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1. Introduction. Matrix functions are a central subject in matrix theory and
in numerical linear algebra [12, Chapter 9], [18], [20, Chapter 6]. There are several
equivalent definitions of matrix functions, based on, for example, the Jordan canonical
form, polynomial interpolation, or Cauchy integrals [18].

However, all these equivalent definitions can only be applied to square matri-
ces. Linear algebraists have therefore considered possible extensions of the classical
concept of a matrix function that allow for rectangular matrices as their argument.
Hawkins and Ben-Israel introduced a definition based on the singular value decom-
position, and developed some basic theory [14] . They forged the name “generalized
matrix functions”1 for their singular value-based definition, and showed that gener-
alized matrix functions satisfy four of the so-called Fantappié properties [9, 10]. In
other areas of mathematics, the study of generalized matrix functions has been called
“singular value functional calculus” [1]. Recently, Arrigo, Benzi and Fenu explored
the computational aspects of bilinear forms involving generalized matrix functions in
the context of numerical linear algebra [4]. They introduced the notation f⋄, that we
adopt in this paper, for generalized matrix functions. The reader may find in [1, Sec-
tion 1] and in [4, Section 4] a survey of applications of generalized matrix functions,
including complex network analysis, computer vision, finance, control system, compu-
tation of classical functions of large skew-symmetric matrices, solution of Hamiltonian
differential systems, and filter factors.

An important part of the theory of classical matrix functions is devoted to the
study of their Gâteaux and Fréchet derivatives. This has intrinsic theoretical interest,
and has also relevant implications in numerical analysis, namely, it is important for the
analysis of the condition number of a matrix function [18, Chapter 3]. In particular,
a basic result in matrix theory is the Daleckǐi-Krěin theorem [8], that we review in
Section 2.4 and that gives a formula for the derivative of the classical matrix function
of any diagonalizable matrix.

The main goal of this paper is to study the differentiability of generalized matrix
functions, both developing a theoretical framework and analyzing the implications on

∗Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, UK,
CO4 3SQ. (vnofer@essex.ac.uk)

1In spite of this name, generalized matrix functions do not generally reduce to classical matrix
functions when the argument matrix is square [4, 18]. We adhere to the original terminology of [14],
following also the more recent paper [4].
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numerical conditioning. Our main result is a “generalized Daleckǐi-Krěin theorem”: an
explicit formula for the derivative of a generalized matrix function f⋄(A). Unlike the
classical case, where a closed-form expression for the Fréchet derivative is not known
for a generic function and a matrix with nontrivial Jordan form, our theorem holds in
full generality. Among the applications of a formula for the derivative of generalized
matrix functions is the study of their conditioning: we will discuss this matter in
the present paper. More generally, our “generalized Daleckǐi-Krěin theorem” may, at
least potentially, be useful whenever there is an interest in studying how f⋄(A) changes
when A is perturbed. This happens, for example, in complex network analysis [3].

The paper is structured as follows. Section 2 summarizes the mathematical back-
ground that we need: singular value decompositions, generalized matrix functions,
Fréchet and Gâteaux derivatives of functions between Banach spaces, and the Daleckǐi-
Krěin theorem. Section 3 investigates the existence of the real Fréchet and Gâteaux
derivatives of generalized matrix functions, shows that they are always equal to each
other, and states and proves our main result: an explicit formula for them. We will
also explain why, for complex matrices, generalized matrix functions are generally not
complex-differentiable. Finally, Section 4 discusses the application of our results to
the study of the condition number of generalized matrix functions.

2. Background.

2.1. Singular value decompositions. LetA ∈ Cm×n have rank r, and through-
out the paper we denote

ν := min{m,n}.
A singular value decomposition (SVD) [12] of A is a factorization A = USV ∗ such
that S ∈ Rm×n is diagonal, i.e., Sij = 0 if i ̸= j, and U ∈ Cm×m and V ∈ Cn×n

are unitary, i.e., UU∗ = Im, V V ∗ = In. Moreover, the diagonal entries Sii = σi are
called the singular values of A and appear in nonincreasing order: σ1 ≥ · · · ≥ σr >
σr+1 = · · · = σν = 0. The columns of U and V are called the left and right singular
vectors of A, respectively. The matrix S is uniquely determined by A, but there exist
degrees of freedom in the choice of U and V , which is why one speaks of “an SVD”,
rather than “the SVD”. However, if A ∈ Rm×n, then U and V can always be chosen
to be real and orthogonal, i.e., UUT = Im, V V T = In, and we will always implicitly
make this assumption whenever we refer to an SVD of a real matrix.

Following [4], given an SVD of A we define the partial isometries Ur ∈ Cm×r and
Vr ∈ Cn×r as the matrices whose columns are equal to the r leftmost columns of U
and V , respectively, and Sr ∈ Rr×r as the r × r top-left block of S. The resulting
compact SVD (CSVD) of the matrix A is the factorization

A = UrSrV
∗
r ,

whose existence can be immediately deduced from the SVD. For the definition of
the CSVD to make sense when r = 0 and Ur, Sr, Vr are empty matrices, we tacitly
understand here (and throughout the paper) that, if X ∈ Cm×0 and Y ∈ C0×n, then
XY = 0 ∈ Cm×n.

2.2. Generalized matrix functions. In [4, 14] the following definition, based
on the CSVD, is given, albeit in a slightly different form. Here and below, [0,∞)
denotes the set of nonnegative real numbers, while S denotes an arbitrary, but fixed,
subset of [0,∞).

Definition 2.1. Let A ∈ Cm×n be a rank-r matrix and let A = UrSrV
∗
r be a

CSVD. Let S ⊆ [0,∞) be such that σi ∈ S for all i = 1, . . . , r and f : S → R be a
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scalar function. The generalized matrix function f⋄ : Cm×n → Cm×n induced by f
is defined as

f⋄(A) := Urf(Sr)V
∗
r ,

where f(Sr) is the r × r diagonal matrix such that

(f(Sr))ii = f((Sr)ii) = f(σi) for i = 1, . . . , r.

Remark 2.2. Definition 2.1 is well posed, in the sense that it does not depend
on the particular choice of an SVD (and hence of the resulting CSVD).

Indeed, suppose that A has k distinct singular values, denoted by

σ1 = σi1 > σi2 > · · · > σik = σν ,

and suppose that

A =
k∑

j=1

σijU(j)V
∗
(j)

Here, U(j), V(j) are matrices with orthonormal columns spanning the jth left and right

singular spaces. Note that this implies that the block matrices Ur =
[
U(1) . . . U(ℓ)

]
and Vr =

[
V(1) . . . V(ℓ)

]
appear in one arbitray, but fixed, CSVD A = UrSrVr.

Noting that σij are all positive, with the one possible exception of σik which is allowed
to be zero, we conclude that the index ℓ is equal to either k or k − 1, according to
whether A has full rank or not.

There are some degrees of freedom in the SVD (and hence in the CSVD). In
particular, we may map U(j) 7→ U(j)Qj and V(j) 7→ V(j)Zj, for j = 1, . . . , ℓ and where
Qj , Zj are arbitrary unitary matrices of the appropriate size. Moreover, Qj and Zj

cannot be chosen independently for nonzero singular values, namely, σij ̸= 0 ⇒ Qj =
Zj. The latter observation implies that f⋄(A) does not depend on which particular
CSVD one starts from: indeed, by Definition 2.1

f⋄(A) =
ℓ∑

j=1

f(σij )U(j)QjQ
∗
jV(j) =

ℓ∑
j=1

f(σij )U(j)V(j),

where again ℓ = k if σν > 0 or ℓ = k − 1 if σν = 0.
The argument above holds even when A is rank deficient and f(0) ̸= 0. The

crucial observation is that the zero singular values are always mapped to 0 by f⋄(A),
regardless of the value of f(0).

Remark 2.3. The observations in Remark 2.2 imply that it holds rank f⋄(A) ≤
rankA, with equality if and only if f(σi) ̸= 0 for any singular value σi of A.

Observe also that, if we restrict the domain of f⋄ to real matrices, then clearly
f⋄ maps Rm×n to itself.

Several other elementary properties of generalized matrix functions are discussed
in [4, 14, 18]; below we collect a few results that are useful to us, and we add some
new observations of our own.

Proposition 2.4. ([4, Proposition 3.2]) For any A ∈ Cm×n, and any generalized
matrix function f⋄ such that f⋄(A) is defined:
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(i) [f⋄(A)]
∗
= f⋄(A∗);

(ii) if U1 ∈ Cm×m and U2 ∈ Cn×n are unitary, then f⋄(U1AU2) = U1f
⋄(A)U2.

