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A MONTE CARLO METHOD FOR INTEGRATION OF MULTIVARIATE

SMOOTH FUNCTIONS

MARIO ULLRICH

Abstract. We study a Monte Carlo algorithm that is based on a specific (randomly shifted

and dilated) lattice point set. The main result of this paper is that the mean squared error

for a given compactly supported, square-integrable function is bounded by n−1/2 times the

L2-norm of the Fourier transform outside a region around the origin, where n is the expected

number of function evaluations. As corollaries we obtain the optimal order of convergence

for functions from the Sobolev spaces Hs
p with isotropic, anisotropic or mixed smoothness

with given compact support for all values of the parameters. If the region of integration is

the unit cube, we obtain the same optimal orders for functions without boundary conditions.

This proves, in particular, that the optimal order of convergence in the latter case is n−s−1/2

for p ≥ 2, which is, in contrast to the case of deterministic algorithms, independent of the

dimension. This shows that Monte Carlo algorithms can improve the order by more than

n−1/2 for a whole class of natural function spaces. Note that a similar result (for a different

class) was obtained by Heinrich et al. [13].

1. Introduction

We study Monte Carlo methods, i.e. randomized cubature formulas, for the approximation

of the d-dimensional integral

I(f) =

∫

Ω

f(x) dx,

where Ω ⊂ R
d is a bounded, measurable set with an interior point and f : Rd → R is

an integrable function with support inside Ω, i.e. supp(f) := {x ∈ R
d : f(x) 6= 0} ⊂ Ω.

Without loss of generality we assume that Ω has volume 1. In the case Ω = [0, 1]d we

will also study functions without boundary conditions, i.e. without the restriction that the

support is contained in [0, 1]d, see Section 5.

The randomized algorithms under consideration are of the form

(1) M(f) =
m∑

j=1

ajf(x
j),
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2 MARIO ULLRICH

where the nodes xj = (xj1, . . . , x
j
d) ∈ Ω, the weigths aj ∈ R, j = 1, . . . , m, and the number of

points m ∈ N are random variables. Let N(M) := E[m] be the expected number of function

evaluations that are used by M .

The algorithm we want to study was introduced recently by Krieg and Novak [17] and is

based on the deterministic cubature rule of Frolov [9], which attracted some attention in the

past years due to its optimality (in order) for numerical integration in nearly every classical

function space on the cube, see e.g. [5, 6, 7, 8, 22, 25, 28, 29, 31] or [32] for a recent survey

of known results. We are not aware of an example of a natural function space on the cube,

where Frolov’s cubature rule, combined with some modification for non-periodic functions,

see Section 5, is demonstrable not optimal.

Here we continue the analysis from [17] and analyze the following random algorithm:

Let Bn ∈ R
d×d, n > 0, be a suitable sequence of invertible matrices, i.e. we need that the Bn

satisfy det(Bn) = n and (7). Let u = (u1, . . . , ud) ∼ U([1/2, 3/2]d) and v = (v1, . . . , vd) ∼
U([0, 1]d) be two uniformly distributed random vectors. We consider the Monte Carlo method

(2) Mn(f) :=
1

n

∑

x∈Pn

f(x),

where

Pn := Ω ∩ (UBn)
−⊤(Zd + v)

= Ω ∩
{
B−⊤

n (z) : z =

(
m1 + v1
u1

, . . . ,
md + vd
ud

)
, m ∈ Z

d

}
,

(3)

B−⊤
n is the transposed inverse of Bn and U = diag(u). Note that this method has equal

weights and satisfies N(Mn) = n, see (8).

Define the root mean square error of a randomized algorithm M for a specific function

f ∈ L1(R
d) by

∆(M, f) :=
(
E
[
|I(f)−M(f)|2

])1/2
.

and let

(4) L◦
p(Ω) := {f ∈ Lp(R

d) : supp(f) ⊂ Ω}.

We will prove the following theorem.

Theorem 1. Let Mn be given by (2) and f ∈ L◦
2(Ω). Then,

∆(Mn, f) . n−1/2 ‖Ff‖L2(Dn),

where Dn = {ξ ∈ R
d :
∏d

j=1 |ξj| & n} and Ff is the Fourier transform of f .
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The proof of Theorem 1 without hidden constants is given in Section 3.2.

