
An optimal first order method based on optimal quadratic

averaging

Dmitriy Drusvyatskiy∗ Maryam Fazel† Scott Roy‡

Abstract

In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for
minimizing smooth strongly convex functions. Their geometric descent algorithm, largely
inspired by the ellipsoid method, enjoys the optimal linear rate of convergence. We show
that the same iterate sequence is generated by a scheme that in each iteration computes
an optimal average of quadratic lower-models of the function. Indeed, the minimum of
the averaged quadratic approaches the true minimum at an optimal rate. This intuitive
viewpoint reveals clear connections to the original fast-gradient methods and cutting
plane ideas, and leads to limited-memory extensions with improved performance.

1 Introduction

Consider a function f : Rn → R that is β-smooth and α-strongly convex. Thus each point x
yields a quadratic upper estimator and a quadratic lower estimator of the function. Namely,
inequalities q(y;x) ≤ f(y) ≤ Q(y;x) hold for all x, y ∈ Rn, where we set

q(y;x) := f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 ,

Q(y;x) := f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2 .

Classically, one step of the steepest descent algorithm decreases the squared distance of
the iterate to the minimizer of f by the fraction 1 − α/β. This linear convergence rate
is suboptimal from a computational complexity viewpoint. Optimal first-order methods,
originating in Nesterov’s work [11] achieve the superior (and the best possible) linear rate
1−
√
α/β; see also the discussion in [10, Section 2.2]. Such accelerated schemes, on the other

hand, are notoriously difficult to analyze. Numerous recent papers (e.g. [1, 2, 5, 9, 13]) have
aimed to shed new light on optimal algorithms.

This manuscript is motivated by the novel geometric descent algorithm of Bubeck, Lee,
and Singh [5]. Their scheme is highly geometric, sharing some aspects with the ellipsoid
method, and it achieves the optimal linear rate of convergence. Moreover, the geometric

∗University of Washington, Department of Mathematics, Seattle, WA 98195; ddrusv@uw.edu. Research of
Drusvyatskiy was partially supported by the AFOSR YIP award FA9550-15-1-0237.
†University of Washington, Department of Electrical Engineering, Seattle, WA 98195; mfazel@uw.edu.

Research partially supported by ONR award N00014-12-1-1002 and NSF award CIF-1409836.
‡University of Washington, Department of Mathematics, Seattle, WA 98195; scottroy@uw.edu

1

ar
X

iv
:1

60
4.

06
54

3v
3

 [
m

at
h.

O
C

]
 2

8
Fe

b
20

17

descent algorithm often has much better practical performance than accelerated gradient
methods; see the discussion in [5]. Motivated by their work, in this paper we propose an
intuitive method that maintains a quadratic lower model of the objective function, whose
minimal value converges to the true minimum at an optimal linear rate. We will show
that the two methods are indeed equivalent in the sense that they produce the same iterate
sequence. The quadratic averaging viewpoint, however, has important advantages. First,
it immediately yields a comparison with the original accelerated gradient method [10, 11]
and cutting plane techniques. Secondly, quadratic averaging motivates a simple strategy for
significantly accelerating the method in practice by utilizing accumulated information – a
limited memory version of the scheme.

The outline of the paper is as follows. In Section 2, we describe the optimal quadratic
averaging framework (Algorithm 1) – the focal point of the manuscript. In Section 3, we pro-
pose a limited memory version of Algorithm 1, based on iteratively solving small dimensional
quadratic programs. In Section 4, we show that our Algorithm 1 and the geometric descent
method of [5] produce the same iterate sequence. Section 5 is devoted to numerical illus-
trations, in particular showing that the optimal quadratic averaging algorithm with memory
can be competitive with L-BFGS. We finish the paper with Section 6, where we discuss the
challenges that must be overcome in order to derive proximal extensions. In the final stages
of revising this paper, a new manuscript [7] appeared explaining how to overcome exactly
these challenges.

1.1 Notation

We follow the notation of [5]. Given a point x ∈ Rn, we define a short step

x+ := x− 1

β
∇f(x)

and a long step

x++ := x− 1

α
∇f(x).

Setting y = x+ in the quadratic bound f(y) ≤ Q(y;x) yields the standard inequality

f(x+) +
1

2β
‖∇f(x)‖2 ≤ f(x). (1)

We denote the unique minimizer of f by x∗, its minimal value by f∗, and its condition number
by κ := β/α. Throughout, the symbol B(x,R2) stands for the Euclidean ball of radius R
around x. For any points x, y ∈ Rn, we let line search (x, y) be the minimizer of f on the
line between x and y.

2 Optimal quadratic averaging

The starting point for our development is the elementary observation that every point x̄
provides a quadratic under-estimator of the objective function, having a canonical form.
Indeed, completing the square in the strong convexity inequality f(x) ≥ q(x; x̄) yields

f(x) ≥
(
f(x̄)− ‖∇f(x̄)‖2

2α

)
+
α

2

∥∥x− x̄++
∥∥2
. (2)

2

Suppose we have now available two quadratic lower-estimators:

f(x) ≥ QA(x) := vA +
α

2
‖x− xA‖2 and f(x) ≥ QB(x) := vB +

α

2
‖x− xB‖2 .

Clearly, the minimal values of QA and of QB lower-bound the minimal value of f . For any
λ ∈ [0, 1], the average Qλ := λQA + (1 − λ)QB is again a quadratic lower-estimator of f .
Thus we are led to the question:

What choice of λ yields the tightest lower-bound on the minimal value of f?

To answer this question, observe the equality

Qλ(x) := λQA(x) + (1− λ)QB(x) = vλ +
α

2
‖x− cλ‖2 ,

where
cλ = λxA + (1− λ)xB

and
vλ = vB +

(
vA − vB +

α

2
‖xA − xB‖2

)
λ−

(α
2
‖xA − xB‖2

)
λ2. (3)

In particular, the average Qλ has the same canonical form as QA and QB. A quick compu-
tation now shows that vλ (the minimum of Qλ) is maximized by setting

λ̄ := proj[0,1]

(
1

2
+

vA − vB
α ‖xA − xB‖2

)
.

With this choice of λ, we call the quadratic function Q = v̄+ α
2 ‖ ·−c̄‖2 the optimal averaging

of QA and QB. See Figure 1 for an illustration.

Figure 1: The optimal averaging of QA(x) = 1 + 0.5(x+ 2)2 and QB(x) = 3 + 0.5(x− 4)2.