Theorem 2.5. ([4, Theorem 3.4]). For any A ∈ Cm×n, and any generalized
matrix function f⋄, induced by the scalar function f and such that f⋄(A) is defined,
it holds

f⋄(A) = f(
√
AA∗)(

√
AA∗)†A = A(

√
A∗A)†f(

√
A∗A),

where X† denotes the Moore-Penrose pseudoinverse of the matrix X [24] and f(Y )
denotes the classical matrix function [18], induced by the same scalar function f , of
the matrix Y .

We focus now on generalized polynomial functions p⋄(A). Note that, even when
A is square, p⋄(A) is not a polynomial in A in the classical sense, but a generalized
polynomial, whose explicit form is clarified in the next Remark.

Remark 2.6. [14] Let first p = x2k+1. Then the induced generalized odd powers of
A are equal to p⋄(A) = (AA∗)kA = A(A∗A)k. If p = x2k, given a CSVD A = UrSrV

∗
r ,

then the generalized even powers of A are p⋄(A) = (AA∗)kQ = Q(A∗A)k, where
Q = UrV

∗
r . Formulae for a generic generalized polynomial p⋄(A) can be obtained by

linearity.
Definition 2.1, being based on the CSVD, is advantageous for computational

purposes. In this paper, we will sometimes find more convenient to use the next,
equivalent, definition, based on the SVD.

Definition 2.7. Let A ∈ Cm×n be a rank-r matrix and let A = USV ∗ be an
SVD. Let S ⊆ [0,∞) be such that σi ∈ S for all i = 1, . . . , r, and let f : S → R.
Then, we define the scalar function f⋄(σ) : (S ∪ {0}) → R as

f⋄(σ) =

{
f(σ) if σ > 0;

0 if σ = 0.
(2.1)

The generalized matrix function f⋄ : Cm×n → Cm×n induced by f is defined as

f⋄(A) := Uf⋄(S)V ∗,

where f⋄(S) is defined as the m× n diagonal matrix such that

(f⋄(S))ii = f⋄(Sii) = f⋄(σi) for i = 1, . . . , ν.

It is immediate that Definitions 2.1 and 2.7 are equivalent. Indeed, if A = USV ∗

is an SVD and labelling by Ui (resp. Vi) the ith column of U (resp. V ),

Urf(Sr)V
∗
r =

r∑
i=1

f(σi)UiV
∗
i =

ν∑
i=1

f⋄(σi)UiV
∗
i = Uf⋄(S)V ∗.

A third characterization is also possible, as briefly mentioned in [18, Solution
to Problem 1.53]. If m ≥ n and A = QH is a polar decomposition [18, Chapter 8],
Definition 2.7 and Proposition 2.4 yield f⋄(A) = Qf⋄(H), where f⋄(H) is the classical
matrix function of H induced by the scalar function (2.1). If either A has full rank or
f(0) = 0, then we have the stronger property f⋄(A) = Qf(H). Note, however, that
the latter statement is not true if f(0) ̸= 0 and A is rank deficient: indeed, in this
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scenario Qf(H) is not even uniquely defined – unlike Qf⋄(H) = f⋄(A) – because of
the nonuniqueness of Q.

Definition 2.7 makes it manifest that the scalar functions of the form (2.1) cannot
be continuous at 0 unless they are induced by a continuous function f satisfying
f(0) = 0. Generalized matrix functions are built upon the modified scalar functions
(2.1), and hence the same observation holds for rank deficient matrices.

Remark 2.8. Suppose that 0 ∈ S but f(0) ̸= 0. If A does not have full rank, i.e.,
if rankA < ν, then f⋄(X) is not continuous (let alone differentiable) at X = A.

Example 2.9. Suppose that S contains a right neighbourhood of 0. For t > 0 let
A(t) =

[
0 t

]
. It is easy to show that f⋄(A(t)) =

[
0 f(t)

]
. Therefore,

lim
t→0

f⋄(A(t)) = f⋄(A(0)) =
[
0 0

]
⇔ f(0) = 0.

2.3. Fréchet derivatives, Gâteaux derivatives, and their relation. In this
subsection we review some basic notions in functional analysis. A more detailed
treatment can be found, e.g., in [23], or in [25] for the finite dimensional case.

Suppose that X,Y are Banach spaces and let f : X → Y . Then f is said to be
Fréchet differentiable at x ∈ X if there exists a bounded linear map Lf (x, ·) such that

lim
∥h∥X→0

∥f(x+ h)− f(x)− Lf (x, h)∥Y
∥h∥X

= 0 ∀ h ∈ X.

The map Lf is required to be real-linear for real Banach spaces and complex-linear
for complex Banach spaces. Since any complex Banach space is also a real Banach
space, it is possible for a function f defined on a complex Banach space to be Fréchet
real-differentiable but not Fréchet complex-differentiable.

Under the assumptions above, Lf (x, ·) is called the Fréchet derivative of f at x.
It is, by definition, linear in h. When it exists, the Fréchet derivative is equal to the
Gâteaux derivative, defined as2

Gf (x, h) = lim
t→0

f(x+ th)− f(x)

t

where t ∈ R for real Banach spaces, and t ∈ C for complex Banach spaces.
The existence of the Gâteaux derivative alone does not imply Fréchet differentia-

bility. However, if the Gâteaux derivative exists, additional sufficient conditions are
known that imply that f is Fréchet differentiable and the two derivatives coincide, for
instance: (i) the Gâteaux derivative is linear in h, and is continuous in x [18, Chapter
3], or (ii) f is jointly (in x and h) continuously Gâteaux differentiable [13, Section 3],
or (iii) X is finite dimensional, f is Lipschitz continuous, and the Gâteaux derivative
is linear in h [2, Proposition A.4].

Example 2.10. Let f : R2 → R, (x, y) 7→ x3

x2+y2 if (x, y) ̸= (0, 0) and f(0, 0) = 0.

Then f is Gâteaux differentiable for any (x, y) ∈ R2, with

Gf ((x, y), (hx, hy)) =

{
(x2 + y2)−2(−2xyhy + (x2 + 3y2)hx) for (x, y) ̸= (0, 0)

f(hx, hy) for (x, y) = (0, 0).

2Some authors require that the Gâteaux derivative is linear in h, using the term “Gâteaux
differential” if this condition is dropped. We do not insist on linearity, but, as a warning against
potential confusion, we note that both customs are common in the literature.
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Hence f is Fréchet differentiable for (x, y) ̸= (0, 0), with Lf (x, h) = Gf (x, h), but it
is not Fréchet differentiable at (0, 0).

In the following, we will take X = Y = Rm×n or Cm×n (the latter seen as a
real Banach space, for technical reasons to be discussed later on). In particular, X
will always be a finite dimensional Banach space, so that any linear map defined on
X is necessarily bounded, and the definition of the Fréchet derivative can be slightly
simplified accordingly.

2.4. The Daleckǐi-Krěin theorem. Suppose that a square matrix A ∈ Cn×n

is diagonalizable by similarity, i.e., that there exists an invertible matrix Z ∈ Cn×n

such that A = ZDZ−1 and D is diagonal. Then, given a scalar function f defined
on the eigenvalues of A, the classical matrix function f(D) is the diagonal matrix
satisfying (f(D))ii = f(Dii), and f(A) is defined as f(A) = Zf(D)Z−1 (one can
check that the definition is well posed in the sense that it does not depend on the
choice of Z). This definition can be extended to any square matrix, including those
whose Jordan canonical form is not diagonal. The details can be found in classical
references such as [12, 18, 20].

Since Cn×n is a Banach space, it makes sense to study the Fréchet derivative of
the classical matrix function f(A). Besides the intrinsic theoretical interest, the main
application is the study of the condition number of matrix functions, see [18, Chapter
3]. An explicit formula is known for diagonalizable matrices, and was first formulated
by Daleckǐi and Krěin. We recall [19] that the Schur (or Hadamard) product of two
matrices A,B ∈ Cm×n is denoted by (A ◦ B) ∈ Cm×n and it is defined entrywise as
(A ◦B)ij = AijBij .

Theorem 2.11. [Daleckǐi–Krěin Theorem][8]. Let A = ZDZ−1 ∈ Cn×n be
a diagonalizable matrix, with D diagonal, and let f be continuously differentiable on
the spectrum of A. Then the Fréchet derivative of the classical matrix function f(X)
at X = A, applied to the perturbation E, is equal to

Lf (A,E) = Z(F ◦ (Z−1EZ))Z−1

where the symbol ◦ denotes the Schur product and the matrix F ∈ Cn×n is defined as

Fij =
f(Dii)− f(Djj)

Dii −Djj
if Dii ̸= Djj , Fij = f ′(Dii) otherwise.

