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Abstract

Using the theory ofL»—graphons([4, 5], we derive and rigorously justify the coatim limit for
systems of differential equations on sparse random grafipecifically, we show that the solutions
of the initial value problems for the discrete models can jperaximated by those of an appropriate
nonlocal diffusion equation. Our results apply to a rangspatially extended dynamical models of dif-
ferent physical, biological, social, and economic netwoiknportantly, our assumptions cover network
topologies featured in many important real-world netwothgarticular, we derive the continuum limit
for coupled dynamical systems on power law graphs. Therlisttbe main motivation for this work.

1 Introduction

Reaction-diffusion equations describe the change of cdretion of chemical, biological, or other species
as a result of local reaction and spatial diffusion:

0

U= Au+ f(u). (1.1)
Here,u : Q x R* is an unknown function, whose interpretation depends omibeel at hand, defined on
spatial domain) C R™ and evolving in time. Reaction-difussion systems have lseegessfully used to
study pattern formation and propagation phenomena in suehseg areas of science as ecology, molecular
biology, morphogenesis, neuroscience, and material sej¢ao name a few [6].

In many models of collective behavior of discrete agents, isried to replace the spatial domaby
a graph and the Laplace operatrby the graph Laplacian [2]. Specifically, I&f, = (V(T',,), E(T',))
denote a graph on nodes. Here}/(I',)) and E(T',,) stand for the sets of nodes and edges respectively.
Without loss of generality, 16t (T",,) = {1,2,...,n} =: [n] and consider the following nonlinear evolution
equation orl’,,:
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whereD and f are Lipschitz continuous functions addg (i) stands for the degree of node [n]. The
sum on the right-hand side df (1.2) models nonlinear diffasonT",,. Discrete diffusion operators of this
form have been used in various models of collective behawor instance, withD(u) = sinu it appears
in the Kuramoto mode[[11] and in the power network models\8th D(u) = ¢(|u|)u for an appropriate
function¢, itis used in models of flocking [7] and opinion dynamics|[1afd withD(u) = « - in consensus
protocols [13]. In the latter casé, (I1.2) becomes a seraitiheat equation oR,,:

. 1 )
degp, (i) .
J{giteE(Tn)

Understanding the dynamics of coupled systems (1.2) @@ ¢h graphs modeling connectivity in
real-life systems like neuronal networks, power grids,har internet, can be quite challenging. Recently,
new powerful techniques for describing and analyzing thectire of large graphs, based on the appropriate
notions of convergence, have been developed in the graphyt[i]. Many nontrivial graph sequences that
are of interest in applications, such as Erdés-Rényillswald, and preferential attachment graphs, have
relatively simple limits, expressed by symmetric meaderdibnctions on a unit square, called graphons
[12]. These graph limits can be used for developing contimmwodels approximating the dynamics[of {1.2)
for largen:

0
G0 = [ W) Duly.t) = u(e.0)dy + fu(z.0), (1.4)
whereW is the graphon describing the limiting behavior{@f, }.

In [14],[15], the continuum limi{{1]4) was derived and rigasty justified for coupled dynamical systems
on convergent families of dense graphsThe analysis in[[14, 15] covers systems on many interesting
graphs including small-world and Erd6s-Rényi graphsweler, many real-world networks feature sparse
connectivity. Thus, in this paper, we focus on coupled systen convergent families of sparse graphs.

Our work is inspired by the recent progress made by Borgsy&ha&ohn, and Zhao, who extended the
theory of graph limits originally developed for dense gt sparse graphs of unbounded degréel[4, 5].
The new theory covers many interesting examples of graphstal¥y, it applies to graphs with power
law degree distribution, which was identified in many difier systems |1]. A distinctive feature of the
convergence theory for sparse graphs is that the graphentdonger bounded, as in the dense case, but
in general are functions from?(12), p > 1. This leads to continuum modél(1.4) with € L?(I?). The
analysis of[(1.4) with ari.”? kernel presents new challenges that were not present ihthease, analyzed
in [14,[15]. Overcoming these problems is the goal of thisgpap

In the next section, we adapt the notion of W-random sparaphgfrom [4] to define a sequence of
random graphd’,, = G(W, p,,, X,,) with edge densityp, — 0 asn — oo and with the graph limit
W € LP(I?),p > 1. This random graph model will be used throughout this papecovers power law
graphs, our main motivating example, as well as sparse attichblock and sparse Erdés-Rényi graphs
(cf. Example$ 2.12 arid 2.4) among many other sparse graph2.1l, we compute the expected degree and
edge density of',, = G(W, p,,, X,,). We then formulate the dynamical model Bp and formally derive
the continuum limit[(1.4). The derivation includes two stef-irst, we average the right hand side of the
coupled model (which depends on the random realizatidr, dfo obtain a deterministic equation. We then

Ui |E| = O(|V]?), T = (V, E) is called dense, otherwise it is called sparse.



sendn — oo in the averaged system to derive the continuum limit. Thissddon is done for the semilinear
heat equatiori (113), which will be studied in the main pathefpaper. However, the same derivation easily
translates to the nonlinear equatién [1.2), which resaldi4). In Sectiof]3, we establish well-posedness
of the IVP for [1.4) and derive certain a priori estimatesdolutions of the initial value problems (IVPs).
For technical reasons, we restrict to studying the senaifitieat equation for the remainder of this paper.
In the last section, we comment on how this analysis extemdsyer to certain nonlinear models arising in
applications. In particular, we discuss the Kuramoto madgbower law graphs.

