
x,k
t by solving the following linear program

xk
t ∈ argmin

xt∈Xt(St)

{
C(St, xt) + V

k−1

t (Rx
t )
}
, and setting R

x,k
t ← Bk

t x
k
t (8)

where V
0

t (R
x
t ) = 0.

The approximations V
k−1

t (Rx
t ) are updated in the backward pass of iteration k by constructing

a cutting hyperplane hk
t (R

x
t ) to the optimal value function V ∗

t (R
x
t ). To accomplish this, we use a

lower bound Vk
t+1(R

x,k
t ) (derived from solutions to subproblems for time t+ 1) to V ∗

t (R
x,k
t ),

hk
t (R

x
t ) := V k

t+1(R
x,k
t ) + 〈βk

t , R
x
t −R

x,k
t 〉. (9)

Please note that the hyperplane hk
t (R

x
t ) is not necessarily tangent to V ∗

t (R
x
t ) since

Vk
t+1(R

x,k
t ) might be strictly smaller than V ∗

t (R
x,k
t ).

5



Remark 2. When we need to emphasize the dependence of the feasible set Xt+1(St+1) on the previ-

ous post–decision state Rx
t , we use the notation Xt+1(R

x
t , It+1), where the exogenous information

in Rt+1 that is not contained in Rx
t is assumed to be contained in It+1.

In order to construct Vk
t+1, we consider every element of the sample set ωt+1 ∈ Ωt+1 and denote

with V k
t+1(R

x
t , ωt+1) the optimal value of the following optimization problem,

V k
t+1(R

x
t , ωt+1) := min

xt+1∈Xt+1(Rx
t ,It+1(ωt+1))

{
C(St+1(ωt+1), xt+1) + V

k

t+1(R
x
t+1)

}
.

Finally, we set

V k
t+1(R

x
t ) :=

∑

ωt+1∈Ωt+1

P(ωt+1)V
k
t+1(R

x
t , ωt+1).

Hence, if we choose

βk
t ∈ ∂RV

k
t+1(R

x,k
t ),

then we can construct a new aggregated cut hk
t (R

x
t ) as described in equation (9). Thus, in the

backward pass of iteration k, we can update the approximate value function V
k

t (R
x
t ) as follows,

V
k

t (R
x
t ) := max

{
V

k−1

t (Rx
t ), h

k
t (R

x
t )
}
.

If none of the constructed cuts are removed, then the growing collections of affine functions

generate sequences of monotonically increasing lower bounding approximations V
k

t (R
x
t ) to the

optimal post–decision value functions V ∗
t (R

x
t ) for any t = 0, . . . , T − 1.

V
k−1

t (Rx
t ) ≤ V

k

t (R
x
t ) ≤ V ∗

t (R
x
t ), ∀k ∈ N, t = 0, . . . , T − 1.

Furthermore, in this work we assume relatively complete recourse, i.e. for any feasible solutions

to the optimization problems at time periods t = 0, . . . , T − 1, there exists a feasible solution to

any realized stage t + 1 subproblem with probability one. This assumption alleviates the need for

feasibility cuts and allows us to improve the clarity of the presentation.

5 Quadratic Regularization

Existing regularization approaches [29, 25, 10, 31, 17] utilize a scenario tree and consider separate

incumbent solutions x̄t(Ht) for every possible history Ht ∈ Ht, t = 0, . . . , T − 1. The underlying

idea in such methods has been to augment optimization problems of the form (8) with a regulariza-

tion term as follows,

xk
t ∈ argmin

xt∈Xt(St)

{
C(St, xt) + V

k−1

t (Rx
t ) +

ρ

2
||xt − x̄t(Ht)||22

}
. (10)

As the algorithm progresses, each incumbent solution x̄t(Ht) is updated to a new optimal solu-

tion, if certain conditions are satisfied. While such an approach is feasible for problems on scenario

trees with small T , it is not practical for non–trivial time horizons. The exponential growth of the

scenario tree ensures that only a tiny fraction of all possible realizations Ht ∈ Ht, t = 0, . . . , T − 1
could be examined in the forward pass in a reasonable computational time. Moreover, multiple visits

to each Ht ∈ Ht, t = 0, . . . , T − 1 and multiple updates of its incumbent solution are also out of

6



the realm of computational feasibility for most practical instances. One way to remedy this diffi-

culty would be for different histories to share incumbent solutions. For example, a single incumbent

solution x̄t can be shared among all realizations Ht ∈ Ht and that would result in the optimization

problem

xk
t ∈ argmin

xt∈Xt(St)

{
C(St, xt) + V

k−1

t (Rx
t ) +

ρ

2
||xt − x̄t||22

}
. (11)

Equation (11) can be used in place of equation (8), and it would still result in a convergent

method for a fixed set of incumbent solutions x̄t, t = 0, . . . , T − 1. However, the optimality of the

resulting policy cannot be established. Moreover, since the purpose of the quadratic regularization

term is to mitigate the inaccuracy of the value function approximations, we do not need to regularize

around the entire vector xt (which might be very high–dimensional) but only around the parameters

Rx
t of the post–decision value function approximations V

k−1

t (Rx
t ). Thus, we can adjust problem

(11) to address these concerns by making the following adjustments,

xk
t ∈ argmin

xt∈Xt(St)

{
C(St, xt) + V

k−1

t (Rx
t ) +

̺k

2

〈
Rx

t −R
x,k−1

t , Qt(R
x
t −R

x,k−1

t )
〉}

(12)

where the sequence of penalty coefficients {̺k} is such that ̺k ≥ 0, ∀k ∈ N and lim
k→∞

̺k = 0.

