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Abstract

We consider sequential decision problems in which we adaptively choose one
of finitely many alternatives and observe a stochastic reward. We offer a new
perspective of interpreting Bayesian ranking and selection problems as adaptive
stochastic multi-set maximization problems and derive the first finite-time bound
of the knowledge-gradient policy for adaptive submodular objective functions. In
addition, we introduce the concept of prior-optimality and provide another insight
into the performance of the knowledge gradient policy based on the submodu-
lar assumption on the value of information. We demonstrate submodularity for
the two-alternative case and provide other conditions for more general problems,
bringing out the issue and importance of submodularity in learning problems.
Empirical experiments are conducted to further illustrate the finite time behavior
of the knowledge gradient policy.

1 Introduction

We consider sequential decision problems in which at each time step, we choose one
of finitely many alternatives and observe a random reward. The rewards are indepen-
dent of each other and follow some unknown probability distribution. One goal can be
to identify the alternative with the best expected performance within a limited mea-
surement budget, which is the objective of Bayesian ranking and selection problems.
Ranking and selection problems are examples of sequential decision making problems
with partial information that address the exploration-exploitation trade-off. Since the
learner does not know the true distribution of each alternative, it needs to explore the

*Department of Computer Science, Princeton University, Princeton, NJ 08540, USA,
yingfei@cs.princeton.edu

fDepartment of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08540, USA, powell@princeton.edu



choices that might give good rewards in the future as well as exploit the alternatives
that appear to be better based on previous observations.

Ranking and selection problems arise in many settings. We may have to choose a type
of material that has the best performance, the features in a laptop or car that produce
the highest sales, or the molecular combination that produces the most effective drug.
Often, the cost of a measurement may be substantial. Laboratory or field experiments
may take a day or several weeks. For this reason, we assume we have a limited budget
for making measurements.

Raiffa and Schlaifer established the Bayesian framework for R&S problems [33]. Sev-
eral two-stage and sequential procedures exist for selecting the best alternative. Branke
et. al made a thorough comparison of several fully sequential sampling procedures [6].
They indicate that the optimal computing budget allocation (OCBA) [9, [IT, 21] and
value of information procedures (VIP) [12] perform quite well and better than a deter-
ministic or two-stage policy [10]. Another single-step Bayesian look-ahead policy first
introduced by [19] and then further studied by [I5] is called the “knowledge-gradient
policy” (KG). It chooses to measure the alternative that maximizes the single-period
expected value of information. Whereas the above mentioned policies assumed an inde-
pendent normal or one-dimensional Wiener process prior on the alternatives’ true means,
Frazier et. al modified the knowledge-gradient policy to handle correlated multivariate
normal belief on the mean values of these rewards [13].

A similar field is the multi-armed bandit problem, which were originally studied
under Bayesian assumptions [I7]. A widely used class of policies for multi-armed ban-
dit problems is called upper confidence bounding policies (UCB). Different UCB-type
variants have been developed for many types of reward distributions and have provable
logarithmic regret bounds [28, [, 4, 27, [7]. By contrast, knowledge gradient policies,
which enjoy some nice theoretical properties, have never been characterized by the type
of regret bounds for which UCB policies are famous.

This paper makes the following contributions: We first establish the connection be-
tween Bayesian ranking and selection problem and adaptive stochastic multi-set function
maximization problems where each multi-set corresponds to a set of selected alterna-
tives. The multi-set representation captures our ability to evaluate the same alternative
more than once. This new perspective offers a new line of analysis for the properties
of value-of-information policies. We derive the first finite-time bound for the knowledge
gradient policy for R&S problems under the assumption that the utility function is adap-
tive submodular. However, pathwise adaptive submodularity can fail in offline learning
settings when the utility function itself involves a maximum. To this end, instead of the
pathwise behavior analyses of the utility function, we further study its average behavior
by taking expectations over the observations given any fixed sample allocation, result-
ing in a well-known quantity: the value of information. As a result, we introduce the
concept of the prior-value of a policy and analyze the prior-optimality of the KG policy
to provide another insight into its performance based on the submodular assumption



of the value of information that is weaker than adaptive submodularity. To accomplish
this, we build on the general structure of the analysis of greedy algorithms given in [31]
and [18]. We demonstrate submodularity for the two-alternative case and provide other
conditions for more general problems, filling in a gap in the analysis of the knowledge
gradient policy. Finally, we propose experiments to illustrate our theoretical analysis
on the finite time behavior of the knowledge gradient policy. We further compare the
KG policy with other policies with or without theoretical guarantees. Aside from the
fact that the KG policy performs competitively with or significantly better than other
policies especially in early iterations, we draw the conclusion that there is no universal
best policy for all problem classes, which means that theoretical guarantees are not by
themselves reliable indicators of which policy is best for a particular problem class and
empirical experiments are needed to better understand their finite time performance.

This paper is organized as follows. In section 2, we lay out the mathematical models
for Bayesian ranking and selection problems. In section 3, we describe the knowledge
gradient policies. In section 4, we provide finite-time analyses of the knowledge gradient
policy from two directions: the posterior optimality and the prior optimality. In section
5, we analyze the submodularity of the two-alternative case and provide other conditions
for more general problems, bringing out the issue and importance of submodularity in
leaning problems. Finally, in section 6 we present finite-time performance results and
analyses of various policies for R&S problems.

2 Ranking and Selection Problems

Suppose we have a collection X of M alternatives (where M might be quite large),
each of which can be measured sequentially to estimate its unknown mean pu,. We as-
sume normally distributed measurement noise with known variance o%,. We first intro-
duce the model for independent normal beliefs. We begin with a normally distributed
Bayesian prior belief on the sampling means that is independent across alternatives,
e ~ N (09, 06Y). At the nth iteration, we use some measurement policy 7 to choose one
alternative 2™ and observe W™ ~ N (pign, ow).