The main result of this work is formulated §2.3. Under the appropriate assumptions on the graphon
W € L%(I?) and the nonlinearity, we prove that the solutions of the IVP for the semilineart leggation
(L.3) onl',, converge in.%(0, T'; L2(1)) (for anyT > 0) almost surely (a.s.) to the solution of the continuum
limit (f.4) subject to the appropriate initial conditionias—+ co. This is the subject of Theordm 2.6, which is
proved in Sectionsl4 amd 5. In the former section, the juatifio for the averaging is provided. In the latter,
we show that the solutions of the IVP for the averaged equad’,, converge to those for the continuum
limit asn — oo. To this end, we show that the solutions of the averaged m®oquean be approximated
by the solutions of certain Galerkin problems, which, imfuconverge to the solution of the continuum
limit. The final section discusses extensions of our workerain nonlinear models that are important in
applications.

2 The model

2.1 The random graph model

We start with the description of the sparse random graphisviiabe used in this paper. Our random
graph model is motivated by the construction of sp&seandom graphs in |4, 5]. Specifically, [8f be a
symmetric nonnegative function on a unit squateX,, be a discretization of

Xn = A{%n0, Tn1, Tn2, - -, Tnn}y Tni =1i/n, i =0,1,...,n, (2.1)
and{p,} be a sequence of positive numbers such ghat> 0 andnp,, — co asn — cc.

Iy, = G(W, p, X,,) stands for a random graph with the node8él’,,) = [»] and the edge s€t(I",,)
such that the probability thdt, j} forms an edge is

P ({i,j} € E(Tn)) = puWn(Zni> Tnj), ij € [n],B (2.2)

where
Wn(way) :pr_zl/\W(way)E (2.3)

The decision whether a given pair of nodes is included in tlgeeset is made independently from other
pairs. In other words7(W, p,,, X,,) is a product probability space

(€, = {0, 1} FD/2 o )y, (2.4)

2To keep notation simple, we allow for loops, i.e., edges esting a node to itself, in our random graph model. Excluding
loops would not lead to any changes in the analysis.
*Throughout this paper, we usen b anda V b to denotemin{a, b} andmax{a, b} respectively.
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By 'y (w),w € Q,, we will denote a random graph drawn from the probabilitgribstion G(W, p,,, X,,).
Throughout this paper, we use Bernoulli random variables
nij(w) = 14 jyepmr,) (W), 4,5 € [n]. (2.5)

to describe the edge setBf,. Random variablé,,;; takes valud if {i, j} forms an edge and otherwise.
In particular, )
E gm'j =P ({Zvj} € E(Fn)) = ann(mnhxnj)a {Za]} € [n]> (2.6)

and the expected degree of nod# T,
E degl" (Z fmj) = Pn Z Wn(xma wnj)- (27)
j=1

Next, we formulate our assumptions on the grapion

W-1) W € L?(I?) is a nonnegative symmetric on the unit squatehat is continuous on its interior.

W-2) [, W(z,y)dzdy > 0 and

Z n(Znis Tnj) . W (z,y)dxdy + o(1). (2.8)

W-3) For everyz € (0,1], W(z,-) € L*(I), and

inf /szdz—l/>0 (2.9)
z€(0,1)
Moreover,
‘1ZW (z,25) /medy(1+5()) (2.10)

7j=1
whered,,(x) — 0 asn — oo uniformly inz € (0, 1).

Conditions inW-2) andW-3) guarantee that the expected edge density and expecte@sedreodes of
T, for n > 1 are well-defined and are well-approximated by the corredipgnintegrals ofi/’. The above
assumptions on graphd# are dictated by the random graph model and are practicattymmal.

We will now introduce two more technical assumptions thatraeded for the proof of our main result:
W-4) W € L*(1?) and

hmsupn 2 Z Wa(z,2;)? < o0 (2.11)
i,j=1
Assumptions inV-4) will not be used until5.3.

The main example motivating our random graph model is tHevidhg configuration model of a power
law graph.



