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A MATRIX-ALGEBRAIC ALGORITHM FOR THE RIEMANNIAN

LOGARITHM ON THE STIEFEL MANIFOLD UNDER THE

CANONICAL METRIC

RALF ZIMMERMANN∗

Abstract. We derive a numerical algorithm for evaluating the Riemannian logarithm on the
Stiefel manifold with respect to the canonical metric. In contrast to the existing optimization-based
approach, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm
converges locally and exhibits a linear rate of convergence.
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1. Introduction. Consider an arbitrary Riemannian manifold M. Geodesics
on M are locally shortest curves that are parametrized by the arc length. Because
they satisfy an initial value problem, they are uniquely determined by specifying a
starting point p0 ∈ M and a starting velocity ∆ ∈ Tp0

M from the tangent space at
p0. Geodesics give rise to the Riemannian exponential function that maps a tangent
vector ∆ ∈ Tp0

M to the endpoint C(1) of a geodesic path C : [0, 1] → M starting at

C(0) = p0 ∈ M with velocity ∆ = Ċ(0) ∈ Tp0
M. It thus depends on the base point

p0 and is denoted by

Expp0
: Tp0

M → M, Expp0
(∆) := C(1). (1.1)

The Riemannian exponential is a local diffeomorphism, [13, §5]. This means that
it is locally invertible and that its inverse, called the Riemannian logarithm is also
differentiable. Moreover, the exponential is radially isometric, i.e., the Riemannian
distance between the starting point p0 and the endpoint p1 := Expp0

(∆) on M is
the same as the length of the velocity vector ∆ of the geodesic t 7→ Expp0

(t∆) when
measured on the tangent space Tp0

M, [13, Lem. 5.10 & Cor. 6.11]. In this way, the
exponential mapping gives a local parametrization from the (flat, Euclidean) tangent
space to the (possibly curved) manifold. This is also referred to as to representing
the manifold in normal coordinates [12, §III.8].

The Riemannian exponential and logarithm are important both from the theo-
retical perspective as well as in practical applications. The latter fact holds true in
particular, when M is a matrix manifold [2]. Examples range from data analysis and
signal processing [7, 17, 3, 18] over computer vision [4, 14] to adaptive model reduction
and subspace interpolation [5] and, more generally speaking, optimization techniques
on manifolds [6, 1, 2]. This list is far from being exhaustive.

Original contribution. In the work at hand, we present a matrix-algebraic deriva-
tion of an algorithm for computing the Riemannian logarithm on the Stiefel manifold.
The matrix-algebraic perspective allows us to prove local linear convergence. The
approach is based on an iterative inversion of the closed formula for the associated
Riemannian exponential that has been derived in [6, §2.4.2]. Our main tools are
Dynkin’s explicit Baker-Campbell-Hausdorff formula [19] and Goldberg’s exponential
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series [8], both of which represent a solution Z to the matrix equation

expm(Z(X,Y )) = expm(X) expm(Y ) (⇔ Z(logm(V ), logM (W )) = logm(VW )) ,

where V = expm(X),W = expm(Y ) and expm, logm are the standard matrix expo-
nential and matrix logarithm [11, §10, §11]. As an aside, we improve Thompson’s
norm bound from [20] on ‖Z(X,Y )‖ for the Goldberg series by a factor of 2, where
‖ · ‖ is any submultiplicative matrix norm.

The Stiefel log algorithm can be implemented in O(10) lines of (commented)
MATLAB [15] code, which we include in Appendix E.1.

Comparison with previous work. To the best of our knowledge, up to now, the
only algorithm for evaluating the Stiefel logarithm appeared in Q. Rentmeesters’ thesis
[18, Alg. 4, p. 91]. This algorithm is based on a Riemannian optimization problem. It
turns out that this approach and the ansatz that is pursued here, though very different
in their course of action, lead to essentially the same numerical scheme. Rentmeesters
observes numerically a linear rate of convergence [18, p.83, p.100]. Proving linear con-
vergence for [18, Alg. 4, p. 91] would require estimates on the Hessian, see [18, §5.2.1],
[2, Thm. 4.5.6]. In contrast, the derivation presented here uses only elementary ma-
trix algebra and the convergence proof given here formally avoids the requirements
of computing/estimating step sizes, gradients and Hessians that are inherent to an-
alyzing the convergence of optimization approaches. In fact, the convergence proof
applies to [18, Alg. 4, p. 91] and yields the linear convergence of this optimization
approach when using a fixed unit step size, but only on a sufficiently small domain.
The thesis [18] was published under a two-years access embargo and the fundamentals
of the work at hand were developed independently before [18] was accessible.

Transition to the complex case. The basic geometric concepts of the Stiefel man-
ifold, the algorithm for the Riemannian log mapping developed here and its conver-
gence proof carry over to complex matrices, where orthogonal matrices have to be
replaced with unitary matrices and skew-symmetric matrices with skew-Hermitian
matrices and so forth, see also [6, §2.1]. The thus adjusted log mapping algorithm
was also confirmed numerically to work in the complex case.

Organization. Background information on the Stiefel manifold are reviewed in
Section 2. The new derivation for the Stiefel log algorithm is in Section 3, convergence
analysis is performed in Section 4, experimental results are in Section 5, and the
conclusions follow in Section 6.

Notational specifics. The (p× p)-identity matrix is denoted by Ip ∈ Rp×p. If the
dimension is clear, we will simply write I. The (p× p)-orthogonal group, i.e., the set
of all square orthogonal matrices is denoted by

Op×p = {Φ ∈ Rp×p|ΦTΦ = ΦΦT = Ip}.

The standard matrix exponential and matrix logarithm are denoted by

expm(X) :=

∞
∑

j=0

Xj

j!
, logm(I +X) :=

∞
∑

j=1

(−1)j+1X
j

j
.

We use the symbols ExpSt, LogSt for the Riemannian counterparts on the Stiefel
manifold.

When we employ the qr-decomposition of a rectangular matrix A ∈ Rn×p, we
implicitly assume that n ≥ p and refer to the ‘economy size’ qr-decomposition A =
QR, with Q ∈ Rn×p, R ∈ Rp×p.
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2. The Stiefel manifold in numerical representation. This section reviews
the essential aspects of the numerical treatment of Stiefel manifolds, where we rely
heavily on the excellent references [2, 6]. The Stiefel manifold is the compact homo-
geneous matrix manifold of all column-orthogonal rectangular matrices

St(n, p) := {U ∈ Rn×p| UTU = Ip}.
The tangent space TUSt(n, p) at a point U ∈ St(n, p) can be thought of as the space
of velocity vectors of differentiable curves on St(n, p) passing through U :

TUSt(n, p) = {Ċ(to)|C : (t0 − ǫ, t0 + ǫ) → St(n, p), C(t0) = U}.
For any matrix representative U ∈ St(n, p), the tangent space of St(n, p) at U is
represented by

TUSt(n, p) =
{

∆ ∈ Rn×p| UT∆ = −∆TU
}

⊂ Rn×p.

Every tangent vector ∆ ∈ TUSt(n, p) may be written as

∆ = UA+ (I − UUT )T, A ∈ Rp×p skew, T ∈ Rn×p arbitrary. (2.1)

The dimension of both TUSt(n, p) and St(n, p) is np− 1
2p(p+ 1).

Each tangent space carries an inner product 〈∆, ∆̃〉U = tr
(

∆T (I − 1
2UUT )∆̃

)

with corresponding norm ‖∆‖U =
√

〈∆,∆〉U . This is called the canonical met-

ric on TUSt(n, p). It is derived from the quotient space representation St(n, p) =
On×n/O(n−p)×(n−p) that identifies two square orthogonal matrices in On×n as the
same point on St(n, p), if their first p columns coincide [6, §2.4]. Endowing each
tangent space with this metric (that varies differentiably in U) turns St(n, p) into a
Riemannian manifold.

We now turn to the Riemannian exponential (1.1) but for M = St(n, p). An
efficient algorithm for evaluating the Stiefel exponential was derived in [6, §2.4.2].
The algorithm starts with decomposing an input tangent vector ∆ ∈ TUSt(n, p) into
its horizontal and vertical components with respect to the base point U ,

∆ = UUT∆+ (I − UUT )∆
(qr of (I−UUT )∆)

= UA+QERE .

Because ∆ is tangent, A ∈ Rp×p is skew. Then the matrix exponential is invoked to
compute

(

M
NE

)

:= expm

((

A −RT
E

RE 0

))(

Ip
0

)

. (2.2)

The final output is1

Ũ := ExpSt
U (∆) = UM +QENE ∈ St(n, p). (2.3)

(A MATLAB function for the Stiefel exponential is in the supplement in Appendix
H.) The matrix exponential in (2.2) is related with the solution of the initial value
problem that defines a geodesic on St(n, p), see [6, §2.4.2] for details. It turns out
that the main obstacle in computing the inverse of the Stiefel exponential and thus
the Stiefel logarithm is inverting (2.2), i.e. finding A,RE given M,NE, compare to
[18, eq. (5.21)].

1The index in QE , RE , NE is used to emphasize that these matrices stem from the Stiefel expo-
nential as opposed to the closely related matrices Q,R,N that will appear in the procedure for the
Stiefel logarithm.
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3. Derivation of the Stiefel log algorithm. Let U, Ũ ∈ St(n, p) and assume
that Ũ is contained in a neighborhood D of U such that ExpSt

U is a diffeomorphism
from a neighborhood of 0 ∈ TUSt(n, p) onto D. The central objective is to find
∆ ∈ TUSt(n, p) such that ExpSt

U (∆) = Ũ .
Because of Alg. 2.3, we know that Ũ allows for a representation Ũ = UM+QENE .