We also introduce a positive semi–definite matrix Qt � 0, which can be used to address any scaling

concerns across different entries of the resource vectors Rx
t . Please note that the meaning of the

proposed regularization strategy is quite different from its scenario tree counterparts, as it aims to

steer the solution towards a “known” region of the value function domain, rather than to the “cor-

rect” solution for the given history Ht of the stochastic process. Hence, we choose the incumbent

solutions to be the previous points encountered in the forward pass since the cuts supported at those

points are the ones generated with the most information. Finally, we also point out that unlike the

case of scenario trees, in the current method we do not aim for the convergence of the incumbent

solutions towards any point. Interested readers are free to choose different incumbent solutions that

they might find appropriate, and the convergence results presented below would still hold.

Now, we can substitute equation (12) for equation (8) in the forward pass of SDDP, and the new

procedure would still converge to an optimal solution of problem (2) with probability one after a

finite number of iterations. That might appear somewhat surprising since gradient methods applied

to quadratic optimization problems typically entail asymptotic convergence. However, in this case

a finite number of iterations is sufficient since the true problem remains linear, and the quadratic

terms are only used to guide the exploration phase of the forward pass. Moreover, the generation

of the supporting hyperplanes in the backward pass utilizes linear programming problems which

can generate only a finite number of different cuts when basic dual feasible solutions are used. The

details of the resulting method are presented in Algorithm 1, and we study its convergence properties

below.

Lemma 4 ([21, 32]). Suppose that dual basic solutions are used in the solution of subproblems

in the backward pass of Algorithm 1. Then, there exist a finite number of possible value function

approximations V t(·), t = 0, . . . , T .

Since the regularization terms are artificial for the original problem, we exclude them from the

definition of an optimal policy.

Definition 5. The value function approximations V
k

t , t = 0, . . . , T are optimal for problem (2) if

for any realization ω ∈ Ω,

min
xt∈Xt(St(ω))

{
C(St(ω), xt) + V

k

t (R
x
t )
}
= min

xt∈Xt(St(ω))

{
C(St(ω), xt) + V ∗

t (R
x
t )
}

(13)

7



Algorithm 1 Quadratic Regularization Method with Stagewise Independence

1: Choose Qt � 0, t = 0, . . . , T , and define sequence {̺k}.

2: Define V
k

T (Rx
T
) := V ∗

T
(Rx

T
), k = 0, . . . ,K .

3: Define V
0
t (R

x
t ) := −∞, t = 0, . . . , T − 1.

4: (Rx,k
−1 , I0)← S0, k = 0, . . . , K

5: for k = 0, . . . ,K do

6: Forward Pass:

7: Sample ω ∈ Ω.

8: for t = 0, . . . , T do

9: if (k = 0) then

10:

Select xk
t ∈ argmin

xt∈Xt(R
x,k
t−1

,It(ω))

{C(St(ω), xt)}

11: else

12: if t < T then

13:

xk
t ∈ argmin

xt∈Xt(R
x,k
t−1

,It(ω))

{

C(St(ω), xt) + V
k−1
t (Rx

t ) +
̺k

2

〈

Rx
t − R

x,k−1
t , Qt(R

x
t −R

x,k−1
t )

〉

}

14: else

15:

Select xk
t ∈ argmin

xt∈Xt(R
x,k
t−1

,It(ω))

{

C(St(ω), xt) + V
k−1
t (Rx

t )
}

16: end if

17: end if

18: Set R
x,k
t ← Bk

t x
k
t ; St+1(ω)← (Rx,k

t − bt+1(ω), It+1(ω))
19: end for

20: Backward Pass:

21: for t = T, . . . , 1 do

22:

Define V k
t (R

x
t−1, ωt) := min

xt∈Xt(R
x
t−1

,It(ωt))

{

C(St(ωt), xt) + V
k

t (R
x
t )
}

23: for all ωt ∈ Ωt do

24:

Select βk

t
(ωt) ∈ ∂Rx

t−1
V k

t (R
x,k
t−1, ωt)

25: end for

26: αk
t−1 ←

∑

ωt∈Ωt

P(ωt)V
k
t (R

x,k
t , ωt); β

k
t−1 ←

∑

ωt∈Ωt

P(ωt)β
k

t
(ωt)

27: hk
t−1(R

x
t−1) := αk

t−1 + 〈βk
t−1, R

x
t−1 −R

x,k
t−1〉

28: V
k

t−1(R
x
t−1) := max

{

V
k−1
t−1 (R

x
t−1), h

k
t−1(R

x
t−1)

}

29: end for

30:

V k
0 ←

{

min
x0∈X0(S0)

C(S0, x0) + V
k

0(R
x
0 )

}

31: R
x,k

t ← R
x,k
t , t = 0, . . . , T − 1

32: end for

8



for t = 0, . . . , T .

Theorem 6. Suppose that Algorithm 1 satisfies the following assumptions:

1. V
k

T (·) ≡ V ∗
T (·), k ∈ N.

2. Dual basic optimal solutions are used in the backward pass.

3. Every element ω ∈ Ω has a strictly positive probability P(ω) > 0.

4. ̺k ≥ 0 and lim
k→∞

̺k = 0.

5. The feasible sets Xt(St) are bounded for each t = 0, . . . , T .

Then, the regularization method presented in Algorithm 1 converges to an optimal policy of problem

(2) after a finite number of iterations with probability one.

Proof. Proof: Let Vt denote the set of all possible value function approximations

V
k

t , t = 0, . . . , T that can be generated by the backward pass of Algorithm 1. Since according to

Assumption 2 we use only dual basic optimal solutions in the backward pass, by Lemma 4 we know

that the sets Vt have finite cardinality for all t = 0, . . . , T . Thus, we know that as the algorithm

progresses all the value function approximationsV
k

t will eventually stabilize. Therefore, there exists

an iteration index k1 ∈ N after which no updates can be made to the value functions V
k

t , t =

0, . . . , T for k > k1. If the value functions V
k1

t , t = 0, . . . , T are optimal for problem (2), then we

are done.