Example 2.1. Let0 < a < v < 1 and consideiG(W, p,,, X,,), wherep,, = n~" and
W(z,y) = (1 - )?(zy) =" (2.12)
Lemma 2.2.T,, = G(W, p,,, X,,) of Exampld_Z]1 is a sparse graph with a power law expectededegr

distribution. In particular, we have

A) The expected degree of node [n] of T',, is

E degr (i) = (1 — a)n’™*77(1 + o(1)). (2.13)

B) The expected edge densitylgfis n=7 (1 + o(1)).

Proof. By (2.2),

E degr, (i) = > P ({i,j} € E(Tn)) = pan Y Wa(ni, 2nj)n " (2.14)
j=1 j=1
Pluggingp, = n~" and [2.B) in[(2.14), we have as

E degr, (i) = (1 - a)n' Ty [5n A WU)(xnj)} nl, (2.15)
j=1

whereW () (z) = (1 — a)z~* ands,, = i*n7~*(1 — a)~ L.

Denote
In; = (:L'n(i—l)al'ni]v (S [n] (2.16)
Next, let
WD (@) = (00 AWW (@)1, () (2.17)
j=1
and note that .
ntY 8 AW (25) = / WD dz. (2.18)
j=1 !

Furthermore¥\") < W® andW," — W® pointwise on(0, 1] asn — cc. By the Dominated Conver-
gence Theorem [3],

lim | W\0dz = / WWdy = 1. (2.19)
1

n—oo I
The combination of{Z.15)[{2.18), arid (2.19) yields (2. 13)is showsA).
A similar argument is used to estimate the expected numbedgds irl",,

E ‘E(Fn)’ = % Z Z ann(xm'a wnj) = %712_7 Z Z Wn(xm, acnj)n_2.

i=1 j=1 i=1 j=1



Define

n

Wa(,y) = > (on' AW (@ni, Tnj)) 11,51, (2, )- (2.20)
i,j=1
Then
n2=7
E [E(Tn)| = = /Wndxdy. (2.21)
[2

By construction,W,, < W andW,, — W asn — oo on (0, 1] x (0, 1]. By the Dominated Convergence
Theorem,

lim Wydzdy = Wdzdy = 1. (2.22)
n—oo 12 12
Equations[(Z.21) and (2.22) imply
n2=7
E |E(T,)| = 5 (1+0(1)). (2.23)

By dividing both sides of(2.23) by(n + 1)/2, the total number of possible edges, we obtain the statement
inB). O

Remark2.3 The power law graphs defined above are sparse, because #dweagkpdge density 3(n7),

v > 0. On the other hand, the expected number of edges grows swgaehin>~7, becausey < 1. To
preserve these features, in the general random graph rGg®élp,,, X,,),n € N, above it is assumed that

pn — 0 andnp, — oo asn — oo.

We conclude the discussion of the graph model with two moeemges of sparse graphs covered by
our assumptions. Both examples are taken fram [5].

Example 2.4. ConsiderT',, = G(W,n~", X,,), 8 € (0,1) for the following choices ofi’.

1) LetW = 1. ThenI',, is a generalization of an Ef@k-Renyi random graplG, , with p = n~?. Note
that the edge density in this caseris?®. For the classical Erds-Renyi graphG,, , with constant
p € (0,1), the edge density is equal to The latter graph is dense, whereas the former is sparse.
2) LetW (z,y) = by > 0, (z,y) € Vi x V;, (i, ) € [n]?, where3_F._, by; > 0and (13, Va,..., Vi) isa
partition of I into & disjoint intervals. In this casd,,, is a sparse stochastic block graph with edge
densityn—".

2.2 The dynamical model

Having defined the structure of the network, we next turngajmnamics. Let', = ', (w), w € Q, (cf.
(2.4)) be a random graph taken from the probability distidouG (W, p,,, X,,) and consider the following
system of differential equations

i = 2 D i) (g — tni) + i), i € ], (2.24)
ni =1



wherew, (t) = (un1(t), un2(t), ..., unn(t)), &nij, 4,7 € [n], are Bernoulli random variables defined in
2.8),dy; = E degr, (i) (cf. (2.4)), andf : R — R is a Lipschitz continuous function

Ly >0: [f(z) = f(y)| < Lylz —yl|, Yo,y € R (2.25)
The sum on the right hand side 6f (2.24) defines a discretasitifi operator. For simplicity, we scale
the sum on the right-hand side bf (21.24) by the expected degtber than by the actual degree. Thus, (2.24)

is an evolution equation on a random grdph Specifically, it is a semilinear heat equationIof since
the sum on the right-hand side b6f (2.24) is a discrete grapifelcan.