An algorithmic idea emerges. Given a current iterate xk, form the quadratic lower-model
Q(·) in (2) with x̄ = xk. Then let Qk be the optimal averaging of Q and the quadratic lower

3

model Qk−1 from the previous step. Finally define xk+1 to be the minimizer of Qk, and repeat.
Though attractive, the scheme does not converge at an optimal rate. Indeed, this algorithm
is closely related to the suboptimal method in [5]; see Section 4.1 for a discussion. The main
idea behind acceleration, natural in retrospect, is a separation of roles: one must maintain
two sequences of points xk and ck. The points xk will generate quadratic lower models as
above, while ck will be the minimizers of the quadratics. We summarize the proposed method
in Algorithm 1. The rule for determining the iterate xk by a line search is entirely motivated
by the geometric descent method in [5].

Algorithm 1: Optimal Quadratic Averaging

Input: Starting point x0 and strong convexity constant α > 0.
Output: Final quadratic QK(x) = vK + α

2 ‖x− cK‖
2 and x+

K .

Set Q0(x) = v0 + α
2 ‖x− c0‖2, where v0 = f(x0)− ‖∇f(x0)‖2

2α and c0 = x++
0 ;

for k = 1, . . . , K do
Set xk = line search

(
ck−1, x

+
k−1

)
;

Set Q(x) =
(
f(xk)− ‖∇f(xk)‖2

2α

)
+ α

2

∥∥x− x++
k

∥∥2
;

Let Qk(x) = vk + α
2 ‖x− ck‖2 be the optimal averaging of Q and Qk−1 ;

end

Remark 2.1. When implementing Algorithm 1, we set x+
k = line search (xk, xk −∇f(xk)).

This does not impact the analysis as x+
k still satisfies the key inequality (1). With this mod-

ification, the algorithm does not require β as part of the input, and we have observed that
the algorithm performs better numerically.

To aid in the analysis of the scheme, we record the following easy observation.

Lemma 2.2. Suppose that Q = v̄ + α
2 ‖ · −c̄‖2 is the optimal averaging of the quadratics

QA = vA + α
2 ‖ · −xA‖2 and QB = vB + α

2 ‖ · −xB‖2. Then the quantity v̄ is nondecreasing in
both vA and vB. Moreover, whenever the inequality |vA − vB| ≤ α

2 ‖xA − xB‖2 holds, we have

v̄ =
α

8
‖xA − xB‖2 +

1

2
(vA + vB) +

1

2α

(
vA − vB
‖xA − xB‖

)2

.

Proof. Define λ̂ := 1
2 + vA−vB

α‖xA−xB‖2
. Notice that we have

λ̂ ∈ [0, 1] if and only if |vA − vB| ≤
α

2
‖xA − xB‖2.

If λ̂ lies in [0, 1], equality λ̄ = λ̂ holds, and then from (3) we deduce

v̄ = vλ̄ =
α

8
‖xA − xB‖2 +

1

2
(vA + vB) +

1

2α

(
vA − vB
‖xA − xB‖

)2

.

If λ̂ does not lie in [0, 1], then an easy argument shows that v̄ is linear in vA either with slope
one or zero. If λ̂ lies in (0, 1), then we compute

∂v̄

∂vA
=

1

2
+

1

α ‖xA − xB‖2
(vA − vB),

4

which is nonnegative because |vA−vB |
α‖xA−xB‖2

≤ 1
2 . Since v̄ is clearly continuous, it follows that v̄

is nondecreasing in vA, and by symmetry also in vB.

We now show that Algorithm 1 achieves the optimal linear rate of convergence.

Theorem 2.3 (Convergence of optimal quadratic averaging). In Algorithm 1, for every index
k ≥ 0, the inequalities vk ≤ f∗ ≤ f(x+

k) hold and we have

f(x+
k)− vk ≤

(
1− 1√

κ

)k
(f(x+

0)− v0).

Proof. Since in each iteration, the algorithm only averages quadratic minorants of f , the
inequalities vk ≤ f∗ ≤ f(x+

k) hold for every index k. Set r0 = 2
α(f(x+

0) − v0) and define

the quantities rk :=
(

1− 1√
κ

)k
r0. We will show by induction that the inequality vk ≥

f(x+
k)− α

2 rk holds for all k ≥ 0. The base case k = 0 is immediate, and so assume we have

vk−1 ≥ f(x+
k−1)− α

2
rk−1

for some index k − 1. Next set vA := f(xk)− ‖∇f(xk)‖2
2α and vB := vk−1. Then the function

Qk(x) = vk +
α

2
‖x− ck‖2 ,

is the optimal averaging of QA(x) = vA + α
2

∥∥x− x++
k

∥∥2
and QB(x) = vB + α

2 ‖x− ck−1‖2.
An application of (1) yields the lower bound v̂A on vA:

vA = f(xk)−
‖∇f(xk)‖2

2α
≥ f(x+

k)− α

2

‖∇f(xk)‖2
α2

(
1− 1

κ

)
:= v̂A.

The induction hypothesis and the choice of xk yield a lower bound v̂B on vB:

vB ≥ f(x+
k−1)− α

2
rk−1 ≥ f(xk)−

α

2
rk−1

≥ f(x+
k) +

1

2β
‖∇f(xk)‖2 −

α

2
rk−1

= f(x+
k)− α

2

(
rk−1 −

1

α2κ
‖∇f(xk)‖2

)
:= v̂B.

Define the quantities d :=
∥∥x++

k − ck−1

∥∥ and h := ‖∇f(xk)‖
α . We now split the proof into

two cases. First assume h2 ≤ rk−1

2 . Then we deduce

vk ≥ vA ≥ v̂A = f(x+
k)− α

2
h2

(
1− 1

κ

)
≥ f(x+

k)− α

2
rk−1

(
1− 1

κ

2

)

≥ f(x+
k)− α

2
rk−1

(
1− 1√

κ

)
= f(x+

k)− α

2
rk,

5

where the third line follows since 2/
√
κ ≤ 1 + 1/κ holds. Hence in this case, the proof is

complete.
Next suppose h2 >

rk−1

2 and let v+ α
2 ‖·−c‖2 be the optimal average of the two quadratics

v̂A + α
2 ‖ · −x++

k ‖2 and v̂B + α
2 ‖ · −ck−1‖2. By Lemma 2.2, the inequality vk ≥ v holds. We

claim that equality

v = v̂B +
α

8

(d2 + 2
α(v̂A − v̂B))2

d2
holds. (4)

This follows immediately from Lemma 2.2, once we show 1
2 ≥

|v̂A−v̂B |
αd2

. To this end, note first

the equality |v̂A−v̂B |
αd2

=
|rk−1−h2|

2d2
. The choice xk = line search

(
ck−1, x

+
k−1

)
ensures:

d2 − h2 = ‖xk − ck−1‖2 −
2

α
〈∇f(xk), xk − ck−1〉 = ‖xk − ck−1‖2 ≥ 0.