Now, suppose that was not the case. Then there exists t′, 0 ≤ t′ < T , and ω′ ∈ Ω such that for

any k > k1 we have

min
xt′∈Xt′(St′ (ω

′))

{
C(St′(ω

′), xt′ ) + V ∗
t′ (R

x
t′(ω

′))
}
> min

xt′∈Xt′(St′ (ω
′))

{
C(St′(ω

′), xt′ ) + V
k−1

t′ (Rx
t′(ω

′))
}

Let us consider the set

∆ =
{
δ ∈ R,

δ = min
xt∈Xt(St(ω))

{
C(St(ω), xt) + V ∗

t (R
x
t (ω))

}
−min

xt∈Xt(St(ω))

{
C(St(ω), xt) + V t(R

x
t (ω))

}
:

min
xt∈Xt(St(ω))

{
C(St(ω), xt) + V ∗

t (R
x
t (ω))

}
> min

xt∈Xt(St(ω))

{
C(St(ω), xt) + V t(R

x
t (ω))

}
,

where ω ∈ Ω, and V t ∈ Vt, t = 0, . . . , T
}

(14)

Since the number of elements ω ∈ Ω is finite, we know that the set ∆ also has a finite number of

elements. Thus, ∆ has a minimum element, and we denote

ǫ = min∆.

Hence,

min
xt′∈Xt′ (St′ (ω

′))

{
C(St′ (ω

′), xt′) + V ∗
t′ (R

x
t′(ω

′))
}
−min

xt′∈Xt′(St′ (ω
′))

{
C(St′(ω

′), xt′ ) + V
k−1

t′ (Rx
t′(ω

′))
}
≥ ǫ

9



And if t′ > 0 we know that

V ∗
t′−1(R

x
t′−1) =

∑

ωt′∈Ωt′

P(ωt′) min
xt′∈X (Rx

t′−1
,It(ωt′ ))

{
C(St′(ωt′), xt′) + V ∗

t′ (R
x
t′)
}

and using convexity,

V
k−1

t′−1(R
x
t′−1) ≤

∑

ωt′∈Ωt′

P(ωt′) min
x′

t∈X (Rx

t′−1
,It(ωt′))

{
C(St′(ωt′), xt′ ) + V

k−1

t′ (Rx
t′)
}
.

Therefore,

min
xt′−1∈Xt′−1(St′−1(ω

′))

{
C(St′−1(ω

′), xt′−1) + V ∗
t′−1(R

x
t′−1(ω

′))
}

> min
xt′−1∈Xt′−1(St′−1(ω

′))

{
C(St′−1(ω

′), xt′−1) + V
k−1

t′−1(R
x
t′−1(ω

′))
}
,

(15)

which implies

min
xt′−1∈Xt′−1(St′−1(ω

′))

{
C(St′−1(ω

′), xt′−1) + V ∗
t′−1(R

x
t′−1(ω

′))
}

− min
xt′−1∈Xt′−1(St′−1(ω

′))

{
C(St′−1(ω

′), xt′−1) + V
k−1

t′−1(R
x
t′−1(ω

′))
}
≥ ǫ.

(16)

Proceeding by backward induction, we know that

min
x0∈X0(S0)

{
C(S0, x0) + V ∗

0 (R
x
0 )
}
− min

x0∈X0(S0)

{
C(S0, x0) + V

k−1

0 (Rx
0 )
}
≥ ǫ.

Moreover, using Assumption 5 we know that Rx
t is bounded for each t. Hence, without loss of

generality we can assume that k is such that

̺k〈Rx
t −R

x,k−1

t , Qt(R
x
t −R

x,k−1

t )〉 < ǫ, for t = 0, . . . , T − 1.

Hence, if we denote with x̃k
0 the solution to the following regularized problem,

x̃k
0 = argmin

x0∈X0(S0)

{
C(S0, x0) + V

k−1

0 (Rx
0 (ω

′)) + ̺k〈Rx
0 (ω

′)−R
x,k−1

0 , Q0(R
x
0(ω

′)−R
x,k−1

0 )〉
}

then we know that

min
x0∈X0(S0)

{
C(S0, x0) + V ∗

0 (R
x
0)
}
> C(S0, x̃

k
0) + V

k−1

0 (Rx̃,k
0 ) + ̺k〈Rx̃,k

0 −R
x,k−1

0 , Q0(R
x̃,k
0 −R

x,k−1

0)〉

And since Q is positive semi–definite, we know that

min
x0∈X0(S0)

{
C(S0, x0) + V ∗

0 (R
x
0 )
}
> C(S0, x̃

k
0) + V

k−1

0 (Rx̃,k
0 )

which implies,

C(S0, x̃
k
0) + V ∗

0 (R
x̃,k
0 ) > C(S0, x̃

k
0) + V

k−1

0 (Rx̃,k
0 ).

and therefore

V ∗
0 (R

x̃,k
0 ) > V

k−1

0 (Rx̃,k
0 ).

10



Thus we know that the value function approximation V
k−1

0 (·) is suboptimal at the point R
x̃,k
0 cor-

responding to x̃k
0 . Hence, if the value function V k−1

1 (·) is such that for each ω1 ∈ Ω1 the following

holds,

min
x1∈X (Rx̃,k

0
,I1(ω1))

{
C(S1(ω1), x1) + V

k−1

1 (Rx
1 )
}
= min

x1∈X (Rx̃,k

0
,I1(ω1))

{
C(S1(ω1), x1) + V ∗

1 (R
x
1 )
}

then the backward pass will result in an updated value function V
k

0(·) such that V
k

0(R
x̃,k
0 ) =

V ∗
0 (R

x̃,k
0 ) > V

k−1

0 (Rx̃,k
0 ) which is a contradiction with the choice of k. Therefore, it must be

the case that there exists ω′′
1 ∈ Ω1 such that

min
x1∈X (Rx̃,k

0
,I1(ω

′′

1 ))

{
C(S1(ω

′′
1 ), x1) + V

k−1

1 (Rx
1 )
}
< min

x1∈X (Rx̃,k
0

,I1(ω
′′

1 ))

{
C(S1(ω

′′
1 ), x1) + V ∗

1 (R
x
1 )
}
.