We are interested in describing the dynamic$ of (2.24yfos 1. However, the right-hand side ¢f (2]24)
depends on the random graph(w), i.e., on the random eveat € Q,,:

Fnz urn anm unj - um) + f(unz)a (S [Tl]

As the first step in the analysis (’01_(2124), we approximatey ithe deterministic problem by averaging the
right-hand side of (2.24) over all realizationsIof:

Oni(t) = Fpi(vn), vp(t) = (Va1 (1), vn2(t), ..., vnn(t)), (2.26)
where
Fnz(v) = EF nz Una Y) = 5_71 Z n wnwxnj vnj - Uni) + f(vm')7
n ‘7:1
1 & .
= = > Vaij(Vnj = vni) + fvni), i € [nl, (2.27)
j=1
where _
Vi = g ot i) (2.28)

n-! Zk 1 ($n2>$nk)

Next, we take the limit in the averaged equation (R.27) as ~o. To this end, we represent the solution of
(2.27) as a step function

t)=> vni(t)1s,,(2), (2.29)
and rewrite[(2.27) as )
Syon(e.) = [ Vol p)enl,t) = a0y + 0 (,1), (2.30)
I
where .
Va(z,y) = Z Vi 1r,,x1,;- (2.31)

i,j=1
Assuming thaw,,(z,t) — u(z,t) in the appropriate sense, and using the integrability apsans W-2)
andW-3), in the limit asn — oo we formally obtain the following continuum limit of (2.26)

gy(et) = [ UGen) (alnt) = ) du+ Fula 1), 232
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-1
U(z,y) =W (z,y) </I W(x,z)dz) . (2.33)
Note that € L?(1?) (cf. W-1) and [2.9)).

Example 2.5. For the power law graphs defined in Examplel2.1 with squaregiaible graphons, the
continuum limit takes the following form

%u(m,t) = /Iy_o‘ (u(y,t) —u(z,t)) dy + f(u(z,t)), 0 < a < 1/2.

The goal of this paper is to describe the relation betweesdhgions of the IVPs for the discrete model
(2.22) on sparse gradh,, n > 1, the averaged moddl (2.26), and the continuum limit (2.32).

2.3 The main result

Letg € L°°(I) and consider the IVP fof (2.82) subject to the initial coiuaiit
u(z,0) =g(z), zel. (2.34)

Likewise, we supply the discrete probleim (2.24) with théahicondition
Uni(0) = n/ g(x)dz, i€ n]. (2.35)
Ini

To compare solutions of the IVPs for the discrete and contisumodels, we define the step function
Un(2,1) =D uni(t)1z,,,(x). (2.36)
=1

The main result of this paper concerns th&proximity of u,(-,t) andu(-,t) on finite time intervals for
largen.

Theorem 2.6. LetT",, = G(W, p,, X,,) be a sequence of random graphs, whéfesatisfies conditions
W-1)-W-4), X,,,n € N, are defined in(2.1) and the positive sequende,,} is such thatp,, — 0 and
np, — 0o asn — oco. Suppose : R — R is Lipschitz continuous function (¢€.28), g € L*°(I), and
T > 0 is arbitrary.

Then with probabilityl, for solutions of the IVP§.32) (2.34)and (2.24) (2.38) we have

T
[ anlec) = e Oyt 0, asi o,



3 The IVP for the nonlocal equation

3.1 Existence and uniqueness of solutions

In this section, we show that the IVP fdr (2132), (2.33) hammuwe solution. The contraction mapping
principle used below applies to the nonlinear heat equation

gyt = [ UG)D (uly.0) ~ u(e. ) dy + futz 1), 6D

whereD: R — R is Lipschitz continuous:

|D(u) — D(v)| < Lplu —v| Yu,v € R. (3.2)
Below, we study the well-posedness of the IVP for(3.1). Téwmults of this section will obviously hold for
(2.32) as well.

With the definition [2.3B) in mind, in this section, we assuim& U ¢ LP(1?),p > 2, is a nonnegative
function, satisfying

/U(:L",y)dy =1. (3.3)

I
We interpret the solution of the IVP fof (3.1)(z,t), as a vector-valued map : R — Li([), i.e.,

u®)](z) = u(z, ).

Theorem 3.1. Supposé/ € LP(I?), p > 2, is a nonnegative function satisfyi@.3) and functionsf and
D satisfy(2.25) and (3.2) respectively. Then the IVP f@B.1) with initial datau(0) = g € LI(I), ¢ =
p/(p — 1) has a unique solutiom € C*(R; L4(I)), which depends continuously gn

Proof. Denote
7= (2L (|U o2y +2)) 7", (3.4)

whereL = Ly V Lp is the largest of the two Lipschitz constantsofand f (cf. (2.25), [3.2)). Denote
M = C(0,7; L4(I)) and define/l : M — M as follows:

wat =g+ [ ([UCD o)~ atesndy-+ slat o)) s (35)

(The correctness of this definition will be shown later.) \Werrite the IVP for[(3.11) as a fixed point equation
for the mappingk’,
u= Ku, (3.6)

and show thaf( is a contraction oiv..
The following inequalities hold for any € L(I) andW € LP(I?), p> 1, ¢ =p/(p — 1),
ullzacry < llullzevacrys Wllee2y < [IWllpova(r).- (3.7)