3. Main result. The Daleckǐi-Krěin theorem only applies to diagonalizable (by
similarity) square matrices. In this section, we derive an analogous result, valid for
any matrix, either square or not, and generalized matrix functions. Namely, we first
prove the Gâteaux and Fréchet real-differentiability, under suitable assumptions, of
generalized matrix functions. Then, we give explicit formulae for the derivatives.

3.1. Existence of the real Gâteaux and Fréchet derivatives. Generalized
matrix functions of a complex matrix A are generally3 not complex-differentiable
(neither in the Gâteaux nor in the Fréchet sense), not even in the scalar case.

Example 3.1. Let us compute f⋄(ρ+ z)−f⋄(ρ) for 0 ̸= ρ ∈ C and z = ϵeιζ ∈ C.
By item (ii) in Proposition 2.4, without loss of generality we may take ρ real and
positive. Defining

µ(ϵ, ζ) =
√
ρ2 + ϵ2 + 2ρϵ cos ζ, θ(ϵ, ζ) = arctan

ϵ sin ζ

ρ+ ϵ cos ζ

3That is, except a few trivial exceptions, e.g., linear functions.
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we get (assuming ϵ < ρ)

f⋄(ρ+ z)− f⋄(ρ) = eιθ(ϵ,ζ)f(µ(ϵ, ζ))− f(ρ),

and expanding in a power series in ϵ,

f⋄(ρ+ z)− f⋄(ρ) = ϵ

(
f ′(ρ) cos ζ + ι

f(ρ)

ρ
sin ζ

)
+O(ϵ2).

This shows that, for a generic f , the complex Gâteaux derivative of the generalized
matrix function f⋄ does not exist. Indeed, unless ρf ′(ρ) = f(ρ), letting ϵ → 0+ with
ζ=const. in z = ϵeιζ yields different results of the limit

lim
z→0

f⋄(ρ+ z)− f⋄(ρ)

z

depending on ζ.
Therefore, from now on we will always consider real derivatives of f⋄(A), even

when A is complex.
Let us start by considering Gâteaux differentiability.
Theorem 3.2. [Gâteaux real-differentiability of generalized matrix func-

tions] Let A ∈ Cm×n and let f : S → R be differentiable on an open subset of S
containing the positive singular values of A. Moreover, if A is rank deficient, i.e., if
rankA < ν, suppose further that f(0) = 0 and that f is right differentiable at 0. Then
f⋄(X), defined as in Definitions 2.1 or 2.7, is Gâteaux differentiable at X = A.

Proof. Recall that [6, Theorem 1] any real-valued real-analytic matrix function ad-
mits an analytic SVD. Note that, although [6, Theorem 1] only states this result for a
real-valued real-analytic matrix function A(t), its proof relies on specializing the anal-

ysis of [21, Section II.6.2] to the matrix

[
0 A(t)

A(t)T 0

]
. However, the theory of [21]

applies to any matrix-valued function, possibly complex, which is Hermitian for any
value of the real parameter t. Therefore, slightly modifying the proof of [6, Theorem

1] by considering instead the matrix

[
0 A(t)

A(t)∗ 0

]
, we see that every real-analytic

matrix-valued function (possibly complex) admits an analytic SVD. In particular,
letting A(t) = A+ tE, it holds

A+ tE = U(t)S(t)V (t)∗ (3.1)

where U(t), V (t) are analytic and unitary and S(t) is real, analytic and diagonal for
all real t, and in particular in some neighbourhood of 0. These facts immediately
yield that the real Gâteaux derivative

Gf⋄(A,E) = lim
t∈R,t→0

f⋄(A+ tE)− f⋄(A)

t
(3.2)

exists provided that f⋄(S(t)) is differentiable at t = 0. The latter condition is satisfied
if and only if the scalar function f is differentiable on an open set containing the
singular values of A, with the additional conditions that f(0) = 0 and that f is right
differentiable at 0 if A is not full rank. Indeed, expanding U(t) = U0 + tU1 + O(t2),
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V (t) = V0+ tV1+O(t2), S(t) = S0+ tS1+O(t2), from (3.1) we get that A = U0S0V
∗
0

is an SVD , that U0U
∗
1 + U1U

∗
0 = 0 = V0V

∗
1 + V1V

∗
0 , that S1 is diagonal, and that

Gf⋄(A,E) = U1f
⋄(S0)V

∗
0 + U0f

⋄(S0)V
∗
1 + U0

df⋄(S(t))

dt

∣∣∣∣
t=0

V ∗
0 , (3.3)

where by the chain rule

df⋄(S(t))

dt

∣∣∣∣
t=0

= (f ′)⋄(S0) ◦ S1.

The computation of the Gâteaux derivative from (3.3) is, in principle, not im-
possible employing the sophisticated techniques of [6]; however, this may be very
challenging in practice. We will give a much more explicit formula in Theorem 3.8.

If A is not full rank and f(0) ̸= 0, then by Remark 2.8 f⋄(X) cannot be differen-
tiable at X = A. If we assume f(0) = 0, then generalized matrix functions induced by
a Lipschitz continuous function f are Lipschitz continuous [1, Theorem 1.1]. Hence,
by Rademacher’s Theorem [15, Theorem 3.1], they must be Fréchet differentiable al-
most everywhere; yet, in principle, there might exist a measure zero subset of Cm×n

on which they are not.

To fill this gap, we follow a different approach based on polynomial interpolation.
The following theorem is a generalized matrix functional analogue of [20, Theorem
6.6.14]. Its first part is new, while the second part was already mentioned (without
giving details) in [14].

Theorem 3.3. Let A ∈ Cm×n and let f : S → R be differentiable on an open
subset of S containing the positive singular values of A. Moreover, if A is rank
deficient suppose further that f(0) = 0 and that f is right differentiable at 0. Let A
have k distinct singular values, denoted by

σ1 = σi1 > σi2 > · · · > σik = σν ,

and let q be the unique polynomial of degree 2k − 1 satisfying

q(σij ) = f(σij ) and q′(σij ) = f ′(σij ), j = 1, . . . , k.

Then the real Gâteaux derivatives of f⋄(X) and q⋄(X) coincide at X = A:

Gf⋄(A,E) = Gq⋄(A,E) ∀E ∈ Cm×n.

Moreover, let p be the unique polynomial of degree h− 1 satisfying

p(σij ) = f(σij ), j = 1, . . . , h

where h = k if A has full rank and h = k − 1 if A is rank deficient. (If h = 0, set
p = 0). Then f⋄(A) = p⋄(A).

Proof. The first part of the statement is a consequence of (3.3). Indeed, U0, U1, V0, V1, S0, S1

depend on A and E, but not on f . On the other hand, the definition of q guarantees
that f⋄(S0) = q⋄(S0) and that (f ′)⋄(S0) = (q′)⋄(S0).

The second part of the statement is straightforward from Definition 2.1.
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If f⋄ is the generalized matrix power induced by f(x) = 1 = x0, then f⋄(X) is
differentiable at X = A if and only if A is full rank. In contrast, positive generalized
matrix powers are always differentiable, as we next show.

Lemma 3.4. Let f(x) = xh, h = 1, 2, 3, . . . , and let A ∈ Cm×n. Then the
generalized power matrix f⋄(X), defined as in Definitions 2.1 or 2.7, is Fréchet real-
differentiable at X = A.

Proof. By Remark 2.6, if h = 2k + 1 is odd then f⋄(A) is manifestly Fréchet
differentiable: indeed, each entry of (AA∗)kA is a polynomial function of the entries
of A. It remains to argue that the same is true for even and positive h = 2k ≥ 2.
By Remark 2.6, f⋄(A) = (A∗A)kUrV

∗
r , where Ur and Vr are the partial isometries

defining a CSVD of A = UrSrV
∗
r . Suppose first that r = m = n, i.e., A is square and

nonsingular. Observe that

(AA∗)kUrV
∗
r = (AA∗)k−1AVrSrV

∗
r =: (AA∗)k−1AH,

where H = VrSrV
∗
r is the Hermitian factor of the polar decomposition of A [18,

Chapter 8], which is uniquely defined for an invertible square matrix [18, Theorem 8.1].
That H is Gâteaux real-differentiable can be argued as in the proof of Theorem 3.2
via the existence of the analytic SVD (3.1). Indeed, observe that if A(t) = A+ tE =
U(t)S(t)V (t)∗ is an SVD then the Hermitian factor of any polar decomposition of
A(t) is H(A(t)) =

√
V (t)S(t)TS(t)V (t)∗. Note also that H is a Lipschitz continuous

function of A [18, Theorem 8.9]. Therefore, if we can show that the Gâteaux derivative
is real-linear in E, it will follow that H is a Fréchet real-differentiable function of A [2,
Proposition A.4]. Let GH(A,E) be the real Gâteaux derivative of H as a function of
A, applied to the direction E. Following [17, Proof of Theorem 2.5], one can show by
differentiating the equation H(t)2 = A(t)∗A(t) and evaluating at t = 0 that it holds

HGH(A,E) +GH(A,E)H = A∗E + E∗A.