Hence, we have to determine the unknown matricesM,NE ∈ Rp×p, QE ∈ Rn×p, which
feature the following properties: QT

EU = 0 and MTM +NT
ENE = Ip. (Note that by

(2.2), M and NE are the left upper and lower p × p blocks of a 2p × 2p orthogonal
matrix.) We directly obtain

M = UT Ũ , QENE = (I − UUT )Ũ .

We compute candidates for QE, NE via a qr-decomposition

QN
qr
= (I − UUT )Ũ , Q ∈ St(n, p).

The set of all orthogonal matrices with M,N as an upper diagonal and lower
off-diagonal block is parametrized via

{(

M X
N Y

)

|
(

X
Y

)

=

(

X0

Y0

)

Φ, Φ ∈ Op×p

}

,

where (XT
0 , Y

T
0 )T is a specific orthogonal completion, computed, say, via the Gram-

Schmidt process.
Thus, the objective is reduced to solving the following nonlinear matrix equation

0 =
(

0 Ip
)

logm

((

M X0

N Y0

)(

Ip 0
0 Φ

))(

0
Ip

)

, Φ ∈ Op×p. (3.1)

Writing logm

((

M X0

N Y0

)(

Ip 0
0 Φ

))

=

(

A −BT

B C

)

, this means finding a rotation

Φ such that C = 0.
The first result is that solving (3.1) indeed leads to the Riemannian logarithm on

the Stiefel manifold.
Theorem 3.1. Let U, Ũ ∈ St(n, p) and assume that Ũ is contained in a neigh-

borhood D of U such that ExpSt
U is a diffeomorphism from a neighborhood of 0 ∈

TUSt(n, p) onto D.

Let M , QE , NE, Q,N , X0, Y0 as introduced in the above setting. Suppose that

Φ ∈ Op×p solves (3.1), i.e.,

logm

((

M X0Φ
N Y0Φ

))

=

(

A −BT

B 0

)

.

Define ∆ := UA+QB ∈ TUSt(n, p). Then ExpSt
U (∆) = Ũ , i.e., ∆ = LogSt

U (Ũ).
Proof. By construction, it holds QN = (I − UUT )Ũ and hence

UTQ = 0, (I − UUT )Q = Q, QQT Ũ = QQT (I − UUT )Ũ = (I − UUT )Ũ . (3.2)

Now, we apply the Stiefel exponential Alg. 2.3 to ∆ = UA + QB. This gives (I −
UUT )∆ = QB and

QERE
qr
= QB ⇔ RE = ΨB, where Ψ := (QT

EQ) ∈ Op×p.
2

2The matrices QE and Q differ by an orthogonal rotation but span the same subspace.
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With UT∆ = A, we obtain

(

M
NE

)

:= expm

((

A −RT
E

RE 0

))(

Ip
0

)

=

(

I 0
0 Ψ

)

expm

((

A −BT

B 0

))(

I 0
0 ΨT

)(

Ip
0

)

=

(

I 0
0 Ψ

)(

M X0Φ
N Y0Φ

)(

Ip
0

)

=

(

M
ΨN

)

.

Keeping in mind that QEΨ = QEQ
T
EQ = Q, this leads to an output of

ExpSt
U (∆) = UM +QENE = UM +QEΨN = UM +QN = Ũ .

Thus, ∆ is a valid tangent vector in TUSt(n, p) such that ExpSt
U (∆) = Ũ ∈ St(n, p).

From abstract differential geometry, we know that LogSt
U (Ũ) ∈ TUSt(n, p) is the

unique tangent with ExpSt
U (LogSt

U (Ũ)) = Ũ . We arrive at the claim

∆ = LogSt
U (Ũ).

Having established Theorem 3.1, we now focus on solving (3.1). Let

V0 :=

(

M X0

N Y0

)

, logm(V0) :=

(

A0 −BT
0

B0 C0

)

,

W0 :=

(

Ip 0
0 Φ0

)

, logm(W0) =

(

0 0
0 logm(Φ0)

)

.

Up to terms of first order, it holds logm(V0W0) = logm(V0) + logm(W0). Hence, the
choice

Φ0 = expm(−C0)

gives an approximate solution to (3.1). We define

V1 :=

(

M X0

N Y0

)(

Ip 0
0 Φ0

)

, logm(V1) :=

(

A1 −BT
1

B1 C1

)

(3.5)

and iterate. This is the essential idea of Alg. 3.1 for the Riemannian logarithm.3

In Section 4 we make use of the Baker-Campbell-Hausdorff formula [19, §1.3, p.
22] that corrects for the misfit in the approximative matrix relation logm(VW ) ≈
logm(V ) + logm(W ) for two non-commuting matrices V,W in order to show that the
above procedure leads to

‖Ck+1‖2 < α‖Ck‖2

for all k ∈ N0 and a constant α < 1 and is thus convergent.
Since the Riemannian exponential is a local diffeomorphism, we have to postulate

a suitable bound on the distance between the input matrices U and Ũ . Suppose that
‖U − Ũ‖2 < ε. Recalling the definitions M = UT Ũ and (I − UUT )Ũ = QN , this

3This is the same algorithm as [18, Alg. 4, p. 91] that Rentmeesters obtains from his geometrical
perspective when a fixed unit step length is employed and when [18, §5.3] is taken into account.
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gives the following bounds for the horizontal and the vertical component of U − Ũ
with respect to the subspace spanned by U :

‖UUT (U − Ũ)‖2 = ‖Ip −M‖2 < ε, ‖(I − UUT )(U − Ũ)‖2 = ‖QN‖2 = ‖N‖2 < ε.

However, it turns out that for the convergence proof, estimates on the norms
of X0, Y0 and Y0 − Ip are also required. By the CS-decomposition of orthonormal
matrices [9, Thm 2.6.3, p. 78], the diagonal blocks M and Y0 share the same singular
values and so do the off-diagonal blocks N,X0. Hence, ‖N‖2 = ‖X0‖2 < ε. Let
D1ΣR

T
1 be the SVD of M and D2ΣR

T
2 be the SVD of Y0. An estimate for the

singular values of M can be obtained as follows:

ε2 > ‖N‖22 = ‖NTN‖2 = ‖I −MTM‖2 = ‖I − Σ2‖2 = max
σk

(1− σ2
k), (3.6)

where we have used that σ1 = ‖M‖2 ≤ 1. Now, we replace the Y0 that has been
obtained via, say, Gram-Schmidt by Y0R2D

T
2 = D2ΣD

T
2 (and, correspondingly,X0 by

X0R2D
T
2 ). Essentially, this is the orthogonal Procrustes method, [9, §12.4.1, p.601],

applied to minΨ∈Op×p
‖I − Y0Ψ‖2.This operation preserves the orthogonality of V0 =

(

M X0

N Y0

)

, but the new Y0 is symmetric with eigenvalue decomposition Y0 = D2ΣD
T
2 .

This gives

‖Y0 − Ip‖2 = ‖Σ− Ip‖2 = max
σk

|1− σk| < max
σk

(1− σ2
k) < ε2.

In summary, if ‖U − Ũ‖2 < ε and if we start the iterations indicated by (3.5) with
the Procrustes orthogonal completion X0, Y0 rather than the standard Gram-Schmidt
process, we obtain Alg. 3.1 with the starting conditions

‖Ip −M‖2 < ε, ‖N‖2 = ‖X0‖2 < ε, ‖Y0 − Ip‖2 < ε2. (3.7)

Computational costs. W.l.o.g. suppose that n ≥ p. In fact the most important
case in practical applications is n ≫ p. Because of the matrix product in step 1 and
the qr-decomposition in step 2 of Alg. 3.1, the preparatory steps 1–3 require O(np2)
FLOPS. The dominating costs in the iterative loop, steps 5–10, are the evaluation of
the matrix logarithm for a 2p-by-2p orthogonal matrix and the matrix exponential
for a p-by-p skew-symmetric matrix in every iteration, both of which can be achieved
efficiently via the Schur decomposition. The costs are O(p3), see [9, Alg. 7.5.2].

A MATLAB function for Alg. 3.1 is in Appendix E.1.

4. Convergence proof. In this section, we establish the convergence of Alg.
3.1 under suitable conditions. We state the main result as Theorem 4.1; the proof is
subdivided into the auxiliary results Lemma 4.2, and Lemma 4.3 as well as Lemma A.1
that appears in Appendix A. An essential requirement is that the point Ũ ∈ St(n, p)
that is to be mapped to the tangent space TUSt(n, p) is sufficiently close to the base
point U ∈ St(n, p) in the sense that ‖U − Ũ‖2 < ε. Throughout, we will make
extensive use of Dynkin’s explicit BCH formula [19, §1.3, p. 22].

Theorem 4.1. Let U, Ũ ∈ St(n, p). Assume that ‖U − Ũ‖2 < ε. Let (Vk)k be the

sequence of orthogonal matrices generated by Alg. 3.1.