They follow from the Holder inequality applied to funct®defined on the unit intervdland the unit square
I? respectively. In particular, fay < 2 < p, we have

lullpacry < Nullzecrys 1UNLacr2y < WU Ler2y- (3.8)
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For anyu, v € M, we have

|[Ku— Kv|y = tg}?’ﬁ] [Ka(t) — Kv(t)|l pap

= /o (/m(-,y)w(u(y,s)—u(-,s»—D<v<y,s>—v<-,s>>|dy+Llu<»8>—”<"8>'> “r
= L max /0 </IU<.,y>|u<y,s>—u<-,s>—v<y,s>+v<-,s>|dy+lu(»8>—”("3)'> @ La(1)
<ot {[freomoo-woral | freomeo-seoa],

+ ) = 0,8l o)}

/I U(y) [uy.t) — v(y, )] dy

=7l 2||u(-,t) — vt 3.9
T trell[(?:)j}{‘ + ”U(, ) U(7 )HL‘I(I)}7 ( )

where we used Lipschitz continuity dd and f, and [3.8). Using the Holder inequality and the second
inequality in [3.8), we have

La(I)

IN

H/z U y) [uly,t) = vly, t)| dy

10y 8 = O,
U1l zo 108 = V) oy (3.10)

wherel,, = [0, 1] refers to the domain of a function of

La(I)

IA

The combination of (319) an@d (3.10) yields
|5u — K]l < L7 ([Ullovarzy +2) [la = V- (3.11)

Thus, using[(314), we have
1
[ K= vy < 5l =V
It follows that K is a correctly defined contraction 6vi.

Next, we showK (M) C M. To this end, foz = 0 onI x [0, 7], we have

IKule < [1Ku—Kala -+ K2
1
< Slhulbe + 12l (3.12)

Further,
[Kz)(t) = g+t (D(0) + f(0)),
so thatK z € M, and then[(3.12) implies thdu € M.

From [3.11), by the Banach contraction mapping princigheré exists a unique solution of the IVP
for @I)u € M c C(0,7; LY(I)). Usingu(r) as the initial condition, the local solution can be extended
to [0, 27], and by repeating this argument [t 7’| for anyT > 0. In a similar fashion, we can prove the
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existence and uniqueness of the solutior_ofl (3.6)-¢A, 0] for anyT" > 0. Thus, we have a unique solution
of (3.68) on the whole real axis, i.ew, € C(0,R;L%(I)). The integrand in[(3]5) is continuous as a map
LY(I) — L4(I). Thus, [3.5) and (316) imply that is continuously differentiable and we obtain a classical
solution of the IVP for[(3.l1) on the whole real axis. Finakjnce K : M — M is a uniform contraction
(cf. (3.11)), which depends ancontinuously (cf[(3.5)), the fixed point is a continuousdtion of g as well

(cf. [10,81.2.6, Exercise 3]).

O

3.2 A priori estimates

Theorem 3.2. Let u(t) denote the solution of the IVP f@B.1) with U € L(U) and initial condition
u(0) = g € L*(I). Thenu € C(R; L*°(I)) and for anyT’ > 0, there exists” > 0 depending or" but
not onU such that

lallcoz.L(ry) < Cllu(0)| Lo (n)- (3.13)
Proof. If U € L'(I?) andu(0) = g € L>(I) then the contraction mapping argument used in the proof
of Theoreni 311 yields exisitence of the unique solutioa C''(R; L>°(1)). Indeed, let
M :=C(0,7; L>=(I)), for 7:=(6L)""

and consider the operatéf defined by[(3.6). As before, we show thitis a well defined contraction on
M.

Indeed, for anyu, v € M, we have

|Ku = Kvllye = max | Ku(t) = Kv(t)ll Lo

)

< max
te[0,7]

/ ( J U6 D (uly9) = u9) = D (ely8) = ooy + |FCul15) - f(v(-,sm) s

Leo(n)

Using the Lipschitz continuity oD and f and the triangle inequality, we further obtain

Ku— Kv|, < L
| Ku ﬂm_gg}‘

/Ot </1 U y) |[u(y, s) —u(-,s) — vy, s) +v(-, 8)| dy + |u(-, s) — (U(,,S”) ds

Le=(I)

t
< o (22 [UCa)+2) [ o) = o o)lods < 3L7 v
I 0

te[0,7

Recalling, the definition of, we arrive at
1
[Ku— Kvl < B) [u— vl
Following the lines of the proof of Theordm B.1, it is strafghward to show that the fixed point of (3.6) is
the unique solution of the IVP fof (3.1, € C*(R, L>(1)), which depends continuously on the initial data
g € L=(I).
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Denote
m(t) := |lu(-, )| oo (1)
From [3.1), using Lipschitz continuity dp and f, we have

u(z, t)] = Ig(%)IJrL/0 </1TU(w7y)(IU(y,8)—v(y,S)I+IU(:&S)—v($78)l)dy+IU(w,8)—v(w,8)|> ds

< m(0)+ L(2 /I Uz, y)dy + 1) /0 m(s)ds.