The latter is a Sylvester equation in the unknown GH(A,E), whose right hand side
depends linearly on the real and imaginary parts E. Hence, it displays the real-
linearity of GH(A,E) in E (It is known [20, Section 4.4] that the Sylvester equation
AX −XB = C has a unique solution for any right hand side C if and only if A and
B have no eigenvalues in common. Note that, in our case, A = −B = H. On the
other hand, by assumption, H is Hermitian positive definite, thus ensuring existence
and uniqueness of the solution of the Sylvester equation). This concludes the proof
for a square and invertible A.

For a general A, we will give a proof assuming for simplicity of exposition that
m ≥ n: the case n > m is similar, or it can be argued that it follows applying the
argument to A∗ and invoking item (i) in Proposition 2.4. Let A = QH, Q = UrV

∗
r ,

H = VrSrV
∗
r , be a polar decomposition. When A does not have full rank, it is not any

more true that the Hermitian factor H is Fréchet real-differentiable at A. However,
we will argue that B = AH is, implying that

(AA∗)kUrV
∗
r = (AA∗)k−1B

is differentiable as well. Observe that B = AH = f⋄(A) is the generalized matrix
function of A induced by the locally Lipschitz continuous (on any bounded interval
containing the singular values of A) scalar function f(x) = x2, that satisfies f(0) = 0.
Hence, B is locally Lipschitz continuous in some neighbourhood of A by [1, Theorem
1.1], and in view of Theorem 3.2 it suffices to show that its real Gâteaux derivative
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is real-linear in the perturbation E. Note that by item (ii) in Proposition 2.4 the
generalized matrix function B is differentiable at A if and only if it is differentiable
at S, where A = USV ∗ is an SVD. Therefore, with no loss of generality, we may take
A to be of the fom

A =

[
Sr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
⇒ B =

[
S2
r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
.

We will suppose that E is partitioned coherently with A:

E =

[
E11 E12

E21 E22

]
.

Letting A(t) = A+ tE, suppose that A(t) = U(t)S(t)V (t)∗ is an analytic SVD (3.1).
Partition

S(t) =

[
Sr(t) 0
0 O(t)

]
,

U(t) =

[
U

(0)
11 + tU

(1)
11 tU12

tU21 U
(0)
22 + tU

(1)
22

]
+O(t)2, V (t) =

[
V

(0)
11 + tV

(1)
11 tV12

tV21 V
(0)
22 + tV

(1)
22

]
+O(t2),

where the top-left blocks are all r× r and the fact that the off-diagonal blocks of U(t)
and V (t), as well as the bottom-right block of S(t), are 0 at t = 0 is a consequence of
the zero pattern of A(0) = A. Observe that, if f⋄ is the generalized matrix function
induced by f(x) = x2, one has

f⋄(S(t)) =

[
S2
r (t) 0
0 O(t2)

]
.

Hence, for B(t) = U(t)f⋄(S(t))V (t)∗, and with B = B(0), we obtain

B(t) = B + t

[
X U

(0)
11 S2

rV
∗
21

U21S
2
r (V

(0)
11 )∗ 0

]
+O(t2), (3.4)

where X := U
(0)
11 (S2

r )
′(0)(V

(0)
11 )∗ + U

(0)
11 S2

r (V
(1)
11 )∗ + U

(1)
11 S2

r (V
(0)
11 )∗. We deduce that

the real Gâteaux derivative of B at A, applied to the perturbation E, has the form

GB(A,E) =

[
X Y
Z 0

]
∈ Cm×n,

and by (3.4) it is immediate to check that X ∈ Cr×r is precisely GB(Sr, E11), i.e., the
real Gâteaux derivative of the generalized matrix function f⋄ induced by f(x) = x2

(but seen as a function defined on Cr×r rather than on Cm×n as elsewhere in this
proof) at Sr, applied to the perturbation E11. Since Sr is square and invertible, by the
first part of the proof X is also a real Fréchet derivative, and therefore it is real-linear
in E11, and hence, in E.

Now, differentiating the equations B(t)B(t)∗ = (A(t)A(t)∗)2 and B(t)∗B(t) =
(A(t)∗A(t))2 and evaluating them at t = 0 we obtain, respectively,

BGB(A,E)∗ +GB(A,E)B∗ = EA∗AA∗ +AE∗AA∗ +AA∗EA∗ +AA∗AE∗
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and

GB(A,E)∗B +B∗GB(A,E) = E∗AA∗A+A∗EA∗A+A∗AE∗A+A∗AA∗E.

Computing the (2, 1) block of the first equation yields ZS2
r = E21S

3
r , while from the

(1, 2) block of the second equation we get S2
rY = S3

rE12. Hence, Y and Z are also
both linear (and hence real-linear) in E, and this concludes the proof.

The next theorem is the main result of this subsection.
Theorem 3.5. [Fréchet real-differentiability of generalized matrix func-

tions] Let A ∈ Cm×n and let f : S → R be differentiable on an open subset of S
containing the positive singular values of A. Moreover, if A is rank deficient, i.e., if
rankA < ν, suppose further that f(0) = 0 and that f is right differentiable at 0. Then
f⋄(X), defined as in Definitions 2.1 or 2.7, is Fréchet real-differentiable at X = A.

Proof. If A has full rank then the statement follows by Theorem 2.5 and by
standard results on the differentiability of standard matrix functions [18, Chapter 3]
and pseudoinverses of real full rank matrices [11]. To deal with the case of a rank
deficient A, we may suppose that f(0) = 0. By Theorem 3.3, it suffices to prove
the statement for a polynomial of the form (note that the trailing coefficient is 0 by
assumption)

f(x) =
κ∑

i=1

fix
i.

The statement then follows by linearity from Lemma 3.4.
Corollary 3.6. Under the assumptions of Theorem 3.5, the real Gâteaux and

Fréchet derivatives coincide, and are real-linear in E.
Remark 3.7. Corollary 3.6 has very useful pratical consequences, as Gâteaux

derivatives are easy to compute. More in detail, if we have a basis (over the real field)
Ei, i = 1, . . . , 2mn, of Cm×n, and if we can compute the 2mn Gâteaux derivatives
Gf⋄(A,Ei), then for E =

∑
i αiEi we can obtain Lf⋄(A,E) =

∑
i αiGf⋄(A,Ei). This

property is crucial for the proof of Theorem 3.8.
Note also that, if f is continuously differentiable on the singular values of A,

it is easy to show the (real) Gâteaux and Fréchet derivatives are also continuous in
A. Hence, if f is a continuously differentiable function and we have a converging
sequence An → A, then we can compute Lf⋄(An, E), then we can obtain Lf⋄(A,E) =
limn→∞ Lf⋄(An, E).

In summary, under mild assumptions on the underlying scalar function f , general-
ized matrix functions on Cm×n are real-differentiable, but not complex-differentiable.
The only way around this obstacle is to see Cm×n as a real Banach space of dimension
2mn. We now turn to an explicit formula for the real Fréchet derivative of complex
generalized matrix functions in this context. As a special case, we will also recover
the Fréchet derivative of real generalized matrix functions on Rm×n.

3.2. Explicit formulae for the derivative. The following theorem is our main
result, and it gives an explicit formula for the real Fréchet derivative of a generalized
matrix function f⋄(X) : Cm×n → Cm×n.

Theorem 3.8. [Daleckǐi-Krěin Theorem for generalized matrix func-
tions]
Let A = USV ∗ be an SVD of A ∈ Cm×n, where U ∈ Cm×m, V ∈ Cn×n, S ∈ Rm×n,
and Sii =: σi, i = 1, . . . , ν, are the singular values of A. Let f : S → R be differen-
tiable on an open subset of S containing the positive singular values of A. Moreover,

11



if A is rank deficient, i.e., if rankA < ν, suppose further that f(0) = 0 and that f
is right differentiable at 0. Then, if we see Cm×n as a 2mn-dimensional real vector
space, the real Fréchet derivative at X = A of the generalized matrix function f⋄(X),
applied to the complex perturbation E, is

Lf⋄(A,E) = U
(
F ◦ ℜ(Ê) + ιH ◦ ℑ(Ê) +G ◦Υ(Ê)

)
V ∗, (3.5)

where
• ι is the imaginary unit;
• the symbol ◦ denotes the Schur product;
• Ê = U∗EV , ℜ(Ê) is its real part, and ℑ(Ê) is its imaginary part;
• the real-linear operator Υ is the following generalization of the conjugate
transposition operator: for any X ∈ Cm×n, Υ(X) ∈ Cm×n and

if m = n, Υ(X) = X∗;

if m > n and X =

[
X1

X2

]
, X1 ∈ Cn×n, Υ(X) =

[
X∗

1

X2

]
;

if m < n and X =
[
X1 X2

]
, X1 ∈ Cm×m, Υ(X) =

[
X∗

1 X2

]
;

• F,G ∈ Rm×n are defined as follows:

Fij =



σif(σi)−σjf(σj)

σ2
i−σ2

j
if i ̸= j, max(i, j) ≤ ν, and σi ̸= σj ;

σif
′(σi)+f(σi)

2σi
if i ̸= j , max(i, j) ≤ ν, and σi = σj ̸= 0;

f(σj)
σj

if i > n, and σj ̸= 0;
f(σi)
σi

if j > m, and σi ̸= 0;

f ′(σi) otherwise;

(3.6)

Gij =


σjf(σi)−σif(σj)

σ2
i−σ2

j
if i ̸= j, i, j ≤ ν, and σi ̸= σj ;

σif
′(σi)−f(σi)

2σi
if i ̸= j, i, j ≤ ν, and σi = σj ̸= 0;

0 otherwise.

