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Abstract

This paper is concerned with boundary integral equation methods for solving the two-dimensional
fluid-solid interaction problem. We reduce the problem to three differential systems of boundary
integral equations via direct and indirect approaches. Existence and uniqueness results for variational
solutions of boundary integral equations equations are established. Since in all these boundary
variational formulations, the hypersingular boundary integral operator associated with the time-
harmonic Navier equation is a dominated integral operator, we also include a new regularization
formulation for this hypersingular operator, which allows us to treat the hypersingular kernel by
a wealkly singular kernel. Numerical examples are presented to verify and validate the theoretical
results.

Keywords: Fluid-solid interaction problem, boundary integral equation method, Helmholtz
equation, time-harmonic Navier equation.

1 Introduction
The fluid-solid interaction (FSI) problem can be simply described as an acoustic wave propagates

in a compressible fluid domain of infinite extent in which a bounded elastic body is immersed. The
problem is to determine the scattered pressure field in the fluid domain as well as the displacement
filed of the elastic body. It is of great importance in many fields of application including exploration
seismology, oceanography, and non-destructive testing, to name a few. Under the hypothesis of small
amplitude oscillations both in the solid and fluid, the acoustic scattered pressure field and the elastic
displacement satisfy the Helmholtz equation and time-harmonic Navier equation, respectively, together
with appropriate transmission conditions across the fluid-solid interface. This problem encounters con-
siderable mathematical challenges from both theoretical and computational points of views and has been
a subject of interest in both mathematical and engineering community for many years. In particular, the
unbounded domain in which the problem is imposed causes major difficulties from computational point
of view. Our interest here is to develop efficient numerical methods for treating the two dimensional
FSI problem. There are also some inverse FSI problems and FSI eigenvalue problems being investigated
in [27] and [20], respectively.
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One popular method to overcome the difficulty that the acoustic scattered wave propagates in an
unbounded domain is known as the Dirichlet-to-Neumann (DtN) method ( [9,28,29]), that is, the original
transmission problem is reduced to a boundary value problem by introducing a DtN mapping defined on
an artificial boundary enclosing the elastic body inside. Another conventional numerical method is the
coupling of the boundary element method (BEM) and the finite element method (FEM) ( [7,8,10–14,24]).
Precisely, the BEM and FEM are employed for solving fields of the exterior acoustic wave and the interior
elastic wave, respectively.

The boundary integral equation (BIE) methods for solving the scattering transmission problem in-
cluding the acoustic transmission problem ( [5, 18, 21]), the elastic transmission problem ( [2]), the elec-
tromagnetic transmission problem ( [3,6]) and the FSI problem ( [23]) have been extensively investigated
for many years. One can derive the system of boundary integral equations (BIEs) equivalent with the
original scattering problems by the direct method based on Green’s formulation and the indirect method
based on potential theory. In this paper, we derive three differential systems of BIEs for the solution of
the FSI problem. For each system, we study the existence and uniqueness results for the weak solutions
of corresponding variational equations. In addition to the so-called Jones frequency associated with the
original transmission problem, it will be shown that only the first system of BIEs to be presented in
Section 3, for the purpose of uniqueness, need to exclude a spectrum of eigenvalues which is inherited
from properties of boundary integral operators. Since all derived systems of BIEs are strongly elliptic,
consisting of singular and hypersingular boundary integral operators, appropriate regularization formu-
lations are needed for the purpose of numerical computations. For the hypersingular boundary integral
operator associated with Helmholtz equation, its expression can be transformed into one involving tan-
gential rather than normal derivatives, see [4, 25, 26] for details. With the help of the tangential Günter
derivative ( [22]), variant representation of the hypersingular boundary integral operators associated with
three dimensional Lamé equation is given in [17]. In this paper, we will present an innovative and new
regularization formulation for the hypersingular boundary integral operator associated with two dimen-
sional elastodynamics and in the corresponding duality pairing form, only a weakly singular boundary
integral operator is involved. Numerical results will be presented to illustrate efficiency of these systems
of BIEs for solutions of the FSI problem, and accuracy of regularization formulation.

The remainder of the paper is organized as follows. We first describe the classical FSI problem in
Section 2. Using the direct and indirect approaches, and the Burton-Miller formulation based on direct
method, we reduce the original problem to three different systems of coupled boundary integral equa-
tions in Section 3, 4 and 5, respectively. In each section, we also present the corresponding variational
formulations of these systems, and carry out the uniqueness and existence analysis for the weak solu-
tion of the variational equations. In Section 6, we present an innovative regularization formulation for
the hypersingular boundary integral operator associated with the time-harmonic Navier equation and
postpone the derivation in Appendix. The corresponding variational equations are reduced to discrete
linear systems of equations by Galerkin boundary element method in Section 7. In Section 8, we present
several numerical tests to confirm our theoretical results and verify the efficiency and accuracy of the
Galerkin boundary element method. In closing the paper some conclusions and remarks for future work
are presented in Section 9.

2 Statement of the problem
Let Ω ⊂ R2 be a bounded, simply connected domain with sufficiently smooth boundary Γ = ∂Ω, and

its exterior complement is denoted by Ωc = R2 \ Ω ⊂ R2. The domain Ω is occupied by a linear and
isotropic elastic solid, and Ωc is filled with compressible, inviscid fluids. We denote by ω the frequency,
k = ω/c the acoustic wave number, c the speed of sound in the fluid, ρ the density of the solid and ρf the
density of the fluid. The problem we will solve is to determine the elastic displacement u in the solid and
the acoustic scattered pressure field p in the fluid with a given incident field pinc. The problem states as
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follows: Given pinc, find u ∈ (C2(Ω) ∩ C1(Ω))2 and p ∈ C2(Ωc) ∩ C1(Ωc) satisfying :

∆∗u + ρω2u = 0 in Ω, (2.1)
∆p+ k2p = 0 in Ωc, (2.2)

together with the transmission conditions

ηu · n =
∂

∂n
(p+ pinc) on Γ, (2.3)

t = −n(p+ pinc) on Γ, (2.4)

and the Sommerfeld radiation condition

lim
r→∞

r
1
2

(
∂p

∂r
− ikp

)
= 0, r = |x|. (2.5)

Here, ∂/∂n is the normal derivative on Γ (here and in the sequel, n is always the outward unit normal
to the boundary), i =

√
−1 is the imaginary unit, x = (x1, x2) ∈ R2, η = ρfω

2. ∆∗ is the Lamé operator
defined by

∆∗ :=µ∆ + (λ+ µ) grad div,

where, λ, µ are Lamé constants such that µ > 0 and λ + µ > 0. In addition, t = Tu and T is the
traction operator on the boundary defined by

Tu := λ (divu)n + 2µ
∂u

∂n
+ µn× curlu.

Figure 1: Boundary value problem (2.1)–(2.5).

It is known ( [19]) that, for certain geometries and some frequencies ω, the problem (2.1)–(2.5) is not
always uniquely solvable due to the occurrence of so-called traction free oscillations. These ω are also
known as the Jones frequencies which are inherent to the original model. We state without proof of the
following result:

Theorem 2.1. If the surface Γ and the material parameters (µ, λ, ρ) are such that there are no traction
free solutions, the boundary value problem (2.1)–(2.5) has at most one solution, provided Imk = 0.
Here, we call a nontrivial u0 a traction free solution if it solves

∆∗u0 + ρω2u0 = 0 in Ω,

Tu0 = 0 on Γ,

u0 · n = 0 on Γ.
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The proof is given in [13] and is based on a standard uniqueness result for the transmission problem
in scattering below.

Lemma 2.2. If (u, p) is a classical solution of the corresponding homogeneous problem of (2.1)-(2.5) for
Imk = 0 with pinc = 0, then p ≡ 0.

Through out the paper, we always assume that ω > 0, k > 0.

3 Direct method
In this section, the transmission problem (2.1)-(2.5) is reduced to a system of coupled boundary inte-

gral equations consisting of four basic boundary integral operators based on direct approach. This system
of boundary integral equations is then converted into its weak formulation for the study of uniqueness
and existence of the weak solution.