For convenience, we introduce the o-algebras F" for any n = 0,1,..., N — 1 which
is formed by the previous n measurement choices and outcomes, 20, W1, ... 2"~ W™,
We define 6" = E[u,|F"] and (¢7)* = Var[u,|F"]. Then conditionally on F", p, ~
N o). Let g = (05)2 be the conditional precision of p, and our state of knowl-
edge be S™ = (07, 62)sex. We will use F™ and S™ interchangeably. After the nth
measurement we update our beliefs using Bayes’ rule:

non+pWwntl . _ W —
92}*1:{ e ifa" =2 52*1:{5”5 if 2" =

: n :
n otherwise, B otherwise,

where gV = 1/0%,.



We may impose correlated beliefs between alternatives in order to strengthen the
effect of each measurement. Starting from a prior distribution N(6° %% and after
measurement W"*! of alternative x, a posterior distribution on the beliefs are calculated
by:

Qn—l-l _ En+1 ((En)—l " + ﬁWWn—i—lex) ’ (1)
ZnJrl — ((En)—l _i_ﬁWexef)*l’ (2)

where e, is the vector with 1 in the entry corresponding to alternative x and 0 elsewhere.
S™ = (6",%") is then our state of knowledge in this case.

A decision function X™(S™) is defined as a mapping from the knowledge state to X.
We refer to the decision function X™ and the policy 7 interchangeably.

If we are limited to N measurements, the objective is to maximize the expected
reward of the final recommended alternative:

max [ 1], (3)

mell

where 2™ = arg max,cy 0Y and 2" = X7(S") for 0 < n < N.

3 Knowledge Gradient

For R&S problems, the knowledge gradient is a policy that at the nth iteration chooses
its (n 4+ 1)st measurement from X to maximize the single-period expected increase in
value [I5] 13]. To be more specific, the value of being in state S™ is max,ey 02. If we
choose to measure z" = z right now, allowing us to observe W% then we transition
to a new state of knowledge S™™ = (9"™! L") At iteration n, 677! is a random
variable since we do not yet know what W"*! is going to be. We would like to choose
T at iteration n which maximizes the expected value of max,cy 67'. We can think of
this as choosing an alternative to maximize the incremental value, given by

pRen — E[II;E}X ot — max o |a" =z, S"|. (4)

The knowledge gradient policy X¥%(S") is defined by

XKG(S") = arg max pRen, (5)

The knowledge gradient policy can handle the presence of a variety of belief models
such as (generalized) linear [30), 36] or nonparametric [29] 5.

The knowledge gradient policy has some nice properties. For Bayesian ranking and
selection problems, the knowledge gradient policy is optimal (by definition) if the mea-
surement budget N = 1. The knowledge gradient is guaranteed to find the best alter-
native as the measurement budget N tends to infinity. If there are only two choices,
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the knowledge gradient policy is optimal for any measurement budget. The knowledge
gradient policy is the only stationary policy that is both myopically and asymptoti-
cally optimal. However, the KG has not enjoyed the finite-time bounds that have been
popular in the UCB policies.

4 Finite-time Analysis of the Knowledge Gradient
Policy

We follow the general structure of the analysis of greedy approximation [31] to develop
the first finite-time bound for the knowledge gradient policy for R&S problems as follows.
In Section [4.1] by interpreting the Bayesian R&S problems as the adaptive stochastic
multi-set maximization problems, we show that the KG policy inherits precisely the
performance guarantees of the greedy algorithm for classic submodular maximization
problems if the utility function is adaptive submodular. We theoretically analyze the
adaptive submodular assumption and point out that it can fail in the ranking and
selection problems. In such cases, instead of the pathwise behavior analyses of the utility
function, we study its average behavior by taking expectation over the observations in
Section [4.2] In Section .3 we analyze the prior-optimality which provides another
insight into the performance of the KG policy based on the submodularity of a well-
understood quantity: value of information.

It is important to note that both the submodular maximization reduction and the
theoretical analyses on the prior-optimality are not limited to the specific setup of Gaus-
sian noise in observations and Gaussian prior structure. The theoretical guarantees are
more generally applicable to any prior and measurement noise model as long as the
adaptive submodular assumption or the submodular value of information assumption

holds.

4.1 The Reduction of R&S to Adaptive Stochastic Multi-set
Maximization

We first introduce the adaptive stochastic maximization problem. Let F be a finite set
of items. Each item e € E maps to a random outcome of a measurement ®(e) in a set
O of possible values. We define a realization as a function ¢ : ' — O representing the
observation of each item in the ground set. Under Bayesian interpretation, we assume
that there is a known prior probability distribution p(¢) := P(® = ¢) over all possi-
ble realizations. The adaptive stochastic optimization problem consists of sequentially
picking an item e € F, revealing its outcome ®(e) and picking the next item. After each
pick, the observations so far can be represented as a partial realization . A partial
realization v is consistent with realization ¢, denoted as ¢ ~ 1), if all the items selected
in 1) have the same outcomes as in ¢. We use dom()) to refer to the items observed



in ¢. We use the notation Z™(¢) to denote the set of items chosen by policy 7 under
realization ¢.

We wish to maximize some utility function f : 2¥ x OF — R that depends on
which items we pick and which states they are in. The expected utility of a policy 7
is favg(m) := E[f(Z™(®), ®)] where the expectation is taken over the prior distribution
p(#). The goal of adaptive stochastic set maximization problem is to find an optimal
policy 7* that maximizes its expected utility under a cardinality constraint,

7 € argmax fay.(m), subject to |Z7(¢)| < N,

where N is the measurement budget.

It is not obvious to treat the ranking and selection problem in an adaptive stochastic
multi-set maximization way of thinking. To see this, define the ground set £ = X. The
outcomes are real numbers with O = R. Each alternative e = x can be selected multiple
times. After each selection, its random outcome ®(e) = W, € O is revealed.