(3.7)

• and H ∈ Rm×n is such that with Hii = f(σi)/σi if σi ̸= 0, Hii = f ′(0) (the
right derivative of f at x = 0) if σi = 0, whereas Hij = Fij for i ̸= j.

Proof. Item (ii) in Proposition 2.4 yields

f⋄(A+ tE) = Uf(S + tU∗EV )V ∗ ≃ f⋄(A) + tULf (S,U
∗EV )V ∗,

where the last approximate equality is exact up to additive terms of higher order in
tE. Therefore, without loss of generality we can assume that A has zero off-diagonal
elements and real positive diagonal elements.

The strategy of the proof is to first prove the result when E is zero except for one
element, equal to either 1 or ι. Using Corollary 3.6, we will compute Lf (A,E) for
such an E as the limit at the right hand side of (3.2). The result for a general E will
then follow by linearity (over the real field). We now examine a few separate cases
according to the value and the exact position of the unique nonzero element of E.

We assume first that the nonzero element of E is equal to 1. There are three
cases:

12



- Case 1. If the unique nonzero element of E is its ith diagonal element, then
f⋄(A + tE) − f⋄(A) = diag(0, . . . , 0, f(σi + t) − f(σi), 0, . . . , 0), where the
nonzero element appears in the ith position. Dividing by t and going to the
limit t → 0 we obtain diag(0, . . . , 0, f ′(σi), 0, . . . , 0), thus proving the theorem
in this case.

- Case 2a. Suppose now that the unique nonzero element of E is in the position
(i, j) with i < j ≤ ν. In this case, A+ tE is not diagonal, and hence, we need
to compute its singular value decomposition to estimate f⋄(A+ tE). Let us
take, without loss of generality (modulo applying a permutation equivalence),
i = 1, j = 2. Then, A+ tE = (U ′ ⊕ Im−2)S

′(V ′ ⊕ In−2)
∗ is a singular value

decomposition if

(U ′)∗
[
σi t
0 σj

]
V ′ (3.8)

is real and diagonal and U ′, V ′ are unitary.
We now need to distinguish three subcases.
Subcase 2a-(i). Assume that σi > σj . Then, to compute U ′ and V ′, let us

expand them as U ′ = I2 + t

[
0 −u∗

u 0

]
+ O(t2) and V ′ = I2 + t

[
0 −v∗

v 0

]
+

O(t2), observing that, at the identity matrix, the tangent space to the smooth
manifold of unitary matrices is the subspace of skew-Hermitian matrices, as
can be easily seen by differentiating the equation XX∗ = In and evaluating
at X = In (see also [26, Section 5.4] and [5]). Imposing that (3.8) is diagonal
and retaining only the O(t) terms leads to the linear system[

−σj σi

−σi σj

] [
u
v

]
=

[
1
0

]
,

which for σi ̸= σj yields

u =
σj

σ2
i − σ2

j

, v =
σi

σ2
i − σ2

j

.

Moreover, with this choice of u and v we have S′ = S +O(t2). At this point,
observe that f⋄(A + tE) = (U ′ ⊕ In−2)f(S

′)(V ′ ⊕ In−2)
∗, and hence, by a

direct computation,

f⋄(A+ tE)− f⋄(A) = t

([
0 α
β 0

]
⊕ 0(m−2)×(n−2)

)
+O(t2),

with

α =
σif(σi)− σjf(σj)

σ2
i − σ2

j

and

β =
σjf(σi)− σif(σj)

σ2
i − σ2

j

.

Subcase 2a-(ii). The argument given in Subcase 2a-(i) clearly fails when σi =
σj . However, in this case there are more degrees of freedom in the expansion
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of U ′ and V ′ in (3.8). Indeed, we may have U ′ = (I2 + t

[
0 −u∗

u 0

]
)Q,

V ′ = (I2+ t

[
0 −v∗

v 0

]
)Q for any 2×2 unitary matrix Q. (Here, we are using

the fact that a matrix in the tangent space atX = Q of the smooth manifold of
unitary matrices can always be written as a skew-Hermitian matrix times Q,
as can be easily seen by differentiating the equation XX∗ = I2 and evaluating
at X = Q; see also [5].) Let us now suppose σi = σj =: σ > 0. We will show

that a solution can always be found for Q = 1√
2

[
1 −1
1 1

]
. Indeed, imposing

that (3.8) is diagonal and focusing only on the O(t) terms we obtain the
condition

v − u =
1

2σ
.

Taking, for example, u = 0 and v = (2σ)−1, we get in particular

(U ′)∗
[
σ t
0 σ

]
V ′ =

[
σ + t/2 0

0 σ − t/2

]
+O(t2).

Define now

f+ =
f(σ + t/2) + f(σ − t/2)

2
, f− =

f(σ + t/2)− f(σ − t/2)

2
.

It follows that

f⋄(A+ tE)− f⋄(A) =

([
γ α
β δ

]
⊕ 0(m−2)×(n−2)

)
+O(t2),

for

α = f− +
tf+
2σ

, β = f− − tf+
2σ

,

γ = f+ − f(σ)− tf−
2σ

, δ = f+ − f(σ) +
tf−
2σ

.

It now suffices to observe that

lim
t→0

f+ − f(σ)

t
=

1

4
(f ′(σ)−f ′(σ)) = 0, lim

t→0

f−
t

=
1

4
(f ′(σ)+f ′(σ)) =

f ′(σ)

2
,

lim
t→0

f− =
1

2
(f(σ)− f(σ)) = 0, lim

t→0
f+ =

1

2
(f(σ) + f(σ)) = f(σ),

yielding

lim
t→0

α

t
=

σf ′(σ) + f(σ)

2σ
, lim

t→0

β

t
=

σf ′(σ)− f(σ)

2σ
, lim

t→0

γ

t
= lim

t→0

δ

t
= 0.
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Subcase 2a-(iii). It remains to discuss the case σi = σj = 0. It is immediate
to see that

f⋄(A+ tE)− f⋄(A) =

[
0 f(t)
0 0

]
⊕ 0(m−2)×(n−2).

Dividing by t and going to the limit t → 0 yields the statement.
- Case 2b. Consider now the case where the unique nonzero element of E lies
in the position (i, j) with m < j ≤ n. Again, A + tE is not diagonal, and,
similarly to Case 2a, we need first to compute its singular value decomposi-
tion. We may assume that i = 1, j = m+1. Observe that A+ tE = S′(V ′)T

is a singular value decomposition if[
σi 0 . . . 0 t 0 . . . 0

]
V ′ =

[
σ 0 . . . 0

]
,

for some σ ≥ 0. As before we can expand V ′ in powers of t. This procedure
yields σ = σi, V

′
ii = 1 for all i = 1, . . . , n, V ′

1,n+1 = −t/σi, V
′
n+1,1 = t/σi,

and Vij = 0 in all other cases. Hence, to first order in t, there is only one
nonzero element in f⋄(A+ tE)− f⋄(A), lying precisely at the position (i, j),
and being equal to tf(σi)/σi.

- Case 3. If the unique nonzero element of E is in the position (i, j) with j < i,
the proof is either analogous to Case 2a if i ≤ m or to Case 2b if i > m. We
omit the details.