Moreover,

min
xT∈X (ST (ω))

{
C(ST (ω), xT ) + V

k−1

T (Rx
T )
}
= min

xT∈X (ST (ω))

{
C(ST (ω), xT ) + V ∗

T (R
x
T )
}
.

Therefore, there exists a sample path ω′′ ∈ Ω and a time index t′′, 0 < t′′ < T such that the

sequence of regularized solutions x̃k
t (ω

′′) would result in a suboptimal value function evaluation at

t′′,

min
xt′′∈X (Rx̃,k

t′′−1
,It′′ (ω

′′))

{
C(St′′(ω

′′), xt′′ ) + V
k−1

t′′ (Rx
t′′ )
}
< min

xt′′∈X (Rx̃,k

t′′−1
,It′′ (ω

′′))

{
C(St′′(ω), xt′′ ) + V ∗

t′′(R
x
t′′)
}
,

and optimal evaluations at t′′ + 1 for all possible ωt′′+1 ∈ Ωt′′+1,

min
xt′′+1∈X (Rx̃,k

t′′
,It′′+1(ωt′′+1))

{
C(St′′+1(ωt′′+1), xt′′+1) + V

k−1

t′′+1(R
x
t′′+1)

}

= min
xt′′+1∈X (Rx̃,k

t′′
,It′′+1(ωt′′+1))

{
C(St′′+1(ωt′′+1), xt′′+1) + V ∗

t′′+1(R
x
t′′+1)

}
.

Hence the backward pass of iteration k will result in an updated value function approximationV
k

t′′(·)
such that

V
k

t′′(R
x̃,k
t′′ ) = V ∗

t′′ (R
x̃,k
t′′ ) > V

k−1

t′′ (Rx̃,k
t′′ ),

which is a contradiction with the choice of k. This completes the proof.
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Figure 1: Value function update at iteration k.

6 Beyond Stagewise Independence

Despite its advantages, the SDDP methodology has one crucial drawback. The stagewise inde-

pendence of Wt = (At, Bt, bt, ct) will generally not hold in practice since real–world multistage

problems often involve stochastic processes that exhibit some degree of temporal dependence. There

are different approaches that we can adopt to address this difficulty. First, let us consider the special

case when the history dependence occurs only in the right hand side constraint vectors bt, and it has

the following autoregressive structure:

bt =

t−1∑

t′=1

(Φt,t′bt′ +Ψt,t′ηt′) + ηt (17)

where the process (At, Bt, ct, ηt) is stagewise independent and the deterministic matrices Φt,t′ and

Ψt,t′ contain the autoregressive information. Then, for each time period t > 0 in the SDDP formu-

lation, we can extend the original optimization problem with additional variables to accommodate

the realizations of bt′ and ηt
′

, t′ < t that are necessary to model the autoregressive dependence

(see [6, 15], and [34]). The advantage of such a solution to the history dependence problem is that

stagewise independence is present in the extended formulation. A drawback of the approach is that

the dimension of the state space also increases from |Rx
t | (in the stagewise independence case) to

possibly as much as |Rx
t | +

∑t−1
t′=0(|bt′ | + |ηt′ |) (in the history dependent case), which implies a

slower convergence rate (note that we can omit terms |bt′ | if Φt,t′ = 0, and |ηt′ | if Ψt,t′ = 0). This

problem can be alleviated with the use of cut sharing strategies as described in [11], and [7].

In the remainder of this section we consider an alternative setup that leads to an increase in the

information dimension rather than the resource dimension. We assume that the stochastic process

Wt is a discrete state Markov chain. Thus, the probability of occurrence of ωt+1 ∈ Ωt+1 depends

12



only on the current realization ωt ∈ Ωt or the current post–decision information state Ixt ,

P(ωt+1|Ht) =

{
P(ωt+1|St) = P(ωt+1|Ixt ), if t = 0
P(ωt+1|ωt) = P(ωt+1|Ixt ), if t > 0.

(18)

Such an approach can be suitable for problems where the process (At, Bt, ct) is not stagewise inde-

pendent, or the autoregressive model (17) does not constitute a good fit to the observed realizations

of the random process. For example, historical weather data might indicate the presence of distinct

patterns that cannot be explained with a normal error distribution around a given mean (which arise

in autoregressive estimation). Alternatively, the relevant information state could be the forecast of

the highest temperature tomorrow.

To properly model such weather dynamics one might need to consider different weather regimes

that are inherently distinct. Thus, multiple approximations of the value functions need to be em-

ployed, which increases the size of the optimization problem. That leads to greater computational

requirements for solving the problem as a distinct recourse function approximation needs to be con-

structed for every Ixt ∈ Ixt , where Ixt denotes the set of all possible post–decision information states

at time t. Hence, we need to maintain |Ixt (Ωt)| sets of cuts for each time period t = 0, . . . , T , and

therefore the approach is suitable for problems where the cardinality of the possible post–decision

information states |Ixt (Ωt)| is small, or alternatively when the cardinality of the sample sets |Ωt| is
small. However, unlike the case of an autoregressive fit (17), the dimension of the post–decision

resource state is preserved in each set of cuts, and the corresponding exponential increase in the

computational time is avoided.