Thus we have h2 − rk−1 < h2 ≤ d2. Finally, the assumption h2 >
rk−1

2 implies

rk−1 − h2 <
rk−1

2
< h2 ≤ d2. (5)

Hence we can be sure that (4) holds. Plugging in v̂A and v̂B yields

v = f(x+
k)− α

2

(
rk−1 −

1

κ
h2 − (d2 + rk−1 − h2)2

4d2

)
.

Hence the proof is complete once we show the inequality

rk−1 −
1

κ
h2 − (d2 + rk−1 − h2)2

4d2
≤
(

1− 1√
κ

)
rk−1.

After rearranging, our task simplifies to showing the inequality

rk−1√
κ
≤ h2

κ
+

(d2 + rk−1 − h2)2

4d2
.

Taking derivatives and using inequality (5), one can readily verify that the right-hand-side
is nondecreasing in d2 on the interval d2 ∈ [h2,+∞). Thus plugging in the endpoint d2 = h2

we deduce
h2

κ
+

(d2 + rk−1 − h2)2

4d2
≥ h2

κ
+
r2
k−1

4h2
.

Minimizing the right-hand-side over all h satisfying h2 ≥ rk−1

2 yields the inequality

h2

κ
+
r2
k−1

4h2
≥ rk−1√

κ
.

The proof is complete.

It is instructive to compare optimal averaging (Algorithm 1) with Nesterov’s optimal
methods in [10, 11]. For convenience, we record the optimal gradient method following [10],
in Algorithm 2.

Comparing Algorithms 1 and 2, we see that

6

Algorithm 2: General scheme of an optimal method [Nesterov]

Input: Starting points x0 and c0, strong convexity constant α > 0, smoothness
parameter β > 0, and initial quadratic curvature γ0 ≥ α.

Output: Final quadratic QK(x) = vK + γK
2 ‖x− cK‖

2.

Set Q0(x) = v0 + γ0
2 ‖x− c0‖2, where v0 = f(x0)− 1

2β ‖∇f(x0)‖2 ;

for k = 1, . . . , K do
Compute averaging parameter λk ∈ (0, 1) from βλ2

k = (1− λk)γk−1 + λkα ;
Set γk = (1− λk)γk−1 + λkα. ;
Set xk = (1− θk)ck−1 + θkx

+
k−1 where θk = γk

γk−1+λkα
;

Set Q(x) =
(
f(xk)− ‖∇f(xk)‖2

2α

)
+ α

2

∥∥x− x++
k

∥∥2
;

Let ck be the minimizer of the quadratic Qk(x) = (1− λk)Qk−1(x) + λkQ(x) ;

end

/* If we set γ0 = α, then we have γk = α, λk = 1√
κ
, and θk =

√
κ

1+
√
κ
. */

• xk is some point on the line between ck−1 and x+
k−1, and

• Qk is an average of the previous quadratic Qk−1 and the strong convexity quadratic
lower bound Q based at xk.

As we discuss in Appendix A, we can modify Nesterov’s method so that like in optimal
quadratic averaging, we set xk = line search

(
ck−1, x

+
k−1

)
in each iteration. After this

change, only two differences remain between the schemes:

• the initial quadratic Q0 is different, and

• the averaging parameter is computed differently.

These differences, however, are fundamental. In Algorithm 1, the quadratic Q0 lower bounds
f and therefore optimal averaging makes sense; in the accelerated gradient method, Q0 does
not lower bound f , and the idea of optimal averaging does not apply.

3 Optimal quadratic averaging with memory

Each iteration of Algorithm 1 forms an optimal average of the current lower quadratic model
with the one from the previous iteration; that is, as stated the scheme has a memory size
of one. We next show how the scheme easily adapts to maintaining limited memory, i.e. by
averaging multiple quadratics in each iteration. We mention in passing that the authors of [5]
left open the question of efficiently speeding up their geometric descent algorithm in practice.
One approach of this flavor has recently appeared in [4, Section 4]. The optimal averaging
viewpoint, developed here, provides a direct and satisfying alternative. Indeed, computing
the optimal average of several quadratics is easy, and amounts to solving a small dimensional
quadratic optimization problem.

To see this, fix t quadratics Qi(x) := vi + α
2 ‖x− ci‖

2, with i ∈ {1, . . . , t}, and a weight

vector λ in the t-dimensional simplex ∆t :=
{
x ∈ Rt :

∑t
i=1 xi = 1, x ≥ 0

}
. The average

7

quadratic

Qλ(x) :=

t∑
i=1

λiQi(x)

maintains the same canonical form as each Qi.

Proposition 3.1. Define the matrix C =
[
c1 c2 . . . ct

]
and vector v =

[
v1 v2 . . . vt

]T
.

Then we have
Qλ(x) = vλ +

α

2
‖x− cλ‖2 ,

where
cλ = Cλ and vλ =

〈α
2

diag (CTC) + v, λ
〉
− α

2
‖Cλ‖2 .

Proof. The Hessian of Qλ is simply α
2 I, and therefore the quadratic Qλ(x) has the form

vλ +
α

2
‖x− cλ‖2

for some vλ and cλ. Notice that cλ is the minimizer of Qλ, and by differentiating, we determine
that cλ =

∑t
i=1 λici = Cλ. We then compute

vλ = Qλ(cλ) =
t∑
i=1

(
λivi +

λiα

2
‖Cλ− ci‖2

)

= 〈v, λ〉+
α

2

t∑
i=1

λi

(
‖Cλ‖2 − 2 〈Cλ, ci〉+ ‖ci‖2

)
= 〈v, λ〉+

α

2
‖Cλ‖2 − α

〈
Cλ,

t∑
i=1

λici

〉
+
α

2

t∑
i=1

λi ‖ci‖2

=
〈α

2
diag

(
CTC

)
+ v, λ

〉
− α

2
‖Cλ‖2 .

The proof is complete.

Naturally, we define the optimal averaging of the quadratics Qi, with i ∈ {1, 2, . . . , t}, to
be Qλ̄, where λ̄ is the maximizer of the concave quadratic over the simplex:

min
λ∈∆t

vλ =
〈α

2
diag

(
CTC

)
+ v, λ

〉
− α

2
‖Cλ‖2 .

There is no closed form expression for λ̄, but one can quickly find it by solving a quadratic
program in t variables, for example by an active set method. Moreover, some thought shows
that the matrix CTC can be efficiently updated if one of the centers changes; we omit the
details.