Now, we turn to the case when the unique nonzero element in E is pure imaginary
and equal to ι. Again, there are three cases:

- Case 4. Suppose first σi ̸= 0. If the unique nonzero element of E is its ith
diagonal element, then arguing as in Example 3.1 we readily obtain f⋄(A +
tE)− f⋄(A) = diag(0, . . . , 0, ιtf(σi)/σi, 0, . . . , 0), where the nonzero element
appears in the ith position. Dividing by t and going to the limit, we obtain
ι diag(0, . . . , 0, f(σi)/σi, 0, . . . , 0).
Similarly, if σi = 0, we get f⋄(A+tE)−f⋄(A) = diag(0, . . . , 0, ιf(t), 0, . . . , 0),
and dividing by t and letting t → 0 this yields ιdiag(0, . . . , 0, f ′(0), 0, . . . , 0)
where f ′(0) is the right derivative of f at x = 0.

- Case 5a. Suppose now that the unique nonzero element of E is in the position
(i, j) with i < j ≤ ν. As in Case 2a we can take without loss of generality
i = 1, j = 2, and we need to distinguish three subcases. However, this time
we impose that

(U ′)∗
[
σi ιt
0 σj

]
V ′ (3.9)

is real and diagonal and U ′, V ′ are unitary.
Subcase 5a-(i). Suppose σi > σj . We can expand U ′ and V ′ as in Subcase
2a-(i). Retaining only the O(t) terms and solving for u, v we get

u =
ισj

σ2
i − σ2

j

, v =
ισi

σ2
i − σ2

j

and S′ = S +O(t2). Computing f⋄(A+ tE) = (U ′ ⊕ In−2)f(S
′)(V ′ ⊕ In−2)

∗

yields

f⋄(A+ tE)− f⋄(A) = ιt

([
0 α
−β 0

]
⊕ 0(m−2)×(n−2)

)
+O(t2),
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with

α =
σif(σi)− σjf(σj)

σ2
i − σ2

j

and

β =
σjf(σi)− σif(σj)

σ2
i − σ2

j

.

Subcase 5a-(ii). Suppose now σi = σj > 0. Similarly to Subcase 2a-(ii) we

expand U ′ = (I2 + t

[
0 −u∗

u 0

]
)Q, V ′ = (I2 + t

[
0 −v∗

v 0

]
)Q, where Q can be

any unitary matrix. This time we impose that (3.9) is real and diagonal and
find a solution in u, v for the choice

Q =
1√
2

[
1 −ι
−ι 1

]
.

Specifically, some elementary algebraic manipulations yield the condition

u− v =
ι

2σ
.

For example we can take v = 0, u = ι(2σ)−1. This gives

(U ′)∗
[
σ it
0 σ

]
V ′ =

[
σ + t/2 0

0 σ − t/2

]
+O(t2);

we can then proceed precisely as in Subcase 2a-(ii).
Subcase 5a-(iii). Suppose σi = σj = 0, then it is immediate that

f⋄(A+ tE)− f⋄(A) =

[
0 ιf(t)
0 0

]
⊕ 0(m−2)×(n−2),

and the statement follows dividing by t and going to the limit for t → 0.
- Case 5b. If the unique nonzero element of E lies in the position (i, j) with
m < j ≤ n, the procedure is again analogous to Case 2b. Assume that i = 1,
j = m+ 1: A+ tE = S′(V ′)∗ is a singular value decomposition if[

σi 0 . . . 0 ιt 0 . . . 0
]
V ′ =

[
σ 0 . . . 0

]
,

for some σ ≥ 0. Expanding V ′ in powers of t yields σ = σi, V
′
ii = 1 for all

i = 1, . . . , n, V ′
1,n+1 = V ′

n+1,1 = −ιt/σi, and Vij = 0 in all other cases. Hence,
to first order in t, there is only one nonzero element in f⋄(A+ tE)− f⋄(A),
lying precisely at the position (i, j), and equal to ιtf(σi)/σi.

- Case 6. Finally, if the unique nonzero element of E is in the position (i, j)
with j < i, the proof is either analogous to Case 5a, if i ≤ m, or to Case 5b,
if i > m. We omit the details.

Remark 3.9. The matrices F , G and H have a very peculiar structure:
• the off-diagonal elements of H and F coincide, i.e., H − F is diagonal;
• if m = n, F , G and H are all symmetric;
• Gii = 0 for all i = 1, . . . , ν;
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• if m > n, then F =

[
F1

evT

]
with F1 = FT

1 ∈ Rn×n, e =
[
1 . . . 1

]T ∈ Rm−n

and v ∈ Rn, while G =

[
G1

0

]
where G1 = GT

1 ∈ Rn×n;

• if n > m, then F =
[
F1 veT

]
with F1 = FT

1 ∈ Rm×m, e =
[
1 . . . 1

]T ∈
Rn−m and v ∈ Rm, while G =

[
G1 0

]
where G1 = GT

1 ∈ Rm×m.
The formula in Theorem 3.8 simplifies considerably if the matrix A is real. Since

this is often the case in many applications, we give an explicit version of our main
result specialized to real matrices.

Corollary 3.10. [Daleckǐi-Krěin Theorem for real generalized matrix
functions]
Let A = USV T be an SVD of A ∈ Rm×n, where U ∈ Rm×m, V ∈ Rn×n, S ∈ Rm×n,
and Sii =: σi, i = 1, . . . , ν, are the singular values of A. Let f : S → R be differentiable
on an open subset of S containing the positive singular values of A. Moreover, if A
is rank deficient, i.e., if rankA < ν, suppose further that f(0) = 0 and that f is right
differentiable at 0. Then the Fréchet derivative at X = A of the generalized matrix
function f⋄(X), applied to the perturbation E, is

Lf⋄(A,E) = U
(
F ◦ Ê +G ◦Υ(Ê)

)
V T , (3.10)

where ◦, Ê and Υ are defined as in the statement of Theorem 3.8, and F,G ∈ Rm×n

are defined as in (3.6) and (3.7).

Example 3.11. Take f(x) = ex and A =

[
2 0 0
0 1 0

]
so that an SVD is A =

USV T with U = I2, V = I3, S = A. Since A is full rank, f⋄(X) is differentiable at
X = A in spite of the fact that f(0) ̸= 0. Moreover, Corollary 3.10 holds with

F =

[
e2 e(2e−1)

3
e2

2
e(2e−1)

3 e e

]
, G =

[
0 e(e−2)

3 0
e(e−2)

3 0 0

]
.

Taking for example E =

[
1 3 0
0 −1 1

]
we obtain

Lf⋄(A,E) =

[
e2 e(2e− 1) 0

e(e− 2) −e e

]
.

Further simplifications to Theorem 3.8 are possible by specializing f . We give
one of the many possible examples: if f is the constant function 1 then, if A is full
rank, f⋄(A) is the unitary factor in the polar decomposition of A [18, Chapter 8]. An
implicit formula for the Fréchet derivative of the latter appeared in [22, Theorem 2.1],
which collected it from [17, Proof of Theorem 2.5]. However, the formula in [17, 22] is a
theoretical result that was not proposed for the computation of the Fréchet derivative,
and in fact, can lead to numerical instabilities if implemented as given. Below, we
specialize Theorem 3.8 to obtain an explicit formula, equivalent to [22, Theorem 2.1],
which can be used [5] to devise an efficient and stable SVD-based algorithm for the
computation of the Fréchet derivative of the unitary factor in a polar decomposition.

Corollary 3.12. For any full rank matrix X ∈ Cm×n, m ≥ n, let X = QH
be the polar decomposition of X and consider the unitary factor Q(X) as a function
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of X. Suppose morever that A ∈ Cm×n is full rank and that A = USV ∗ is an SVD.
Then, the real Fréchet derivative of Q(X) at X = A, applied to the perturbation E,
is

LQ(A,E) = U
(
F ◦ ℜ(Ê) + ιH ◦ ℑ(Ê) +G ◦Υ(Ê)

)
V ∗, (3.11)

with the same notation as in Theorem 3.8 and where:

• F ∈ Rm×n is defined as follows:

Fij =


(σi + σj)

−1 if i ̸= j and i ≤ n;

(σj)
−1 if i > n, and σj ̸= 0;

0 otherwise;

(3.12)

• G ∈ Rm×n is such that Gij = −Fij for i ≤ n and Gij = 0 for i > n;
• and H ∈ Rm×n is defined as Hii = σ−1

i and Hij = Fij for i ̸= j.

In particular, if A ∈ Rn×n is square and invertible, then the real Fréchet derivative of
U(X) at X = A, applied to the perturbation E, is

LQ(A,E) = U
(
F ◦ (Ê − Ê∗) + ι(H − F ) ◦ ℑ(Ê))

)
V T . (3.13)

4. Application to conditioning. In this section we apply the theory devel-
oped so far to the analysis of the conditioning of generalized matrix functions. To
some extent, part of the analysis that we will be deriving may also be inferred starting
from the Lipschitz continuity of generalized matrix functions, proved in [1] (assuming
f(0) = 0); however, there is no explicit conditioning analysis there, and our treatment
includes the case of f(0) ̸= 0. Since the real case is the most relevant for the applica-
tions [4], and to keep the paper within a reasonable length, we focus on generalized
matrix functions of real matrices and only allow real perturbations. We emphasize,
however, that an analogous analysis can be performed for generalized matrix functions
of complex matrices, starting from Theorem 3.8 rather than its specialization to real
matrices, i.e., Corollary 3.10.