In the forward pass at iteration k, we consider a sample path ω = (ω1, . . . , ωT ) that is generated

using (18). At each time step t = 0, . . . , T−1 the piecewise–linear value functionV k−1
t (Rx

t , I
x
t (ω))

is used to approximate the optimal value function V ∗
t (R

x
t , I

x
t (ω)) at the current post–decision infor-

mation state Ixt (ω).
In the backward pass of the algorithm at iteration k, we consider t = T, . . . , 1 and generate the

cutting hyperplanes hk
t−1(R

x
t−1, I

x
t−1) for each Ixt−1 ∈ Ixt−1. Please note that if the random process

Wt is a finite state Markov chain, then |Ixt (Ωt)| ≤ |Ωt|, t = 0, . . . , T . We employ the conditional

probabilities P(ωt|Ixt−1) to construct constant intercepts and slopes,

αk
t−1(I

x
t−1)←

∑

ωt∈Ωt

P(ωt|Ixt−1)V
k
t (R

x,k
t , ωt)

and,

βk
t−1(I

x
t−1)←

∑

ωt∈Ωt

P(ωt|Ixt−1)β
k

t
(ωt).

Thus,

hk
t−1(R

x
t−1, I

x
t−1) := αk

t−1(I
x
t−1) + 〈βk

t−1(I
x
t−1), R

x
t−1 −R

x,k
t−1〉.

Hence, we can construct the new value function approximation V
k

t−1(R
x
t−1, I

x
t−1) for the post–

decision information state Ixt−1 as,

V
k

t−1(R
x
t−1, I

x
t−1) := max

{
V

k−1

t−1 (R
x
t−1, I

x
t−1), h

k
t−1(R

x
t−1, I

x
t−1)

}
. (19)

The description of the method is given in Algorithm 2.

Theorem 7. Suppose that {Wt, t = 1, . . . , T } is a discrete Markov process as described by equation

(18). If V
k

T (·, IxT ) ≡ V ∗
T (·, IxT ), for IxT ∈ IxT , k = 0, . . . ,K , and conditions 2, 3, 4, and 5 specified

in Theorem 6 are satisfied, then the method presented in Algorithm 2 converges to an optimal policy

of problem (2) after a finite number of iterations with probability one.
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Algorithm 2 Quadratic Regularization Method for Markov Models

1: Choose Qt � 0, t = 0, . . . , T , and define the sequence {̺k}.

2: Define V
k

T (Rx
T
, Ix

T
) := V ∗

T
(Rx

T
, Ix

T
), k = 0, . . . , K, Ix

T
∈ Ix

T
.

3: Define V
0
t (R

x
t , It(ωt)) := −∞, ωt ∈ Ωt, t = 0, . . . , T − 1.

4: (Rx,k
−1 , I0)← S0, k = 0, . . . , K

5: for k = 0, . . . ,K do

6: Sample ω ∈ Ω using the Markov stochastic process {Wt, t = 1, . . . , T}.
7: for t = 0, . . . , T do

8: if (k = 0) then

9:

Select xk
t ∈ argmin

xt∈Xt(R
x,k
t−1

,It(ω))

{C(St(ω), xt)}

10: else

11: if t < T then

12:

xk
t ∈ argmin

xt∈Xt(R
x,k
t−1

,It(ω))

{

C(St(ω), xt) + V
k−1
t (Rx

t , I
x
t (ω)) +

̺k

2

〈

Rx
t − R

x,k−1
t , Qt(R

x
t − R

x,k−1
t )

〉

}

13: else

14:

xk
t ∈ argmin

xt∈Xt(R
x,k
t−1

,It(ω))

{

C(St(ω), xt) + V
k−1
t (Rx

t , I
x
t (ω))

}

15: end if

16: end if

17: Set R
x,k
t ← Bk

t x
k
t ; St+1(ω)← (Rx,k

t − bt+1(ω), It+1(ω))
18: end for

19: for t = T, . . . , 1 do

20:

Define V k
t (R

x
t−1, ωt) := min

xt∈Xt(R
x
t−1

,It(ωt))

{

C(St(ωt), xt) + V
k

t (R
x
t , I

x
t (ωt))

}

21: for all ωt ∈ Ωt do

22:
Select βk

t
(ωt) ∈ ∂Rx

t−1
V k

t (R
x,k
t−1, ωt)

23: end for

24: for all Ixt−1 ∈ I
x
t−1(Ωt−1) do

25: αk
t−1(I

x
t−1)←

∑

ωt∈Ωt

P(ωt|I
x
t−1)V

k
t (R

x,k
t , ωt); β

k
t−1(I

x
t−1)←

∑

ωt∈Ωt

P(ωt|I
x
t−1)β

k

t
(ωt)

26: hk
t−1(R

x
t−1, I

x
t−1) := αk

t−1(I
x
t−1) + 〈β

k
t−1(I

x
t−1), R

x
t−1 −R

x,k
t−1〉

27: V
k

t−1(R
x
t−1, I

x
t−1) := max

{

V
k−1
t−1 (R

x
t−1, I

x
t−1), h

k
t−1(R

x
t−1, I

x
t−1)

}

28: end for

29: end for

30:

V k
0 ←

{

min
x0∈X0(S0)

C(S0, x0) + V
k

0(R
x
0 , I

x
0 )

}

31: R
x,k

t ← R
x,k
t , t = 0, . . . , T − 1

32: end for
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Proof. Proof: The proof is analogous to the proof of Theorem 6. The main difference is that for

each time period t = 1, . . . , T we need to consider |Ixt | different value functions V
k

t (R
x
t , I

x
t ). Since

|Ixt | is finite, the argument of the proof of Theorem 6 can be extended to show that with probability

1, there exists a large enough k ∈ N such that the value functions V
k

t (R
x̂,k
t (ω), Ixt ) are optimal for

all ω ∈ Ω, and Ixt ∈ Ixt , t = 0, . . . , T .