3.1 Boundary integral equations
Classical solutions u and p can be represented by boundary integral equations via the Green’s repre-

sentation formula and the fundamental displacement tensor E(x, y) of the time-harmonic Navier equation
(2.1) as well as the fundamental solution γk(x, y) of the Helmholtz equation (2.2) in R2. In terms of the
classical analysis, u and p read

u(x) =

∫
Γ

E(x, y)t(y) dsy −
∫

Γ

(TyE(x, y))>u(y) dsy, ∀x ∈ Ω, (3.1)

p(x) =

∫
Γ

∂γk
∂ny

(x, y)p(y) dsy −
∫

Γ

γk(x, y)
∂p

∂ny
(y) dsy, ∀x ∈ Ωc, (3.2)

respectively. The fundamental solution of the Helmholtz equation (2.2) in R2 takes the form

γk(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y. (3.3)

Here, H(1)
0 (·) is the first kind Hankel function of order 0. We denote by

ks = ω
√
ρ/µ and kp = ω

√
ρ/(λ+ 2µ).

respectively, the shear (or transverse) and the compressional (or longitudinal) elastic wave numbers. Then
the fundamental displacement tensor E(x, y) can be written as

E(x, y) =
1

µ
γks(x, y)I +

1

ρω2
∇x∇x

[
γks(x, y)− γkp(x, y)

]
, x 6= y. (3.4)

where I denotes the identity matrix. Now, letting x in equations (3.1)–(3.2) approach to the boundary Γ
and applying the jump conditions, we obtain the corresponding boundary integral equations on Γ

u(x) = Vst(x) +

(
1

2
I −Ks

)
u(x), x ∈ Γ, (3.5)

p(x) =

(
1

2
I +Kf

)
p(x)− Vf

∂p

∂n
(x), x ∈ Γ. (3.6)

Operating with the traction operator on (3.1), computing the norm derivative for both sides of (3.2)
and taking the limits as x → Γ, and applying the jump relations, we are led to the following additional
boundary integral equations on Γ

t(x) =

(
1

2
I +K

′

s

)
t(x) +Wsu(x), x ∈ Γ, (3.7)

∂p

∂n
(x) =

(
1

2
I −K

′

f

)
∂p

∂n
(x)−Wfp(x), x ∈ Γ. (3.8)
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In boundary integral equations (3.5)–(3.8), I is the identity operator, the boundary integral operators
related with the fluid are defined by

Vf
∂p

∂n
(x) =

∫
Γ

γk(x, y)
∂p

∂ny
(y) dsy, x ∈ Γ,

Kfp(x) =

∫
Γ

∂γk
∂ny

(x, y)p(y) dsy, x ∈ Γ,

K
′

f

∂p

∂n
(x) =

∫
Γ

∂γk
∂nx

(x, y)
∂p

∂n
(y) dsy, x ∈ Γ,

Wfp(x) = − ∂

∂nx

∫
Γ

∂γk
∂ny

(x, y)p(y) dsy, x ∈ Γ,

and the boundary integral operators for the elasticity are defined by

Vst(x) =

∫
Γ

E(x, y)t(y) dsy, x ∈ Γ,

Ksu(x) =

∫
Γ

(TyE(x, y))>u(y) dsy, x ∈ Γ,

K
′

st(x) =

∫
Γ

TxE(x, y)t(y) dsy, x ∈ Γ,

Wsu(x) = −Tx

∫
Γ

(TyE(x, y))>u(y) dsy, x ∈ Γ.

In the above equations, neglect of subindex s and f on the operators associated with the solid and fluid,
V , K, K

′
and W are termed respectively, the single-layer, double-layer, transpose of double-layer and

hypersingular boundary integral operators.
We combine boundary integral equations (3.7)–(3.8) together with transmission conditions (2.3)–

(2.4) to obtain a system of coupled boundary integral equations for a pair of unknown functions u and
p. Therefore, to eliminate t and ∂p/∂n, we arrive at for x ∈ Γ

Wsu(x) +

(
1

2
I −K

′

s

)
pn(x) =

(
−1

2
I +K

′

s

)
pincn(x) := f1, (3.9)

η

(
1

2
I +K

′

f

)
(u · n)(x) +Wfp(x) =

(
1

2
I +K

′

f

)
∂pinc

∂n
(x) := f2. (3.10)

Since we assume that the interface Γ is sufficiently smooth, the boundary integral operators are continuous
mappings for the indicated function spaces below ( [13,17])

Ws : (Hs+1(Γ))2 7→ (Hs(Γ))2,

K
′

s : (Hs(Γ))2 7→ (Hs(Γ))2,

K
′

f : Hs(Γ) 7→ Hs+1(Γ),

Wf : Hs+1(Γ) 7→ Hs(Γ).

The unique solvability of (3.9)–(3.10) is given in the following theorem.

Theorem 3.1. If
(a) the surface Γ and the material parameters (µ, λ, ρ) are such that there are no traction free solutions,
(b) −k2 is not an eigenvalue of the interior Neumann problem for the Laplacian,
the system of boundary integral equations (3.9)–(3.10) is uniquely solvable.

Proof. The proof follows similarly as the procedure given in [23]. It is sufficient to prove that the
corresponding homogeneous system has only the trivial solution. Suppose that (u0, p0) is a solution of
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the corresponding homogeneous system of (3.9)–(3.10). Now, let

ue(x) = −
∫

Γ

E(x, y)(np0)(y) dsy −
∫

Γ

(TyE(x, y))>u0(y) dsy, ∀x ∈ Ωc,

pi(x) =

∫
Γ

∂γk
∂ny

(x, y)p0(y) dsy − η
∫

Γ

γk(x, y)(u0 · n)(y) dsy, ∀x ∈ Ω.

Taking the limit x→ Γ, and making use of jump relations of the single- and double-layer potentials, we
arrive at boundary integral equations:

(Tue)(x) =

(
1

2
I −K

′

s

)
(np0)(x) +Wsu0(x), x ∈ Γ, (3.11)

∂pi
∂n

(x) = −Wfp0(x)− η
(

1

2
I +K

′

f

)
(n · u0)(x), x ∈ Γ. (3.12)

Then the homogeneous form of (3.10) and (3.12) implies that ∂pi/∂n = 0 on Γ. Under the assumption
(b) we know that pi = 0 in Ω. In particular, pi = 0 on Γ. Then we have(

−1

2
I +Kf

)
p0(x)− ηVf (n · u0)(x) = 0, x ∈ Γ. (3.13)

In addition, since ue satisfies the exterior elastic scattering problem in Ωc with vanishing Neumann
boundary data on Γ, it follows that ue = 0 in Ωc. In particular, ue = 0 on Γ. Then we have

Vs(np0)(x) +

(
1

2
I +Ks

)
u0(x) = 0, x ∈ Γ. (3.14)

Now, let

ui(x) = −
∫

Γ

E(x, y)(np0)(y) dsy −
∫

Γ

(TyE(x, y))>u0(y) dsy, ∀x ∈ Ωc, (3.15)

pe(x) =

∫
Γ

∂γk
∂ny

(x, y)p0(y) dsy − η
∫

Γ

γk(x, y)(u0 · n)(y) dsy, ∀x ∈ Ω. (3.16)

Evaluating the jump on the boundary Γ, we obtain from (3.13) and (3.16) that

∂pe
∂n
− ∂pi
∂n

= ηu0 · n and pe = p0 on Γ.

On the other hand, we derive from (3.14) and (3.15) that

Tui −Tue = −np0 and ui = u0 on Γ.

Thus, (ui, pe) is a solution of the homogeneous boundary value problem of (2.1)-(2.5). This further
implies that ui = 0 in Ω and pe = 0 in Ωc under assumption (a) which further leads to p0 = 0 and u0 = 0
on Γ. This completes the proof.

3.2 Weak formulation
Now, we consider the weak formulation for the system of boundary integral equations (3.9)–(3.10).

We assume that

u ∈ (H1(Ω))2 and p ∈ H1
loc(Ω

c)

with traces

u|Γ ∈ (H1/2(Γ))2 and p|Γ ∈ H1/2(Γ),
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respectively. Then the standard weak formulation takes the form: Given pinc and ∂pinc/∂n, find (u, p) ∈
H(Γ) = (H1/2(Γ))2 ×H1/2(Γ) satisfying

A(u, p;v, q) = F (v, q), ∀ (v, q) ∈ H(Γ), (3.17)

where the sesquilinear form A(· ; ·) : H(Γ)×H(Γ) 7→ R is defined by

A(u, p;v, q) : = 〈Wsu,v〉+

〈(
1

2
I −K

′

s

)
pn,v

〉
+ η

〈(
1

2
I +K

′

f

)
(u · n), q

〉
+ 〈Wfp, q〉, (3.18)

and the linear functional F (v, q) on H(Γ) is defined by

F (v, q) = 〈f1,v〉+ 〈f2, q〉.

Here and in the sequel, 〈·, ·〉 is the L2 duality pairing between H−1/2(Γ) and H1/2(Γ), or (H−1/2(Γ))2

and (H1/2(Γ))2. In order to obtain the existence of a solution of the variational equation (3.17), we need
the next two theorems.