Since the true values p, are random variables, we can let ¢ be a sample realization of
the truth with a (correlated) prior distribution p(¢) = N(6°,£%). We use the notation
¢ € ® to denote an realization of the random observations in our problem. The prior
probability distribution over the realizations is determined by p(y) and the noise distri-
bution N (0, o). For example, if in the ranking and selection problems each alternative
can only be selected once, ¢ : £ — O. For multi-selections, one way of defining the
realization is by first making replicas of each item to construct E’ and then selecting
each ¢ € E' at most once.

Consider any sampling allocation z = (z,).ex, by which we measure alternative z
for z, € N times. We use Z to represent its corresponding multi-set. We use Z™(¢) :
® — (X xN) to refer to the alternatives selected by 7 under realization ¢. Let 6" be our
vector of estimates of the means after n measurements according to allocation Z under
realization ¢, where |Z| = n. 8" can be obtained according to the updating equation
and , and does not depend on the order of the allocations. It can thus be denoted
as 0(Z,¢) : (X x N) x ® — RM. The next lemma states the equivalence of E[p,~]
and E[max, 62]. Hence, the utility function f : (X x N) x ® + R can be defined as

max, 07 (Z, ¢) and foye(m) := E[maxaa 0N (Z™(®), @)] The R&S objective (3]) can then

be re-written as
7" € arg max faye(m), subject to |[Z7(¢)| < N.

LEMMA 4.1 ([32]). Let 7 be a policy, and let x™ = arg max, 6% be the alternative selected
by the policy. Then
E[pty~] = E[max 67].

KGmn

The definition of the knowledge gradient v coincides with the Conditional Ez-

T

pected Marginal Benefit A(e|y) defined by [1§]:
Afel) := E[f (dom (1) U {e}, ®) — f (dom(y), ®)|@ ~ ],
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The knowledge gradient policy is thus in fact the adaptive greedy policy with uniform
item costs, with a slight difference in the ability of selecting each item more than once.
We generalize the definition of adaptive monotonicity and adaptive submodularity for
set functions given by [I§] to multi-set functions as follows.

DEFINITION 4.2 (Adaptive Monotonicity). A function f: (X xN) x & — R is adaptive
monotone with respect to distribution p(¢) if the conditional expected marginal benefit
of any item is nonnegative: for all Y and all x € X.

A(z[y) = 0.

DEFINITION 4.3 (Adaptive Submodularity). A function f: (X xN)x® — R is adaptive
submodular with respect to distribution p(¢) if for all b and ¢' such that dom(y) C
dom(¢') and both 1, are consistent with some realization ¢ (i.e. v C '), we have
the conditional expected marginal benefit of any fixed item x € X does not increase as
more items are selected and observed,

Alzly) = Alz]y').

Let 7* be the optimal policy to R&S problems. If f := max, 07(Z, ¢) is adaptive
monotone and adaptive submodular with respect to the prior distribution p(¢), then

favg(KG) > (1 - eil)favg(ﬂ-*»

We next show that the instances generated by ranking and selection problems are
adaptive monotone.

LEMMA 4.4. In ranking and selection problems, the utility function max, 0, is adaptive
monotone with any Gaussian prior.

Proof. For any 1, let n = |¢|. Then for any item z € X, A(z|¢) can be rewrit-
ten as E[max, 0% — max, 0% |2" = x, F"| = vEKE" Since for any z, "+t = 67 +
G(X", 2™) Z"+! where 6(%, 1) = ——=2=—— and the random variable Z"*! is standard

V1/BYW 4350

normal when conditioned on F" [I3]. Hence we have E[¢”,"!|2" = x, F"] = 07 for any
2’. By Jensen’s inequality, we have A(x|y) = vK&m > 0. O

Even though intuition suggests that the utility function should be adaptive submod-
ular in the amount of information collected, as we collect more information it is natural
to expect that the marginal value of this information should decrease, yet it is not always
the case as shown in the next lemma. The proof can be found in Appendix [A.1]

LEMMA 4.5. For any independent normal prior distribution p(¢) and nondegenerated
noise distribution (i.e. o # 0), there exists ¥, ' and x € X such that ¢ C 9’ and

Alzl) < Alz|y).



It can be seen that the adaptive submodular assumption can fail in the ranking
and selection problems with the special utility function f = max, 02(Z, ¢) that involves
maximization itself. Hence, instead of the above pathwise behavior analyses of the
utility function, we would like to study its average behavior by taking the expectation
over the observations given any fixed sample allocation Z in the next section.

4.2 The Value of Information

We define the pathwise value of information 0(Z, ¢) as the incremental improvement over
the best expected value that can be obtained without measurement, which is max,¢x 62,

reX

The value of information v(Z) is then defined to be
v(Z) = Eq[0(Z, ®)],

where the expectation is taken over the prior distribution p(¢).

The value of information has a long history spanning the literatures of several dis-
ciplines. Stigler considers the value of information in economics when buyers search
for the best price [35]. Howard laid the groundwork for the value of information in a
decision-theoretic context and spawned a great deal of work in this area [22]. Yokota and
Thompson gives a first comprehensive review of value of information analyses related
to health risk management [37]. Raiffa and Schlaifer poses the Bayesian R&S problem
and defines the associated value of information [33], which marked the beginning of a
number of literature on the value of information within Bayesian R&S and the budgeted
learning problem [20), 26], O, 12, 15].

Since the value of information is a multi-set function, we first generalize the def-
initions and properties of submodular set functions described by [31] to submodular
multi-set functions.

DEFINITION 4.6. Given a finite set E, a real-valued function g on the set of multi-sets
over E is called submodular if for all multi-sets S and T" whose elements belong to E,

pz(S) > po(T),VS CT,Vx € E,

where p,(S) = g(S U {x}) — g(S) is the incremental value of adding element x to the
multi-set S.