Remark 3. Various optimization methods for Markov models have been studied in the literature

for both the risk–neutral (see [23, 22, 33]) and risk–averse cases (see [20, 28, 16] and the refer-

ences within). An extensive treatment of optimization problems with Markov uncertainty is beyond

the scope of this work. The goal of our presentation is the introduction of regularization into the

Markovian setting, so that it can be adapted to other problems on a case–by–case basis.

7 Algorithmic Tuning

In order to turn mathematical arguments into useful numerical results one needs to employ a high

quality implementation and suitable parameter tuning. In this section we present some of the poten-

tial issues regarding the reliability and computational performance of the methods presented above.

We consider the construction of regularization sequences, and discuss numerical concerns regarding

the solutions of subproblems.

7.1 Regularization Coefficients

In general, we cannot find a regularization sequence that would lead to the fastest possible con-

vergence. However, if we consider sequences that are defined by a set of parameters, then we can

attempt to find suitable parameter values. For example, we can construct regularization sequences

̺k ≥ 0 such that lim
k→∞

̺k = 0 by using the following geometric sequence. Given ̺0 > 0 and

r ∈ (0, 1), we define

̺k = ̺0rk = r · ̺k−1, if k > 0. (20)

In this case, we need to tune the parameters ̺0 and r. We can gain insight by solving a small

instance of the given problem for different pairs (̺0, r). For example, in section 8 we describe an

optimization model to be solved for high–dimensional post–decision resource states |Rx
t | ≥ 50.

As a pre–processing step, we can solve a smaller instance, e.g. |Rx
t | = 25, for each (̺0, r) ∈

{1, 10, 100}× {0.9, 0.95, 0.99}, and compare the results. Since estimates of the upper bounds and

optimality gaps are stochastic, we prefer to compare only the deterministic lower bounds as they

are more reliable. The resulting plots can be found in Figure 2. We can see that the sequences

of regularization coefficients has an impact on the behavior of the proposed methods. However,

various choices of (̺0, r) can be used with similar success. In our experiments in section 8, we use

̺0 = 1, r = 0.95.
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Figure 2: Lower bounds to the objective value of a stochastic optimization problem for different

regularization sequences.

7.2 Convergence Tolerance for the Solution of Subproblems

At each step of the forward and backward pass of Algorithm 1 and Algorithm 2, we use the current

collection of hyperplanes
{
α
j
t + 〈βj

t , R
x
t −R

x,j
t 〉, j ≤ k

}
and a realization of Wt = (At, Bt, bt, ct)

as a part of the input to a convex optimization problems having the following general form,

min 〈c, y〉+ 1

2
〈y,Qy〉

s.t. Ay = b

y ≥ 0

(21)

The numerical precision of the solutions to subproblems (21) is essential for the correctness of the

resulting policy for problem (1). However, the right–hand side vector b of problem (21) includes

the vector bt and the constant terms α
j
t − β

j
tR

x,j
t of the value function approximations given in (7)

or (19). If problem (1) has a long time horizon, then an aggregation of constant terms with large

modulus |αj
t − β

j
tR

x,j
t | can occur, and that could lead to numerical solutions of problem (21) which

do not satisfy the system of constraints Bt−1xt−1 + Atxt = bt with a desirable precision. Convex

optimization tools, including specialized algorithms for linear and quadratic programming problems,

often use convergence tolerance parameters to guide their stopping conditions. For problems with

long time horizons, we encounter numerical precision problems that require that we use care in

setting tolerance parameters for stopping conditions. In the sections below, we discuss the issues of

relative primal feasibility, and the relative complementarity gap.
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7.2.1 Relative primal feasibility

Suppose that a given optimization solver has a feasibility condition of the following form,

||Ay − b||
1 + ||b|| ≤ εf . (22)

We can consider two right–hand side vectors b1, b2 such that ||b1|| < ||b2|| and corresponding

candidate solutions y1, y2 such that
||Ay1 − b1||
1 + ||b1|| =

||Ay2 − b2||
1 + ||b2|| = εf .

Then the feasibility errors satisfy ||Ay1 − b1|| < ||Ay2 − b2||. Therefore, if we keep the primal

feasibility tolerance εf fixed while ||b|| grows, then the feasibility errors ||Ay − b|| (and therefore

||Bt−1xt−1 +Atxt − bt||) could increase as well. Hence, for problems with a long time horizon or

a large number of hyperplanes in the value function approximation, one might need to decrease the

tolerance εf for problem (21) in order to bring the size of the error ||Bt−1xt−1 +Atxt − bt|| down

to an acceptable level.

7.2.2 Relative complementarity gap

Commercial solvers often include implementations of primal–dual interior point methods (see [36,

4]) that employ a relative complementarity tolerance εc in their stopping condition. The presence of

large (by modulus) constant terms in the right–hand side vector b can also lead the numerical solver

to terminate at an infeasible solution with non–negligible errors ||Ay−b|| and ||Bt−1xt−1+Atxt−
bt||, if εc is not chosen appropriately. We present a brief explanation below.