We apply Theorem 1 to obtain error bounds for Sobolev spaces with isotropic and mixed

smoothness. Here we only comment on the results for Sobolev spaces with integer smooth-

ness. For the general statement of the results, also in the anisotropic setting, see Section 4.

In detail, for s ∈ N and 1 ≤ p ≤ ∞, we consider the isotropic Sobolev spaces
◦

Hs
p(Ω) :=

{
f ∈ L◦

p(Ω) : D
αf ∈ Lp(R

d) for |α|1 ≤ s
}

and the mixed Sobolev spaces
◦

Hs
p(Ω) :=

{
f ∈ L◦

p(Ω) : D
αf ∈ Lp(R

d) for |α|∞ ≤ s
}

equipped with the norms

‖f‖Hs
p
= ‖f‖Lp +

d∑

j=1

‖Ds·ejf‖Lp

and

‖f‖Hs
p
= ‖f‖Lp +

∑

α : αj∈{0,s}

‖Dαf‖Lp,

respectively, where Dαf , α ∈ N
d
0, denotes the usual weak partial derivative of a function f

and ej is the jth unit vector in R
d. Recall from (4) that functions from

◦

Hs
p(Ω) and

◦

Hs
p(Ω),

respectively, have support inside the bounded, measurable set Ω ⊂ R
d.

Let

σp := max

{
0,

1

p
− 1

2

}
.

We prove that, for 1 ≤ p ≤ ∞,

∆(Mn, f) . n−s/d−1/2+ σp ‖f‖Hs
p

for f ∈
◦

Hs
p(Ω) with s/d ≥ σp, see Theorem 14, and

∆(Mn, f) . n−s−1/2+σp ‖f‖Hs
p

for f ∈
◦

Hs
p(Ω) with s ≥ σp, see Theorem 15. Note that for p ≥ 2 and s ≥ 0 the result for

mixed Sobolev spaces reads

∆(Mn, f) . n−s−1/2 ‖f‖Hs
p
.

In Section 5 we present a modification of the algorithm that has the same orders of conver-

gence for functions defined on the unit cube [0, 1]d without boundary conditions.

For other algorithms the upper bound for isotropic spaces is known for some time and this

order of n cannot be improved by any other algorithm, see e.g. Heinrich [12] or Novak [21].
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The algorithms are based on (Lp-)approximation of the integrand and the standard Monte

Carlo method applied to the residual. This works since the optimal order for approximation

and integration is the same for isotropic spaces. However, this method is not quite practical.

For mixed Sobolev spaces the optimal order for approximation is different, see e.g. the

survey [8], and hence, this technique does not lead to an optimal result. For other approaches

to randomized numerical integration and for results for other function spaces see e.g. [1, 2,

3, 13, 14, 18, 23, 26].

The case of deterministic algorithms is better understood, see [5, 8, 15, 22, 28, 29]. E.g., it

is known that the optimal order for deterministic algorithms inHs
p([0, 1]

d) andHs
p([0, 1]

d), see

Section 5, is n−s/d for s/d > 1/p, and n−s(log n)(d−1)/2 for s > max{1/p, 1/2}, respectively.
The restriction to s/d > 1/p (resp. s > 1/p) is necessary to ensure that the functions are

continuous. In particular, these optimal orders are achieved by Frolov’s cubature rule, which

is the deterministic cubature rule given by (2) and (3) with the random elements u and v

replaced by (1, . . . , 1) and (0, . . . , 0), respectively, see e.g. [29]. For p > 2 and 1/p < s < 1/2

the optimal order for Hs
p([0, 1]

d) is still not known, even for d = 2. See [32] for some recent

progress on the upper bound in this range.

The randomized algorithm Mn from (2) was first considered in [17]. The idea behind the

algorithm is similar to the one of Bakhvalov [2], who analyzed an integration lattice rule (of

Korobov type) with a random number of points. In [17] the optimal order of Mn for the

isotropic Sobolev spaces Hs
2 with s ∈ N and s/d > 1/2 is proven. The authors also show the

(not optimal) upper bound n−s−1/2 (log n)(d−1)/2 for Hs
2 with s ∈ N.

Here, we generalize the results of [17] to p 6= 2, s /∈ N and to anisotropic smoothness. We

also consider the case of discontinuous functions, i.e. 0 ≤ s/d ≤ 1/p and 0 ≤ s ≤ 1/p for

isotropic and mixed Sobolev spaces, respectively. Moreover, we improve the upper bound by

a certain power of log n, i.e., we show that there is no logarithm at all in the upper bound.