Proposition 1. Each of the following statements is equivalent and defines a submodular
multi-set function (S pathwiseand T are multi-sets on E, x, y € E):

1. p(S) > p(T),VS C T and Vz.
2. pz(S) > po(SU{y}),¥S, x,y.



8. 9(T) < g(S) + X ser—sPu(S) = Xpesr Pe(SUT —{z}),VS,T.
4 9(T) < g(S) + Xper_s P2(5), VS CT.

This proposition follows from a similar proof of Proposition 2.1 in [31]. For com-
pleteness we provide the proof in Appendix [A.2]

It is obvious that if 67(Z, ¢) is adaptive monotone or adaptive submodular with re-
spect to p(¢), then so does v(Z, ¢). It is also easy to show that if 07(Z, ¢) is adaptive
monotone or adaptive submodular with respect to p(¢), then by the law of total expecta-
tion, i.e. E[E[U|V]] = E[U] for any random variables U and V', the value of information
v(Z) is monotone or submodular. We close this section by showing the monotonicity of
the multi-set function v and leave the analyses of submodularity in Section

LEMMA 4.7. (Monotonicity of the value of information)
For any sampling allocation Zy and Zs, if Zy C Zy, then v(Zy) < v(Z3).

Proof. We prove the monotonicity of v by showing v(Z) < v(Z U {z"™'}) for any al-
location Z (with Y _, 2, = n) and any additional measurement z"**. By the tower

property,

v(ZU{a"}) —u(Z) = Ee[o(ZU{a""'})] —E[i(Z)]
= Eo[max6;™(Z U {z""1})] - E[max6;(2)]

= ]EQ[E[mQ?X O (Z U {z"t)) — max O 2)|P ~ g

= Eo [V :E:{ G,n]7
where 17 is the partial realization with dom(¢z) = Z. The lemma follows from the
adaptive monotonicity, vX%" > 0. O

4.3 Guarantees on the Prior-optimality of the Knowledge Gra-
dient Policy

There are two ways to evaluate the value of a policy. The first, which we call the posterior
view, conditions on the allocation Z = Z7(®) that would have occurred under policy
7 for each sample path ¢ € ®. This is the more conventional approach for evaluating
policies. The second, which we call the prior view, starts by characterizing the value of
an arbitrary allocation Z (before we have seen any sample realizations).

More formally, the classical way to estimate the value of a policy is to calculate the
incremental improvement over what we could do before we collect any information, is
given by

fug(®) = E[f(Z7(®), ®)] — max¥,.

av;
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We let P(m ~» Z) be the probability that policy = produces allocation Z. Since with
a fixed budget of N measurements, there are only finite choices of possible allocations,
using the tower property, we can condition on the allocation Z™ = Z which gives us

favg(M) = Z P(r ~ Z) <E[m§X9§(Z”(<I>), )27 = 7] — mfxeg).

ZezZN

We note that in this method for evaluating a policy (which is the standard method), we
only consider allocations Z that are actually produced by policy 7 for the outcomes in
¢. This approach makes it much more difficult to understand the relationship between
the allocation Z and the value of a policy.

For this reason, we adopt a different method of evaluating a policy which we term
the prior view. Since this idea is new, we define it formally as follows

DEFINITION 4.8 (The prior-value of a policy). Let Z™ be the set of all possible allocations
with a limited budget n. The value of a policy ™ with N measurements is defined as

F*" = > P(r~ Z2) (E@[max 0"(Z,®)] — max eg)
ZezZN

= > Pr~ Z)(Z).

ZezZN

In this view, we use the prior probability of an outcome p(¢) instead of the posterior
p(¢|Z™(¢) = Z) which is conditioned on an allocation Z. The value of this approach
is that it writes the value of a policy directly as a function of v(Z), making it easier
to study the effect of the properties of v(Z) on the value of a policy. Intuitively, since
a policy could generate different allocations Z for different sample realizations, it is
natural to define the value of a policy 7 as the weighted sum of the expected value of
information based on all possible allocations Z and the weight should be the probability
of occurrence of Z based on policy 7.

We make the following assumption which is weaker than the adaptive submodularity
assumption and will analyze it further in Section [5

Assumption 1. The value of information v is a submodular multi-set function on the
set of alternatives X with respect to the prior distribution p(¢).

Let 7* be the optimal sequential policy under a budget of N measurements in the
sense that the prior-value of 7* is the largest. We call it prior-optimality. In what
follows, we first bound KG’s sub-prior-optimality in Proposition [4.12}

Fﬂ’* S FKG[H]@TF* S FKG[nfl] + N(FKG["] . FKG["*U)’ n — 17 2’ ’N
Then we derive the worst-case bound for the KG policy in Theorem [4.14f
FEG N -1 e—1

>1- () >

~ 0.632.
Fr = N e
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Besides the posterior optimality bound obtained from adaptive stochastic multi-set
maximization, the prior-optimality provides another insight into the performance of the
KG policy based on a well-understood quantity: value of information.

DEFINITION 4.9 (Policy concatenation). [I8] A concatenated policy m = mQmy is con-
structed by running m to completion, and then running policy m from a fresh start
tgnoring all the information collected while running .

To be more specific, suppose m; has a budget of n;, © = 1, 2, the first phase is to run m;
for n; iterations starting from S° and we get a sample realization including decisions and
their corresponding measurements. The second phase is to run 7y for ny measurements
starting from S° and we get another sample realization. Thus the sample realization
of the concatenated process is all the decisions and their corresponding measurements
collected in two phases. Note here, when running the second policy, we ignore all the
information collected during running the first one, but when calculating the value of
m@Qmy, F™9™2 we use all the information collected in two phases.

DEFINITION 4.10 (Policy truncation). [18] For a policy w, define the j-truncation 7V
of ™ as the policy that runs exactly (j + 1) steps under w’s decision rule and 7l as
the single step policy that randomly chooses an alternative according to the probability
distribution of policy 7’s decision for the (j + 1)-th step.