The absolute conditioning of a generalized matrix function can be defined as

cond f⋄(A) = lim
t→0

sup
∥E∥≤1

∥f⋄(A+ tE)− f⋄(A)∥
|t|∥E∥

. (4.1)

There are two cases. If f(0) ̸= 0 and A is rank deficient, then clearly cond f⋄(A) = ∞,
as f⋄(X) is not continuous at X = A. More interestingly, it may happen that either
f(0) = 0 or f(0) ̸= 0 but A is full rank. Then, f⋄(X) is differentiable at X = A, and
∥f⋄(A+tE)−f⋄(A)∥ = ∥Lf⋄(A, tE)+O(t2)∥ = |t|∥Lf⋄(A,E)∥+O(t2). If we specialize
to any unitarily invariant norm, and if A = USV T is an SVD, it is immediate that
∥Lf⋄(A,E)∥ = ∥Lf⋄(S, Ê)∥ having defined Ê = UTEV . For example, the Frobenius
norm is unitarily invariant, and this choice leads to the condition number

condF f⋄(A) = ∥Kf⋄(S)∥2,
18



where Kf⋄(X) is the Kronecker form of the Fréchet derivative [18] of f⋄ at X ∈ Rm×n.
To define Kf⋄(X) it is convenient to introduce the vec operator [16]

vec : Rm×n → Rmn, X =
[
x1 . . . xn

]
7→ vec(X) =

x1

...
xn

 .

Then, Kf⋄(X) is the unique matrix such that, for any E ∈ Rm×n, vec(Lf⋄(X,E)) =
Kf⋄(X) vec(E).

Let us now consider the linear map Υ, defined in the statement of Corollary 3.10.
Via the vec operator, it can be represented by the unique matrix P ∈ Rmn×mn

satisfying

P vec(A) = vec(Υ(A)) ∀ A ∈ Rm×n. (4.2)

Note that in the special case m = n we recover the well-studied vec-permutation
operator [16].

Lemma 4.1. The matrix P defined in (4.2) is a permutation matrix, and it is
symmetric, orthogonal, and involutory. Moreover, it has precisely mn + ν(1 − ν)/2
eigenvalues equal to +1 and ν(ν − 1)/2 eigenvalues equal to −1.

Proof. Since vec(A) and vec(Υ(A)) always contain the same elements, although
possibly in a different order, we see that P must be a permutation matrix, and
hence, orthogonal: PPT = Imn. Moreover, from the fact that Υ is involutory, i.e.,
Υ(Υ(A)) ≡ A, we deduce that P is also involutory: P 2 = Imn. Therefore P is also
symmetric, P = PT .

Any symmetric orthogonal matrix must have all semisimple eigenvalues equal to
±1. Suppose for simplicity m ≥ n (the proof for m < n is analogous). Consider

the two subspaces V1 = {X =

[
X1

X2

]
∈ Rm×n|X1 = XT

1 ∈ Rn×n} and V2 = {X =[
X1

0

]
∈ Rm×n|X1 = −XT

1 ∈ Rn×n}. Observe that X ∈ V1 ⇒ Υ(X) = X, that

X ∈ V2 ⇒ Υ(X) = −X, and that Rm×n is equal to the direct sum V1 ⊕ V2. Noting
that m ≥ n implies n = ν, this concludes the proof.

For any vector v ∈ Rn, we define diag(v) ∈ Rn×n to be the diagonal matrix such
that (diag(v))ii = vi. We then have the following corollary of Corollary 3.10.

Corollary 4.2. Let A ∈ Rm×n, and suppose A = USV T is an SVD. Let
f : S → R be differentiable on an open subset of S containing the positive singular
values of A. Moreover, if A is rank deficient, i.e., if rankA < ν, suppose further
that f(0) = 0 and that f is right differentiable at 0. Then the Kronecker form of the
Fréchet derivative at X = A of the real generalized matrix function f⋄(X) is

Kf⋄(A) = (V ⊗ U)(Φ + ΓP )(V T ⊗ UT ), (4.3)

where Φ = diag(vec(F )), Γ = diag(vec(G)), F and G are defined as in Corollary 3.10
and P is the matrix defined by (4.2).

Proof. Applying the vec operator to (3.10), and using the properties vec(ABC) =
(CT ⊗A) vec(B) and vec(A ◦B) = diag(vec(A)) vec(B), we obtain

vec(Lf⋄(A,E)) = (V ⊗ U) (Φ + ΓP ) vec(Ê.)
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The statement follows noting that vec(Ê) = vec(UTEV ) = (V T ⊗ UT ) vec(E).
Slightly different formulae for Kf⋄(A) may be deduced by the following lemma.
Lemma 4.3. In the notation of Corollary 4.2, ΓP = PΓ and ΦP = PΦ.
Proof. The structure of the matrix G and the definition of Υ readily yield the

property

G ◦Υ(X) = Υ(G ◦X) ∀ X ∈ Rm×n.

Similarly, it is easy to check that

F ◦Υ(X) = Υ(F ◦X) ∀ X ∈ Rm×n.

Applying the vec operator to each of these equations yields the statement.
Lemma 4.1 and Lemma 4.3 imply that Kf⋄(A) is symmetric: indeed, (ΓP )T =

PTΓT = PΓ = ΓP . Moreover, taking U = Im and V = In in Corollary 4.2 it is
immediate thatKf⋄(S) = Φ+PΓ. As by Lemma 4.1 P is orthogonal, this immediately
yields the bound condF f⋄(A) = ∥Kf⋄(S)∥2 ≤ max |Fij | + max |Gij |. It is easy to
improve the latter estimate by diagonalizing Kf (S). The next subsection is devoted
to this goal.

4.1. The eigenvalues of the Kronecker form of the Fréchet derivative.
For simplicity of exposition, in this subsection we will assume m ≥ n. The results,
however, do not change if m < n, except that in certain formulae the roles of the pairs
(i,m) and (j, n) must be exchanged. Observe first that, due to the zero structure of G
and to the symmetry of P , a simple simultaneous permutation Q of rows and columns
leads to the block diagonalization

QKf (S)Q
T =

ν⊕
i=1

Fii ⊕
n⊕

j=1

m⊕
i=n+1

Fij ⊕
n−1⊕
i=1

n⊕
j=i+1

[
Fij Gij

Gij Fij

]
.

Each 2 × 2 block has eigenvalues Fij ± Gij , and therefore we have the following
theorem.

Theorem 4.4. For the condition number of a real generalized matrix function,
it holds

condF f⋄(A) = max{a, b, c, d},

where a = maxi |Fii|, b = maxj≤n≤i |Fij |, c = maxi<j |Fij + Gij |, d = maxi<j |Fij −
Gij |, and F and G are defined as in Corollary 3.10.

In order to estimate the values of a, b, c, d, it is useful to give an explicit expression
for the eigenvalues of Kf⋄(S).

Theorem 4.5. It holds

Fij +Gij =

{
f(σi)−f(σj)

σi−σj
if σi ̸= σj ;

f ′(σi) if σi = σj

and

Fij −Gij =


f(σi)+f(σj)

σi+σj
if σi ̸= σj ;

f(σi)
σi

if σi = σj ̸= 0;

f ′(0) if σi = σj = 0.

Proof. It follows from Corollary 3.10 by a direct computation.
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4.2. On the conditioning of real generalized matrix functions. If all the
singular values of the matrix A are known then Theorems 3.10, 4.4, and 4.5 can be
combined to compute ∥Kf⋄(S)∥2, and hence condF f⋄(A). In this subsection, we give
some upper bounds for condF f⋄(A) that only require the knowledge of the function
f and of the largest and smallest nonzero singular values of A, σ1 = ∥A∥2 and σr.
In practice, these estimates may be useful: for very large matrices it is expensive to
compute a full SVD, but algorithms exist to cheaply compute the extremal singular
values only, e.g., Lanczos-based methods [12, Chapter 10].

Theorem 4.6. Let A ∈ Rm×n have full rank, and let σr be the smallest singular
value of A. Denote by I the interval [σr, ∥A∥2], and set M = maxx∈I |f(x)|. Suppose
moreover that f is continuously differentiable, and hence locally Lipschitz continuous,
on I, with Lipschitz constant K. Then, it holds

condF f⋄(A) ≤ max{K,Mσ−1
r }.