We propose an optimal averaging scheme with memory in Algorithm 3. As we see in
Section 5, the method performs well numerically. Moreover, the scheme enjoys the same
convergence guarantees as Algorithm 1; that is, Theorem 2.3 applies to Algorithm 3, with
nearly the same proof (which we omit).

8

Algorithm 3: Optimal Quadratic Averaging with Memory

Input: Starting point x0, strong convexity constant α > 0, and memory size t ≥ 1.
Output: Final quadratic QK(x) = vK + α

2 ‖x− cK‖
2 and x+

K .

Set Q0(x) = v0 + α
2 ‖x− c0‖2, where v0 = f(x0)− ‖∇f(x0)‖2

2α and c0 = x++
0 ;

for k = 1, . . . , K do
Set xk = line search

(
ck−1, x

+
k−1

)
;

Set Mk(x) = f(xk)− ‖∇f(xk)‖2
2α + α

2

∥∥x− x++
k

∥∥2
;

Let Qk(x) := vk + α
2 ‖x− ck‖

2 be the optimal averaging of the

k + 1 quadratics Qk−1, Mk, Mk−1, . . . , M1 if k ≤ t, or of the

t+ 1 quadratics Qk−1, Mk, Mk−1, . . . , Mk−t+1 if k ≥ t+ 1;

end

The reader may notice that Algorithm 3 shows some similarity to the classical Kelley’s
method for minimizing nonsmooth convex functions [8]. In the simplest case of minimizing
a smooth convex function f on Rn, Kelley’s method iterates the following steps

xk+1 = argmin
x

fk(x)

for the functions
fk(x) := max

i=1,...,k
{f(xi) + 〈∇f(xi), x− xi〉}.

In other words, the scheme iteratively minimizes the (piecewise linear) lower-models fk of f .
Coming back to the optimal averaging viewpoint, suppose that Qλ̄ is an optimal average of
the lower-bounding quadratics Qi, for i = 1, . . . , k. Then we may write

vλ̄ = max
λ∈∆k

min
x

∑
i

λiQi(x) = min
x

max
λ∈∆k

∑
i

λiQi(x) = min
x

(
max
i=1,...,k

Qi(x)

)
Thus vλ̄ is the minimal value of the now different lower-model, maxi=1,...,k Qi, of f . Kelley’s
method is known to have poor numerical performance and convergence guarantees (e.g. [10,
Section 3.3.2]), while Algorithm 3 achieves the optimal linear convergence rate. This disparity
is of course based on the two key distinctions: (1) using quadratic lower-models coming from
strong convexity instead of linear functions, and (2) maintaining two separate sequences ck
(centers) and xk (sources of lower model updates).

4 Equivalence to geometric descent

Algorithm 1 is largely motivated by the geometric descent method introduced by Bubeck,
Lee, and Singh [5]. In this section, we show the two methods (Algorithm 1 and Algorithm 4)
indeed generate an identical iterate sequence.

9

4.1 Suboptimal geometric descent method

The basic idea of geometric descent [5] is that for each point x ∈ Rn, the strong convexity
lower bound f∗ ≥ q(x∗;x) defines a ball containing x∗:

x∗ ∈ B
(
x++,

‖∇f(x)‖2
α2

− 2

α
(f(x)− f∗)

)
.

In turn, taking into account (1) yields the guarantee

x∗ ∈ B
(
x++,

(
1− 1

κ

) ‖∇f(x)‖2
α2

− 2

α

(
f(x+)− f∗

))
. (6)

A crude upper estimate of the radius above is obtained simply by ignoring the nonnegative
term 2

α (f(x+)− f∗). The suboptimal geometric descent method proceeds as follows. Suppose
we have available some ball B

(
c0, R

2
0

)
containing x∗. As discussed, the quadratic lower

bound at the center c0, namely f∗ ≥ q(x∗, c0), yields another ball B
(
c++

0 ,
(
1− 1

κ

) ‖∇f(c0)‖2
α2

)
containing x∗. Geometrically it is clear that the intersection of these two balls must be
significantly smaller than either of the individual balls. The following lemma from [5] makes
this observation precise; see Figure 2 for an illustration.

Lemma 4.1 (Minimal enclosing ball of the intersection). Fix a center x ∈ Rn, square radius
R2 > 0, step h ∈ Rn, and ε ∈ (0, 1). Then there exists a new center c ∈ Rn with

B
(
x,R2

)
∩B

(
x+ h, (1− ε) ‖h‖2

)
⊂ B

(
c, (1− ε)R2

)
.

An application of Lemma 4.1 yields a new center c1 with

B
(
c0, R

2
0

)
∩B

(
c++

0 ,

(
1− 1

κ

) ‖∇f(c0)‖2
α2

)
⊂ B

(
c1,

(
1− 1

κ

)
R2

0

)
.

Repeating the procedure with the new ball B
(
c1,
(
1− 1

κ

)
R2

0

)
yields a sequence of centers ck

satisfying

‖ck − x∗‖2 ≤
(

1− 1

κ

)k
R2

0.

We note that the centers ck and R2
0 of the minimal enclosing balls in Lemma 4.1 are easy to

compute; see Algorithm 1 in [5].
There is a very close connection between finding the minimal enclosing ball of the inter-

section of two balls and of optimally averaging quadratics. To see this, consider again two
quadratics

f(x) ≥ QA(x) := vA +
α

2
‖x− xA‖2 and f(x) ≥ QB(x) := vB +

α

2
‖x− xB‖2 .

10

x

x + h

c

(1 � ✏)khk2

Figure 2: Minimal enclosing ball of the intersection.

Let Q be the optimal average of QA and QB. Notice that since QA, QB, and Q lower bound
f , the minimizer x∗ of f is guaranteed to lie in the three balls:

B
(
xA, R

2
A

)
where R2

A =
2

α

(
f̂ − vA

)
,

B
(
xB, R

2
B

)
where R2

B =
2

α

(
f̂ − vB

)
,

B
(
c̄, R2

)
where R2 =

2

α

(
f̂ − v̄

)
,

where f̂ is any upper bound on f∗. We observe the following elementary fact.

Proposition 4.2 (Minimal enclosing ball and optimal averaging). The ball B
(
c̄, R2

)
is

precisely the minimal enclosing ball of the intersection B
(
xA, R

2
A

)
∩B

(
xB, R

2
B

)
.

Proof. Define the quantity λ̂ = 1
2 + vA−vB

α‖xA−xB‖2
. If λ̂ lies in the unit interval [0, 1], then a quick

computation using Lemma 2.2 shows the expressions

R2 = R2
B −

(
‖xA − xB‖2 +R2

B −R2
A

)2

4 ‖xA − xB‖2

and

c̄ = λ̄xA + (1− λ̄)xB =
1

2
(xA + xB)− R2

A −R2
B

2 ‖xA − xB‖2
(xA − xB) .