We now show that the value of 7; is no larger than the value of 7 Q.

LEMMA 4.11. F™ < F™°™ for gll policies m and ms under any prior and probability
distribution that describes a measurement.

Proof. We first show that F™©@™ = Fm%m Ip a concatenated policy, the two phases
are independent since no information is shared among the two phases. Hence for a given
allocation pair (71, Z3) where Z; € Z™ | Zy € 2", we have

P(Wl@ﬂg ~ (Zla ZQ)) = ]P(?Tl ~ Zl)]P)(WQ ~ ZQ)
= ]P>(7T2 ~ ZQ)IP)(Wl ~ Zl)
= P(Ti’z@ﬂ'l ~ (ZQ, ZI))

Fmem — pm@m follows immediately from taking the sum over all possible pairs of
(Z1, Zs)) such that Z, U Z; = Z for any fixed allocation Z.

Therefore F™ < F™@™ holds if and only if F™ < F™%™_ We then finish this proof
by showing F™ < F™@m  We write F™®™ — ['™ as a telescoping sequence

11



Fﬂ'l@ﬂ'Z — M
— Z v(Z)P(m Qg ~> Z) — Z v(Z1)P(m1 ~ Z)

ZeZnritne Z1€ZM

— Z Z P(my ~ Z1)P(mg ~ Z3)

ZEZ”1+"2 Z1UZy=

— Z Z ’U 1)]?(71'1 ~ Zl)P(TFQ ~ ZQ)
Z1EZ™L ZoeZ™2

- 3y ¥ [ (Z,U Zs) — v(Zl)]IP’(m s Z)P(1y ~ 7o)
Z1EZM ZoeZ™2

> 0,

where the second equality holds due to the same reason as in the proof above for
FmOm2 — pm29m and the third equality is just the same summation in different orders.
The last inequality holds because of the monotonicity of multi-set function v. m

Based on the monotonicity of v and a similar argument as in Proposition 4.11, F'
is non-decreasing with respect to the number of measurements. Thus the more mea-
surements, the better the policy. Hence 7* has exactly N measurements. We have the
following sub-optimality bound on K G’s prior-value. For a proof see Appendix [A.3]

PROPOSITION 4.12. Let pKGn = pKG" _ pKG"=H yp o

Fﬂ'* < F KGn—l@gr* < F KGn=1] _|_NpKG,n

n—1

= Y P NpKO n=0,1,..,N -1 (6)

=0
We now derive a bound for the a}c{léiptive greedy policy by applying linear program-
ming to the problem of minimizing 1;,7 subject to the inequalities (6|), which is a worst-

case analysis. The following lemma states the linear program and its solution. We use
it afterwards to establish the bounds.

LEMMA 4.13. Given N € Z., consider the following linear program

» ai+Nay>1, t=0,1,..,N -1
=0

. . N—-1 —
Then under these N constraints, miny_,_ a; =1 — o, where o = 21,
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The proof of this lemma can be found in [31].

We have the following results, which generalizes the classic result of the greedy
algorithm that achieves (1 — 1/e)-approximation to prior-optimality for ranking and
selection problems.

THEOREM 4.14. Assume we have a budget of N measurements. Let 7 denote the
optimal sequential policy for the ranking and selection problem, then we have

FEC N -1
>1—(——)".
2 1= ()

Proof. By Proposition 4.12] we have F™ < 31" pKGi 4 NpKGn o p = 0,1, N — 1.
Divide by F™ on both sides of this inequality, we have

[y

n—

pKG,i KG,n
+N ,
F™ Fr

1< n=0,1,..,N—1.

I
o

i

Let a; = ff—f, and then these inequalities are identical to the constraints in Lemma
413l We notice that

N-1 ' N-1 G, B N-1 pKG,z FKG
min E a; = min E — < =
=0 1=0 =0
: N-1_ = _ N FKG N _ N—1\N
By Lemmal.13, we have min) ;" " a; = 1—a™, 50 7o 2 1—a” = 1—-(75)". O

5 Analysis of Submodularity of the Value of Infor-
mation

The finite-time bounds obtained in the previous sections assume that the value of in-
formation is submodular. In general, submodularity does not hold for arbitrary value
functions. In this section, we analyze the submodularity of the two-alternative case for
independent beliefs.

While submodularity is a property for multi-set functions, we can extend it to any
continuous function by making it possible for the increment to take any positive value.
It could be easily extended to any continuous function. This allows us to use results
from real analysis to study submodularity.

DEFINITION 5.1. A function f : R" — R is submodular if for all x,y € R", x; < vy; and
d e Ry,
flx+0) = f(z) > fly +6) = f(y).
We show that submodularity of C? functions is directly related to its second deriva-
tives and cross-derivatives (the proof is given in Appendix [A.4):
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THEOREM 5.2. C? function f: R"® — R is submodular if and only if every element of its
Hessian is non-positive.

The concavity of the value of information has been studied extensively by [14]. In
this section, we only study the cross-derivatives of the value of information.
Let M = 2 and the measurement allocation z = (z1, 25). The value of information

2,0
v(z) = s(2)f (=9, where s(=) = V/F(0) T 63 (=), 63(=) = i, fla) =
®(a) + ¢(a), ¢ and ¢ are the standard normal cumulative distribution and density
respectively [14].
Although the value of information is not concave in general in the two-alternative
case, v is concave on the region where all z;’s are large enough (see Theorem 2 in [14]).
We directly calculate the first derivative and cross-derivative of v as

a0, - B
oz s(2) /(= s(2) e hd il s(2) ]’

v _ 01(21)51(21)52(22)55(22) |67 — 65 00— 03>
0210z $3(z) ! s(z) ) (&f(zl) +03(22) 1)'

THEOREM 5.3. The value of information is submodular when M = 2 and 69 = 69.