Proof. Let x > y ∈ I be singular values of A. We can bound | f(x)−f(y)
x−y | ≤ K,

|f ′(y)| ≤ K, | f(x)+f(y)
x+y | ≤ M

σr
, | f(x)x | ≤ M

σr
. The statement then follows from Theorems

3.10, 4.4, and 4.5.

More precisely, in the notation of Theorem 4.4, a ≤ K, b ≤ Mσ−1
r , c ≤ K,

d ≤ Mσ−1
r .

If we further assume that f(0) = 0, a stronger result can be derived. It could also
be obtained as a consequence of [1, Theorem 1.1], proved with a different approach.
Here, we give our own proof.

Theorem 4.7. Let A ∈ Rm×n. Denote by I the interval [0, ∥A∥2]. Suppose
moreover that f(0) = 0 and that f is continuously differentiable, and hence locally
Lipschitz continuous, on I, with Lipschitz constant K. Then, it holds

condF f⋄(A) ≤ K.

Proof. This time, for any x, y ∈ I we can bound | f(x)−f(y)
x−y | ≤ K, |f ′(x)| ≤ K,

| f(x)+f(y)
x+y | ≤ |f(x)|+|f(y)|

x+y ≤ Kx+Ky
x+y = K, | f(x)x | = |f(x)−f(0)|

|x−0| ≤ K.

Variations on the theme of Theorems 4.6 and 4.7 can be obtained assuming that
more singular values are known. Intuitively, since generalized matrix functions are
computed via the SVD, one expects that they should be better conditioned, in the
sense of being closer to having the same conditioning of scalar functions, than classical
matrix functions. When f(0) = 0 and f is Lipschitz, this is essentially the case, as
shown by Theorem 4.7: in this scenario, generalized matrix functions are “as well
conditioned as their scalar counterparts”. If f(0) ̸= 0, Theorems 4.4 and 4.5 show that
the absolute condition number for the generalized matrix function is controlled by the
maximum of the absolute values of the functions f ′(x) and f(x)/x, both evaluated
at the singular values of A. Note that the norm of the derivative is the absolute
condition number of the scalar function f . It may happen that a generalized matrix
funcion is worse conditioned than its scalar counterpart applied to each singular value
individually only if it happens that maxi |f(σi)/σi| ≫ maxi |f ′(σi)|.

Example 4.8. Let A =

[
2 0
0 1

]
and let f(x) = M(−2x3 + 9x2 − 12x + 6) for

some arbitrary M > 0. Observe that f⋄(A) = MA.

21



Then the eigenvalues of Kf (A) are equal to f ′(1) = 0, f ′(2) = 0, f(2)+f(1)
3 = M ,

and f(2) − f(1) = M . Hence, the absolute condition number of f⋄(A) is M , to be
compared with the absolute condition number of f(x) at the individual singular values,
which is 0 for both of them.

By specializing to a fixed generalized matrix function f⋄ stronger results may be
obtained. We give a couple of examples.

Example 4.9. Letting f(x) = 1, computing f⋄(A) for a full rank matrix A
corresponds to the computation of the orthogonal polar factor in a polar decomposition
of A [18, Chapter 8]. (If A is rank deficient, then this is no longer true, and the
orthogonal factor in a polar decomposition is not unique).

If m = n and A ∈ Rn×n is invertible, Kenney and Laub showed [22, Theorems
2.2 and 2.3] that the absolute condition number is

condF f⋄(A) =
2

σn + σn−1
,

where σr and σr−1 are, respectively, the smallest and second smallest singular values.
Although Theorem 4.6 only gives a bound of 1/σn, which is slack for σn < σn−1,
specializing Theorem 4.4 to f = 1 gives a = c = 0 and d = 2/(σn + σn−1). We thus
recover the result by Kenney and Laub as a special case of our analysis. If m > n and
A has full rank, then [7] the absolute condition number is 1/σn, and hence the upper
bound of Theorem 4.6 is tight.

Example 4.10. Let f(x) = exp(x) and let us consider f⋄(A) for a full rank
matrix A ∈ Rm×n. Then, M = K = exp(∥A∥2), and hence, condF exp⋄(A) ≤
exp(∥A∥2)max{1, σ−1

r }. Again, a careful examination of the explicit expressions of
Theorem 4.5 can improve the general bound of Theorem 4.6. In particular, exp(x)
is convex and increasing, while exp(x)/x is convex and has a minimum at x = 1.
Therefore, we conclude that

condF exp⋄(A) = max{exp(σr)/σr, exp(∥A∥2)/∥A∥2, exp(∥A∥2)}.

In practice, quoting Nick Higham [18, p. 56],“it is the relative condition number
that is of interest, but it is more convenient to state results for the absolute condition
number”. In the Frobenius norm, the relative condition number for the generalized
matrix function f⋄(A) is given in terms of the absolute condition number condF f⋄(A)
by the formula

rcondF f⋄(A) = condF f⋄(A) · ∥A∥F
∥f⋄(A)∥F

.

Suppose that we have an upper bound for the absolute condition number, say,
condF f⋄(A) ≤ β. Using ∥A∥F ≤

√
ν∥A∥2, we then see that an upper bound for the

relative condition number is

rcondF f⋄(A) ≤ β
√
ν∥A∥2

∥f⋄(A)∥F
.

For a general f , calculating ∥f⋄(A)∥F , or its lower bound ∥f⋄(A)∥2, might be
nontrivial without computing f⋄(A) explicitly or knowing the full singular spectrum
of A. In the spirit of this subsection, we provide a lower bound assuming that only
the largest and smallest nonzero singular values of A are known. Observe that

∥f⋄(A)∥F ≥ µ :=
√
f(∥A∥2)2 + f(σr)2.
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Moreover, it is easy to see that in the statement and proof of Theorem 4.6 we could
replace M by ∥f⋄(A)∥2 (the reason for not having done so is that the latter may be
more difficult to compute in practice). Hence, we obtain the following corollary.

Corollary 4.11. In the notation and under the assumptions of Theorem 4.6,
setting µ :=

√
f(∥A∥2)2 + f(σr)2, it holds

rcondF f⋄(A) ≤
√
ν∥A∥2 max{K

µ
,
1

σr
}.

In the notation and under the assumptions of Theorem 4.7, it holds

rcondF f⋄(A) ≤
√
ν∥A∥2K

µ
.

Example 4.8 showed that the absolute conditioning of generalized matrix functions
can be much higher than that of the scalar functions they are induced by. However, the
relative condition number for that example is 1. Can generalized matrix functions be
much worse conditioned, in the relative sense, than their scalar counterparts? Using
Corollary 4.11, one may expect trouble if f(0) ̸= 0 and A is numerically near to being
rank deficient. We illustrate this with a concrete example.

Example 4.12. For some 0 < ϵ ≪ 1, let

A =

[
ϵ 0 0
0 1 0

]
and f(x) = 1 + (x− ϵ)2.

It is immediate to check that

f⋄(A) =

[
f(ϵ) 0 0
0 f(1) 0

]
=

[
1 0 0
0 2− 2ϵ+ ϵ2 0

]
.

The relative condition numbers of the scalar function f at the singular values of A
are, respectively, 0 at x = ϵ and 1 + O(ϵ2) at x = 1. However, the relative condition
number of f⋄(A) is

rcondF f⋄(A) =
1

ϵ
√
5
+O(1).

Figure 4.1 plots the relative error

ρ =
∥f⋄(A+ E)− f⋄(A)∥F ∥A∥F

∥f⋄(A)∥F
,

computed with MATLAB version R2015b, against the parameter ϵ for the perturbation

E =

[
0 0 10−15

0 0 0

]
.

To summarize, unlike classical matrix functions, real generalized matrix functions
induced by Lipschitz continuous functions satisfying f(0) = 0 – two conditions that
are commonly met in practical applications, see [4] – are never numerically dodgier
than the scalar functions they are induced by. Informally speaking, this is because
the Jordan decomposition is not numerically tame, but the SVD is. Indeed, classical
functions of non-normal matrices may encounter issues due to the ill conditioning
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Fig. 4.1. Computed relative error for Example 4.12

of the eigenvector matrix Z in Theorem 2.11; on the other hand, since U and V
in Corollary 3.10 are orthogonal, the information on the conditioning of generalized
matrix functions is directly encoded in the Daleckǐi-Krěin type formula developed in
this paper.

An exception to this generally optimistic situation is when f(0) ̸= 0 and f⋄(A) is
computed for some rank-deficient, or near-rank deficient, matrix A. In this scenario,
one is trying to evaluate numerically a function at, or close to, a point of discontinuity,
and the closer A is to having some zero singular values, the harsher potential challenges
are to be expected for the numerical computation of f⋄(A).
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[9] L. Fantappié, Le calcul des matrices, C. R. Ac. des Sc. Paris 186 (1928), pp. 619–621.
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