Thus, .
m(t) < m(0) + 3L/ m(s)ds.
0
Sinceu € C(0,T; L*>(I)), by Gronwall’s inequality (cf.[[9, Appendix B]), for any< [0, T]
m(t) <m(0) (1 + 3Lte*™) < Cm(0), C:=1+3LTeT,

and [3.13B) follows.
([

We will also use the following observation.

Lemma 3.3. LetW € L%(1?) be a symmetric function ande L>°(I). Then

. W(z,y) (u(y) — u(x)) u(z)dzdy = _71 . W (z,y) (w(y) — u(z))® dzdy. (3.14)

Proof. Rewrite the left-hand side df (3.114) as
W(z,y) (uly) — u(x)) u(z)dedy = - /12 W(z,y) (uly) — u(z)) (w(z) — u(y)) dzdy

12

+ g W(z,y) (u(y) — u(z)) u(y)dzdy. (3.15)

Using the symmetry ofV (x, y), for the second term on the right-hand side[of (B.15) we have
. W (z,y) (u(y) — w(x)) u(y)dedy = — . W (z,y) (u(y) — w(x)) u(z)dzdy. (3.16)

After plugging [3.16) into[(3.15), we obtaih (3]114).
U

Next, we formulate the discrete counterparts of ThedredmB®2Lemma 3]J3. To this end, consider an
IVP for the semilinear discrete heat equation

1 n
it = 32 Voy Dl ) + S £ @.17)

where(V,;;) is a nonnegative matrix with entries derived from the graphio (see[(2.2B)).
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Let uy(t) = (un1(t), un2(t),. .., un(t)) be a solution of (3.17). Denote

n
lnllom = |01 D up; @nd [l oo = ma unil. (3.18)
i—1 cn

Recall that the discrete problein (3.17) can be rewritterhasionlocal equatiori (2.B0). By applying
Theoreni 3.2 td(2.30), we obtain the following theorem.

Theorem 3.4. For the solution of the IVP fof3.17) we have

max Hun(t)Hoom = CHun(O)Hoom vn, (3.19)
te[0,7

whereC' > 0 depends off” only.

Finally, we state a discrete version of Lemimd 3.3. It can bizeld from Lemma 3.3, or proved directly.
Lemma 3.5. Let (IV;;) be ann x n symmetric matrix. Then for ariy,, 6>, ...,6,) € R"

n 1 n
> W05 — 0,)6; = - > w05 — 0:)%. (3.20)

i,j=1 1,7=1

4 Averaging

In this section, we show that for largethe solutions of the heat equatidn (2.24)Igncan be approximated
by the solutions of the averaged equation (2.26), (2.27).

For convenience, we rewrite the original and the averagedkisoFor the former model, we plug in the
expression for the mean degrég (2.1) into [2.24) to obtain

Upi =n"" Z Mhnij (tnj — Uni) + f(uni), 4 € [n], (4.1)
=1

where

-1
Mnij = &nij (Pnnl Z Wnij) . (4.2)

j=1
Recall the averaged mod€l(2126):

n

bpi =0 Z Viij(Unj — vni) + f(uni), @€ [n], (4.3)
j=1
where §
Voij = Gl Whij,  Grii=n"! Z Whij- (4.4)
=1

13



Note that for fixed € [n], {n.:j, j € [n]} are independent random variables and
E mnij = Unij, 1,5 € [n]. (4.5)

Below, we use the following weighted normRi* :

[¥nllc, = J n7tY  Guithyy. (4.6)
i=1

Here, we implicitly assume thatis large enough, so thatin;c(,,) Gn; > 0 (cf. W-3)).

We now formulate the main result of this section.

Theorem 4.1. Letu,(t) andwv,(t) denote solutions of the IVP f¢d.1)and (4.3) respectively. Suppose that
the initial data for these problems satisfy

max{|u,(0)], v, (0)|} < Cy uniformly inn and 4.7)
Tim [[0,(0) = 1 (0) ], = 0. (4.8)
Then
li n(t) — up(t =0 a.s. 4.9
Jim, max [oa(t) = un(®lg, s (4.9)

For the proof of Theorem 4.1, we will need the following lemma

Lemma 4.2. LetT > 0 and(a,;;(t)) be ann x n matrix, whose entries depend o [0, T]. Suppose

sup  max_|anj(t)] < Co Vn. (4.10)
te[0,T) (i,5)€[n]?

DefineZ,,(t) = (Zn1(t), Zna2(t), ..., Znu(t)), where
an(t) = n_l Zanij(t)('r/nij - Vm'j)v (XS [TL], te [07T]7 (411)
=1

1nij are defined infd.2) (see(2.5) for the definition of,,;;.)