The Lagrangian of problem (21) is given by

L(y, µ, λ) = 〈c, y〉+ 1

2
〈y,Qy〉+ 〈µ, b −Ay〉 − 〈λ, y〉. (23)

Hence, the Karush–Kuhn–Tucker conditions for problem (21) are given by the system of constraints,

Ay = b

A⊤µ−Qy + λ = c

Y Λ1 = 0

y, λ ≥ 0

(24)

where Y = diag(y) and Λ = diag(λ).
Interior point methods construct iterative approximations to the solution of (24) using a sequence

of scalar barrier parameters νn > 0, such that νn ↓ 0. Assuming that the initial point (y0, µ0, λ0) is

infeasible for (24) and 〈y0, λ0〉 > 0, we can have a stopping condition for the complementarity gap

such as
〈yn, λn〉
〈y0, λ0〉 ≤ εc or νn ≤ εc or

νn

|〈c, yn〉+ 〈yn, Qyn〉| ≤ εc. (25)

At iteration n, the interior point method finds a Newton direction (∆y,∆µ,∆λ) for problem (24)

as the solution to the following system :




A 0 0
−Q A⊤ I

Λ 0 Y


 ·




∆y

∆µ

∆λ


 =




b−Ayn

c−A⊤µn +Qyn + λn

νn1− Y nΛn
1


 (26)
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where I = diag(1, 1, . . . , 1) denotes the identity matrix.

Then the current solution (yn, µn, λn) can be updated by choosing γn ∈ (0, 1] such that

(yn, λn) + γn(∆y,∆λ) ≥ 0 (27)

and setting

(yn+1, µn+1, λn+1) = (yn, µn, λn) + γn(∆y,∆µ,∆λ). (28)

Please note that if γn = 1, then yn+1 ≥ 0 would be feasible for problem (21) since Ayn+1 = b.

However, in practice we usually have γn < 1. Hence, a complementarity tolerance condition (25)

can be met even if the system Bt−1xt−1+Atxt = bt is not satisfied within the desired precision. In

order to address this concern, in our numerical experiments we set the tolerance εc to the smallest

possible value allowed by the solver (10−12).

8 Numerical Experiments

In this section we study the computational performance of the algorithms proposed above. We focus

our analysis on the following questions.

• How is the computational performance of Algorithms 1 and 2 affected by:

– the dimension of the resource vector Rt?

– the size of the post–decision information state space Ixt ?

• How does the performance of Algorithms 1 and 2 compare to their non–regularized counter-

parts?

Our experimental work was conducted using the setting of optimizing grid level storage for a

large transmission grid managed by PJM Interconnection. PJM manages grid level storage devices

from a single location, making it a natural setting for testing our algorithms. As of this writing, grid

level storage is dropping in price, providing a meaningful setting to evaluate the performance of our

algorithms for a wide range of storage devices, challenging the ability of the algorithms to handle

high dimensional applications. For this reason, we conducted tests on networks with 50 to 500

storage devices. These are much higher dimensional problems than prior research that has focused

on the management of water reservoirs.

Another distinguishing feature of our grid storage setting (compared to prior experimental work)

is that a natural time step is 5 minutes, which is the frequency with which real–time electricity prices

(known as LMPs, for locational marginal prices) are updated on the PJM grid. We anticipate using

storage devices to hold energy over horizons of several hours. For this reason, we used a 24 hour

model, divided into 5–minute increments, for 288 time periods, which is quite large compared to

many applications using this algorithmic technology.

A complete description of the given model is beyond the scope of the current paper and can

be found in [1]. Below we briefly describe the construction of the network, and the exogenous

stochastic process. Finally we present the results of an extensive set of experiments investigating

the effect of regularization, the number of storage devices (which determines the dimensionality of

Rt), and the presence of an exogenous post–decision information state, on the rate of convergence

and solution quality.
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8.1 The network

We performed our experiments using an aggregated version of the PJM grid. Instead of the full net-

work with 9,000 buses and 14,000 transmission lines, we limited our analysis to the higher voltage

lines, producing a grid with 1,360 buses and 1,715 transmission lines. The power generators include

396 gas turbines (23,309 MW), 50 combined cycle generators (21,248 MW), 264 steam genera-

tors (73,374 MW), 31 nuclear reactors (31, 086 MW), and 84 conventional hydro power generators

(2,217 MW). Off–shore wind power was simulated for a set of hypothetical wind turbines with a

combined maximum capacity of 16 GW. Moreover, we consider a daily time horizon with 5–minute

discretization resulting in a total of 288 time periods.

The data was prepared by first running a unit–commitment simulator called SMART–ISO that

determines which generators are on or off at each point in time, given forecasts of wind generated

from a planned set of off–shore wind farms. We made the assumption that the use of grid level

storage would not change which generators are on or off at any point in time. However, we simulta-

neously optimize ramping the generators up or down within ranges, while charging and discharging

of storage devices around the grid in the presence of stochastic injections from the wind farms.

We placed the distributed storage devices at the points–of–interconnection for wind farms, as

well as the buses with the highest demand. Each storage device is characterized by its minimum

and maximum energy capacity, its charging and discharging efficiency, and its variable storage cost.

The control of multiple storage devices in a distributed energy system is a challenging task that

depends on a variety of factors such as the location of each device, and the presence of transmission

line congestion. A good storage algorithm needs to respond to daily variations in supply, demand

and congestion, taking advantage of opportunities to store energy near generation points (to avoid

congestion) or near load points (during off–peak periods). It has to balance when and where to store

and discharge in a stochastic, time–dependent setting, providing a challenging test environment for

our algorithm.

8.2 The exogenous information

Our only source of uncertainty (the exogenous information) was from the injected wind from the

offshore wind farms. In order to calibrate our stochastic wind error model, we employed historical

wind data and speed measurements of off–shore wind for the month of January 2010. For each time

period, we consider a set of ten vectors of possible wind speed realizations which correspond to ten

different weather regimes.