Theorem 3.2. The sesquilinear form (3.18) satisfies a Gårding’s inequality in the form

Re {A(u, p;u, p)} ≥ α
(
‖u‖2(H1/2(Γ))2 + ‖p‖2H1/2(Γ)

)
− β

(
‖u‖2(H1/2−ε(Γ))2 + ‖p‖2H1/2−ε(Γ)

)
, (3.19)

for all (u, p) ∈ H(Γ) where α > 0 , β ≥ 0 and 0 < ε < 1/2 are all constants.

Proof. In (3.18), we set the test functions (v, q) to be (u, p) and obtain

A(u, p;u, p)

= 〈Wsu,u〉+

〈(
1

2
I −K

′

s

)
pn,u

〉
+ η

〈(
1

2
I +K

′

f

)
(u · n), p

〉
+ 〈Wfp, p〉.

We notice first that Wf satisfies a Gårding’s inequality in the form ( [17])

Re {〈Wfp, p〉} ≥ α1‖p‖2H1/2(Γ) − β1‖p‖2H1/2−ε(Γ) (3.20)

for some constants α1 > 0, β1 ≥ 0 and 0 < ε < 1/2. From the estimates in [13] we know that

Re {〈Wsu,u〉} ≥ α2‖u‖2(H1/2(Γ))2 − β2‖u‖2(H1/2−ε(Γ))2 (3.21)

for some constants α2 > 0, β2 ≥ 0 and 0 < ε < 1/2. Furthermore, we have∣∣∣∣〈(1

2
I +K

′

f

)
(u · n), p

〉∣∣∣∣ ≤ ∥∥∥∥(1

2
I +K

′

f

)
(u · n)

∥∥∥∥
H0(Γ)

‖p‖H0(Γ)

≤ c‖u‖(H0(Γ))2‖p‖H0(Γ)

≤ c
(
‖u‖2(H1/2−ε(Γ))2 + ‖p‖2H1/2−ε(Γ)

)
which follows immediately by

Re
{〈(

1

2
I +K

′

f

)
(u · n), p

〉}
≥ −β3

(
‖u‖2(H1/2−ε(Γ))2 + ‖p‖2H1/2−ε(Γ)

)
, (3.22)

where β3 ≥ 0 and 0 < ε < 1/2 are all constants. Due to the same argument, we also have

Re
{〈(

1

2
I −K

′

s

)
(pn),u

〉}
≥ −β4

(
‖u‖2(H1/2−ε(Γ))2 + ‖p‖2H1/2−ε(Γ)

)
(3.23)

for some constants β4 ≥ 0 and 0 < ε < 1/2 . Therefore, the combination of inequalities (3.20)–(3.23)
gives the Gårding’s inequality (3.19) immediately. This completes the proof.
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Now, the existence result follows immediately from the Fredholm’s Alternative: uniqueness implies
existence. Therefore, we have the following theorem.

Theorem 3.3. Under the assumptions (a) and (b) in Theorem 3.1, the variational equation (3.17) admits
a unique solution (u, p) ∈ H(Γ).

4 Indirect method
We now employ the indirect method based on the potential layers to derive a system of coupled

boundary integral equations for the solution of the problem (2.1)–(2.5). Uniqueness and existence results
are established for the weak solution in appropriate Sobolev spaces.

4.1 Boundary integral equations
In terms of the representation formulas (3.1)–(3.2) and potential theory, we may seek the solution of

problem (2.1)–(2.5) in the form of combined single- and double-layer potentials

u(x) = Ss(−nψ)(x)−Ds(v), ∀x ∈ Ω, (4.1)
p(x) = Df (ψ)− ηSf (v · n), ∀x ∈ Ωc, (4.2)

where v and ψ are two unknown continuous density functions defined on the space (H1/2(Γ))2 and
H1/2(Γ), respectively. Ss and Ds are the standard single- and double-layer potentials defined on the solid
region Ω. Similarly, Sf and Df are single- and double-layer potentials on the fluid domain Ωc. Taking
the limit x→ Γ directly for (4.1), and operating with the traction operator on (4.1) and then taking the
limit x→ Γ, we arrive at, by the jump conditions,

u(x) = Vs(−nψ)(x) +

(
1

2
I −Ks

)
v(x), ∀x ∈ Γ, (4.3)

t(x) =

(
1

2
I +K

′

s

)
(−nψ)(x) +Wsv(x), ∀x ∈ Γ. (4.4)

Taking the limit x → Γ directly for (4.2), and computing the normal derivative of (4.2) and taking the
limit x→ Γ, we obtain, by the jump conditions,

p(x) =

(
1

2
I +Kf

)
ψ(x)− ηVf (n · v)(x), ∀x ∈ Γ, (4.5)

∂p

∂n
(x) = −Wfψ(x) + η

(
1

2
I −K

′

f

)
(n · v)(x), ∀x ∈ Γ. (4.6)

In the boundary integral equations (4.3)–(4.6), boundary integral operators are the same as defined in
Section 3. Now, we start with the boundary integral equations (4.3) and (4.4) consisting of the hyper-
singular boundary integral operators and utilize the transmission conditions (2.3) and (2.4) to derive a
system of coupled boundary integral equations with unknown vector (v, ψ). Taking the dot-product with
n for both sides of (4.3) and using (2.3) and (4.6), we have

n · Vs(−nψ) + n ·
(

1

2
I −Ks

)
v

=
1

η

{
−Wfψ + η

(
1

2
I −K

′

f

)
(n · v)

}
+

1

η

∂pinc

∂n
, x ∈ Γ. (4.7)

Similarly, beginning with (4.4) and using (2.4) and (4.5), we are led to(
1

2
I +K

′

s

)
(−nψ) +Wsv

= −npinc −
{
n

(
1

2
I +Kf

)
ψ − ηnVf (n · v)

}
, x ∈ Γ. (4.8)
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By the combination of equations (4.7) and (4.8), we immediately obtain a system of coupled boundary
integral equations on Γ as below

Wsv + nKfψ −K
′

s(nψ)− ηnVf (n · v) = −npinc := g1, x ∈ Γ, (4.9)
1

η
Wfψ +K

′

f (n · v)− n ·Ksv − n · Vs(nψ) =
1

η

∂pinc

∂n
:= g2, x ∈ Γ. (4.10)

It can be seen that (4.1) and (4.2) define a solution of the fluid-solid interaction problem (2.1)–(2.5) if
(v, ψ) solves the system of boundary integral equations (4.9)–(4.10). Therefore, the unique solvability of
(2.1)–(2.5) can be proved by showing that (4.9)–(4.10) is uniquely solvable. First, we need the following
result.

Theorem 4.1. If the surface Γ and the material parameter (µ, λ, ρ) are such that there are no traction
free solutions, the system of boundary integral equations (4.9)–(4.10) is uniquely solvable.

Proof. It is sufficient to prove that the corresponding homogeneous system has only the trivial solution.
Suppose (v0, ψ0) is a solution of the corresponding homogeneous system of (4.9)–(4.10). Now, let

p(x) = Df (ψ0)− ηSf (v0 · n), x ∈ Ω, (4.11)
u(x) = Ss(−nψ0)(x)−Ds(v0), x ∈ Ωc. (4.12)

Taking the limit x→ Γ, and making use of jump relations of the single- and double-layer potentials, we
arrive at boundary integral equations:

u(x) = Vs(−nψ0)(x)−
(

1

2
I +Ks

)
v0(x), x ∈ Γ, (4.13)

t(x) =

(
−1

2
I +K

′

s

)
(−nψ0)(x) +Wsv0(x), x ∈ Γ, (4.14)

p(x) =

(
−1

2
I +Kf

)
ψ0(x)− ηVf (n · v0)(x), x ∈ Γ, (4.15)

∂p

∂n
(x) = −Wfψ0(x)− η

(
1

2
I +K

′

f

)
(n · v0)(x), x ∈ Γ. (4.16)

Combinations of (4.14) and (4.15), and (4.13) and (4.16) yield, respectively

t + pn = Wsv0 + nKfψ0 −K
′

s(nψ0)− ηnVf (n · v0) = 0 on Γ,

u · n− 1

η

∂p

∂n
=

1

η
Wfψ0 +K

′

f (n · v0)− n ·Ksv0 − n · Vs(nψ0) = 0 on Γ,

since (v0, ψ0) is a solution of the corresponding homogeneous system of (4.9)–(4.10). Hence u and p
solve the following homogeneous fluid-solid interaction problem consisting of

∆p+ k2p = 0 in Ω, (4.17)
∆∗u + ρω2u = 0 in Ωc, (4.18)

t = −pn on Γ, (4.19)

u · n =
1

η

∂p

∂n
on Γ (4.20)

together with elastic radiation conditions ( [15, 23]) for u given in terms of the pressure wave up and
the shear wave us associated with the wave numbers kp and ks, respectively. It follows from the Green’s
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formulation and the transmission conditions (4.19)–(4.20)that∫
Γa

u ·Tu ds =

∫
Γ

u ·Tu ds+ a(u,u)

= −
∫

Γ

u · np ds+ a(u,u)

= −1

η

∫
Γ

∂p

∂n
p ds+ a(u,u)

= −1

η
b(p, p) + a(u,u), (4.21)

where

a(u,u) =

∫
Ωa

[
λ|∇ · u|2 + 2µ E(u) : E(u)− ρω2|u|2

]
dx, (4.22)

b(p, p) =

∫
Ω

(
|∇p|2 − k2|p|2

)
dx, (4.23)

and

E(u) =
1

2

(
∇u + (∇u)>

)
.