This bound is optimal. For this note that, by the results of [20], integration in the space

Hs
p([0, 1]

d) is not harder than integration in
◦

Hs
p with Ω = [0, 1]d. Moreover, it is obvious that

lower bounds for the one-dimensional classes Hs
p([0, 1]) = Hs

p([0, 1]) also hold for Hs
p([0, 1]

d)

and the optimal order for these classes is n−s−1/2+σp , see e.g. [12, 21]. The optimality in

order for general Ω then follows from the existence of a (possibly very small) cube inside

Ω. Hence, we obtain the following theorem on the optimal order for the worst case error of

randomized algorithms for mixed Sobolev spaces. For a normed space of functions F , let

∆(M,F ) := sup
f∈F

∆(M, f)

‖f‖F
.
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Theorem 2. Let s ≥ 0 and 1 ≤ p ≤ ∞ (1 < p < ∞ if s /∈ N) with s ≥ σp and Ω be a

bounded, measurable set with an interior point. We have

inf
M

∆
(
M,

◦

Hs
p(Ω)

)
≍ n−s−1/2+σp

and, for Ω = [0, 1]d,

inf
M

∆
(
M,Hs

p([0, 1]
d)
)
≍ inf

M
∆
(
M,

◦

Hs
p([0, 1]

d)
)
≍ n−s−1/2+σp ,

where the infima are taken over all algorithms of the form (1) with N(M) ≤ n.

It is interesting to note that the optimal order for isotropic Sobolev spaces Hs
p([0, 1]

d)

immediately follows from Theorem 2 and the embedding Hs
p →֒ H

s/d
p .

Notation. As usual N denotes the natural numbers, N0 = N∪{0}, Z denotes the integers

and R (resp. R+) the real (resp. nonnegative) numbers. The letter d is always reserved

for the underlying dimension in R
d,Zd etc. We denote by 〈x, y〉 or xy the usual Euclidean

inner product in R
d. For a ∈ R let ⌊a⌋ ∈ Z be the largest integer smaller or equal to a.

For 0 < p ≤ ∞ and x ∈ R
d we let |x|p = (

∑d
i=1 |xi|p)1/p with the usual modification in

the case p = ∞. We further denote by Lp(R
d) the space of Lebesgue-measurable functions

f : Rd → R such that ‖f‖p := (
∫
Rd |f(x)|p dx)1/p < ∞. By x ≤ y for x, y ∈ R

d we mean

that the inequality holds component-wise. For u = (u1, . . . , ud) ∈ R
d we write diag(u) for

the d× d-diagonal matrix with diagonal entries u1, . . . , ud. For a bounded set A ⊂ R
d with

positive volume we write U(A) for the uniform distribution in A. The logarithm log will

always be in base 2. If X and Y are two (quasi-)normed spaces, the (quasi-)norm of an

element x in X will be denoted by ‖x‖X . The symbol X →֒ Y indicates that the identity

operator is continuous. For two sequences of real numbers an and bn we will write an . bn if

there exists a constant c > 0 such that an ≤ c bn for all n. We will write an ≍ bn if an . bn
and bn . an.

2. Preliminaries

In this section we provide the tools that are needed to prove our results. That is, we

give a detailed description of the algorithm under consideration together with the important

properties of the underlying deterministic point set and state Poisson’s summation formula.

2.1. The algorithm. We analyze the algorithm that was introduced by Krieg and No-

vak [17] and which is based on the cubature rule of Frolov [9].

For this, consider an invertible matrix B ∈ R
d×d and define the cubature rule
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(5) QB,v(f) =
1

| detB|
∑

m∈Zd

f
(
B−⊤(m+ v)

)

where v ∈ [0, 1]d. We follow [9] and choose a (generator) matrix B ∈ R
d×d with the property

(6)

d∏

j=1

|(Bm)j| ≥ 1 for all m ∈ Z
d \ {0}.

We will call such a matrix B a Frolov matrix. Clearly, every Frolov matrix is invertible. For

constructions of such matrices B see e.g. [9, 28, 31].

Remark 3. It is proven in [25, Lemma 3.1] that the property (6) for B is equivalent to the

same property for cB−⊤ with some c < ∞. In numerical experiments one could therefore

interchange the roles of B and B−⊤ and use the lattice points B(Zd + v) in (5). We use this

definition to ease the notation.