Now observe

λ̂ < 0 if and only if ‖xA − xB‖2 < R2
A −R2

B

λ̂ ∈ [0, 1] if and only if ‖xA − xB‖2 ≥ |R2
A −R2

B|, and

λ̂ > 1 if and only if ‖xA − xB‖2 < R2
B −R2

A.

Comparing with the recipe [5, Algorithm 1] for computing the minimal enclosing ball, we see
that B

(
c̄, R2

)
is the minimal enclosing ball of the intersection B

(
xA, R

2
A

)
∩B

(
xB, R

2
B

)
.

11

4.2 Optimal geometric descent method

To obtain an optimal method, the authors of [5] observe that the term 2
α (f(x+)− f∗) in the

inclusion (6) cannot be ignored. Exploiting this term will require maintaining two sequences
ck (the centers of the balls) and xk (points for generating new balls). Suppose in iteration k,
we know that x∗ lies in the ball

B

(
ck, R

2
k −

2

α

(
f(x+

k)− f∗
))

.

Consider now an arbitrary point, denoted suggestively by xk+1. Then (6) implies the inclusion

x∗ ∈ B
(
x++
k+1,

(
1− 1

κ

) ‖∇f(xk+1)‖2
α2

− 2

α

(
f(x+

k+1)− f∗
))

. (7)

If we choose xk+1 to satisfy f(xk+1) ≤ f(x+
k) and apply inequality (1) with x = xk+1, we can

get a new upper estimate of the initial ball,

x∗ ∈ B
(
ck, R

2
k −

1

κ

‖∇f(xk+1)‖2
α2

− 2

α

(
f(x+

k+1)− f∗
))

. (8)

It seems clear that if the centers ck and x++
k+1 of the two balls in (7) and (8) are “sufficiently

far apart”, then their intersection is contained in an even smaller ball. This is the content of
following lemma from [5].

Lemma 4.3 (Two balls shrinking). Fix centers xA, xB ∈ Rn and square radii r2
A, r

2
B > 0.

Also fix ε ∈ (0, 1) and suppose ‖xA − xB‖2 ≥ r2
B. Then there exists a new center c ∈ Rn such

that for any δ > 0, we have

B
(
xA, r

2
A − εr2

B − δ
)
∩B

(
xB, (1− ε)r2

B − δ
)
⊂ B

(
c, (1−√ε)r2

A − δ
)
.

A quick application of this result shows that provided∥∥x++
k+1 − ck

∥∥2 ≥ ‖∇f(xk+1)‖2
α2

(9)

holds, there exists a new center ck+1 with

x∗ ∈ B
(
ck+1,

(
1− 1√

κ

)
R2
k −

2

α

(
f(x+

k+1)− f∗
))

.

One way to ensure that xk+1 satisfies the two key conditions, f(xk+1) ≤ f(x+
k) and

inequality (9), is to simply let xk+1 be the minimizer of f along the line between ck and
x+
k . Trivially this guarantees the inequality f(xk+1) ≤ f(x+

k), while the univariate optimality
condition ∇f(xk+1) ⊥ (ck − xk+1) means the triangle with vertices xk+1, x++

k+1, and ck is
a right triangle and inequality (9) becomes “the hypotenuse is longer than a leg.” This is
exactly the motivation for the line-search procedure in Algorithm 1. Repeating the process
yields iterates ck that satisfy the optimal linear rate of convergence

‖ck − x∗‖2 ≤
(

1− 1√
κ

)k
R2

0.

The precise method is described in Algorithm 4.

12

Remark 4.4. When applying an iterative method to compute xk+1 = line search
(
ck, x

+
k

)
,

one can use the following termination criterion. Check if ck satisfies f(ck) ≤ f(x+
k), then stop

and set xk+1 := ck. Notice (9) holds trivially with this choice of xk+1. Else stop with a trial
point z on the line joining ck and x+

k satisfying f(z) ≤ f(x+
k) and

∥∥z++ − ck
∥∥2 ≥ ‖∇f(z)‖2

α2
.

We claim that the line search will terminate in finite time, unless line search
(
ck, x

+
k

)
is

the true minimizer of f . Indeed, since ck 6= line search
(
ck, x

+
k

)
(otherwise we would have

terminated in the if clause), one can easily check that z = line search
(
ck, x

+
k

)
satisfies the

above inequality strictly.

Algorithm 4: Geometric Descent Method [Bubeck, Lee, Singh]

Input: Starting point x0, strong convexity constant α > 0.
Output: x+

K

Set c0 = x++
0 and R2

0 = ‖∇f(x0)‖2
α2 − 2

α

(
f(x0)− f(x+

0)
)

;
for k = 1, . . . , K do

Set xk = line search
(
x+
k−1, ck−1

)
;

Set xA = xk − α−1∇f(xk) and R2
A = ‖∇f(xk)‖2

α2 − 2
α

(
f(xk)− f(x+

k)
)

;
Set xB = ck−1 and R2

B = R2
k−1 − 2

α

(
f(x+

k−1)− f(x+
k)
)

;

Let B
(
ck, R

2
k

)
be the smallest enclosing ball of B

(
xA, R

2
A

)
∩B

(
xB, R

2
B

)
;

end

The following theorem shows that Algorithm 1 and Algorithm 4 indeed produce the same
iterate sequence.

Theorem 4.5. Given the same initial point x0, Algorithm 1 and Algorithm 4 produce the
same iterates xk and ck. Moreover, we have vk = f(x+

k) − α
2R

2
k, where vk is the minimum

value of the quadratic Qk in Algorithm 1 and Rk is the radius of the ball in Algorithm 4.

Proof. Let xk and ck denote the iterates in Algorithm 1, and let x̂k and ĉk be the iterates in
Algorithm 4. We proceed by induction on k. It follows immediately from the definition of
the algorithms that x0 = x̂0, c0 = ĉ0, and v0 = f(x+

0)− α
2R

2
0. Now suppose, as an inductive

assumption, xk−1 = x̂k−1, ck−1 = ĉk−1, and vk−1 = f(x+
k−1) − α

2R
2
k−1. To see the equality

xk = x̂k, observe

xk = line search
(
x+
k−1, ck−1

)
= line search

(
x̂+
k−1, ĉk−1

)
= x̂k.

Let xA = x++
k , xB = ck−1, d = ‖xA − xB‖, and define the quantities

vA = f(xk)−
‖∇f(xk)‖2

2α
,

vB = vk−1,

R2
A =

‖∇f(xk)‖2
α2

− 2

α

(
f(xk)− f(x+

k)
)
,

R2
B = R2

k−1 −
2

α

(
f(x+

k−1)− f(x+
k)
)
.