Here, Γa is the circle of radius a and center zero enclosing Ω, Ωa is the region between Γ and Γa. Since
Im a(u,u) = 0 and Im b(p, p) = 0, taking the imaginary part of (4.21) gives

Im
(∫

Γa

u ·Tu ds

)
= 0.

From the radiation condition for u we know

Im
(∫

Γa

u ·Tu ds

)
→ −ω

∫
|x|=1

|u∞|2 ds as a→∞

where u∞ = (u∞p ,u
∞
s ) is the far-field pattern of the scattered wave u. Then we conclude that u∞ = 0

which implies that u = 0 in Ωc by Rellich’s lemma and unique continuation. In particular, u = 0 and
Tu = 0 on Γ. Hence p = 0 and ∂p/∂n = 0 on Γ. Then Holmgren’s uniqueness theorem implies that
p = 0 in Ω. Consequently, we see that

ψ0 = p+ − p− = 0, v0 = u− − u+ = 0

as expected, where we have denoted by f− and f− the limits of the function approach to Γ from Ω and
Ωc, respectively. This completes the proof.

Next, we show that the solution of the system (4.9)–(4.10) exists by considering its weak formulation.

4.2 Weak formulation
The weak formulation of the system (4.9)–(4.10) reads: Given pinc and ∂pinc/∂n, find (v, ψ) ∈ H(Γ)

satisfying

B(v, ψ;w, ϕ) = G(w, ϕ), ∀ (w, φ) ∈ H(Γ). (4.24)

The sesquilinear form B(· ; ·) : H(Γ)×H(Γ) 7→ R is given by

B(v, ψ;w, ϕ) =
1

η
〈Wfψ,ϕ〉 − 〈n · Vs(nψ), ϕ〉+ 〈K

′

f (n · v), ψ〉 − 〈n ·Ksv, ϕ〉

+ 〈Wsv,w〉 − η〈nVf (n · v),w〉+ 〈nKfψ,w〉 − 〈K
′

s(nψ),w〉 (4.25)
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and the linear functional G(w, ϕ) on H(Γ) is defined by

G(w, ϕ) = 〈g1,w〉+ 〈g2, ϕ〉 .

In order to show the existence of a weak solution of the variational equation (4.24), we need the next two
theorems.

Theorem 4.2. The sesquilinear form (4.25) satisfies a Gårding’s inequality in the form

Re {B(v, ψ;v, ψ)} ≥ α
(
‖v‖2(H1/2(Γ))2 + ‖ψ‖2H1/2(Γ)

)
− β

(
‖v‖2(H1/2−ε(Γ))2 + ‖ψ‖2H1/2−ε(Γ)

)
, (4.26)

for all (v, ψ) ∈ H(Γ) where α > 0, β ≥ 0 and 0 < ε < 1/2 are all constants.

Proof. The proof follows strictly that of Theorem 3.2. In (4.25), we set (w, ϕ) to be (v, ψ), and thus
obtain

B(v, ψ;v, ψ) =
1

η
〈Wfψ,ψ〉 − 〈n · Vs(nψ), ψ〉+ 〈K

′

f (n · v), ψ〉 − 〈n ·Ksv, ψ〉

+ 〈Wsv,v〉 − η〈nVf (n · v),v〉+ 〈nKfψ,v〉 − 〈K
′

s(nψ),v〉.

We first notice that

Re {〈Wfψ,ψ〉} ≥ α1‖ψ‖2H1/2(Γ) − β1‖ψ‖2H1/2−ε(Γ), (4.27)

Re {〈Wsv,v〉} ≥ α2‖v‖2(H1/2(Γ))2 − β2‖v‖2H1/2−ε(Γ). (4.28)

where α1, α2 > 0, β1, β2 ≥ 0 and 1/2 > ε > 0 are all constants. Similarly, we also have

Re {−〈n · Vs(nψ), ψ〉} ≥ −β3‖ψ‖2H1/2−ε(Γ), (4.29)

Re {−〈nVf (n · v),v〉} ≥ −β4‖v‖2(H1/2−ε(Γ))2 , (4.30)

and

Re
{
〈K
′

f (n · v), ψ〉 − 〈n ·Ksv, ψ〉+ 〈nKfψ,v〉 − 〈K
′

s(nψ),v〉
}

≥ −β5

(
‖v‖2(H1/2−ε(Γ))2 + ‖ψ‖2H1/2−ε(Γ)

)
, (4.31)

where βj ≥ 0, j = 3, 4, 5 and 1/2 > ε > 0 are constants. The inequality (4.26) then follows immediately
from (4.27)–(4.31).

Theorem 4.3. If the surface Γ and the material parameter (µ, λ, ρ) are such that there are no traction
free solutions, then variational equation (4.24) has a unique solution (v, ψ) ∈ H(Γ).

We note that the uniqueness of variational equation (4.24) is an immediate result of Theorem 4.1.
Again, Gårding’s inequality and the uniqueness lead to the existence of a weak solution of variational
equation (4.24).

5 Burton-Miller formulation based on direct method
In this section, we apply the Burton-Miller formulation to boundary integral equations from the

direct method in order to remove irregular values of −k2. We also study the uniqueness and existence of
the weak solution for the derived system of boundary integral equations.
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5.1 Boundary integral equations
We now combine the boundary integral equations (3.6)–(3.8) together with transmission conditions

(2.3)–(2.4) to obtain a system of coupled boundary integral equations for a pair of unknown functions u
and p, i.e.,

Wsu(x) +

(
1

2
I −K

′

s

)
(pn)(x) = f1, (5.1)

η

(
1

2
I +K

′

f + βVf

)
(u · n)(x) +

[
β

(
1

2
I −Kf

)
+Wf

]
p(x) = f̃2. (5.2)

where

f̃2 =

(
1

2
I +K

′

f + βVf

)
∂pinc

∂n
(x),

and β is a constant at our disposal. The unique solvability of (5.1)–(5.2) is given in the following theorem.

Theorem 5.1. If
(a) the surface Γ and the material parameters (µ, λ, ρ) are such that there are no traction free solutions,
(b) Imβ 6= 0,
the system of boundary integral equations (5.1)–(5.2) is uniquely solvable.

Proof. It is sufficient to prove that the corresponding homogeneous system has only the trivial solution.
Suppose that (u0, p0) is a solution of the corresponding homogeneous system of (5.1)–(5.2). Using the
same notations in Theorem 3.1, we obtain from the homogeneous form of (5.2) that

∂pi
∂n

+ βpi = 0 on Γ. (5.3)

Applying Green’s second identity to pi and its complex conjugate pi we obtain

0 =

∫
Ω

(pi∆pi − pi∆pi) dx

=

∫
Γ

(
pi
∂pi
∂n
− pi

∂pi
∂n

)
ds

= 2iImβ

∫
Γ

|pi|2ds.

Then it follows that pi = 0 on Γ provided that Imβ 6= 0 and equation (5.3) yields also ∂pi/∂n = 0 on Γ.
The rest of the proof follows immediately from the same techniques described in Theorem 3.1.

5.2 Weak formulation
The system of boundary integral equations (5.1)–(5.2) is converted to its variational formulation which

takes the standard form: Given pinc and ∂pinc/∂n, find (u, p) ∈ H(Γ) satisfying

C(u, p;v, q) = H(v, q), ∀ (v, q) ∈ H(Γ). (5.4)

The sesquilinear form C(u, p;v, q) : H(Γ)×H(Γ) 7→ R is given by

C(u, p;v, q) = 〈Wsu,v〉+

〈(
1

2
I −K

′

s

)
pn,v

〉
+ η

〈(
1

2
I +K

′

f + βVf

)
(u · n), q

〉
+

〈[
β

(
1

2
I −Kf

)
+Wf

]
p, q

〉
(5.5)
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and the linear functional H(v, q) is defined on H(Γ) by

H(v, q) = 〈f1,v〉+ 〈f̃2, q〉.