If ε < 0.0912, then Alg. 3.1 converges to a limit matrix V∞ := limk→∞ Vk such

that

logm(V∞) :=

(

A∞ −BT
∞

B∞ C∞

)

=

(

A∞ −BT
∞

B∞ 0

)

.
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Algorithm 3.1 Stiefel logarithm, iterative procedure

Input: base point U ∈ St(n, p) and Ũ ∈ St(n, p) ‘close’ to base point, τ > 0 conver-
gence threshold

1: M := UT Ũ ∈ Rp×p

2: QN := Ũ − UM ∈ Rn×p # (thin) qr-decomp. of normal component of Ũ

3: V0 :=

(

M X0

N Y0

)

∈ O2p×2p # orthogonal completion and Procrustes

4: for k = 0, 1, 2, . . . do

5:

(

Ak −BT
k

Bk Ck

)

:= logm(Vk) # matrix log, Ak, Ck skew

6: if ‖Ck‖2 ≤ τ then

7: break
8: end if

9: Φk = expm (−Ck) # matrix exp, Φk orthogonal

10: Vk+1 := VkWk, where Wk :=

(

Ip 0
0 Φk

)

#

update
11: end for

Output: ∆ := LogSt
U (Ũ) = UAk +QBk ∈ TUSt(n, p)

Given a numerical convergence threshold τ > 0, see Alg. 3.1, line 7, the algorithm

requires at most k = ⌈ log(‖C0‖2)−log(τ)
log(2) ⌉ − 1 iteration steps to meet the convergence

criterion under the above conditions.

Remark 1. Alg. 3.1 generates a sequence of orthonormal matrices

Vk+1 = VkWk = V0(W0W1 . . .Wk) = V0

((

Ip 0
0 Φ0

)

. . .

(

Ip 0
0 Φk

))

∈ O2p×2p.

(4.1)
The proof of Theorem 4.1 will show that limk→∞ Wk = I2p, see (4.12). Therefore, the
sequence of orthogonal products Φ0 . . .Φk converges to a limit Φ∞ for k → ∞. The
limit Φ∞ solves (3.1). However, it is not required to actually form Φ∞. In pursuit
of the proof of Theorem 4.1, we first show that if the norm of the matrix logarithm
of the orthogonal matrix Vk produced by Alg. 3.1 at iteration k is sufficiently small,
then the norm of the lower p-by-p diagonal block of the matrix logarithm of the next
iterate Vk+1 is strictly decreasing by a constant factor.

Lemma 4.2. Let U, Ũ ∈ St(n, p). Let (Vk)k ⊂ O2p×2p be the sequence of orthog-

onal matrices generated by Alg. 3.1. Suppose that at stage k, it holds

‖ logm(Vk)‖2 := ‖
(

Ak −BT
k

Bk Ck

)

‖2 <
1

2
(
√
5− 1). (4.2)

Then logm(Vk+1) :=

(

Ak+1 −BT
k+1

Bk+1 Ck+1

)

features a lower (p×p)-diagonal block of norm

‖Ck+1‖2 < α‖Ck‖2, 0 < α <
1

2
.
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Proof. Given Vk =

(

M Xk

N Yk

)

= expm

((

Ak −BT
k

Bk Ck

))

, Alg. 3.1 computes the

next iterate Vk+1 via

Vk+1 := VkWk,

where Wk :=

(

Ip 0
0 expm(−Ck)

)

. For brevity, we introduce the notation LV :=

logm(V ) for the matrix logarithm. Recall that [V,W ] := VW − WV denotes the
commutator or Lie-bracket of the matrices V,W . From Dynkin’s formula for the
Baker-Campbell-Hausdorff series, see [19, §1.3, p. 22], we obtain

LVk+1
= logm(VkWk)

= LVk
+ LWk

+
1

2
[LVk

, LWk
]

+
1

12

([

LVk
, [LVk

, LWk
]
]

+
[

LWk
, [LWk

, LVk
]
])

− 1

24

[

LWk
,
[

LVk
, [LVk

, LWk
]
]

]

+

∞
∑

l=5

zl(LVk
, LWk

),

where
∑∞

l=5 zl(LVk
, LWk

) =: h.o.t.(5) are the terms of fifth order and higher in the
series. In the case at hand, it holds

LVk
+ LWk

=

(

Ak −BT
k

Bk Ck

)

+

(

0 0
0 −Ck

)

=

(

Ak −BT
k

Bk 0

)

,

[LVk
, LWk

] =

(

0 BT
k Ck

CkBk 0

)

.

(Note that the basic idea in designing Alg. 3.1 was exactly to choose Wk such that
the lower diagonal block in the BCH-series cancels in the first order terms.)

The third and fourth order terms are

1

12

(

−2BT
k CkBk AkB

T
k Ck − 2BT

k C
2
k

2C2
kBk − CkBkAk BkB

T
k Ck + CkBkB

T
k

)

, and

1

24

(

0 −BT
k C

3
k +AkB

T
k C

2
k

−C3
kBk + C2

kBkAk BkB
T
k C

2
k − C2

kBkB
T
k

)

, respectively.

Therefore, the series expansion for the lower diagonal block in logm(Vk+1) starts with
the terms of third order:

‖Ck+1‖2 = ‖ 1

12
(BkB

T
k Ck + CkBkB

T
k )−

1

24
(BkB

T
k C

2
k − C2

kBkB
T
k ) + h.o.t.(5)‖2

≤
(

1

6
‖Bk‖22 +

1

12
‖Bk‖22‖Ck‖2 +

‖h.o.t.(5)‖2
‖Ck‖2

)

‖Ck‖2. (4.6a)

We tackle the higher order terms via Lemma A.1 from the appendix. The lemma
applies because ‖Ck‖2 = ‖LWk

‖2 ≤ ‖LVk
‖2 < 1

2 (
√
5− 1) < 1. In this setting, it gives

‖h.o.t.(5)‖2 ≤
∞
∑

l=5

‖zl(LVk
, LWk

)‖2 <
∞
∑

l=5

‖LVk
‖l−1‖LWk

‖2,

8



since each of the “letters” LVk
, LWk

appears at least once in every “word” that con-
tributes to zk(LVk

, LWk
), see Appendix A and [20, 16, 21].

Writing s := ‖LVk
‖2 and substituting in (4.6a) leads to

‖Ck+1‖2 <
(

1

6
s2 +

1

12
s3 +

∞
∑

l=4

sl

)

‖Ck‖2 =: α‖Ck‖2. (4.7)

The proof is complete, if we can show that α < 1. Note that
∑∞

l=4 s
l = 1

1−s
− 1− s−

s2 − s3. As a consequence

α < 1 ⇔ s2

1− s
− 5

6
s2 − 11

12
s3 < 1.

An obvious bound on the size of s is obtained via observing that s2

1−s
< 1, if s <

1
2 (
√
5 − 1) ≈ 0.618. The corresponding α is 0.4653 < 1

2 . A sharper bound can be
obtained via solving the associated quartic equation. This shows that the inequality
even holds for all s < 0.7111. In order to make use of Lemma 4.2, we establish
conditions such that ‖ logm(Vk)‖2 < 1

2 (
√
5 − 1) holds throughout the iterations of

Alg. 3.1.

This is the goal of the the next lemma. It relies on the auxiliary results Proposition
B.1, Proposition B.2 and Lemma B.3 from Appendix B. Proposition B.1 shows that
‖ expm(C)−I‖2 < ‖C‖2 for C skew-symmetric; Proposition B.2 establishes a bound in
the opposite direction: if V is orthogonal such that ‖V −I‖2 < r, then ‖ logm(V )‖2 <

r
√

1− r2

4 /(1− r2

2 ). Finally, Lemma B.3 shows that ‖V0−I‖2 < 2ε for the first iterate

V0 of Alg. 3.1, provided that ‖U − Ũ‖2 < ε.

Lemma 4.3. Let U, Ũ ∈ St(n, p) with ‖U − Ũ‖2 < ε. Let (Vk)k ⊂ O2p×2p be

the sequence of orthogonal matrices generated by Alg. 3.1, where Vk =

(

M Xk

N Yk

)

.

Let ε̃ = 2ε
√
1−ε2

1−2ε2 and ε̂ := (e2ε̃ − 1) + ε + ε2. If 0 < ε is small enough such that

ε̂

√

1− ε̂2

4

1− ε̂2

2

< 1
2 (
√
5− 1), then

‖ logm(Vk)‖2 = ‖
(

Ak −BT
k

Bk Ck

)

‖2 <
1

2
(
√
5− 1) for all k.

Proof. Let δ0 := 1
2 (
√
5− 1). By Lemma B.3 from Appendix B, it holds

‖ logm(V0)‖2 < 2ε

√
1− ε2

1− 2ε2
= ε̃ (< δ0).

In particular, ε̃ > ‖
(

A0 −BT
0

B0 C0

)

‖2 ≥ ‖C0‖2. By Alg. 3.1, Φ0 = expm(−C0), where

Φ0 is orthogonal. By Proposition B.1 from Appendix B

‖Φ0 − I‖2 ≤ ‖C0‖2 < ε̃.
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Writing V1 = I + (V1 − I) =: I + E1, this leads to the estimate

‖E1‖2 = ‖
(

M − I X0Φ0

N Y0Φ0 − I

)

‖2

= ‖
(

M − I 0
0 Y0(Φ0 − I)

)

+

(

0 0
0 Y0 − I

)

+

(

0 X0Φ0

N 0

)

‖2

≤ max{‖M − I‖2, ‖Y0(Φ0 − I)‖2}+ ‖Y0 − I‖2 +max{‖N‖2, ‖X0Φ0‖2}
≤ max{ε, ‖Y0‖2‖(Φ0 − I)‖2}+ ε2 + ε ≤ ε̃+ ε2 + ε

≤ (e2ε̃ − 1) + ε+ ε2 = ε̂,

where we have used (3.7) and the fact that ‖Y0‖2 ≤ 1, see (B.2a), (B.2b). By Lemma

B.3, ‖ logm(V1)‖2 < ε̂
√

1− ε̂2

4 /(1− ε̂2

2 ) < δ0. Thus, the claim holds for k = 0, 1.