13

Notice that Qk(x) = vk + α
2 ‖x− ck‖

2 is the optimal averaging of QA(x) := vA +
α
2 ‖x− xA‖

2 and QB(x) := vB + α
2 ‖x− xB‖

2, and that B(ĉk, R
2
k) is the minimum enclosing

ball of the intersection of B(xA, R
2
A) and B(xB, R

2
B). Simple algebra shows the relation

R2
A =

2

α

(
f(x+

k)− vA
)
,

and from the inductive assumption vk−1 = f(x+
k−1)− α

2R
2
k−1, we also have

R2
B =

2

α

(
f(x+

k)− vB
)
.

Thus, by Proposition 4.2 and the discussion preceding it, we have ck = ĉk and vk = f(x+
k)−

α
2R

2
k. This completes the induction.

As we saw in Section 3, computing the optimal averaging of several quadratic functions
is simple. On the other hand, it is far from clear how to find the minimum radius ball that
encloses the intersection of more than two balls. Indeed, instead the authors of Algorithm 4
in the follow-up work [4] considered a “relaxation” that involves minimizing a self-concordant
barrier for the intersection. While revising the current manuscript, we became aware that
Beck in [3, Theorem 3.2] proved that the minimum enclosing ball of the intersection of finitely
many balls can be computed by solving a convex quadratic program (QP). Namely, Beck
showed that the squared radius of the minimal ball enclosing the intersection

⋂t
i=1B(ci, r

2
i)

is exactly equal to

min
λ∈∆t

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

−
t∑
i=1

λi(‖ai‖2 − r2
i),

provided t ≤ n − 1 and the intersection of the balls has nonempty interior. This QP is
exactly the one we derived in Section 3 for the optimal quadratic averaging method with
memory. Note that our derivation of the QP in Section 3 was completely elementary; the
proof of [3, Theorem 3.2], on the other hand, is much more sophisticated relying on an
S-lemma-type result.

Proposition 4.6 (Optimal quadratic averaging & minimal enclosing ball).
Let Q(x) = v + α

2 ‖x− c‖
2 be the optimal averaging of quadratics Qi(x) = vi + α

2 ‖x− ci‖
2

for i = 1, . . . , t with t < n. Fix a real number s ≥ vi for all i = 1 . . . , t and define the balls
Bi := {Qi ≤ s}. Then provided that the intersection

⋂t
i=1Bi has a nonempty interior, the

ball B := {Q ≤ s} is the minimal enclosing ball of the intersection
⋂t
i=1Bi.

Proof. Let R2 be the square radius of B and let R2
i be the square radius of Bi, for i = 1, . . . , t.

Using Proposition 3.1, we deduce

R2 =
2

α
(s− v) =

2

α

s− max
λ∈∆t

α2
t∑
i=1

λi

(α
2
‖ci‖2 + vi

)
− α

2

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

= min
λ∈∆t

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

−
t∑
i=1

λi

(
‖ci‖2 +

2

α
(vi − s)

)

= min
λ∈∆t

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

−
t∑
i=1

λi

(
‖ci‖2 −R2

i

)
.

14

The center of B is c =
∑t

i=1 λici where λ is the minimizer of the expression above. Comparing
with [3, Theorem 3.2], we see that B is exactly the minimum radius ball enclosing the
intersection

⋂t
i=1Bi.

5 Numerical examples

In this section, we numerically illustrate optimality gap convergence in Algorithm 1, and
explore how Algorithm 3, the variant of Algorithm 1 with memory, aids performance. To
this end, we focus on minimizing two functions: the regularized logistic loss function

L(w) :=
1

N

N∑
i=1

log
(

1 + e−yiw
T xi
)

+
α

2
‖w‖2 ,

where xi ∈ Rn and yi ∈ {±1} are labeled training data, and the “world’s worst” function for
first-order methods:

f(x) =
B

2

(
(1− x1)2 +

n−1∑
i=1

(xi − xi+1)2 + x2
n

)
+

1

2

n∑
i=1

x2
i

(see [10, Section 2.1.2 and Section 2.1.4]). For the logistic regression examples, we use the
LIBSVM [6] data sets a1a (N = 1605, n = 123) and colon-cancer (N = 62, n = 2000).

5.1 Optimality gap convergence

From inequality (2), we get the well-known optimality gap estimate for strongly convex
functions

f(x)− f∗ ≤ ‖∇f(x)‖2
2α

. (10)

How does this estimate compare with the gaps gk := f(x+
k)− vk generated by Algorithm 1?

Obviously the answer depends on the point where we evaluate the gap estimate in (10).

Nonetheless, we can say that the gaps gk are tighter than the gaps Gk := ‖∇f(xk)‖2
2α . Indeed,

by the definition of vk, we trivially have vk ≥ f(xk)−Gk and thus

gk = f(x+
k)− vk ≤ f(xk)− vk ≤ Gk.

On a relative scale, the difference between gk and Gk is striking; see Figure 3. Notice that
Gk is an optimality gap estimate before averaging, and gk is an optimality gap estimate after
averaging; the plots in Figure 3 show that optimal quadratic averaging makes great relative
progress per iteration.

In Figure 4, we plot gk, the true gaps f(x+
k)− f∗, and the gap estimate in (10) at xk, x

+
k ,

and ck for the “world’s worst” function and the logistic loss function. The true gaps are the

tightest, albeit unknown at runtime. Surprisingly, the gaps ‖∇f(ck)‖2
2α are quite bad: several

orders of magnitude larger than gk. So even though the centers ck may appear to be the focal
points of the algorithm, the points x+

k are the ones to monitor in practice. Finally we note

that the gaps gk and
‖∇f(x+k)‖2

2α are comparable, even though gk does not rely on gradient
information at x+

k .

15

“World’s Worst”

Figure 3: Relative differences in gaps Gk−gk
Gk

on the “world’s worst” function (B = 106,
n = 200), and on the logistic loss on the colon-cancer data set with regularization α = 0.0001.

“World’s Worst”

Figure 4: Comparison of various optimality gaps on the “world’s worst” function (B = 106,
n = 200), and on the logistic loss on the a1a data set with regularization α = 0.0001.

5.2 Optimal quadratic averaging with memory

To demonstrate the effectiveness of optimal quadratic averaging with memory, we use it
to minimize the logistic loss (see Figure 5). The speedup over the memoryless method is
significant, even when taking into account the extra work per iteration needed to solve the
small dimensional quadratic subproblems. In Figure 6, we compare Algorithm 3 with L-
BFGS. The two schemes are on par with each other, and neither is better than the other in
all cases.