In order to show the existence of a weak solution of the variational equation (5.4), we need the next
theorem.

Theorem 5.2. The sesquilinear form C(u, p;v, q) satisfies a Gårding’s inequality in the form

Re{C(u, p;u, p)} ≥ α
(
‖u‖2(H1/2(Γ))2 + ‖p‖2H1/2(Γ)

)
− β

(
‖u‖2(H1/2−ε(Γ))2 + ‖p‖2H1/2−ε(Γ)

)
for all (u, p) ∈ H(Γ) where α > 0 , β ≥ 0 and 0 < ε < 1/2 are all constants.

Proof. It can be proved by following the same arguments in Theorem 4.2.

Now, the existence result follows immediately from the Fredholm’s alternative: uniqueness implies
existence. Therefore, we have the following theorem.

Theorem 5.3. The variational equation (5.4) admits a unique solution (u, p) ∈ H(Γ) under the same
assumptions in Theorem 5.1.

Remark 5.4. It can be seen from Theorem 5.2 that with the help of choosing purely imaginary value β,
the condition (b) in Theorem 3.1 for the uniqueness of direct method can be removed by Burton-Miller
formulation. This technique can also be applied for indirect boundary integral equations, see [23] for
example. In addition, it can be observed that except the Jones frequency, there is no excluded spectrum of
eigenvalues for the indirect method proposed in this paper without the help of Burton-Miller formulation.
We also numerically discuss the solvability of the proposed three methods in Section 7.

6 Regularization formulations for hypersingular boundary inte-
gral operators

In all the above variational formulations of boundary integral equations, we see that hypersingular
boundary integral operators for the Helmholtz equation as well as for the time-harmonic Navier equation
are dominated boundary integral operators. They will play a crucial role in the numerical implemen-
tation. From computational point of view, as is well known, it is difficult to obtain accurate numerical
approximation for boundary integral operators with highly singular kernels. For this reason, we now
present regularization formulas for these hypersingular operators which will allow us to treat hypersingu-
lar kernels in terms of weakly singular kernels instead. These formulas will be employed in our numerical
experiments to appear in a forthcoming communication.

Recall the fundamental solutions of the Helmholtz equation (2.2) and of the time-harmonic Navier
equation (2.1) given respectively in (3.3) and (3.4), namely

γk(x, y) =
i

4
H

(1)
0 (k|x− y|)

E(x, y) =
1

µ
γks(x, y)I +

1

ρω2
∇x∇x

[
γks(x, y)− γkp(x, y)

]
with acoustic wave number k, and shear and compressional wave numbers denoted by

ks = ω
√
ρ/µ, kp = ω

√
ρ/(λ+ 2µ).

For the sake of simplicity throughout this section, we denote by R(x, y) = γks(x, y) − γkp(x, y), nx =
(n1

x, n
2
x)T the outward unit normal at x ∈ Γ, tx = (−n2

x, n
1
x)T the tangent vector, ∇x = (∂/∂x1, ∂/∂x2)T

the gradient operator and δij the Kronecker delta function of i and j.
We begin with the regularization formulation of the hypersingular boundary integral operator Wf

associated with the Helmholtz equation. Similar to Lemma 1.2.2 in [17], we have the lemma.
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Lemma 6.1. The operator Wf can be expressed as a composition of tangential derivatives, the outward
unit normal and the simple layer potential operator Vf taking the form

Wfp(x) = − d

dsx
Vf

(
dp

ds

)
(x)− k2nT

x Vf (pn)(x). (6.1)

Next, we present the regularization formula for the hypersingular boundary operator Ws for the time-
harmonic Navier equation in the next theorem and postpone the derivation to Appendix A. Here, we set
A = [0,−1; 1, 0].

Theorem 6.2. The hypersingular boundary integral operator Ws associated with the time-harmonic
Navier equation can be expressed as

Wsu(x) = µk2
s

∫
Γ

{
nxn

T
yR(x, y)− nT

xnyIγks(x, y)−AnT
x tyγks(x, y)

}
u(y)dsy

+ 2µ2k2
s

∫
Γ

AE(x, y)nT
x tyu(y)dsy

− 4µ2

∫
Γ

dE(x, y)

dsx

du(y)

dsy
dsy +

4µ2

λ+ 2µ

∫
Γ

dγkp(x, y)

dsx

du(y)

dsy
dsy

+ 2µ

∫
Γ

nx∇T
xR(x, y)A

du(y)

dsy
dsy

− 2µ

∫
Γ

A∇xR(x, y)nT
x

du(y)

dsy
dsy, (6.2)

or

Wsu(x) = µk2
s

∫
Γ

{
nxn

T
yR(x, y)− nT

xnyIγks(x, y) +AnT
x tyγks(x, y)

}
u(y)dsy

− 4µ2

∫
Γ

dE(x, y)

dsx

du(y)

dsy
dsy +

4µ2

λ+ 2µ

∫
Γ

dγkp(x, y)

dsx

du(y)

dsy
dsy

+ 2µ

∫
Γ

nx∇T
xR(x, y)A

du(y)

dsy
dsy

+ 2µ

∫
Γ

A
d

dsx
(∇yR(x, y))nT

y u(y)dsy. (6.3)

Based on the regularization formulations presented in Lemma 6.1 and Theorem 6.2, an integration by
parts yields for all u,v ∈ (H1/2(Γ))2, p, q ∈ H1/2(Γ) that

〈Wfp, q〉 =

∫
Γ

∫
Γ

γk(x, y)
dp(y)

dsy

dq(x)

dsx
dsydsx − k2

∫
Γ

∫
Γ

nT
xnyγk(x, y)p(y)q(x)dsydsx,

〈Wsu,v〉 = µk2
s

∫
Γ

∫
Γ

v(x) ·
{[
nxn

T
yR− nT

xnyIγks −AnT
x tyγks

]
u(y)

}
dsydsx

+ 2µ2k2
s

∫
Γ

∫
Γ

v(x) ·
{
AE(x, y)nT

x tyu(y)
}
dsxdsy

+ 4µ2

∫
Γ

∫
Γ

dv(x)

dsx
·
[
E(x, y)

du(y)

dsy

]
dsydsx

− 4µ2

λ+ 2µ

∫
Γ

∫
Γ

dv(x)

dsx
·
[
γkp(x, y)

du(y)

dsy

]
dsydsx

+ 2µ

∫
Γ

∫
Γ

v(x) ·
{
nx∇T

xR(x, y)A
du(y)

dsy

}
dsydsx

− 2µ

∫
Γ

∫
Γ

v(x) ·
{
A∇xR(x, y)nT

x

du(y)

dsy

}
dsydsx,
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or

〈Wsu,v〉 = µk2
s

∫
Γ

∫
Γ

v(x) ·
{[
nxn

T
yR− nT

xnyIγks +AnT
x tyγks

]
u(y)

}
dsydsx

+ 4µ2

∫
Γ

∫
Γ

dv(x)

dsx
·
[
E(x, y)

du(y)

dsy

]
dsydsx

− 4µ2

λ+ 2µ

∫
Γ

∫
Γ

dv(x)

dsx
·
[
γkp(x, y)

du(y)

dsy

]
dsydsx

+ 2µ

∫
Γ

∫
Γ

v(x) ·
{
nx∇T

xR(x, y)A
du(y)

dsy

}
dsydsx

− 2µ

∫
Γ

∫
Γ

dv(x)

dsx
·
{
A∇yR(x, y)nT

y u(y)
}
dsydsx.

7 Galerkin boundary element method
In this section, we describe the procedure of reducing the Galerkin equation of (3.17), (4.24) and

(5.4) to their discrete linear systems of equations. Consider the direct method for example and let Hh

be a finite dimensional subspace of H(Γ). The Galerkin approximation of (3.17) reads: Given pinc and
∂pinc/∂n, find (uh, ph) ∈ Hh satisfying

A(uh, ph;vh, qh) = F (vh, qh), ∀ (vh, qh) ∈ Hh. (7.1)

Theorem 7.1. Suppose that
(a) the surface Γ and the material parameters (µ, λ, ρ) are such that there are no traction free solutions,
(b) −k2 is not an eigenvalue of the interior Neumann problem for the Laplacian,
(c) Hh is a standard boundary element space satisfying the approximation property.
Then there exists a constant c > 0 independent of (u, p) and h such that the following estimate holds for
t ≤ s

‖(u, p)− (uh, ph)‖(Ht(Γ))2×Ht(Γ) ≤ chs−t‖(u, p)‖(Hs(Γ))2×Hs(Γ).