Proof. Concavity of v(z) is proven in Remark 2 by [14]. Since 69 = 69, |69 —09] = 0 and

thus a -5 < 0. Therefore, v is submodular in this case. O
82 5 < 0is equivalent to [0) — 03] < 7(21) + 53(22). Rewriting this inequality, we
get
1 1 20 20 10 2
+ <o’ +05” — 109 — 692 7
g sl )
91 92 w
We need 07 + 03" — 09 — «98|2 > 0, which can be achieved by setting our prior variance

large enough or using a uniform prior over all alternatives. This is very reasonable when
we have very little information about our problem domain.

Inequality equation @ defines a region in the z; — 25 plane. Specifically, this region
has the hyperbolic line 20 103" — 109 — 092 as its boundary and

1 1
z + 1 =0
20+ ; 2,0"‘02 1
73

contains infinity. In partlcular when z; and 2z, are large enough (or equivalently when
our measurement is accurate enough), the value of information is submodular.

Since there is no closed-form expression for the value of information under arbitrary
allocations, we cannot verify submodularity in a simple way for problems with more than
two alternatives and for correlated beliefs. Instead, it can be checked using numerical
approximation and is easy to guarantee by running repeated experiments and averaging
to reduce measurement noise. A necessary condition is the concavity of the value of
information for measuring a fixed alternative x for n times, which can be checked exactly.
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Intuitively, we may expect that the marginal value of information should decline
as we make more observations. But it is not always the case. It is shown that the
value of information for measuring a single alternative may form an S-curve which is
concave when there are many measurements, but may be convex at the beginning [14].
The S-curve behavior arises when the measurement noise is large and thus a single
measurement simply contains too little information, leading to algorithmic difficulties
and apparent paradoxes. This issue is not related to any specific policy, but rather
is an inherent property of learning problems. Although the value of information is not
necessarily concave, it can be made concave by measuring each alternative enough times
or (equivalently) using sufficiently precise measurements.

6 Computational Experiments

Since the seminal paper by [28], there has been a long history in the optimal learn-
ing literature of designing algorithms with provable asymptotic or finite-time bounds
[2, B, B4, [4 16, B]. But none of these bounds are tight in finite time and different
bounds can be based on different metrics. Hence, empirical experiments are needed to
better understand the finite time performance of each policy. To this end, we propose
experiments to illustrate the finite time behavior of both KG and other optimal learn-
ing policies. We consider the following learning settings that arise a lot in black box
Bayesian optimization.

Equal-prior: M = 100. The true values pu, are uniformly distributed over [0, 60]
and measurement noise oy = 100. 6% = 30 and ¢ = 10 for every z.

Asymmetric unimodular function (AUF): z is a controllable parameter ranging
from 21 to 120. The objective function is F(z,£) = 6; min(z,&) — 0oz, where 6y, 0,
and the distribution of the random variable ¢ are all unknown. The aim is to solve
max, EF(z, &) while learning 6y, 65 and the parameters that determine the distribution
of £&. The true distribution of £ is taken as a normal distribution with mean 60 and
standard deviation 18 (corresponding to a 30% noise ratio).

Goldstein-Price’s function with additive noise:

flxy,0) = [1+ (z+y+1)%(19 — 142 + 32% — 14y + 6zy + 3y°)] -
[30 + (22 — 3y)?(18 — 32z + 1222 + 48y — 36xy + 27y°)] + ¢,

where —3 < x < 3, —3 <y < 3 and are uniformly discretized into 13 x 13 alternatives.

In order to obtain the prior distribution, we follow [24] and [23] to use Latin hyper-
cube designs for initial fit. For independent beliefs, we adopt a uniform prior with the
same mean value 2 and standard deviation ¢ for all alternatives. For correlated beliefs,
we use a constant mean value 6 for all alternatives and a prior covariance matrix of the

form
2

d
ngl = ge~ imy Ail@i—)) ,
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where each arm x is a d-dimensional vector and o, \; are constant. We adopt the rule
of thumb by [24] for the default number (10 x p) of points, where p is the number of
parameters to be estimated. In addition, as suggested by [23], to estimate the random
errors, after the first 10 x p points are evaluated, we add one replicate at each of the
locations where the best p responses are found. Maximum likelihood estimation is then
used to estimate the parameters based on the points in the initial design.

The policies considered in this section is described as follows.

EXPL: A pure exploration strategy that tests each alternative equally often.

EXPT: A pure exploitation strategy, XEXFT:"(S") = arg max, .

Interval Estimation (IE): [25]

X'B(S™) = argmax 07 + 24207
Kriging: [23]
Let * = arg max, (07 + o7), then

. or — or, 07 — 05
XKrlglng,n(S") = arg maX(QZ — 0;‘*)43(3‘“—711) + O—ZQS(:E—nI)a
x Oy Oy

where ¢ and ® are the standard normal density and cumulative distribution functions.

UCB-E: [2]
XUCB-E,n(sn) — arg max la;l + 1%7

where 177, N7 are the sample mean of ;, and number of times x has been measured up
to time n. The quantity @ is initialized by measuring each alternative once.
SR: [2] Let A, = X, log(M) = 1 + M L
{ 1 n— M W
Ny = | = .
log( M ) M+1—m

For each phase m =1,...,. M — 1:

1. For each x € A,,, select alternative x for n,, — n,,_1 rounds.

2. Let A,y = A\ argmingeq,, fle.

6.1 Finite Time Performance of Different Policies

Although the theoretical analysis in the previous section is to bound the performance of
the knowledge gradient policy to the optimal policy (in theory), the optimal sequential
policy is impossible to find in practice. To this end, we compare the value of KG to the
expected value of the best alternative max, u,. Define the opportunity cost (OC™) of
any policy 7 at any time step n as:

OC™ = max p; — fzn,
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Figure 1: Opportunity cost ratio.

where 7" = arg max, 07,. We illustrate the finite time behavior of the KG policy under
Equal-prior and AUF with independent normal beliefs. We run KG and calculate the
opportunity cost ratio = m"#ﬁfz" in each iteration. We report the mean with 90%
confidence interval averaged over 1000 experiments in Figure [I}

We next compare the performance of KG, IE with tuning, UCB-E with tuning,
SR, EXPL and EXPT. Figure [2] shows the performance in problem classes AUF and
Goldstein with independent beliefs under a measurement budget five times the number
of alternatives. We run each policy for 1000 times. In each run, we pre-generate all
the observations and share across different policies. We illustrate in the first column of
Figure [2| the mean opportunity cost and the standard deviation of each policy over 1000
runs after the measurement budget is exhausted.