It is perhaps fairer to compare L-BFGS with memory size m to Algorithm 3 with memory

16

Figure 5: Algorithm 3 with various memory sizes t. The case t = 1 corresponds to the
memoryless optimal averaging method in Algorithm 1. The task is logistic regression, with
regularization α = 0.0001, on data sets a1a and colon-cancer.

Figure 6: Algorithm 3 with memory size t versus L-BFGS with memory size m. The task is
logistic regression, with regularization α = 0.0001, on data sets a1a and colon-cancer.

size t = 2m (see Figure 7). Indeed, L-BFGS with memory size m actually stores m pairs of
vectors, whereas Algorithm 3 with memory size t only stores t vectors. Moreover, the most
expensive operation per iteration in L-BFGS requires 4mn multiplications (see [12, Algorithm
7.4]); in contrast, computing a new center in Algorithm 3 requires 2n(t + 1) multiplications
plus the cost of solving a small quadratic program. (Updating the matrix CTC takes t + 1
inner products in Rn, finding λ amounts to solving a small quadratic program, and computing
Cλ takes n inner products in Rt+1.) In Figure 8, we again compare L-BFGS and Algorithm 3
on logisitic regression, but with less regularization.

17

Figure 7: A fairer (equal memory) comparison of Algorithm 3 and L-BFGS. The task is still
logistic regression, with regularization α = 0.0001, on data sets a1a and colon-cancer. We
focus on lower accuracy than we did in Figure 6.

We noticed that the small dimensional quadratic program in Algorithm 3 must be solved
to high accuracy, especially on poorly conditioned problems; an active-set method works
well. Accuracy in the line search is less important. Minimizing the one-dimensional function
r 7→ f(x+ rd), with ‖d‖ = 1, to within 10−4 accuracy in r works well in general. In Figure 9,
we show how line search accuracy affects Algorithm 1.

18

Figure 8: Algorithm 3 with memory size t versus L-BFGS with memory size m. The task is
logistic regression on data sets a1a and colon-cancer, with α = 10−6 (top row) and α = 10−8

(bottom row).

6 Comments on proximal extensions

It is natural to try to extend geometric descent and optimal quadratic averaging to a proximal
setting. For the sake of concreteness, let us focus on geometric descent. We can easily extend
the suboptimal version of the algorithm to the proximal setting, but some difficulties arise
when accelerating the method. Suppose we are interested in solving the problem

min
x

f(x) := g(x) + h(x),

where g : Rn → R is β-smooth and α-strongly convex, and h : Rn → R ∪ {+∞} is closed,
convex, and is such that the proximal mapping

proxth(x) := argmin
z
{h(z) +

1

2t
‖z − x‖2}

19

0 100 200 300 400 500 600 700 800
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 Minimizing Logistic Loss on LIBSVM a1a Data Set

Iteration

Em
pi

ric
al

 O
pt

im
al

ity
 G

ap

10
0

10
−1

10
−2

10
−4

10
−8

Student Version of MATLAB

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100Minimizing Logistic Loss on LIBSVM colon−cancer Data Set

Iteration

Em
pi

ric
al

 O
pt

im
al

ity
 G

ap

10
0

10
−1

10
−2

10
−4

10
−8

Student Version of MATLAB

0 100 200 300 400 500 600 700 800
10−6

10−5

10−4

10−3

10−2

10−1

100 Minimizing Logistic Loss on LIBSVM a1a Data Set

Iteration

Em
pi

ric
al

 O
pt

im
al

ity
 G

ap

10
0

10
−1

10
−2

10
−4

10
−8

Student Version of MATLAB

0 10 20 30 40 50 60 70 80 90 100
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100Minimizing Logistic Loss on LIBSVM colon−cancer Data Set

Iteration

Em
pi

ric
al

 O
pt

im
al

ity
 G

ap

10
0

10
−1

10
−2

10
−4

10
−8

Student Version of MATLAB

Figure 9: A comparison of how the line search tolerance in Algorithm 1 affects convergence.
In the top row, we do the comparison with logistic regression on the a1a and colon-cancer
data sets with regularization α = 10−4. In the bottom row, we use regularization 10−8.

is easily computable. In the analysis of first-order methods for such problems, the gradient
mapping Gt(x) := 1

t (x− proxth(x− t∇g(x))) plays the role of the usual gradient. The
following is a standard estimate; see for example [10, Section 2.2.3]. We provide a proof for
completeness.

Lemma 6.1. Fix a step length t > 0 and define a proximal gradient step x+ := x− tGt(x).
Then for every y ∈ Rn the inequality holds:

f(y) ≥ f(x+) + 〈Gt(x), y − x〉+ t

(
1− βt

2

)
‖Gt(x)‖2 +

α

2
‖y − x‖2 .

Proof. Appealing to β-smoothness of g, we deduce

f(x+) ≤ g(x)− t 〈∇g(x), Gt(x)〉+
βt2

2
‖Gt(x)‖2 + h(x+).

20

Furthermore, strong convexity of g implies

f(x+) ≤ g(y) +
〈
∇g(x), x+ − y

〉
− α

2
‖y − x‖2 +

βt2

2
‖Gt(x)‖2 + h(x+).

Finally, using the observation that Gt(x)−∇g(x) belongs to ∂h(x+), we have

f(x+) ≤ f(y) +
〈
Gt(x), x+ − y

〉
− α

2
‖y − x‖2 +

βt2

2
‖Gt(x)‖2 .

Rearrangement completes the proof.

If we let y = x∗ in Lemma 6.1 and rearrange we get

x∗ ∈ B
(
x− 1

α
Gt(x),

(
1

α2
− 2

α
t+

β

α
t2
)
‖Gt(x)‖2 − 2

α

(
f(x+)− f∗

))
.

How should we choose the step length t? A simple approach is to choose t to minimize the
quantity 1

α2 − 2
α t+ β

α t
2, i.e., set t = 1

β . With this choice of t, we deduce the inclusion

x∗ ∈ B
(
x++,

(
1− 1

κ

) ∥∥G1/β(x)
∥∥2

α2
− 2

α

(
f(x+)− f∗

))
,

where x++ = x− 1
αG1/β(x) is a long step and x+ = x− 1

βG1/β(x) is a short step. A proximal
version of the suboptimal geometric descent follows easily from Lemma 4.1.

To accelerate the proximal geometric descent algorithm we assume in iteration k that x∗

lies in some ball

B

(
ck, R

2
k −

2

α
(f(yk)− f∗)

)
.