Lemma 4.2 applies to ‖ logm(V0)‖2 and leads to ‖C1‖2 < 1
2‖C0‖2 < ε̃

2 for the
lower diagonal block C1 of the next iterate logm(V1). Therefore, by using Proposition
B.1 once more, we see that

‖Φ1 − I‖2 ≤ ‖C1‖2 <
ε̃

2
.

By induction, we obtain Vk = I + (Vk − I) =: I + Ek with

‖Ek‖2 = ‖
(

M X0Φ̂k−1

N Y0Φ̂k−1

)

− I‖2

= ‖
(

M − I 0

0 Y0(Φ̂k−1 − I)

)

+

(

0 0
0 Y0 − I

)

+

(

0 X0Φ̂k−1

N 0

)

‖2

≤ max{‖M − I‖2, ‖Y0(Φ̂k−1 − I)‖2}+ ‖Y0 − I‖2 +max{‖N‖2, ‖X0Φ̂k−1‖2}
≤ max{ε, ‖Y0‖2‖Φ̂k−1 − I‖2}+ ε2 + ε. (4.9a)

where Φ̂k−1 = Φ0 · · ·Φk−1.
We can estimate ‖Φ̂k−1− I‖2 as follows: By the induction hypothesis, we assume

that we have checked that ‖ logm(Vj)‖2 < δ0 for j = 0, . . . , k − 1. Hence, Lemma 4.2
ensures that ‖Cj‖2 < 1

2‖Cj−1‖2 < . . . < 1
2j ‖C0‖2 < ε̃

2j for the lower diagonal block

of logm(Vj), j = 0, . . . , k − 1. As above, this gives ‖Φj − I‖2 ≤ ‖Cj‖2 < ε̃
2j . We thus

may write Φj = I + (Φj − I) =: I + Γj with ‖Γj‖2 =: gj <
ε̃
2j . This gives

‖Φ̂k−1 − I‖2 = ‖(I + Γ1) · · · (I + Γk−1)− I‖2 ≤ (1 + g1) · · · (1 + gk−1)− 1. (4.10)

It holds

ln





k−1
∏

j=0

(1 + gj)



 =

k−1
∑

j=0

ln(1 + gj) ≤
k−1
∑

j=0

gj ≤
∞
∑

j=0

ε̃

2j
= 2ε̃.

Using this estimate in (4.10) gives

‖Φ̂k−1 − I‖2 < e2ε̃ − 1

and we finally arrive at

‖Ek‖2 ≤ (e2ε̃ − 1) + ε2 + ε = ε̂.

10



Recalling (4.9a), we have Vk = I + Ek with ‖Ek‖2 < ε̂ at every iteration k. By

Lemma B.3, ‖ logm(Vk)‖2 < ε̂

√

1− ε̂2

4

1− ε̂2

2

and we see that the postulate on the size of ε

is such that ‖ logm(Vk)‖2 < δ0. Thus Lemma 4.2 indeed applies at iteration k, which

closes the induction. Remark: The inequality ε̂

√

1− ε̂2

4

1− ε̂2

2

< δ0 holds precisely for

ε̂ <
√
2

(

1− 1√
1+δ2

0

)
1
2

=: ε̂0. A further calculations shows that if ε < 0.0912, then

ε̂ = (e2ε̃ − 1) + ε2 + ε < ε̂0, i.e., the conditions of Lemma 4.3 hold, for all ε < 0.0912.

With the tools established above at hand, we are now in a position to prove
Theorem 4.1.

Proof. [Theorem 4.1] Let (Vk)k∈N0
be the sequence of orthogonal matrices gener-

ated by Alg. 3.1. By Lemma 4.2 and Lemma 4.3, it holds

‖ logm Vk‖2 := ‖
(

Ak −BT
k

Bk Ck

)

‖2 <
1

2
(
√
5− 1), ‖Ck+1‖2 < αk+1‖C0‖2 (4.11)

for all k ≥ 0, where 0 < α < 1
2 . From this equation and the continuity of the matrix

exponential, we obtain

lim
k→∞

Wk = lim
k→∞

(

Ip 0
0 expm(−Ck)

)

=

(

Ip 0
0 Ip

)

. (4.12)

The convergence result is now an immediate consequence of Alg. 3.1, step 10. The
upper bound on the iteration count required for numerical convergence is also obvious
from (4.11).

5. Examples and experimental results. In this section, we discuss a special
case that can be treated analytically. Following, we present numerical results on the
performance of Alg. 3.1.

5.1. A special case. Here, we consider the special situation, where the two
points U, Ũ ∈ St(n, p) are such that their columns span the same subspace.4 Hence,
there exists an orthogonal matrix M ∈ Op×p such that Ũ = UM = UM+(I−UUT )0.

In this case, Alg. 3.1 produces the initial matrices V0 =

(

M 0
0 Y0

)

and Φ0 =

expm(− logm(Y0)) = Y −1
0 . Note that the corresponding W0 =

(

Ip 0
0 Y −1

0

)

com-

mutes with V0. Thus, we have the reduced BCH formula logm(V0W0) = logm(V0) +

logm(W0) =

(

logm(M) 0
0 0

)

, i.e., Alg. 3.1 converges after a single iteration and gives

LogSt
U (UM) = U logm(M). (5.1)

(Of course, it is also straight forward to show this directly without invoking Alg. 3.1.)
Let σ(M) = {eiϕ1 , . . . , eiϕp} be the spectrum of M ∈ Op×p and suppose that M is
such that none of its eigenvalues is on the negative real axis, i.e., ϕj ∈ (−π, π). Then,

4We may alternatively express this by saying that [U ] := colspan(U) and [Ũ ] := colspan(Ũ ) are
the same points on the Grassmann manifold [U ] = [Ũ ] ∈ Gr(n, p).
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the maximal Riemannian distance between two points U and UM is bounded by

dist(U,UM) =
√

〈U logm(M), U logm(M)〉U

=

(

1

2
tr(logm(M)T logm(M))

)
1
2

=

(

1

2

p
∑

j=1

ϕ2
j

)
1
2

.

As a consequence

dist(U,UM) <







√

p
2π, p even,

√

p−1
2 π, p odd.

The latter fact holds, because the eigenvalues of M come in complex conjugate pairs.
Hence, if p is odd, there is at least one real eigenvalue λj = eiϕj and because ϕj ∈
(−π, π), there is at least one zero argument ϕj = 0. Related is [6, eq. (2.15)].

5.2. Numerical performance. First, we try to mimic the experiments featured
in [18, §5.4]. Fig. 5.5 (lower left) of the aforementioned reference shows the average
iteration count when applying the optimization-based Stiefel logarithm to matrices
within a Riemannian annulus of inner radius 0.4π and outer radius 0.44π around
(Ip, 0)

T ∈ St(n, p) for dimensions of n = 10, p = 2. Convergence is detected, if
‖Ck‖F < τ = 10−7, where Ck is the same as in Alg. 3.1. ([18, Alg. 4, p. 91]
uses τ2 < 10−14). Since [18, §5.4] does not list the precise input data, we create
comparable data randomly. To this end, we fix an arbitrary point U ∈ St(10, 2) and
create artificially but randomly another point Ũ ∈ St(10, 2) such that the Riemannian
distance from U to Ũ is exactly 0.44π. For full comparability, we replace the 2-norm in
Alg. 3.1, line 7 with the Frobenius norm. We average over 1000 random experiments
and arrive at an average iteration count of k̄ = 7.83. A MATLAB script that performs
the required computations is available in Appendix F. When the distance of U and
Ũ is lowered to 0.4π, the average iteration count drops to a value of k̄ = 6.92.

As a second experiment, we now return to the 2-norm and lower the convergence
threshold to ‖Ck‖2 < τ = 10−13 in the convergence criterion of Alg. 3.1. We create
randomly points U, Ũ ∈ St(n, p) that are also a Riemannian distance of 0.44π away
from each other, where we consider various different dimensions (n, p), see Table 5.1.
We apply Alg. 3.1 to compute ∆ = LogSt

U (Ũ).

Table 5.1

Convergence of Alg. 3.1 for random data to an accuracy of ‖Ck‖2 ≤ 10−13.

(n, p) dist
(

U, Ũ
)

‖U − Ũ‖2 iters. ‖∆− LogSt
U (Ũ)‖2 time

(10,2) 0.44π 1.0179 16 8.7903e-15 0.01s
(10,2) 0.89π 1.7117 95 4.1934e-13 0.06s

(1,000, 200) 0.44π 0.1616 5 1.5119e-14 0.7s
(1,000, 200) 0.89π 0.3256 7 1.7272e-14 0.8s
(1,000, 900) 0.44π 0.1234 4 9.6999e-14 16.1s
(1,000, 900) 0.89π 0.2491 5 7.9052e-14 21.0s

(100,000, 500) 0.44π 0.0875 4 5.9857e-14 13.1s
(100,000, 500) 0.89π 0.1768 5 6.1041e-14 14.0s

12



2 4 6 8 10 12 14 16
iteration k

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

‖C
k
‖ 2

St(10,2)
St(1000,200)
St(1000,900)
St(100000,500)

2 4 6 8 10 12 14 16
iteration k

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

‖C
k
‖ 2

St(10,2)
St(1000,200)
St(1000,900)
St(100000,500)

Fig. 5.1. Convergence of Alg. 3.1 for random data U, Ũ ∈ St(n, p) for various n and p.
Convergence accuracy is set to ‖Ck‖2 ≤ 10−13. Left: convergence graphs for dist(U, Ũ) = 0.44π;
right: for dist(U, Ũ) = 0.89π.