Proof. The proof can be completed by introducing the BBL-condition and the analysis of the Galerkin
equation given in [16]. We omit it here.

Now we describe briefly a procedure of reducing the Galerkin equation (7.1) to its discrete linear
system of equations. Let xi, i = 1, 2, ..., N be the discretion points on Γ and Γi be the line segment
between xi and xi+1. Then the boundary Γ is approximated by

Γ̃ :=

N⋃
i=1

Γi.

Let {ϕi}, i = 1, 2, ..., N be piecewise linear basis functions of Hh. We seek approximation solutions
Uh = (uh, ph) in the forms

uh(x) =

N∑
i=1

uiϕi(x), ph(x) =

N∑
i=1

piϕi(x),

where ui ∈ C2 and pi ∈ C are unknown nodal values of uh and ph at xi, respectively. The given Cauchy
data are interpolated with the form

pinc(x) =

N∑
i=1

pinci ϕi(x), ∇pinc =

N∑
i=1

ginc
i ϕi(x),
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where pinci ∈ C and ginc
i ∈ C2 are function values of pinc and ∇pinc at interpolation points. Then

Substituting these interpolation forms into (7.1) and setting ϕi, i = 1, 2, ..., N as test functions, we arrive
at the linear system of equations

Ah X = Fh, (7.2)

where

Ah =

[
Wsh

(
1
2Ih −Ksph

)
η
(

1
2I
>
h + Kfph

)
Wfh

]
,

X =

[
X1

X2

]
,

Fh =

[(
− 1

2Ih + Ksph

)
b1(

1
2I
>
h + Kfph

)
b2

]
,

and

X1 = (u>1 ,u
>
2 , ...,u

>
N )>,

X2 = (p1, p2, ..., pN )>,

b1 = (pinc1 , pinc2 , ..., pincN )>,

b2 = (ginc
1 ,ginc

2 , ...,ginc
N )>.

The stiffness matrix Ah consists of block matrices with corresponding entries defined by

Wsh(i, j) =

∫
Γ̃

(Wsϕj)ϕi ds,

Wfh(i, j) =

∫
Γ̃

(Wfϕj)ϕi ds,

Ksph(i, j) =

∫
Γ̃

(K ′s(ϕjn))ϕi ds,

Kfph(i, j) =

∫
Γ̃

(K ′f (ϕjn
>))ϕi ds,

Ih(i, j) =

∫
Γ̃

ϕjnϕi ds.

For the implementation of the stiffness matrix Ah, we refer to the numerical strategy described in [1] for
solving exterior elastic scattering problem. The computational formulations are omitted here. We denote
Bh and Ch the corresponding stiffness matrix for the indirect method and Burton-Miller formulation.

8 Numerical experiments
In this section, we present two numerical tests to demonstrate efficiency and accuracy of the presented

systems of BIEs, the regularization formulation and the numerical scheme for solving the fluid-solid
interaction problem. Numerical simulations are performed under the system of Matlab software using a
direct solver for corresponding linear systems.

We first introduce a model problem for which analytical solutions are available for the evaluation of
accuracy. We consider the scattering of a plane incident wave pinc = eikx·d with direction d = (1, 0) by a
disc-shaped elastic body of radius R0, and thus we could write the solution of (2.1)–(2.5) in the forms

p(r, θ) =

∞∑
n=0

AnH
(1)
n (kr) cos(nθ),

u = ∇ϕ−∇× ψ
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with

ϕ(r, θ) =

∞∑
n=0

BnJn(kpr) cos(nθ),

ψ(r, θ) =

∞∑
n=0

CnJn(ksr) sin(nθ),

where the coefficients An, Bn and Cn are to be determined. According to the transmission conditions
(2.3)–(2.4), we are able to obtain a linear system of equations as

EnXn = en,

where Xn = (An, Cn, Dn)>, the system matrix En =
[
Eij

n

]
and the right-hand vector en =

[
ejn
]
,

i, j = 1, 2, 3. Their elements (identified by the super-script) are computed using the following formulations

E11
n = −H(1)

n−1(kR0) +
n

kR0
H(1)

n (kR0),

E12
n =

ρfω
2kp
k

[
Jn−1(kpR0)− n

kpR0
Jn(kpR0)

]
,

E13
n =

ρfω
2n

kR0
Jn(ksR0),

E21
n = 0,

E22
n =

2µnkp
R0

Jn−1(kpR0)− 2µ(n2 + n)

R2
0

Jn(kpR0),

E23
n =

2µ(n2 + n)− µk2
sR

2
0

R2
0

Jn(ksR0)− 2µks
R0

Jn−1(ksR0),

E31
n = H(1)

n (kR0),

E32
n =

2µ(n2 + n)− µk2
sR

2
0

R2
0

Jn(kpR0)− 2µkp
R0

Jn−1(kpR0),

E33
n =

2µnks
R0

Jn−1(ksR0)− 2µ(n2 + n)

R2
0

Jn(ksR0),

and

e1
n = εni

n

[
Jn−1(kR0)− n

kR0
Jn(kR0)

]
,

e2
n = 0,

e1
n = −εninJn(kR0).

For this model problem, the Jones frequencies can be determined by the zeros of |detEn|. In addition,
the eigenvalues of the interior Neumann problem for the Laplacian are related with the zeros of

J ′n(kR0) = −Jn+1(kR0) +
n

kR0
Jn(kR0), n ∈ Z.

Example 1. In this example, we test the accuracy of proposed numerical schemes for solving the two
dimensional fluid-solid interaction problem. We consider the above model problem with R0 = 0.01m,
and cs = 3122m/s, cp = 6198m/s. Here, cs ans cp are the wave speeds of shear wave and pressure wave
in the solid defined by

cs =

√
µ

ρ
, cp =

√
λ+ 2µ

ρ
.
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The speed of sound in water is c = 1500m/s, and the density of water is ρf = 1000 kg/m3, respectively.
The density of aluminum ρ = 2700 kg/m3, and the frequency ω = 50π kHz. We apply the direct method
and Burton-Miller formulation to obtain the numerical solutions (uh, ph) on Γ and present the results
for N = 64 in Fig. 2 and 3, respectively. It can be seen that the numerical solutions are in a perfect
agreement with the exact ones. We also list the numerical errors of two methods in Table 1 and 2,
respectively and these results verify the optimal convergence order

‖U−Uh‖(L2(Γ))2×L2(Γ) = O(1/N).

Next, we consider the indirect method by which we first compute the numerical solutions (vh, ψh) on Γ,
then use the representations (4.1)–(4.2) to calculate the numerical solutions uh on ΓR0/2 and ph on Γ2R0

,
where

Γr := {x ∈ R2 : |x| = r}.

The exact and numerical solutions are presented in Fig. 4 by choosing N = 1024, showing the perfect
agreement with each other. Corresponding numerical errors are listed in Table 3, verifying the achieve-
ment of the optimal order of accuracy.

Table 1: Numerical errors of direct method in L2-norm with respect to N for Example 1.
N ‖u− uh‖(L2(Γ))2 Order ‖p− ph‖L2(Γ) Order
64 1.35E-16 – 3.10E-4 –
128 4.66E-17 1.53 1.24E-4 1.32
256 2.35E-17 0.99 5.95E-5 1.06
512 1.24E-17 0.92 3.01E-5 0.98
1024 6.24E-18 0.99 1.53E-5 0.98

Table 2: Numerical errors of Burton-Miller formulation in L2-norm with respect to N for Example 1.
N ‖u− uh‖(L2(Γ))2 Order ‖p− ph‖L2(Γ) Order
64 1.37E-16 – 3.03E-4 –
128 5.07E-17 1.43 1.20E-4 1.34
256 2.62E-17 0.95 5.79E-5 1.05
512 1.37E-17 0.94 2.93E-5 0.98
1024 6.91E-18 0.99 1.49E-5 0.98

Example 2. In this example, we demonstrate the occurrence of irregular frequencies of proposed
three systems of BIEs for solving the fluid-solid interaction problem. We consider the above model
problem and choose λ = 1, µ = 2, ρ = 1, ρf = 1/2, R0 = 1 and k = ω. For ω ∈ [5, 10], we conclude from
the values of |detEn| that

ω = 7.2629

Table 3: Numerical errors of indirect method in L∞-norm with respect to N for Example 1.
N ‖u− uh‖(L∞(ΓR0/2

))2 Order ‖p− ph‖L∞(Γ2R0
) Order

64 1.24E-14 – 2.11E-3 –
128 6.22E-15 1.00 9.87E-4 1.10
256 3.12E-15 1.00 4.80E-4 1.04
512 1.56E-15 1.00 2.37E-4 1.02
1024 7.82E-16 1.00 1.17E-4 1.02

18



(a) Reu1 (b) Imu1

(c) Reu2 (d) Imu2

(e) Re p (f) Im p

Figure 2: Numerical solutions (uh, ph) on Γ of the direct method and corresponding exact solutions for
Example 1 with N = 64.
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(a) Reu1 (b) Imu1

(c) Reu2 (d) Imu2

(e) Re p (f) Im p

Figure 3: Numerical solutions (uh, ph) on Γ of the Burton-Miller formulation and corresponding exact
solutions for Example 1 with N = 64.