In order to give a comprehensive comparison based on different metrics, we also
calculate the probability that the final recommendation of each policy is the optimal one
and the probability that the opportunity cost of each policy is the lowest, as illustrated
in the figures on the right hand side of Figure [2]

The three criteria characterize the behavior of policies from different perspectives.
One observation is that there is no universal best policy for all problem classes or
under all criteria, which means that theoretical guarantees are not by themselves reliable
indicators of which policy is best for a particular problem class.

We also exploit correlated beliefs between alternatives in order to strengthen the
effect of each measurement so that one measurement of some alternative can provide
information for other alternatives.

First, we present the OC of different policies after each iteration under AUF (6, =
0.56,) in Figure [3l We tune z, for IE and « for UCB for N = 400 measurements and
the optimal values are z, = 0.969 and a = 6.657. Since UCB-E needs to measure each
alternative once, we omit the OC for its first 100 (which is the number of alternatives)
steps. KG uses independent beliefs while KGCB, IE and Kriging start from MLE
fitted correlated beliefs. When incorporating correlated beliefs, a measurement of one
alternative tells us something about other alternatives. As a result, KGCB learns faster
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than KG.
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Figure 3: OC obtained by each policy after each measurement under AUF (0, = 0.56,).

7 Conclusion

In this paper, we offer a new perspective of interpreting ranking and selection problems
as adaptive stochastic multi-set maximization problems. We present the first finite-
time bounds for the knowledge gradient on both the posterior optimality and the prior
optimality. The prior view provides a cleaner relationship between the performance of
the policy and the sample taken, making it possible to relate the value of information to
the submodularity of the sample. We analyze the submodularity of the two-alternative
case and provide other conditions for more general problems, bringing out the issue and
importance of submodularity in leaning problems. We propose experiments to further
illustrate the finite time behavior of the knowledge gradient policy as well as other
policies with or without theoretical guarantees.
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A Proofs
A.1 Proof of Lemma (4.5

For any ¢ with [¢)| = n, we consider the resulting knowledge state S™ = (02, 82),cx-
Since o' # 0, there exists such ¢ that max, 07 > max,, 07 with positive probability.
Now consider another realization ¢’ with dom(¢’) = dom(¢) U {2}, where x5 is the
second largest alternative of 7. We denote the observation of x5 in ¢’ as W5 and the
resulting S"™! as (67+1 g7ty according to Bayes’ rule. The knowledge gradient
A(z[h) = v can be analytically expressed by

vy " = f(C),
where 5% = /(BT — (B + BV) T, (¢ = = | and £(Q) = C@(C) + 6(C).
®(¢) and ¢(¢) are, respectively, the cumulative standard normal distribution the stan-
dard normal density [15]. We first notice that f'({) = ®(¢) > 0 for any ¢ € R so
that f(() is non-decreasing. We next compare VflG’” and V;flG’"H for 1 = argmax, 0.
According to Bayes’ rule, the precision § of x5 changes only when x5 is measured. So we

have 67 = ¢!, Similarly we have all the 67! unchanged except for alternative z5. By

some algebra, it can be shown that for any W3 such that 07, < W, < %(9;‘1 —07,)+07

Ty
we have vEX&m < pyEGm L Since 97 > 0 by construction, such W5 can be obtained with
positive probability.

A.2 Proof of Proposition

In this appendix, we prove the properties of submodular multi-set functions. We prove
the equivalence by showing 2) = 1) = 3) = 4) = 2).

e 2)=1). Take SC T and T'— S = {xy, 9, ...,x, }. Then from 3) we have p,(S) >

px(SU{Il})7 Pm(SU{$1}) Z Pm(SU{xla 1'2}),.“, Pm(SU{fEh I, "'7xr—1}) Z pa:(T)
Summing these r inequalities yields 1).

e 1) = 3). For arbitrary S and T with T'— S = {z1,29,...,2,} and S — T =
{v1,92, ..., 44}, from 1) we have

T

g(SUT) —g(S) = [g(SU{z1,om}) — g(SU{an, .. 21 })]

t=1

= Zp$t(s U {xla "')xt—1}>
t=1

< n(S) =D pulS). (8)

zeT-S
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And

q

g(SUT)=g(T) = 9T U{ys, . uu}) = 9(T U1, p11})]

t=1

= Zpyt(TU i, -yt —{wet})

> p(TUS—{y})= > p(SUT —{z}). (9)

t=1 zeS-T

Subtracting equation (9) from equation (§) we get 3).
e 3)=4). If SCT,S—T=10, and therefore the last term in 3) vanishes.

e 4) = 2). Substitute 7' = S U {z,y} into 4) to obtain

9(SU{z,y}) < 9(S) + p=(5) + py(S) = p2(S) + 9(SU{y}).

Rearrange this inequality, we get

p=(SU{y}) = g(SU{z,y}) — g(SU{y} < p(95).

A.3 Proof of Proposition 4.12

Let z*(Z, 7, ®) be the next adaptive greedy choice that maximizes the expected marginal
increment given that policy 7 has generated Z. We first show that

From < B oy N Py~ Z) (E[@(Z U{2"(Z,m, )}, ®)] — U(Z))

for all policies m; with a measurement budget n; and m, with a budget n, under any
prior and probability distribution that describes a measurement.