Fig. 5.1 shows the associated convergence histories. The associated computation
times5 are listed in Table 5.1. As can be seen from the figure and the table, Alg.
3.1 converges slowest (in terms of the iteration count) in the case of St(10, 2). Note
that in this case, the constant ‖U − Ũ‖2 that played a major role in the convergence
analysis of Alg. 3.1 is largest. Moreover, we observe that the algorithm converges in
all test cases even though in only one of the experiments the theoretical convergence
guarantee ‖U0 − Ũ‖2 < 0.09 is satisfied, so that the theoretical bound derived here
can probably be improved. Table 5.1 suggests that the impact of the size of ‖U − Ũ‖2
on the iteration count is more direct than that of the actual Riemannian distance.

We repeat the exercise with random data U, Ũ ∈ St(n, p) that are a distance of
0.89π apart, which is the lower bound for the injectivity radius on the Stiefel manifold
given in [18, eq. (5.14)]. In the case of St(10, 2), we hit a random matrix pair U, Ũ ,
where the associated value‖U − Ũ‖2 is so large that the conditions of Theorem 4.1
and Lemma 4.2, Lemma 4.3 do not hold. In fact, we have ‖ logm(V0)‖2 = 3.141 for
the starting point of Alg. 3.1 in this case, which is close to π. Yet, the algorithm
converges, but very slowly so, see Table 5.1, second row and Fig. 5.1, right side. In
all of the other cases, Alg. 3.1 converges in well under ten iterations, even for the
larger test cases.

A MATLAB script that performs the required computations is available in Ap-
pendix F.

5.3. Dependence of the convergence on the Riemannian and the Eu-

clidean distance. In this section, we examine the convergence of Alg. 3.1 depending
on the Riemannian distance dist(U, Ũ) and the distance ‖U − Ũ‖2 in the Euclidean

5as measured on a Dell desktop computer endowed with six processors of type Intel(R) Core(TM)
i7-3770 CPU@3.40GHz
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operator-2-norm. To this end, we create a random point U ∈ St(n, p) with MATLAB
by computing the thin qr-decomposition of an (n × p) matrix with entries sampled
uniformly from (0, 1). Likewise, we create a random tangent vector ∆ ∈ TUSt(n, p)
by chosing randomly a skew-symmetric matrix A = Ã − ÃT ∈ Rp×p and a matrix
T ∈ Rn×p, where the entries of Ã and T are again uniformly sampled from (0, 1),
and setting ∆̃ = UA + (I − UUT )T . We normalize ∆̃ according to the canonical

metric ∆ = ∆̃√
〈∆̃,∆̃〉U

, see Section 2. In this way, we obtain for every t ∈ [0, π) a point

Ũ = U(t) that is a Riemannian distance of dist(U,U(t))) = ‖t∆‖U = t away from U .
We discretize the interval [0.1, 0.9π) by 100 equidistant points {xk|k = 1, . . . , 100}

and compute
• the number of iterations until convergence when computing logSt

U (U(tk)) with
Alg. 3.1 for k = 1, . . . , 100.

• the distance in spectral norm ‖U − U(tk)‖2, k = 1, . . . , 100.
• the norm of the matrix logarithm of the first iterate ‖ logm(V0)‖2 from Alg.
3.1, step 3.

The results are displayed in Figures 5.2 – 5.4 for dimensions of St(10, 000, 400),
St(100, 10) and St(4, 2), respectively. In all cases, the convergence threshold was set to
‖Cl‖2 < τ = 10−13. The algorithm converged in all cases, where ‖ logm(V0)‖2 < π and
produced a tangent vector ∆(tk) := logSt

U (U(tk)) of accuracy ‖∆(tk)−tk∆‖2 < 10−13.
A MATLAB script that performs the required computations is available in Appendix
G. In the case of St(4, 2), the algorithm starts to fail for tk ≈ π

2 , where ‖ logm(V0)‖2
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Fig. 5.2. Convergence of Alg. 3.1 for U, Ũ = U(tk) = ExpSt
U

(tk∆) ∈ St(n, p), where ∆ is a
random tangent vector of canonical norm 1 and n = 10, 000, p = 400. Convergence accuracy is set
to ‖Ck‖2 ≤ 10−13. Left: number of iterations until convergence vs. dist(U, Ũ); middle: ‖U − Ũ‖2
vs. dist(U, Ũ); right: ‖ logm(V0)‖2 vs. dist(U, Ũ).

jumps to a value of π. This indicates that V0 features (up to numerical errors) an
eigenvalue λ = −1 so that the standard principal matrix logarithm is no longer well-
defined. In all the experiments that were conducted, this behavior was observed only
for small values of p < 8, while there was never produced a random data set where
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Alg. 3.1 failed for t < 0.9π and p > 10. The figures suggest that for small column-
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Fig. 5.3. Same as Fig. 5.2, but for n = 100, p = 10.
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Fig. 5.4. Same as Fig. 5.2, but for n = 4, p = 2.

numbers p, the ratio between the Riemannian distance dist(U, Ũ) and the spectral
distance ‖U − Ũ‖2 is smaller than in higher dimensions. Moreover, for smaller p, it
seems to be more likely to hit a random tangent direction along which Alg. 3.1 fails
early than for higher p. This may partly be explained by the star-shaped nature of
the domain of injectivity of the Riemannian exponential, [13, Lemma 5.7], and the
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richer variety of directions in higher dimensions.
From these observations, it is tempting to conjecture that Alg. 3.1 will converge,

whenever ‖ logm(V0)‖2 < π. However, these results are based on a limited notion of
randomness and a more thorough examination of the numerical behavior of Alg. 3.1
is required to obtained conclusive results, which is beyond the scope of this work.
Note that the domain of convergence of Alg. 3.1 is related to the injectivity radius of
St(n, p) but it does not have to be the same. In Appendix C from the supplement, we
state an explicit example in St(4, 2), where Alg. 3.1 produces a first iterate V0 with
λ = −1 for an input pair U, Ũ ∈ St(4, 2) with dist(U, Ũ) = π

2 , while the injectivity
radius is estimated to be ≈ 0.71π in [18, §5]. An analytical investigation in St(4, 2)
might be possible and may shed more light on the precise value of the Stiefel manifold’s
injectivity radius.

6. Conclusions and outlook. We have presented a matrix-algebraic derivation
of an algorithm for evaluating the Riemannian logarithm LogSt

U (Ũ) on the Stiefel
manifold. In contrast to [18, Alg. 4, p. 91], the construction here is not based on an
optimization procedure but on an iterative solution to a non-linear matrix equation.
Yet, it turns out that both approaches lead to essentially the same numerical scheme.
More precisely, our Alg. 3.1 coincides with [18, Alg. 4, p. 91], when a unit step size is
employed in the optimization scheme associated with the latter method. Apart from
its comparatively simplicity, a key benefit is that our matrix-algebraic approach allows
for a convergence analysis that does not require estimates on gradients nor Hessians
and we are able to prove that the convergence rate of Alg. 3.1 is at least linear. This,
in turn, proves the local linear convergence of [18, Alg. 4, p. 91] when using a unit step
size. The algorithm shows a very promising performance in numerical experiments,
even when the dimensions n, p become large.

So far, we have carried out a theoretical local convergence analysis. Open ques-
tions to be tackled in the future include estimates on how large the convergence do-
main of Alg. 3.1 is in terms of the Riemannian distance of the input points dist(U, Ũ).
This is related with the question of determining the injectivity radius of the Stiefel
manifold. Estimates on the injectivity radius are featured in [18, §5.2.1].

Appendix A. A sharper majorizing series for Goldberg’s Exponential

series. As an alternative to Dynkin’s BCH formula of nested commutators, Goldberg
has shown in [8] that the solution to the exponential equation

expm(X) expm(Y ) = expm(Z)

can be written as a formal series

Z = X + Y +
∞
∑

k=2

zk(X,Y ), zk(X,Y ) =
∑

w,|w|=k

gww. (A.1)

Each term zk(X,Y ) in (A.1) is the sum over all words of length k in the alphabet
{X,Y }. For example, Y XYX2 and X2Y XY 2 are such words of length 5 and 6 and
thus contributing to z5(X,Y ) and z6(X,Y ), respectively. The coefficients are rational
numbers gw ∈ Q, called Goldberg coefficients.

Thompson [20] has shown that the series converges provided that ‖X‖, ‖Y ‖ ≤ µ <
1 for any submultiplicative norm ‖ · ‖. More precisely, his result is that ‖zk(X,Y )‖ =
‖∑w,|w|=k gww‖ ≤ 2µk for k ≥ 2, see also [16, eq. 2]. In the next lemma, we improve
this bound by cutting the factor 2.
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Lemma A.1. Let ‖X‖, ‖Y ‖ ≤ µ < 1. The Goldberg series is majorized by

‖Z‖ < ‖X‖+ ‖Y ‖+
∞
∑

k=2

µk.