20



(a) Reu1 (b) Imu1

(c) Reu2 (d) Imu2

(e) Re p (f) Im p

Figure 4: Numerical solutions uh on ΓR0/2 and ph on Γ2R0
of the indirect method, and corresponding

exact solutions for Example 1.
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is the only Jones frequency. Correspondingly, −k2 is an eigenvalue of the interior Neumann problem for
the Laplacian when

ω = 5.3175, 5.3314, 6.4156, 6.7061, 7.0156, 7.5013,

8.0152, 8.5363, 8.5778, 9.2824, 9.6474, 9.9695.

Log-log plots of the values |detAh|, |detBh| and |detCh| with respect to ω are presented in Fig. 5, 6
and 7, respectively. We can see that the major dips appearing in these figures are consistent with the
theoretical results. For the specified values of ω denoted using black square in these figures, it can be
found that they are the minimum points of |detEn|.

Figure 5: The solid line: log-log plot of values |detAh| vs. the frequency ω; the vertical dashed line:
Neumann eigenvalue; the vertical dotted line: Jones frequency.

9 Conclusion
In this paper, through direct and indirect methods, three systems of boundary integral equations are

presented for the solution of the two dimensional fluid-solid interaction problems. Uniqueness and exis-
tence results have been established for the corresponding variational formulations. These systems can be
extended for solving the three-dimensional problem without significant difficulties. A new regularization
formulation for the computation of the hyper-singular boundary integral operator associated with the
time-harmonic Navier equation in the elastic domain has been derived. Numerical results are presented
to validate the regularization formula and the numerical scheme. Applications of these formulations to
inverse problems and eigenvalue problems, and investigations on the preconditioning technique for these
systems will envision our future work.

A Proof of Theorem 6.2
For interested readers, we give the derivations of the regularization formulas (6.2) and (6.3) presented

in Theorem 6.2 in this appendix. First we need the following alternative representation of the traction
operator
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Figure 6: The solid line: log-log plot of values |detBh| vs. the frequency ω; the vertical dotted line:
Jones frequency.

Figure 7: The solid line: log-log plot of values |detCh| vs. the frequency ω; the vertical dotted line:
Jones frequency.
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Lemma A.1. The traction operator can be rewritten as

Txu(x) = (λ+ µ)nx(∇x · u) + µ
∂u

∂nx
+ µM(∂x,nx)u (A.1)

where the operator M(∂x,nx) is defined by

M(∂x,nx)u(x) =
∂u

∂nx
+ nx ×∇× u− nx(∇x · u).

Moreover,

M(∂x,nx)u(x) = A
du(x)

dsx
. (A.2)

Here, the elements in M(∂x,nx) are also called the Günter derivatives ( [22]).

We also need following preliminary results concerning applications of Günter derivatives to various
expressions.

Theorem A.2. For the fundamental displacement tensor E(x, y) defined by (3.4), we have

TxE(x, y) = −nx∇T
xR(x, y) +

∂γks(x, y)

∂nx
I

+ M(∂x,nx) [2µE(x, y)− γks(x, y)I] , (A.3)

where R(x, y) = γks(x, y)− γkp(x, y).

Proof. Let

E(x) =
1

µ
γks(x)I +

1

ρω2
∇x∇x

[
γks(x)− γkp(x)

]
,

where

γk(x) =
i

4
H

(1)
0 (k|x|)

with k = ks or kp. Then it’s sufficient to prove that

TxE(x) = −nx∇T
xR(x) +

∂γks(x)

∂nx
I + M(∂x,nx)[2µE(x)− γks(x)I]. (A.4)

For some matrix A or vector B, we denote (A)ij and (B)i their Cartesian components respectively. Then
we have

(∇x ·E(x))i

=
1

µ

[
∂γks(x)

∂xi
+

1

k2
s

∂3

∂x3
i

(
γks(x)− γkp(x)

)
+

1

k2
s

∂3

∂xi∂x2
j

(
γks(x)− γkp(x)

)]

=
1

µ

[
∂γks(x)

∂xi
− 1

k2
s

∂

∂xi

(
k2
sγks(x)− k2

pγkp(x)
)]

=
1

λ+ 2µ

∂γkp(x)

∂xi
(A.5)

where i, j = 1 or 2 but j 6= i. Similarly, for i, j = 1 or 2 we have(
∂E(x)

∂nx

)
ij

=
1

µ

2∑
l=1

nlx

[
∂γks(x)

∂xl
δij +

1

k2
s

∂3

∂xi∂xj∂xl

(
γks(x)− γkp(x)

)]
(A.6)
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and

(M(∂x, nx)E(x))ij

=
1

µ

2∑
l=1

(
∂

∂xi
nlx −

∂

∂xl
nix

)[
γksδlj +

1

k2
s

∂2

∂xj∂xl

(
γks(x)− γkp(x)

)]
. (A.7)

Therefore, from (A.5), (A.6) and (A.7) we have

(TxE(x))ij = (λ+ µ)(nx (∇ ·E(x)))ij + µ

(
∂E(x)

∂nx

)
ij

− µ(M(∂x,nx)E(x))ij

+ 2µ(M(∂x,nx)E(x))ij

= nix
∂

∂xj

[
λ+ µ

λ+ 2µ
γkp(x) +

1

k2
s

2∑
l=1

∂2

∂x2
l

(
γks(x)− γkp(x)

)]
+
∂γks(x)

∂nx
δij

+
(
M(∂x,nx)

T
γks(x)

)
ij

+ 2µ(M(∂x,nx)E(x))ij

= nix
∂

∂xj

[
λ+ µ

λ+ 2µ
γkp(x)− 1

k2
s

(
k2
sγks(x)− k2

pγkp(x)
)]

+
∂γks(x)

∂nx
δij

− (M(∂x,nx)γks(x))ij + 2µ(M(∂x,nx)E(x))ij

= −nix
∂R(x)

∂xj
+
∂γks
∂nx

δij − (M(∂x,nx)γks(x)(x))ij

+ 2µ(M(∂x,nx)E(x))ij . (A.8)

and this further leads to (A.4) which completes the proof.

Theorem A.3. The operator Ks can be expressed as

Ksu(x) =

∫
Γ

∂γks(x, y)

∂ny
u(y)dsy −

∫
Γ

∇yR(x, y)nT
y u(y)dsy

+

∫
Γ

[2µE(x, y)− γks(x, y)I]M(∂y,ny)u(y)dsy. (A.9)

Proof. As a corollary of Theorem A.2, we have

TyE(x, y) = −ny∇T
yR(x, y) +

∂γks(x, y)

∂ny
I + M(∂y,ny) [2µE(x, y)− γks(x, y)I] .

Therefore,

Ksu(x) =

∫
Γ

∂γks(x, y)

∂ny
u(y)dsy −

∫
Γ

(
ny∇T

yR(x, y)
)T

u(y)dsy

+

∫
Γ

(M(∂y,ny) [2µE(x, y)− γks(x, y)I])
T
u(y)dsy. (A.10)

Regarding the last integral in (A.10), integration by parts gives∫
Γ

(M(∂y,ny)γks(x, y))
T
u(y)dsy = −

∫
Γ

M(∂y,ny)γks(x, y)u(y)dsy

= −
∫

Γ

A
dγks(x, y)

dsy
u(y)dsy

=

∫
Γ

γks(x, y)M(∂y,ny)u(y)dsy (A.11)
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and similarly, ∫
Γ

(M(∂y,ny)E(x, y))
T
u(y)dsy =

∫
Γ

E(x, y)M(∂y,ny)u(y)dsy. (A.12)

The proof is hence established by a combination of (A.10), (A.11) and (A.12).