We then consider a second minimizer enclosing ball derived from information at some point
xk+1:

x∗ ∈ B
(
x++
k+1,

(
1− 1

κ

) ∥∥G1/β(xk+1)
∥∥2

α2
− 2

α

(
f(x+

k+1)− f∗
))

.

Following the same pattern as in Section 4.2, if we choose xk+1 to satisfy f(xk+1) ≤ f(yk)

and appeal to the smoothness inequality f(x+
k+1) ≤ f(xk+1)− 1

2β

∥∥G1/β(xk+1)
∥∥2

, we deduce
the inclusion

x∗ ∈ B
(
ck, R

2
k −

1

κ

∥∥G1/β(xk+1)
∥∥2

α2
− 2

α

(
f(x+

k+1)− f∗
))

.

By Lemma 4.3 there is a new center ck+1 with

x∗ ∈ B
(
ck+1,

(
1− 1√

κ

)
R2
k −

2

α

(
f(x+

k+1)− f∗
))

,

provided the old centers x++
k+1 and ck are far apart; specifically, we must be sure that the

inequality ∥∥x++
k+1 − ck

∥∥2 ≥
∥∥G1/β(xk+1)

∥∥2

α2
holds.

21

How do we choose xk+1 to satisfy both f(xk+1) ≤ f(yk) and
∥∥x++

k+1 − ck
∥∥2 ≥ ‖G1/β(xk+1)‖2

α2 ?
The desired xk+1 does exist; for example, xk+1 = x∗ is such a point. In the proximal setting,
it is not clear how to choose xk+1 to ensure these two inequalities (even for specific problem
classes). This is an interesting topic for future research.

Acknowledgments

We thank the anonymous referee for useful suggestions, which undoubtedly improved the
quality of the paper. We also thank Stephen J. Wright for pointing out an important typo
in the proof of Theorem 2.3 in an early version of the manuscript.

References

[1] Z. Allen-Zhu and L. Orecchia. Linear coupling: An ultimate unification of gradient and
mirror descent. Preprint, arXiv:1407.1537, 2016.

[2] H. Attouch, J. Peypouquet, and P. Redont. Fast convergence of inertial dynamics and
algorithms with asymptotic vanishing viscosity. Math. Program., doi:10.1007/s10107-
016-0992-8, pages 1–53, 2016.

[3] A. Beck. On the convexity of a class of quadratic mappings and its application to the
problem of finding the smallest ball enclosing a given intersection of balls. J. Global
Optim., 39(1):113–126, 2007.

[4] S. Bubeck and Y.T. Lee. Black-box optimization with a politician. Preprint,
arXiv:1602.04847, 2016.

[5] S. Bubeck, Y.T. Lee, and M. Singh. A geometric alternative to Nesterov’s accelerated
gradient descent. Preprint, arXiv:1506.08187, 2015.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[7] S. Chen and S. Ma. Geometric descent method for convex composite minimization.
arXiv:1612.09034, 2017.

[8] J. E. Kelley, Jr. The cutting-plane method for solving convex programs. J. Soc. Indust.
Appl. Math., 8:703–712, 1960.

[9] L. Lessard, B. Recht, and A. Packard. Analysis and Design of Optimization Algorithms
via Integral Quadratic Constraints. SIAM J. Optim., 26(1):57–95, 2016.

[10] Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Opti-
mization. Kluwer Academic Publishers, Boston, MA, 2004. A basic course.

[11] Yu. E. Nesterov. A method for solving the convex programming problem with conver-
gence rate O(1/k2). Dokl. Akad. Nauk SSSR, 269(3):543–547, 1983.

[12] J. Nocedal and S.J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, second edition, 2006.

22

[13] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterovs acceler-
ated gradient method: Theory and insights. In Z. Ghahramani, M. Welling, C. Cortes,
N.d. Lawrence, and K.q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 2510–2518. Curran Associates, Inc., 2014.

A Exact line search in accelerated gradient descent

Nesterov’s method is based on an estimate sequence; that is, a sequence of functions Qk and
nonnegative numbers Λk with

Λk → 0 and Qk(x) ≤ (1− Λk)f(x) + ΛkQ0(x).

Estimate sequences are useful because if yk satisfies f(yk) ≤ vk := minx∈Rn Qk(x), then

f(yk)− f∗ ≤ Λk (Q0(x∗)− f∗) ;

that is, f(yk) approaches f∗ with error proportional to Λk, see [10].
The quadratics in Algorithm 2 (with appropriately chosen Λk) form an estimate sequence.

To explain, for k ≥ 1, pick vectors xk and numbers λk ∈ (δ, 1) with δ > 0. Next, recursively
define

Q0(x) = v0 +
γ0

2
‖x− c0‖2 and

Qk(x) = (1− λk)Qk−1(x) + λk

(
f(xk)−

‖∇f(xk)‖2
2α

+
α

2

∥∥x− x++
k

∥∥2

)
.

Then the quadratics Qk and numbers Λk =
∏k
j=1(1 − λj) are an estimate sequence for f .

Nesterov’s method is designed to ensure the inequality f(x+
k) ≤ vk with the added optimal

rate condition λk ≥
√

α
β .

The scheme in Algorithm 2 with xk = line search
(
ck−1, x

+
k−1

)
also guarantees these

conditions. Trivially we have f(x+
0) ≤ v0. Assume, for induction, that we have f(x+

k−1) ≤
vk−1. From [10, Lemma 2.2.3], we know

vk = (1− λk)vk−1+λkf(xk)−
λ2
k

2γk
‖∇f(xk)‖2 +

+
λk(1− λk)γk−1

γk

(α
2
‖xk − ck−1‖2 + 〈∇f(xk), ck−1 − xk〉

)
.

Since xk = line search
(
ck−1, x

+
k−1

)
, we have f(xk) ≤ f(x+

k−1) ≤ vk−1 and 〈∇f(xk), ck−1 − xk〉 =
0, and therefore

vk ≥ f(xk)−
λ2
k

2γk
‖∇f(xk)‖2 = f(xk)−

1

2β
‖∇f(xk)‖2 ≥ f(x+

k).

Provided we set γ0 ≥ α, we get the optimal rate condition λk =
√

γk
β ≥

√
α
β .

23

	1 Introduction
	1.1 Notation

	2 Optimal quadratic averaging
	3 Optimal quadratic averaging with memory
	4 Equivalence to geometric descent
	4.1 Suboptimal geometric descent method
	4.2 Optimal geometric descent method

	5 Numerical examples
	5.1 Optimality gap convergence
	5.2 Optimal quadratic averaging with memory

	6 Comments on proximal extensions
	A Exact line search in accelerated gradient descent