Proof. One ingredient of Thompson’s proof is the following basic estimate on
binomial terms:

m

(

m− 1
⌊m

2 ⌋

)

≥ 2m−1. (A.2)

Here, ⌊x⌋ denotes the largest integer smaller or equal to x. Thompson’s argument is

that 2m−1 = (1 + 1)m−1 =
∑m−1

l=0

(

m− 1
l

)

and that

(

m− 1
⌊m

2 ⌋

)

is the largest out of

the m terms in the binomial sum. (It appears twice, if m−1 is odd.) In the following,

we prefer to write this term with using the ceil-operator as

(

m− 1
⌊m

2 ⌋

)

=

(

m− 1
⌈m−1

2 ⌉

)

,

because in this way, the same index m − 1 appears in the upper and lower entry of
the binomial coefficient.

For larger m, the inequality (A.2) can in fact be improved by a factor of 2:

Claim: m

(

m− 1
⌈m−1

2 ⌉

)

> 2m for all m ≥ 7. (A.3)

For m = 7, we have 7

(

7− 1
⌈ 7−1

2 ⌉

)

= 7 · 20 = 140 > 128 = 27; for m = 8, the inequality

evaluates to 280 > 256 = 28. To prove the claim, we proceed by induction.

Case 1: “m even”. In this case, ⌈m
2 ⌉ = m

2 = ⌈m−1
2 ⌉ and

(m+ 1)

(

m
⌈m

2 ⌉

)

= (m+ 1)

((

m− 1
m
2 − 1

)

+

(

m− 1
m
2

))

= 2(m+ 1)

(

m− 1
⌈m−1

2 ⌉

)

> 2(m+ 1)
2m

m
> 2m+1, (A.4a)

where we have used the symmetry in the Pascal triangle (m − 1 is odd) and the
induction hypothesis to arrive at (A.4a).

Case 2: “m odd”. In this case, ⌈m
2 ⌉ = m+1

2 and

(m+ 1)

(

m
⌈m

2 ⌉

)

= (m+ 1)

((

m− 1
m+1
2 − 1

)

+

(

m− 1
m+1
2

))

= (m+ 1)

((

m− 1
⌈m−1

2 ⌉

)

+

(

m− 1
⌈m

2 ⌉

))

. (A.5a)

Note that

(

m− 1
⌈m

2 ⌉

)

is the second-to-largest term in the binomial expansion of (1 +

1)m−1. Moreover, since m− 1 is even, the relation to the largest term is

(

m− 1
⌈m

2 ⌉

)

=
m− 1

m+ 1

(

m− 1
⌈m−1

2 ⌉

)

.

17



Substituting in (A.5a) and applying the induction hypothesis gives

(m+ 1)

(

m
⌈m

2 ⌉

)

> (m+ 1)

(

2m

m
+

m− 1

m+ 1

2m

m

)

=

(

m+ 1

m
+

m− 1

m

)

2m = 2m+1.

Using (A.3) rather than (A.2) in Thompson’s original proof leads to the improved
bound of ‖zk(X ;Y )‖ ≤ µk for k ≥ 7.

We tackle the terms involving words of lengths k = 2, 3, . . . , 6 manually. The
reference [21] lists explicit expressions of the summands in the Goldberg BCH series
up to z8. The first three of them read

z2(X,Y ) =
1

2
(XY − Y X) ⇒ ‖z2(X,Y )‖ ≤ 2

2
µ2.X

z3(X,Y ) =
1

12

(

X2Y − 2XYX +XY 2 + Y X2 − 2Y XY + Y 2X
)

⇒ ‖z3(X,Y )‖ ≤ 8

12
µ3.X

z4(X,Y ) =
1

24

(

X2Y 2 − 2XYXY + 2Y XYX − Y 2X2
)

⇒ ‖z4(X,Y )‖ ≤ 6

24
µ4.X

The expressions for z5(X,Y ) and z6(X,Y ) are too cumbersome to be restated here.
However, for our purposes, a very rough counting argument is sufficient: The expres-
sion for z5(X,Y ) features 30 length-5 words with non-zero Goldberg coefficient and the
largest Goldberg coefficient is 1

30 . Hence, ‖z5(X,Y )‖ = ‖
∑

w,|w|=5 gww‖ < 30
30µ

5.X

(A more careful consideration reveals ‖z5(X,Y )‖ ≤ 176
720µ

5.)
The expression for z6(X,Y ) features 28 length-6 words with non-zero Gold-

berg coefficient and the largest Goldberg coefficient is 1
60 . Hence, ‖z6(X,Y )‖ =

‖∑w,|w|=6 gww‖ ≤ 28
60µ

6.X

Appendix B. Norm bound for the matrix logarithm.

Proposition B.1. Let C ∈ Rp×p be skew-symmetric with ‖C‖2 < π. Then

‖ expm(C)− I‖2 < ‖C‖2.

Proof. Since C is skew-symmetric, it features an EVD C = QΛQH with Λ =
diag(λ1, . . . , λp) = diag(iϕ1, . . . , iϕp), where ϕ ∈ (−π, π) and maxj |iϕj | = ‖C‖2.
Therefore, expm(C) = Q expm(Λ)QH with expm(Λ) = diag(eiϕ1 , . . . , eiϕp) and

‖ expm(C)− I‖2 = max
j

|eiϕj − 1| < max
j

|ϕj | = ‖C‖2.

(The latter estimate may also be deduced from Fig. B.1.)
Proposition B.2. Let V ∈ On×n be such that ‖V − I‖2 < r < 1. Then

‖ logm(V )‖2 < r

√

1− r2

4

1− r2

2

.

Proof. Let E = V −I. The matrices V and E share the same (orthonormal) basis
of eigenvectors Q and the spectrum of V is precisely the spectrum of E shifted by
+1. By assumption, r > ‖E‖2 = maxµ∈σ(E) |µ|. Hence, the eigenvalues λ ∈ σ(V ) are
complex numbers of modulus one of the form λ = eiα = 1 + µ, with |µ| < r. Thus, λ
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lies on the unit circle but within a ball of radius r around 1 ∈ C, see Fig. B.1. The
maximal angle α for such a λ is bounded by the slope of the line that starts in 0 ∈ C

and crosses the points of intersection of the two circles {|z| < 1} and {|z − 1| < r}.
The intersection points are (xs,±ys) =

(

1− r2

2 ,±r
√

1− r2

4

)

. Therefore

|α| < arctan

(

ys
xs

)

= arctan





r
√

1− r2

4

1− r2

2



 < r

√

1− r2

4

1− r2

2

.

As a consequence,

‖ logm(V )‖2 = ‖Q logm(Λ)QH‖2 = max
λ∈σ(V )

| ln(λ)| = max
λ=eiα∈σ(V )

|iα| < r

√

1− r2

4

1− r2

2

.

(0,0)

α

r

(x
s
, y

s
)

(1,0)

(x
s
, -y

s
)

Fig. B.1. Geometrical illustration of Proposition B.2 in the complex plane.

Lemma B.3. Let U, Ũ ∈ St(n, p) with ‖U − Ũ‖2 < ǫ. Let M,N,X0, Y0 and

V0 :=

(

M X0

N Y0

)

∈ O2p×2p be as constructed in the first steps of Alg. 3.1.

Then

‖ logm(V0)‖2 < 2ε

√
1− ε2

1− 2ε2
. (B.1)

Proof. Because V0 is orthogonal,

1 = ‖V0‖2 ≥ ν(V0) = max
‖w‖2=1

|wH

(

M X0

N Y0

)

w| (B.2a)

≥ max
‖v‖2=1

|(0, vH)

(

M X0

N Y0

)(

0
v

)

| = ‖Y0‖2, (B.2b)
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where ν(V0) denotes the numerical radius of V0, see [10, eq. 1.21, p. 21]. Likewise,
‖M‖2 ≤ 1 so that the singular values of M and Y0 range between 0 and 1. Moreover,
by the Procrustes preprocessing outlined at the end of Section 3,

‖N‖2 = ‖X0‖2 < ε, ‖M − I‖2 < ǫ, ‖Y0 − Ip‖2 < ε2,

see (3.7). Combining these facts, we obtain V = I + (V − I) = I + E, where

‖E‖2 = ‖
(

M − I X0

N Y0 − I

)

‖2 ≤ ‖
(

M − I 0
0 Y0 − I

)

+

(

0 X0

N 0

)

‖2

≤ max{‖M − I‖2, ‖Y0 − I‖2}+max{‖N‖2, ‖X0‖2} < max{ε, ε2}+ ε = 2ε.

Applying Proposition B.2 to V = I + E proves the claim.

Appendix C. A critical special case. We present an example that shows that
Alg. 3.1 may fail at computing LogSt

U (Ũ) even for U, Ũ ∈ St(n, p) that are only a
Riemannian distance of dist(U, Ũ) = π

2 apart.
Consider n = 4, p = 2 and set

U =
1

2

(

1 1 1 1
1 1 −1 −1

)T

∈ St(4, 2), ∆ =
1

2

(

−1 1 −1 1
0 0 0 0

)T

∈ TUSt(4, 2).

Note that ∆TU = A = 0 and that ∆ = QR with R =

(

1 0
0 0

)

is the qr-decomposition

of the tangent vector ∆. Hence, the Stiefel exponential (3.1) applied to this data set
yields

Ũ(t) = ExpSt
U (t∆) = (U,Q) expm

((

0 −tR
tR 0

))(

I2
0

)

.