Then
lim sup ||Z,(t)|lc, =0 a.s. (4.12)

=00 110,77

Proof. Using the definitiond(412)[ (4.11) and the boundin (4.16y) arbitraryt € [0, T|, we have

E sup Zni(t)* = n’E ( SUD > nij ()anin () (Mnig — Vaig) (Mnik — Umk))
te[0,T) te[0,T] g s—q

n n
= n’E Z sup am'j(t)zE (Thnij — Vm‘j)2 =n"’E Z SUp anij(t)(E 777211'3' - Vn2ij)

=1 te[0,7T j=1 te[0,7)
n n
< ppinT? Z SUP @ngj(t)*Viij < C3pytn 2 Z Viij = Cappin~2. (4.13)
j—1 t€l0.T] =

14



Lete > 0 andt € [0, 7] be arbitrary but fixed and denote the event

Ap = { sup [|Z(t)]lc, > 6}-

te[0,7
By Markov’s inequality, for arbitrary > 0
P sup n 1ZGmZm ) >e| < (epnn 102 Z . (4.14)
t€[0,7] =1 =1

where we used the definition 6f,,; in (4.2). Sincep,,n — oo asn — oo and

lim n 2ZW"U_/ W (z,y)dzdy (cf. (2.8)),

n—o0
1,7=1

we have -
d P4
n=1

By Borel-Cantelli Lemma [18]P (A, holds infinitely often) = 0, i.e.,sup;co 7 |20 ()|lc,, — 0 @.s. as
n — oo. This proves the lemma.
(]

Proof. (Theoreni 4.11) Denoté,,; = u,; — v,;. By subtracting[(2.26) from_(2.24), multiplying the result
by n='Gipni, and summing ovei € [n], we obtain
27! —H¢n||Gn = n7? Z Whij (6nj — ni)dni + 1> Z Gni(Mnij — Vi) (Unj — Uni) Pni

'J—l i,j=1

+ _1 Z Gm um - (Unz)] ¢nz (415)
By Lemmd 3.5, the first term on the right—hand sidd_of (4.1Bpispositive

Z Wnl](¢nj - gbnz)gbnz = _2_1 Z Wn2j(¢nj - ¢nz)2 <0. (416)

i,j=1 j=1

Thus, using[(4.16) an@ (2.25), from (4115) we have

d
2” ! ”an”Gn = —2 Z Gm nmj mj)(unj - um)(bm + LfH(bn”%;n (417)
t,j=1

Further, denote

Cbm'j(t) = unj(t) - um(t)v Zanm nmj Vnij)7 (17]) S [Tl]2, te [O,T],
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and userb < 271(a? + b?) to obtain

n~? Z Gri(Mnij — Viij) (Unj — tni)fni| < 2_1(”271‘%” + “¢n|’%¥n)

ij=1
Using (4.18), from[(4.17) we obtain

d
EH‘JSnHén < (2Lf + 1)H¢n”%¥n + HZTLH%‘n

Using (4.T), from Theorem 3.4, we have

i (D) < Cs, Vn.
0% A, [anig (D)] < G, ¥

By Lemmd 4.2, with probabilityi, for a givene > 0

E|N1(6) : sSup HZn”%}n = 62/27
te[0,7]

whenevem > N;p. Thus, for such,

d
—l6nllE, < 2Ly + Dlenld, + /2

Thus, by Gronwall’s inequality, we obtain

2

€

Furthermore, by (4]8)
ANy (e, T): ¥n > Ny [|¢,(0)[|%, eCFLrtDT < 2/,
Thus, forn > N(T,¢) := Ny V N, we have

sup |[|¢n(t)|lc, <e.
te[0,7T]

5 The continuum limit

(4.18)

(4.19)

(4.20)

Having justified averaging in_(2.26), our next goal is to shbat the IVP for the averaged equatign (2.26)

can be approximated by that for the continuum lirit (2.32)38), subject to the initial condition

u(z,0) = g(),

16
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whereg € L*°(I). To compare the solutions of the discrete problem (2.26)camtinuous equation (2.82)
we supply the former problem with the initial condition thetonsistent with[(5]1):

vni (0) = n/l .g(aj)daz, i€ [n]. (5.2)

Below, we construct a finite-dimensional Galerkin appraadiion of [2.32) and (5]1) and prove its con-
vergence. In the next section, we compare solutions olatdogehe Galerkin’s scheme with the solutions
of the IVP for [2.26).

Throughout this section, we assume that conditdAq%)-W-3) and [2.25) hold.

5.1 The Galerkin problem

Let X = L%(1), defineK : X — X by

(K)a) = [ Ule)(uly) = ua)dy, (5.3)

and rewrite[(2.3R2) as follows
W= K(u)+ f(u), (5.4)
u(0) = g (5.5)

Recall thatu : R — X stands for the vector-valued function definedjtyt)](z) = u(z,t) for eacht € R.