We are now in a position to complete the proof of Theorem 6.2. We know from Theorem A.3 that

Wsu(x) = −TxKsu(x)

=

∫
Γ

Tx

(
∇yR(x, y)nT

y u(y)
)
dsy −

∫
Γ

Tx

(
∂γks(x, y)

∂ny
u(y)

)
dsy

−
∫

Γ

Tx ((2µE(x, y)− γks(x, y)I)M(∂y,ny)u(y)) dsy

= g1(x)− g2(x)− g3(x), (A.13)

where

g1(x) =

∫
Γ

Tx

(
∇yR(x, y)nT

y u(y)
)
dsy,

g2(x) =

∫
Γ

Tx

(
∂γks(x, y)

∂ny
u(y)

)
dsy

and

g3(x) =

∫
Γ

Tx ((2µE(x, y)− γks(x, y)I)M(∂y,ny)u(y)) dsy.

Therefore, (A.1) implies that

g1(x) =

∫
Γ

Tx

(
∇yR(x, y)nT

y u(y)
)
dsy

= −(λ+ µ)

∫
Γ

nxny
T ∆R(x, y)u(y)dsy

+ 2µ

∫
Γ

M(∂y,ny)∇xR(x, y)nT
xu(y)dsy

+ µ

∫
Γ

(
∂

∂nx
(∇yR(x, y))−M(∂x,nx)∇yR(x, y)

)
nT
y u(y)dsy

+ 2µ

∫
Γ

(
M(∂x,nx)∇yR(x, y)nT

y −M(∂y,ny)∇xR(x, y)nT
x

)
u(y)dsy, (A.14)

or

g1(x) = −(λ+ µ)

∫
Γ

nxny
T ∆R(x, y)u(y)dsy

+ 2µ

∫
Γ

M(∂x,nx)∇yR(x, y)nT
y u(y)dsy

+ µ

∫
Γ

(
∂

∂nx
(∇yR(x, y))−M(∂x,nx)∇yR(x, y)

)
nT
y u(y)dsy. (A.15)

We are able to show that

∂

∂nx
(∇yR(x, y))−M(∂x,nx)∇yR(x, y) = −∆R(x, y)nx
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and

M(∂x,nx)∇yR(x, y)nT
y −M(∂y,ny)∇xR(x, y)nT

x

= Aµk2
s

(
E(x, y)− 1

µ
γks(x, y)I

)
nT
x ty,

and these further yield

g1(x) = (λ+ 2µ)

∫
Γ

[
k2
sγks(x, y)− k2

pγkp(x, y)
]
nxn

T
y u(y)dsy

+ 2µ2k2
s

∫
Γ

[
0 −1
1 0

](
E(x, y)− 1

µ
γks(x, y)I

)
nT
x tyu(y)dsy

+ 2µ

∫
Γ

M(∂y,ny)∇xR(x, y)nT
xu(y)dsy, (A.16)

or

g1(x) = (λ+ 2µ)

∫
Γ

[
k2
sγks(x, y)− k2

pγkp(x, y)
]
nxn

T
y u(y)dsy

+ 2µ

∫
Γ

M(∂x,nx)(∇yR(x, y))nT
y u(y)dsy. (A.17)

Similarly, from (6.1) and (A.1) we have

g2(x) =

∫
Γ

Tx

(
∂γks(x, y)

∂ny
u(y)

)
dsy

= (λ+ µ)

∫
Γ

nx
∂

∂ny

(
∇x

T γks(x, y)
)
u(y)dsy

+ µ

∫
Γ

dγks(x, y)

dsx

du(y)

dsy
dsy + µk2

s

∫
Γ

nT
xnyγks(x, y)u(y)dsy

+ µ

∫
Γ

M(∂x,nx)

(
∂γks(x, y)

∂ny

)
u(y)dsy. (A.18)

In addition, from (A.1), there holds

g3(x) =

∫
Γ

Tx ((2µE(x, y)− γks(x, y)I)M(∂y,ny)u(y)) dsy

= 2µ

∫
Γ

TxE(x, y)M(∂y,ny)u(y)dsy

− (λ+ µ)

∫
Γ

nx∇T
x γks(x, y)M(∂y,ny)u(y)dsy

− µ

∫
Γ

∂γks
∂nx

(x, y)M(∂y,ny)u(y)dsy

− µ

∫
Γ

M(∂x,nx)γks(x, y)M(∂y,ny)u(y)dsy.
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Then (A.3) leads to

g3(x) = µ

∫
Γ

∂γks(x, y)

∂nx
M(∂y,ny)u(y)dsy

− 2µ

∫
Γ

nx∇T
xR(x, y)M(∂y,ny)u(y)dsy

+ 4µ2

∫
Γ

M(∂x,nx)E(x, y)M(∂y,ny)u(y)dsy

− 3µ

∫
Γ

M(∂x,nx)γks(x, y)M(∂y,ny)u(y)dsy

− (λ+ µ)

∫
Γ

nx∇T
x γks(x, y)M(∂y,ny)u(y)dsy. (A.19)

Let

g4(x) =

∫
Γ

M(∂x,nx)γks(x, y)M(∂y,ny)u(y)dsy, (A.20)

g5(x) =

∫
Γ

M(∂x,nx)E(x, y)M(∂y,ny)u(y)dsy. (A.21)

From (A.2), we arrive at

g4(x) =

∫
Γ

dγks(x, y)

dsx
A2 du(y)

dsy
dsy = −

∫
Γ

dγks(x, y)

dsx

du(y)

dsy
dsy (A.22)

g5(x) =

∫
Γ

d

dsx
A

[
1

µ
γks(x, y)I +

1

ρω2
∇y∇yR(x, y)

]
A
du(y)

dsy
dsy

= − 1

µ

∫
Γ

dγks(x, y)

dsx

du(y)

dsy
dsy

+
1

µk2
s

∫
Γ

d

dsx
(∇y∇yR(x, y)−∆yR(x, y))

du(y)

dsy
dsy

=

∫
Γ

dE(x, y)

dsx

du(y)

dsy
dsy −

2

µ

∫
Γ

dγks(x, y)

dsx

du

dsy
dsy

+
1

µk2
s

∫
Γ

d

dsx

(
k2
sγks(x, y)− k2

pγkp(x, y)
) du(y)

dsy
dsy

=

∫
Γ

dE(x, y)

dsx

du(y)

dsy
dsy −

1

λ+ 2µ

∫
Γ

dγkp(x, y)

dsx

du(y)

dsy
dsy

− 1

µ

∫
Γ

dγks(x, y)

dsx

du(y)

dsy
dsy. (A.23)

Therefore, combining (A.19), (A.22) and (A.23) yields

g3(x) = µ

∫
Γ

∂γks(x, y)

∂nx
M(∂y,ny)u(y)dsy − 2µ

∫
Γ

nx∇T
xR(x, y)M(∂y,ny)u(y)dsy

+ 4µ2

∫
Γ

dE(x, y)

dsx

du(y)

dsy
dsy − µ

∫
Γ

dγks(x, y)

dsx

du(y)

dsy
dsy

− 4µ2

λ+ 2µ

∫
Γ

dγkp(x, y)

dsx

du(y)

dsy
dsy

− (λ+ µ)

∫
Γ

nx∇T
x γks(x, y)M(∂y,ny)u(y)dsy. (A.24)
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Additionally, let

h1(x) =

∫
Γ

[
M(∂x,nx)

∂γks(x, y)

∂ny
u(y) +

∂γks(x, y)

∂nx
M(∂y,ny)u(y)

]
dsy,

h2(x) =

∫
Γ

nx

[
∂

∂ny
(∇T

x γks(x, y))u(y)−∇T
x γks(x, y)M(∂y,ny)u(y)

]
dsy.

Due to integration by parts, we obtain

h1(x) =

∫
Γ

[
M(∂x,nx)

∂γks(x, y)

∂ny
−M(∂y,ny)

∂γks(x, y)

∂nx

]
u(y)dsy

= −k2
s

∫
Γ

γks(x, y)AnT
x tyu(y)dsy (A.25)

and

h2(x) =

∫
Γ

nx

(
∂

∂ny
(∇T

x γks(x, y))u(y) +
d

dsy
(∇T

x γks(x, y))Au(y)

)
dsy

= k2
s

∫
Γ

γks(x, y)nxn
T
y u(y)dsy. (A.26)

Hence the proof of (6.2) is completed by following a combination of (A.16), (A.18), (A.24), (A.25) and
(A.26). In addition, (6.3) is a consequence of (A.17), (A.18), (A.24), (A.25) and (A.26). �
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