Because of the simple structure of R, the matrix exponential can be computed explic-
itly

expm

((

0 −tR
tR 0

))

=









cos(t) 0 − sin(t) 0
0 1 0 0

sin(t) 0 cos(t) 0
0 0 0 1









.

Recall from Section 2 that dist(U, Ũ(t)) =
√

〈t∆, t∆〉
U
, which in this setting evaluates

to t, since ∆ is of unit norm also with respect to the canonical metric. For t = π
2 , we

obtain

Ũ := Ũ
(π

2

)

= U

(

0 0
0 1

)

+Q

(

1 0
0 0

)

=
1

2

(

−1 1 −1 1
1 1 −1 −1

)T

∈ St(4, 2).

If we now apply Alg. 3.1 to the matrix pair U, Ũ , then we obtain in step 3 of the
algorithm a corresponding

V0 =









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









,
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which features −1 as an eigenvalue and thus leads to a failure in the principal matrix
logarithm. The problem here is the ambiguity in the orthogonal completion. If we
replace the first row of the above V0 with its negative, then we have still a valid
orthogonal completion, and the method works. This example suggests that in a
practical implementation of Alg. 3.1, one should try and explore strategies to compute
a suitable starting iterate V0 with small ‖ logm(V0)‖2.

Appendix D. Why is the Grassmann case simpler than the Stiefel case?.

An important matrix manifold that is related with the Stiefel manifold and that arises
frequently in applications is the Grassmann manifold. It is defined as the set of all
p-dimensional subspaces U ⊂ Rn, i.e.,

Gr(n, p) := {U ⊂ Rn| U subspace, dim(U) = p}.

In this supplementary section, I give sketches for derivations for the Riemannian
exponential and logarithm on the Grassmannian. Closed-form expressions for both
mappings are known from the literature and I try to explain why the Stiefel case is
more difficult. For background theory, the reader is referred to [2], [6].

The Grassmann manifold can be realized as a quotient manifold of the Stiefel
manifold under actions of the orthogonal group via

Gr(n, p) = St(n, p)/Op×p = {[U ]| U ∈ St(n, p)}. (D.1)

The quotient view point allows for using points U ∈ St(n, p) as representatives for
points [U ] ∈ Gr(n, p), i.e., subspaces, see [6] for details. For any matrix representative
U ∈ St(n, p) of U = [U ] ∈ Gr(n, p), the tangent space at U is represented by

TUGr(n, p) =
{

∆ ∈ Rn×p| UT∆ = 0
}

⊂ Rn×p.

This representation also stems from considering Gr(n, p) as a quotient manifold with
St(n, p) as the total space. In fact, the tangent space of the Stiefel manifold can be
decomposed into the so-called vertical space and the horizontal space with respect
to the quotient mapping, TUSt(n, p) = VU ⊕ HU , see [13, Problem 3.8], [2, §3.5.8],
[6, §2.3.2]. The explicit representation of vectors in T[U ]Gr(n, p) that we have intro-
duced above corresponds to the identification of the actual abstract tangent space
T[U ]Gr(n, p) with the horizontal space HU .

From the quotient perspective, Grassmann tangent vectors are special Stiefel
tangent vectors ∆ = U0A + (I − UUT )T , namely those associated with the special
skew-symmetric matrix A = 0 ∈ Rp×p, cf. (2.1). Hence, we may use the Stiefel
exponential to compute the Grassmann exponential:

• Given ∆ ∈ T[U ]Gr(n, p), compute the qr-decomposition (I −U0U
T
0 )∆ = ∆ =

QERE .
• Compute the matrix exponential

(

M
NE

)

:= expm

((

0 −RT
E

RE 0

))(

Ip
0

)

. (D.2)

• Return Ũ = ExpGr
[U0]

(∆) = [U0M +QENE ].

It is precisely the extra upper-left zero-block in the matrix exponential in (D.2), that
makes the Grassmann case easier to tackle than the Stiefel case: By using the SVD
RE = ΦΣDT and the series expansion of expm, it is straight-forward to show that

expm

((

0 −RT
E

RE 0

))

=

(

D 0
0 Φ

)(

cos(Σ) − sin(Σ)
sin(Σ) cos(Σ)

)(

DT 0
0 ΦT

)

, (D.3)
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which gives

(

M
NE

)

=

(

D cos(Σ)DT

Φ sin(Σ)DT

)

. (D.4)

(In the above formulae, it is understood that sin and cos are to be applied pointwise
to the diagonal elements of the diagonal matrix Σ.) Eventually, we arrive at

ExpGr
U0

(∆) = [U0M +QNE] = [U0D cos(Σ)DT +QΦ sin(Σ)DT ].

Instead of starting with the qr-decomposition ∆ = QERE , we now see that we
could have directly worked with the SVD ∆ = Q̂ΣDT (= (QΦ)ΣDT ), which yields
ExpGr

U0
(∆) = [U0D cos(Σ)DT + Q̂ sin(Σ)DT ].

This is exactly the expression that Edelman et al. have found in [6, Thm. 2.3] for
the Riemannian exponential on Gr(n, p) and the derivation above can be considered
as a ’thin SVD’-version of [6, Thm. 2.3, Proof 2, p. 320].

The inverse of this mapping, i.e., the Riemannian logarithm on Gr(n, p) can be
deduced as follows: Consider [U0], [Ũ ] ∈ Gr(n, p). Under the assumption that [Ũ ]
is sufficiently close to [U ], it holds that Ũ = U0M + QN and the task is to find
M,N ∈ Rp×p and Q ∈ St(n, p) such that QTU0 = 0. The first matrix factor M is
uniquely determined by UT

0 Ũ = M . We obtain candidates for Q,N by computing the
qr-decomposition (I − U0U

T
0 )Ũ = QN . Yet, in order to reverse (D.4), it is require to

work with consistent coordinates. Taking (D.3), (D.2) into account, this is established
by setting NL = NM−1 and computing the SVD NL = ΦSDT , because by defining
Σ = arctan(S), we can decompose

NL = ΦSDT = Φtan(Σ)DT = Φsin(Σ)DTD(cos(Σ))−1DT .

This shows that the choice RL := ΦΣDT yields a tangent vector ∆ := QRL such that

ExpGr
U0

(∆) =

[

(U0, Q) expm

((

0 −RT
L

RL 0

))(

Ip
0

)]

= [U0D cos(Σ)DT +QΦ sin(Σ)DT ] = [Ũ ].

Note that QNL = QΦSDT SVD
= QNM−1 = (I − U0U

T
0 )ŨM−1. Hence, we now see

that we could have directly started with the SVD of Q̂SDT = (I − U0U
T
0 )ŨM−1 to

arrive at

LogGr
U0

(Ũ) = ∆ = Q̂ arctan(S)DT .

This is the well-known closed-form of the Grassmann logarithm. Unfortunatley, I
was not able to track down the original derivation. The earliest appearance in the
literature that I found was [4, Alg. 3]. However, this reference only mentions the
above formuala but does not cite a source. In summary, the Grassmann case is
easier to deal with because of the extra off-diagonal block structure in the associated
matrix exponential (D.2), which leads to a CS-decomposition in (D.3) by a similarity

transformation; compare this to [9, Thm. 2.6.3, p.78].

Appendix E. MATLAB code.
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E.1. Alg. 3.1.

%

function [Delta, k, conv_hist, norm_logV0] = ...

Stiefel_Log_supp(U0, U1, tau)

%-------------------------------------------------------------

%@author: Ralf Zimmermann, IMADA, SDU Odense

%

% Input arguments

% U0, U1 : points on St(n,p)

% tau : convergence threshold

% Output arguments

% Delta : Log^{St}_U0(U1),

% i.e. tangent vector such that Exp^St_U0(Delta) = U1

% k : iteration count upon convergence

% supplementary output

% conv_hist : convergence history

% norm_logV0 : norm of matrix log of first iterate V0

%-------------------------------------------------------------

% get dimensions

[n,p] = size(U0);

% store convergence history

conv_hist = [0];

% step 1

M = U0’*U1;

% step 2

[Q,N] = qr(U1 - U0*M,0); % thin qr of normal component of U1

% step 3

[V, ~] = qr([M;N]); % orthogonal completion

% "Procrustes preprocessing"

[D,S,R] = svd(V(p+1:2*p,p+1:2*p));

V(:,p+1:2*p) = V(:,p+1:2*p)*(R*D’);

V = [[M;N], V(:,p+1:2*p)]; % |M X0|

% now, V = |N Y0|

% just for the record

norm_logV0 = norm(logm(V),2);

% step 4: FOR-Loop

for k = 1:10000

% step 5

[LV, exitflag] = logm(V);

% standard matrix logarithm

% |Ak -Bk’|

% now, LV = |Bk Ck |

C = LV(p+1:2*p, p+1:2*p); % lower (pxp)-diagonal block

% steps 6 - 8: convergence check

normC = norm(C, 2);

conv_hist(k) = normC;
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if normC<tau;

disp([’Stiefel log converged after ’, num2str(k),...