In general, the exogenous information process can be characterized by one of the following:

stagewise independence, compact state variables (Markov processes), or scenario–dependence (path

dependence). For some instances, the latter case could be reduced to one of the former two by

applying an appropriate transformation as described in section 6. In our experiments, we consider

instances with stagewise independent transitions between ten equally likely scenarios. When we

assumed stagewise independence, we would sample from each of these 10 scenarios with equal

probability at each time period. For the problems with Markov uncertainty, we assumed that at

every time period t, the probability of continuing with the same weather regime at time t + 1 is

91 percent. Additionally, each of the remaining nine regimes can be visited at time t + 1 with a

probability of 1 percent.

8.3 Algorithmic comparisons

The proposed algorithms were implemented in Java, and the IBM ILOG CPLEX 12.4 solver was

used for the solution of linear and quadratic convex optimization problems. Further, we performed
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Figure 3: Simulated daily realizations of wind power for a given wind farm over 24 hour time

horizon.

parameter tuning as described in section 7. We set the relative complementarity tolerance of CPLEX

to 10−12, and used a geometric regularization sequence with ̺0 = 1 and r = 0.95. Additionally,

we run each method for K = 300 iterations. Moreover, the scaling matrices Qt, t = 0, . . . , T are

set to the identity matrix which implies that the amount of energy in each storage device has the

same weight in the regularization term. In this section we examine the performance of Algorithms

1 and 2 when the number of storage devices (dimension of the resource state variable) is |Rx
t | =

50, 100, 200, 500.

Plots of the behavior of the methods can be found in Figures 4, 5, 6, 7 below. Each figure shows

the results for stagewise independence on the left, and Markov uncertainty on the right. These

graphs show the convergence of the upper and lower bounds, illustrating the dramatic impact of

regularization, especially as the number of dimensions grow. The results suggest that we consistently

obtain high quality solutions within approximately 50 iterations for all problems.
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Figure 4: Numerical comparison of multistage stochastic optimization methods for |Rx
t | = 50
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Figure 5: Numerical comparison of multistage stochastic optimization methods for |Rx
t | = 100
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Figure 6: Numerical comparison of multistage stochastic optimization methods for |Rx
t | = 200
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Figure 7: Numerical comparison of multistage stochastic optimization methods for |Rx
t | = 500

Table 1 and Table 2 show the CPU times (in seconds) per iteration for problems with 50 to 500

storage devices, with stagewise independence and Markov uncertainty, for up to 300 iterations. We

note that in a practical application, the algorithms would be run offline (for example, the day before,

given a particular forecast of wind). The cuts would be stored and then used in real time the next

day. This would be easily implementable in a policy updated every 5 minutes.
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❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

|Rx
t |

# Iterations
1 50 100 150 200 250 300

50
Algorithm 1

SDDP

182.0

181.0

217.6

196.2

230.8

201.2

248.3

208.9

266.5

215.4

284.3

223.4

299.2

230.4

100
Algorithm 1

SDDP

237.0

246.0

306.2

250.0

334.3

262.2

371.7

275.1

412.9

296.0

453.9

319.7

500.4

341.4

200
Algorithm 1

SDDP

293.0

265.0

358.8

375.3

414.3

360.7

507.0

394.5

587.6

428.8

653.5

469.8

726.0

525.5

500
Algorithm 1

SDDP

553.0

332.0

664.0

426.5

828.4

564.6

995.4

651.5

1183.3

751.6

1673.5

869.8

2536.0

1003.2

Table 1: Computational time per iteration (in seconds) for risk–neutral stochastic optimization meth-

ods.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

|Rx
t |

# Iterations
1 50 100 150 200 250 300

50
Algorithm 2

MSDDP

180.0

181.0

225.6

192.7

239.1

198.2

258.2

206.3

277.0

213.3

294.2

221.8

310.1

228.9

100
Algorithm 2

MSDDP

256.0

255.0

309.5

255.7

336.1

267.2

371.5

279.3

411.2

300.8

450.3

325.1

495.6

347.1

200
Algorithm 2

MSDDP

296.0

339.0

364.6

301.6

422.2

319.4

513.0

364.9

592.6

409.3

657.4

454.8

731.1

515.1

500
Algorithm 2

MSDDP

542.0

338.0

650.3

434.7

799.5

586.7

959.4

674.3

1151.7

777.2

1637.6

886.8

2490.4

1004.1

Table 2: Computational time per iteration (in seconds) for risk–neutral stochastic optimization meth-

ods.
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9 Conclusion

Large scale multistage stochastic optimization problems with long time horizons arise in numerous

real–world applications in energy, finance, transportation and other fields. The numerical solution

of such models can be computationally demanding, often causing practioners to face a trade–off

between solution quality and computational time.

In our work we have developed regularization methods for the SDDP framework and studied

their convergence. The algorithms employ regularization terms in the selection of cutting hyper-

planes which improve the quality of the resulting value function approximations. The proposed

techniques feature straightforward implementation and can be quickly integrated into existing soft-

ware solutions without the need for major additional efforts in development and testing.

In order to assess the performance of the proposed approach we consider a model for the integra-

tion of renewable energy using distributed grid–level storage into the grid of PJM, one of the largest

regional transmission operators in the United States. Our numerical experiments indicate that the

proposed regularized algorithms exhibits significantly faster convergence than their non–regularized

counterparts, with greater gains observed for higher–dimensional problems.

In the future we can consider several extensions of the current work. One possible direction

would involve further investigation into the selection of appropriate regularization terms and coef-

ficients. Another possible path of exploration would be the application of regularization techniques

for the solution of risk–averse models involving time–consistent compositions of coherent measures

of risk along the lines of [13, 2], and [34]. Additionally, we would also like to extend the pro-

posed approach to the solution of multiobjective stochastic models [37]. Finally, obtaining further

empirical results and insights from problems in the field would also be a subject of great interest.
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[27] A. RUSZCZYŃSKI, Decomposition methods in stochastic programming, Mathematical Programming, 79

(1997), pp. 333–353.
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