Let dB := det(B) and define, for n ∈ R, the matrices Bn := (n/dB)
1/dB. These matrices

clearly satisfy det(Bn) = n and

(7)

d∏

j=1

|(Bnm)j| ≥ n/dB for all m ∈ Z
d \ {0}.

The randomized Frolov cubature rule Mn uses the two independent random vectors u

and v that are uniformly distributed in [1/2, 3/2]d and [0, 1]d, respectively. We define the

d× d-diagonal matrix U = diag(u). Then, in view of (2) and (5) we have

Mn(f) = QUBn,v(f).

We call u (resp. U) the random dilation and v the random shift of the algorithm Mn.

It is known from [17, Lemma 3] thatMn is well-defined and unbiased on L1(R
d). Moreover,

if we consider functions that are supported in a bounded, measurable set Ω ⊂ R
d with

vold(Ω) = 1, we know that the expected number of (non-zero) function evaluations that are

used by the algorithm Mn, i.e. N(Mn), equals n. To see this, note that

N(Mn) = E

[
∑

m∈Zd

1Ω

(
(UBn)

−⊤(m+ v)
)
]

= E

[
∑

m∈Zd

1

(
m+ v ∈ (UBn)

⊤(Ω)
)]

= Eu

[
∑

m∈Zd

vold
(
(m+ [0, 1]d) ∩ (UBn)

⊤(Ω)
)
]

= Eu

[
vold

(
(UBn)

⊤(Ω)
)]

= Eu [det(UBn)] vold(Ω) = n · vold(Ω) = n.

(8)
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Remark 4. The choice of the set [1/2, 3/2]d for the random dilataion is quite arbitrary.

Every set of the form [1− c, 1 + c]d with c ∈ (0, 1) would lead to the same results. However,

the choice c = 1/2 optimizes the constant in our upper bound.

2.2. Counting lattice points in boxes. We still have to exploit the crucial property of

the Frolov matrices that are used to construct our cubature rule. This property is, besides

the fact that B−⊤
n (Zd) is a lattice, that one can easily bound the number of points of the

dual lattice Bn(Z
d) in axis-parallel boxes.

There are many references that study this problem and state the following bound together

with further properties of such lattices, see e.g. [9, 10, 11, 19, 25, 28, 31]. However, we only

need a special case here and we give the short proof for convenience.

Lemma 5. Let Bn satisfy (7). Then, for each axis-parallel box R ⊂ R
d containing the origin

we have
∣∣∣Bn

(
Z
d \ {0}

)
∩R

∣∣∣ ≤ dB
vold(R)

n
.

In particular, the left hand side is zero if vold(R) < n/dB.

Proof. From (7), together with the fact that Bn(Z
d) is a lattice, we obtain that every axis-

parallel box R′ that contains at least two points x, y ∈ Bn(Z
d) must satisfy vold(R

′) ≥∏d
j=1 |xj − yj| ≥ n/dB. Here we used that x − y ∈ Bn

(
Z
d \ {0}

)
. Now we divide the box

R into ⌊dB · vold(R)/n+ 1⌋ axis-parallel boxes of volume smaller n/dB, which consequently

contain at most one point. Moreover, by assumption, one of these boxes is empty. This

proves the upper bound ⌊dB · vold(R)/n+ 1⌋ − 1 ≤ dB · vold(R)/n.
�

For a comment on the magnitude of the constant dB see Remark 8.

2.3. Poisson’s summation formula. The Fourier transform of a function f ∈ L1(R
d) is

defined by

Ff(ξ) =

∫

Rd

f(x) e−2πi〈ξ,x〉 dx, ξ ∈ R
d,

and the inverse Fourier transform is given by F−1f(ξ) = Ff(−ξ).
The analysis of the error of cubature formulas that use nodes from a lattice is naturally

related to an application of Poisson’s summation formula and variations thereof. A more

detailed treatment and a proof of the following lemma can be found, e.g., in [27, Thm. VII.2.4

& Cor. VII.2.6].
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Lemma 6. Let f ∈ L◦
2(Ω

′) for some bounded Ω′ ⊂ R
d. Then its periodization

∑
ℓ∈Zd f(ℓ+x)

is a (1-periodic) function in L2([0, 1]
d) that has the Fourier expansion
∑

k∈Zd

Ff(k) e2πi〈k,x〉.