’ iterations.’]);

break;

end

% step 9

Phi = expm(-C); % standard matrix exponential

% step 10

V(:,p+1:2*p) = V(:,p+1:2*p)*Phi; % update last p columns

end

% prepare output |A -B’|

% upon convergence, we have logm(V) = |B 0 | = LV

% A = LV(1:p,1:p); B = LV(p+1:2*p, 1:p)

% Delta = U0*A+Q*B

Delta = U0*LV(1:p,1:p) + Q*LV(p+1:2*p, 1:p);

return;

end

Note: The performance of this method may be enhanced by computing expm, logm
via a Schur decomposition.

Appendix F. MATLAB code corresponding to Section 5.2.

First experiment discribed in Section 5.2.

%-------------------------------------------------------------

% script_Stiefel_Log_supp52.m

% %@author: Ralf Zimmermann, IMADA, SDU Odense

%-------------------------------------------------------------

clear;

% set dimensions

n = 10;

p = 2;

% fix stream of random numbers for reproducability

s = RandStream(’mt19937ar’,’Seed’,1);

% set number of random experiments

runs = 100;

dist = 0.4*pi;

average_iters = 0;

for j=1:runs

%create random stiefel data

[U0, U1, Delta] = create_random_Stiefel_data(s, n, p, dist);

% ’project’ Delta onto St(n,p) via the Stiefel exponential

U1 = Stiefel_Exp_supp(U0, Delta);

% compute the Stiefel logarithm

[Delta_rec, k] = Stiefel_Log_supp(U0, U1, 1.0e-13);

% uncomment the following lines to check

% if Stiefel logarithm recovers Delta

%norm(Delta_rec - Delta)

average_iters = average_iters +k;

end

average_iters = average_iters/runs;
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disp([’The average iteration count of the Stiefel log is ’,...

num2str(average_iters)]);

% EOF: script_Stiefel_Log_supp52.m

%-------------------------------------------------------------

Second experiment discribed in Section 5.2.

%-------------------------------------------------------------

% script_Stiefel_Log_supp52b.m

% %@author: Ralf Zimmermann, IMADA, SDU Odense

%-------------------------------------------------------------

clear; close all;

dist = 0.44*pi;

%-------------------------------------------------------------

% set dimensions

n = 10;

p = 2;

% fix stream of random numbers for reproducability

s = RandStream(’mt19937ar’,’Seed’,1);

%create random stiefel matrix:

[U0, U1, Delta] = create_random_Stiefel_data(s, n, p, dist);

norm_U0_U1 = norm(U0 - U1,2)

% compute the Stiefel logarithm

tic;

[Delta_rec, k, conv_hist1, norm_logV01] = ...

Stiefel_Log_supp(U0, U1, 1.0e-13);

toc;

norm_recon11 = norm(Delta_rec - Delta)

%-------------------------------------------------------------

%-------------------------------------------------------------

% reset dimensions

n = 1000;

p = 200;

%create random stiefel matrix:

[U0, U1, Delta] = create_random_Stiefel_data(s, n, p, dist);

norm_U0_U1 = norm(U0 - U1,2)

% compute the Stiefel logarithm

tic;

[Delta_rec, k, conv_hist2, norm_logV02] = ...

Stiefel_Log_supp(U0, U1, 1.0e-13);

toc;

norm_recon12 = norm(Delta_rec - Delta)

%-------------------------------------------------------------

%-------------------------------------------------------------

% reset dimensions
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n = 1000;

p = 900;

%create random stiefel matrix:

[U0, U1, Delta] = create_random_Stiefel_data(s, n, p, dist);

norm_U0_U1 = norm(U0 - U1,2)

% compute the Stiefel logarithm

tic;

[Delta_rec, k, conv_hist3, norm_logV03] = ...

Stiefel_Log_supp(U0, U1, 1.0e-13);

toc;

norm_recon13 = norm(Delta_rec - Delta)

%-------------------------------------------------------------

%-------------------------------------------------------------

% reset dimensions

n = 100000;

p = 500;

%create random stiefel matrix:

[U0, U1, Delta] = create_random_Stiefel_data(s, n, p, dist);

norm_U0_U1 = norm(U0 - U1,2)

% compute the Stiefel logarithm

tic;

[Delta_rec, k, conv_hist4, norm_logV04] = ...

Stiefel_Log_supp(U0, U1, 1.0e-13);

toc;

norm_recon14 = norm(Delta_rec - Delta)

%-------------------------------------------------------------

% plot convergence history

figure;

subplot(1,2,1);

semilogy(1:length(conv_hist1), conv_hist1, ’k-s’, ...

1:length(conv_hist2), conv_hist2, ’k:*’, ...

1:length(conv_hist3), conv_hist3, ’k-.o’, ...

1:length(conv_hist4), conv_hist4, ’k--x’);

legend(’St(10,2)’, ’St(1000,200)’, ’St(1000,900)’,...

’St(100000,500)’)

% EOF: script_Stiefel_Log_supp52b.m

%-------------------------------------------------------------

Appendix G. MATLAB code corresponding to Section 5.3.

%-------------------------------------------------------------

% script_Stiefel_Log_supp53.m

% @author: Ralf Zimmermann, IMADA, SDU Odense

%-------------------------------------------------------------

clear; close all;

% set dimensions
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n = 100;

p = 10;

% fix stream of random numbers for reproducability

s = RandStream(’mt19937ar’,’Seed’,1);

%create random stiefel data

[U0, U1, Delta] = create_random_Stiefel_data(s, n, p, 1.0);

% discretize the interval [0.1, 0.9pi] with resolution res

res = 100;

start = 0.01;

t = linspace(start, 0.9*pi, res)’;

%*************************

% initialize observations

%*************************

% spectral distance U, Uk

norm_U_Uk = zeros(res,1);

% iterations until convergence

iters_convk = zeros(res,1);

% norm log(V0)

norm_logV0k = zeros(res,1);

% accuracy of the reconstruction

norm_Delta_Delta_rec_k = zeros(res,1);

for k = 1:res

% ’project’ tDelta onto St(n,p) via the Stiefel exponential

Uk = Stiefel_Exp_supp(U0, t(k)*Delta);

% compute spectral norm

norm_U_Uk(k) = norm(U0-Uk,2);

% execute the Stiefel logarithm

disp([’Compute log for t=’, num2str(t(k))]);

[Delta_rec, iters_conv, conv_hist, norm_logV0] = ...

Stiefel_Log_supp(U0, Uk, 1.0e-13);

% store data

iters_convk(k) = iters_conv;

norm_logV0k(k) = norm_logV0;

norm_Delta_Delta_rec_k(k) = norm(t(k)*Delta-Delta_rec, 2);

end

% visualize results

figure;

subplot(1,3,1);

plot(t, iters_convk, ’k-’);

legend(’iters until convergence’);

hold on

subplot(1,3,2);

plot(t, norm_U_Uk, ’k-’);
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legend(’norm(U_0-U_k)’);

hold on

subplot(1,3,3);

plot(t, norm_logV0k, ’k-’);

legend(’norm(log_m(V_0))’);

figure;

plot(t, norm_Delta_Delta_rec_k);

legend(’reconstruction error’);

%EOF: script_Stiefel_Log_supp53.m

%-------------------------------------------------------------

Appendix H. Auxiliary MATLAB functions.

Stiefel exponential.

%-------------------------------------------------------------

%file: Stiefel_Exp_supp.m

% @author: Ralf Zimmermann, IMADA, SDU Odense

%-------------------------------------------------------------

function [U1] = Stiefel_Exp_supp(U0, Delta)

%-------------------------------------------------------------

% Input arguments

% U0 : base point on St(n,p)

% Delta : tangent vector in T_U0 St(n,p)

% Output arguments

% U1 : Exp^{St}_U0(Delta),

%-------------------------------------------------------------

% get dimensions

[n,p] = size(U0);

A = U0’*Delta; % horizontal component

K = Delta-U0*A; % normal component

[Qe,Re] = qr(K, 0); % qr of normal component

% matrix exponential

MNe = expm([[A, -Re’];[Re, zeros(p)]]);

U1 = [U0, Qe]*MNe(:,1:p);

return;

end

%EOF: Stiefel_Exp_supp.m

%-------------------------------------------------------------

Construction of random data on the Stiefel manifold.

%-------------------------------------------------------------

%file: create_random_Stiefel_data.m

% @author: Ralf Zimmermann, IMADA, SDU Odense

%-------------------------------------------------------------

function [U0, U1, Delta] =...

create_random_Stiefel_data(s, n, p, dist)

%-------------------------------------------------------------

% create a random data set

% U0, U1 on St(n,p),
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% Delta on T_U St(n,p) with canonical norm ’dist’,

% which is also the Riemannian distance dist(U0,U1)

%

% input arguments

% s = random stream (for reproducability)

% (n,p) = dimension of the Stiefel matrices

% dist = Riemannian distance between the points U0,U1

% that are to be created

%-------------------------------------------------------------

%create random stiefel matrix:

X = rand(s, n,p);

[U0,~] = qr(X, 0);

% create random tangent vector in T_U0 St(n,p)

A = rand(s, p,p);

A = A-A’; % random p-by-p skew symmetric matrix

T = rand(s, n,p);

Delta = U0*A + T-U0*(U0’*T);

%normalize Delta w.r.t. the canonical metric

norm_Delta = sqrt(trace(Delta’*Delta) - 0.5*trace(A’*A));

Delta = (dist/norm_Delta)*Delta;

% ’project’ Delta onto St(n,p) via the Stiefel exponential

U1 = Stiefel_Exp_supp(U0, Delta);

return;

end

%EOF: create_random_Stiefel_data.m

%-------------------------------------------------------------
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