Proof. Let wb! denote the first j measurement decisions under some policy 7. First of
all we break F™®™ — '™ into n; consecutive differences,

ni B .
FTI'Q@Tl'l _ ™ — § <F7r2@7r[171 . Fﬂ.2@ﬂ,£j—1]>.

j=1
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Similar to what we did in the last lemma, for each difference we have

Fﬂg@ﬂgj] _ [ @ﬂ'gj_l]

= Y Pm@r ~ Z)w(Z) - Y P(m@r{ Y s Zo)u(Z)
ZyeZn2t ZyeZno+i-1

> > Pmen e 2P v Zufman T v Zy)u(2)
Zlezn2+j Z2€Zn2+j71,22UZ3:Z1

— Y Y Bman! e 2B~ ZyfmQn T s Z3)o(2))
ZQEZ"QJrjfl 23631

= Z Z (m @ng ZQ)]P’(TFF} ~ Zg|7r2@7rgj_u o Zo) (0(Z9 U Zs) — v(2s)).

ZoeZm2ti—1 Z3ez1

Now we consider all possible pair (Z4, Zs) such that Z, € 2™, Zs € Z/~! and Z,U Z5 =
Z5. Notice that the policy Wg@ﬂgﬂ employs a fresh start at the time ny, therefore the
events before and after time ny are independent. Then we have

Z Z (m@nl ™ s 2Pl s Zs|mp@rl ! s Z5) (v(Z2 U Z3) — v(Z))

Z262n2+1 1 23621

S Y Y S B 2R 2Rl - i - 2

ZoczZn2ti—1 ZyUZs=Zs Z3eZ1

X (U(Zg U Zg) — U(ZQ))
Based on the submodular property of function v, we have
U(ZQ U Zg) — ’U(ZQ) S U<Z4 U Zg) - U(Z4).

Then from the definition of z*, we have

V(Z4U Z3) —v(Zy) = B[6(Z,U Zs, @) — 0(Zy, )]
= Eo[E[0(Z4U Zs, @) — 0(Zy, ®)|Z27(®) = Z4]]
Ee [IE (ZyU{2"(Zy, 10, @)}, @) — 0(Zy, P)| 2™ (D) = Z4]]
Eo[0(Z, U{z"(Zy, 70, @)}, D)] — v(Zy).

IN
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Combining the last two inequalities, we have

Z Z Z P(my ~ Z4)]P)(7T£j_1] ~ Z5>]P)<7Tij} ~ Zs’ﬂg@ﬂgj_l} ~ Zg)

Zoezno+i=1 ZyUZs=275 Z3cZt

X ('U(ZQ U Zg) — U(ZQ))
Z Z Z P(7y ~~ Z4)P(7T£j_1] ~ Z5)]P’(7rij} o Z3|7T2@7r£j_1} ~s 7o)

ZocZn2ti=1 ZyUZs="Z2 7Z3€Z1
(Ef}(Zz; U {Z*(Z4, T2, )} (I)) — U(Z4))
=YY Pl ZOP(r Y s Z) (B0(Z0 U (2, 7o, @)}, @) — 0(24)

ZocZn2ti=1 ZyUZs="2Z>

= > > Plmw Z)P(r) " s Z5) (Bi(Zy U {2 (Zia, 7m0, @)}, @) — 0(Z4))

Zy€Z™2 Zrezi—1

= Y P(m o~ Z)(Bo(Ze U {2 (Za, 72, @)}, @) — v(Z4)),

ZyEZM2

IA

and this ends the proof. O

Set m; = 7* and m, = KGIY in Lemma and the above proposition then what
left to show is that

FRG" PRGN Py e 7 (EU(ZU{Z (Z,KGI"1 @)}, @) —U(Z)).

zZezZn

From the definition, the left hand side of the last equation:

= > PKG~ Z)v(Zi) = Y P(KG ~ Zo)v(2s)

Z1eZntl ZaeZ™

= > ) P(KG ~ Z)P(KG ~ Zs|KG ~ Z3)0(Z> U Zs)

Z2€Z™ Z3eZ!

— Y P(KG ~ Z5)v(Zs).

Zo€ZM

FK(;[n] . FK(;[n—l]

Now it is enough to show that

D" P(KG ~ Z3|KG ~ Zo)v(Zy U Z3) — v(Zs)
Z3cZl

> Eo(Zy U {2"(Zy, KGI U @)}, @) — 0(2Zy).

We could group together the partial realizations v that lead to the same single step op-
timal decision z*(Zs, KGh=1, ®), and then the last inequality follows from the adaptive
greedy nature of the KG policy.
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A.4 Proof of Theorem 5.2

First of all, we consider the case when f is a two dimensional function and the four points
we pick form a rectangle. Assume f(z,y) is submodular. For any given point (zg, o), we
have f(zo+t+s,y0)— f(zo+t,y0) < f(2o+8,y0) — (%0, o) and f(zo+1, yo) — f (20, Yo) <
flzo + t,yo + s) — f(xo,yo + s) for any s,¢ > 0. From the first inequality we get
fre(T0,yo) < 0 directly. From the second inequality, we have f.(zo,y0) < fo(zo,y0 + 3),
and finally f, ,(20,y0) < 0. On the other hand, if we have f,, <0, f,, <0, for any
(2, y), then due to the fact that f(zo+t, yo+s)— f(zo+1t, yo) — (f (o, yo+5)— f (w0, 40)) =

f;oﬁt iﬁs foy(u,v)dudv <0, f(wo+t+s,y0) = f(zo+t, yo) — (f(wo+s5,y0) — f (20, 40)) =
st fee(zo + &, y0) < 0, we obtain the submodularity.

We next consider the general case when [ is n dimensional and the four points
only form a parallelogram. Since the difference between the two marginal values can
be decomposed into summation of several marginal value differences whose reference
points form rectangles that parallel to coordinate planes, the result for the general case

is straightforward from the two dimensional case.
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