3. The general error bound

We now prove the most general form of our main result. We will do this in two sections

to treat the random shift and the random dilation separately.

3.1. Random shift. The following lemma improves on [17, Lemma 2] and is one of the key

ingredients in our proof.

Lemma 7. Let B ∈ R
d×d be an invertible matrix, f ∈ L◦

2(Ω) and v ∼ U([0, 1]d). Then,
Ev

[
|I(f)−QB,v(f)|2

]
=

∑

k∈Zd\{0}

|Ff(Bk)|2.

Proof. If we consider QB,v(f), see (5), as a function of v ∈ [0, 1]d we easily obtain from

Lemma 6 that

QB,v(f) =
∑

k∈Zd

Ff(Bk) e2πi〈k,v〉

for almost every v ∈ [0, 1]d. Just apply Lemma 6 to g(x) = f(B−⊤x) and use that Fg(k) =
| det(B)| Ff(Bk), which is possible since g ∈ L◦

2(Ω
′) with Ω′ = B⊤(Ω) if f ∈ L◦

2(Ω). This

also shows that QB,v(f) is a function (in v) that belongs to L2([0, 1]
d). Since I(f) = Ff(0)

and the desired expectation is nothing but the squared L2([0, 1]
d)-norm of this Fourier series,

the results follows from Parseval’s identity.

�

3.2. Random dilation. We now show how the random dilation of the point set, see (3),

leads to our main error bound, i.e. a bound on the root mean square error ofMn(f) in terms

of a certain L2-norm of the Fourier transform of f . This proves Theorem 1. The proof is

quite similar to the one in [17].

Theorem 1’. Let Mn, n > 0, be given by (2) and f ∈ L◦
2(Ω). Moreover, we define the set

Dn = {ξ ∈ R
d :
∏d

j=1 |2ξj| ≥ n/dB}. Then,

∆(Mn, f) ≤ cd n
−1/2 ‖Ff‖L2(Dn)

with cd = 3d/2
√
dB.
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Proof. From Lemma 7 we know that

∆(Mn, f)
2 = EuEv|I(f)−QUBn,v(f)|2 = Eu

∑

k∈Zd\{0}

|Ff(UBnk)|2.

Using the monotone convergence theorem and U = diag(u) with u ∼ U([1/2, 3/2]d) we obtain

∆(Mn, f)
2 =

∑

k∈Zd\{0}

∫

[1/2,3/2]d
|Ff(UBnk)|2 du.

Now, for fixed k, we use the substitution ξ = UBnk = (u1(Bnk)1, . . . , ud(Bnk)d) and define

the axis-parallel boxes Rk :=
∏d

j=1

[
1
2
(Bnk)j ,

3
2
(Bnk)j

]
to obtain

∆(Mn, f)
2 =

∑

k∈Zd\{0}

∫

Rk

|Ff(ξ)|2
∏d

j=1 |(Bnk)j |
dξ

=
∑

k∈Zd\{0}

∫

Rd

1Rk
(ξ)

|Ff(ξ)|2
∏d

j=1 |(Bnk)j |
dξ

=

∫

Rd

|Ff(ξ)|2
∑

k∈Zd\{0}

1Rk
(ξ)

∏d
j=1 |(Bnk)j |

dξ.

From Lemma 5 we obtain

∑

k∈Zd\{0}

1Rk
(ξ)

∏d
j=1 |(Bnk)j |

=
∑

k∈Zd\{0}

1[ 2
3
ξ,2ξ](Bnk)

∏d
j=1 |(Bnk)j |

≤ (3/2)d
∏d

j=1 |ξj|
∑

k∈Zd\{0}

1[ 2
3
ξ,2ξ](Bnk)

≤ (3/2)d
∏d

j=1 |ξj|

∣∣∣Bn

(
Z
d \ {0}

)
∩ [0, 2ξ]

∣∣∣

≤ 3ddB
n

1Dn(ξ).

This proves the result.

�

Remark 8. The number dB is the determinant of the matrix B that satisfies (6). Although

we presently do not know how to find “good” matrices, we still want to know if there are

matrices that make the involved constants small. Unfortunately, this is not the case. The

quantity D∗ := infB dB, where the infimum is taken over all B that satisfy (6), is a central

object in the geometry of numbers, see e.g. [19] for a comprehensive treatment of this topic.

There, D∗ is called the critical determinant of the star-body Sd := {x ∈ R
d : |x1 · · · ··xd| ≤ 1}

(denoted by ∆(Sd)) and it is proven that D∗ ≥ dd/d!, see [19, Section 41.2]. Hence the upper

bounds that are provided by Theorem 1 are in any case exponentially large in d.

It remains a challenging open problem if, for some α > 1/2 and cd is bounded by a polynomial
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in d, an error bound of the form cd n
−α is even possible for, say, functions in Hs

p([0, 1]
d) with

large s. For α = 1/2 this is achieved by the classical Monte Carlo method for functions in

L2([0, 1]
d).

4. Error bounds for smooth functions

In this section we prove the error bounds of the randomized Frolov cubature rule for several

classes of smooth functions. Here we still assume that the functions are defined on the whole

R
d and have support inside a bounded, measurable set Ω with volume 1.

The function classes under consideration are Sobolev spaces of isotropic/anisotropic/mixed

smoothness. In the sequel, ν : Rd → R is always a measurable function with |ν| > 0. Let

1 < p <∞ and define the spaces

(9) Hν
p :=

{
f ∈ Lp(R

d) : F−1 [ν · Ff ] ∈ Lp(R
d)
}

and

(10)
◦

Hν
p (Ω) :=

{
f ∈ Hν

p : supp(f) ⊂ Ω
}

equipped with the norm ‖f‖Hν
p
= ‖F−1 [ν · Ff ] ‖Lp(Rd). For S ∈ R

d
+, we denote the Sobolev

spaces of anisotropic smoothness S by

(11) HS
p if ν(ξ) = νS(ξ) := 1 +

d∑

j=1

|2πξj|Sj

and the Sobolev spaces of anisotropic mixed smoothness S by

(12) HS
p if ν(ξ) = ν̃S(ξ) :=

d∏

j=1

(
1 + |2πξj|Sj

)
.

In the case that S1 = . . . = Sd = s ∈ R+ we replace S by s in the above notation and denote

the spaces Sobolev spaces of isotropic (resp. mixed) smoothness s. It is well-known that for

S ∈ N
d
0 we can equivalently norm the spaces by

(13) ‖f‖HS
p
= ‖f‖Lp +

d∑

j=1

‖DSj ·ejf‖Lp

and

(14) ‖f‖HS
p
= ‖f‖Lp +

∑

α : αj∈{0,Sj}

‖Dαf‖Lp,

respectively, where Dαf , α ∈ N
d
0, denotes the usual (weak) partial derivative of a function f

and ej is the jth unit vector in R
d.
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Remark 9. We use the norms and the corresponding spaces from (13) and (14) also for

p = 1 and p = ∞. Note that the definitions from (9)–(12) make also sense for p = 1,

however in this case they are usually not called Sobolev spaces. Moreover, note that for

S ∈ N
d the spaces above are the classical Sobolev spaces of (mixed) smoothness S, while

for S /∈ N
d these spaces are sometimes called Bessel potential spaces. These spaces appear

as complex interpolation spaces between Sobolev spaces of integer smoothness and are in

the scale of Triebel-Lizorkin spaces. For more details on these spaces as well as a historical

treatment and further results see e.g. [8, 28, 30]. But note that the spaces appear in these

references also with other denotations, like W s
p , W

s
p (see [8]) or Ss

pW (see [28]).

Remark 10. There are several different natural definitions of the norms for Sobolev spaces

of the above type. In particular, one could replace the ℓ1-norms in (11)–(14) by any other ℓq-

norm, 1 ≤ q ≤ ∞, since all these norms are equivalent as long as d is finite. This would only

result in additional constants. There are also different conventions for the set of derivatives.

For example, some people choose ‖f‖HS
p
=
∑

α : α≤S ‖Dαf‖Lp instead of (14). However, the

corresponding spaces are equal.

Before we proceed with the results for the Sobolev spaces as defined above, we state a

result which will be the common starting point for the error bounds in the specific cases.

The following is a direct consequence of Theorem 1’.

Proposition 11. Let Mn, n > 0, be given by (2) and f ∈
◦

Hν
2 (Ω). Moreover, we define the

set Dn = {ξ ∈ R
d :
∏d

j=1 |2ξj| ≥ n/dB}, cf. (7). Then,

∆(Mn, f) ≤ cd n
−1/2 ‖ν−1‖L∞(Dn) ‖f‖Hν

2

with cd = 3d/2
√
dB.

Proof. In view of Theorem 1’ it is enough to prove the corresponding bound on the norm of

Ff . We obtain from Hölder’s inequality that

‖Ff‖L2(Dn) = ‖ν−1 · ν · Ff‖L2(Dn) ≤ ‖ν−1‖L∞(Dn) · ‖ν · Ff‖L2(Rd).

Additionally, we obtain ‖ν ·Ff‖L2(Rd) = ‖F [ν ·Ff ]‖L2(Rd) from the Plancharel theorem, since

ν · Ff ∈ L2(R
d) by assumption. This proves the result.

�
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We see that for the proof of the error bounds for Sobolev spaces with p = 2 it just remains

to bound some L∞-norm of the function 1/ν. The proofs of these bounds are quite standard.

However, we present them for convenience.

Lemma 12. Let νS, S ∈ R
d
+, from (11) and Dn = {ξ ∈ R

d :
∏d

j=1 |2ξj| ≥ n/dB}. Addition-
ally, define g(S) = (

∑d
j=1 1/Sj)

−1 for S > 0 and g(S) = 0 otherwise. Then, we have

‖ν−1
S ‖L∞(Dn) . n−g(S).

The hidden constant only depends on d, S and B.

Proof. We clearly have νS(ξ) ≥ 1. This already proves the result if Sj = 0 for some j.

Now assume S > 0 and define ωj := g(S)/Sj, such that
∑d

j=1 ωj = 1. From the weighted

arithmetic-geometric mean inequality, we obtain

νS(ξ) ≥
d∑

j=1

ωj|2πξj|Sj ≥
d∏

j=1

|2πξj|ωjSj =

(
d∏

j=1

|2πξj|
)g(S)

.

This implies ‖ν−1‖L∞(Dn) . n−g(S) and proves the statement.

�

Lemma 13. Let ν̃S, S ∈ R
d
+, from (12) and Dn = {ξ ∈ R

d :
∏d

j=1 |2ξj| ≥ n/dB}. Then, we
have

‖ν̃−1
S ‖L∞(Dn) . n−smin,

where smin = minj Sj . The hidden constant only depends on d, S and B.

Proof. We have

ν̃S(ξ) ≥
d∏

j=1

max{1, |2πξj|}Sj ≥
(

d∏

j=1

|2πξj|
)Smin

.

This proves the statement.

�

For p > 2 we just use the embedding
◦

Hν
p (Ω) →֒

◦

Hν
2 (Ω), see (10), which follows from the

compact support of the contained functions, see e.g. [30, Thm. 3.3.1(iii)]. That is, we use

for p > 2 the inequalities

‖f‖HS
2
. ‖f‖HS

p
for f ∈

◦

HS
p (Ω)

and

‖f‖HS
2
. ‖f‖HS

p
for f ∈

◦

HS
p (Ω).
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The case 1 ≤ p < 2 is a bit more involved. In the isotropic case we use the embedding

◦

HS
p (Ω) →֒

◦

HS′

2 (Ω)

where S ′ = κ · S (component-wise) with κ = 1 − g(S)−1(1/p − 1/2) if g(S) ≥ 1/p − 1/2,

see [16, Theorem 7] and [30]. Using Proposition 11 and Lemma 12 we obtain

∆(Mn, f) . n−g(S′)−1/2 ‖f‖HS′

2
. n−g(S′)−1/2 ‖f‖HS

p

for f ∈
◦

HS
p (Ω), if g(S) ≥ 1/p− 1/2. Finally, note that g(S ′) = κg(S) = g(S)− 1/p + 1/2.

For spaces of mixed smoothness we use the chain of embeddings

HS
p →֒ Hsmin

p →֒ H
smin−1/p+1/2
2

for 1 ≤ p < 2 and smin = minj Sj with smin ≥ 1/p− 1/2, see e.g. [24, Chapter 2]. We obtain

with Proposition 11 and Lemma 13 that

∆(Mn, f) . n−smin−1+1/p ‖f‖
H

smin−1/p+1/2
2

. n−smin−1+1/p ‖f‖HS
p

for f ∈
◦

HS
p (Ω).

We now summarize the results of this section.

Theorem 14. LetMn, n > 0, be given by (2), S ∈ R
d
+ and 1 ≤ p ≤ ∞ (p 6= 1,∞ if S /∈ N

d).

Then, for f ∈
◦

HS
p (Ω),

∆(Mn, f) . n−g(S)−min{1/2,1−1/p} ‖f‖HS
p
,

if g(S) ≥ max{0, 1/p − 1/2}, where g(S) = (
∑d

j=1 1/Sj)
−1. The hidden constant only

depends on p, d, S and B. Moreover, N(Mn) = n.

Theorem 15. LetMn, n > 0, be given by (2), S ∈ R
d
+ and 1 ≤ p ≤ ∞ (p 6= 1,∞ if S /∈ N

d).

Then, for f ∈
◦

HS
p (Ω),

∆(Mn, f) . n−smin−min{1/2,1−1/p} ‖f‖HS
p
,

if smin ≥ max{0, 1/p− 1/2}, where smin = minj Sj . The hidden constant only depends on p,

d, S and B. Moreover, N(Mn) = n.
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5. Integration of functions on the cube

Until now we always considered functions that are supported inside a bounded set Ω of

volume one. This was for two reasons. First of all, this was necessary to ensure that the

algorithm Mn from (2) uses in expectation exactly n function evaluations. Additionally, it

was necessary for the results in Theorems 14 & 15 for p > 2, since the used embeddings only

work for functions defined on bounded sets.

In this section we comment on the integration of functions that are defined on the unit

cube Ω = [0, 1]d and do not satisfy any boundary condition. These spaces are defined as

restriction of the spaces Hν
p , see (9), to [0, 1]d. That is we define

(15) Hν
p ([0, 1]

d) :=
{
f ∈ Lp([0, 1]

d) : ∃g ∈ Hν
p such that g|[0,1]d = f

}

with the (quasi-)norm

‖f‖Hν
p ([0,1]

d) := inf
g

‖g‖Hν
p
,

where the infimum is taken over all functions g ∈ Hν
p that agree with f on [0, 1]d. Again we

consider the choices of ν and the notation from (11) and (12) and denote the corresponding

spaces by HS
p ([0, 1]

d) and HS
p ([0, 1]

d), respectively.

The algorithm that is used for these spaces is based on the algorithmMn from (2) together

with a mapping T that maps boundedly from Hν
p ([0, 1]

d) to
◦

Hν
p . Such mappings and their

application to numerical integration appeared several times in the literature, see e.g. [4, 6,

7, 20, 28, 29]. Here, we follow [29] and use componentwise change of variable with a suitable

C∞(R)-function ψ, i.e.

(16) ψ(t) :=





∫ t

0
e−

1
ξ(1−ξ) dξ/

∫ 1

0
e−

1
ξ(1−ξ) dξ : t ∈ [0, 1],

1 : t > 1,

0 : t < 0 .

We define

Tf(x) :=

∣∣∣∣∣

d∏

j=1

ψ′(xj)

∣∣∣∣∣ f
(
ψ(x1), . . . , ψ(xd)

)
, x ∈ R

d.

Clearly, supp(Tf) ⊂ [0, 1]d and, by change of variable,
∫
[0,1]d

Tf(x) dx =
∫
[0,1]d

f(x) dx.

For functions f ∈ Hν
p ([0, 1]

d) we consider the randomized algorithm

(17) Mn(f) := Mn(Tf),

where Mn is given in (2). From the results of the previous sections, see e.g. Proposition 11,

we know that we can bound the mean squared error of Mn by

∆(Mn, f) = ∆(Mn, T f) ≤ en(ν, p, d) · ‖Tf‖Hν
p
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for some en(ν, p, d) that is independent of f . To prove the desired error bounds it remains

to show ‖Tf‖Hν
p
. ‖f‖Hν

p ([0,1]
d), i.e. that T : Hν

p ([0, 1]
d) →

◦

Hν
p is bounded. If so, this shows

that we have the same (up to a constant) error bound for Mn in Hν
p ([0, 1]

d) as we have for

Mn in
◦

Hν
p .

For the spaces HS
p and HS

p , S ∈ R
d
+, 1 ≤ p ≤ ∞ (1 < p <∞ if S /∈ N

d), this boundedness

was shown in [29] and [20]. Actually, the boundedness was only proven for the cases S1 =

. . . = Sd, but the proofs in the anisotropic case follow exactly the same lines. For a more

detailed treatment of such “change of variable”-mappings (especially for the use of piecewise

polynomials instead of ψ) see [20] and the references therein.
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