Definition 5.1. Functionu € H'(0, T; X) is called a weak solution of the IVP(5.4), (5.5) [onT] if
(W'(t) — K(u(t)) — f(u(t)),v) =0 VYveX (5.6)

almost everywhere (a.e.) 0, 7'] andu(0) = g.

To construct a finite-dimensional problem approximatindi)5we introduceX,, = span{¢,; : i €
[n]}, alinear subspace of . Here,

bul0) =110 = { o7 TET e 5.7)

Next, we construct the Galerkin approximation of the soluif (5.4), [5.5). To this end, we fix € N
and look for the approximate solution in the form

U (t) =)t (t) s (5.8)
=1

The differentiable coefficients,;(t), i € [n], are determined by projecting the original equation and the
initial condition onX,,:

(), (t) — K (un(t)) — f(un(t),¢) =0 Vo € X, (5.9)

17



u,(0)=Px,g=> —2 6. 5.10
wherePx, : X — X,, stands for the orthogonal projector onk,. After plugging [5.8) into[(5.9) and
settingv = ¢,,;, i € [n], we arrive at the following IVP for the unknown coefficients;(t), i € [n]:

ini(t) = 17 Unig (tn () = tni(t)) + f (i), (5.11)
j=1
(97 ¢m)
Here, .y)
= p? — 2 Wy
Unij =n /Im-xlnj U(z,y)dzdy =n /Imxlnj f[ W, Z)dzdwdy <n. (5.13)

Note that the right—hand side of (5111) is uniformly Lipgzhiontinuous, which guarantees the existence of
a unique solution of the IVR(5.11), (5]12) &n

It will be convenient to have the Galerkin equatién (5.1iynten as the integral equation

& (1) = /I Un(,9) (tn (5 ) — (2, 8)) dy + f(n(2,1)), (5.14)

whereU,, andu,, are step functions

Un(x7y) = Z UnijlmeInj (x7y)7 (515)
1,7=1

un(,t) = Y ()1, (2).
=1

5.2 Convergence of the Galerkin scheme

In this section, we show that the solutions of the Galerkobpms[(5.D),[(5.10),,, converge tai, a unique
weak solution of[(5}4)[(515), in the?(0, T; X) norm asn — oo.

Theorem 5.2. For any 7' > 0, there is a unique weak solution ¢6.4), 5.8), u ¢ H'(0,T;X). The
solutions of the Galerkin problenf5.9), (5.10), u,, converge tax in the L2(0, T'; X ) norm asn — co.

Proof.

1. We shall first establish the following bounds for the sohsu,, of the Galerkin problenf (519), (5.1.0)
that hold uniformly inn

3Cy = Cu(T, [[u(0) || oo ry) = max{||unllco.r;Lo0 (1)) IUnllc@r;x): 10 llcorx)} < Ca.
(5.16)
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The L*>°-bound and, therefore, th€—bound follow from Theorerm 3.2. These bounds are uniform in
n, because

[ (O)l| oo 1y = 1Pxn gl oo (1) < gl oo (1)
To bound||uy, || (0,7, x) We proceed as follows
|(u (1), V)] < /IUn(w,y)!un(%t) —un(y7t)!\v(x7t)!dxdy+/I\f(un(x))!\v(x)\dw-

Using theL>*-bound foru,, (6.18), the continuity off, ||U, || z2(;2) < [U|lz2(r2), and the triangle
and Cauchy-Schwarz inequalities, we obtain

(i (1), V)] < C5(|U 2212y + Co)Iv]| ¥v € X.

Thus,
lu, ()] < Cg,t > 0. (5.17)
uniformly in n.
. Estimates in(5.16) imply
[unll20,mx) < Cu, (5.18)
[un(t+h) —un(t)lx < Calhl, (5.19)
respectively. Froni(5.19), we further have
T
/ [ (t + h) — u,(t) |5 dt < CITh?. (5.20)
0

From (5.18) and(5.20), using the Frechet—Kolmogorov taen(cf. [20]), we see thdi,, ) is precom-
pact inL2(0,T; X). Thus, one can select a subsequefigg ) that converges ta € L2(0,T; X).

. Likewise, integrating both sides ¢f (5117) franto 7", we obtain
Jup ll220.7:x) < CeV'T

uniformly in n. Thus, (u;,, ) is weakly precompact ii?(0,7; X), and one can select a subsequence
(ugk,) that weakly converges tev € L?(0,T; X) and strongly converges ta' € L?(0,T;X).
Clearly,w = u'. Indeed, takings € C'(0,7T; X) with compact support ifi0, T') and using integra-
tion by parts, we obtain

T T
| w00t = [, @6 @ (5.21)
0 0

By sendingk’ — oc in (5.21), we see that’ ¢ H'(0,7; X) andu’ = w.

. Next, we show that is a unique weak solution of (5.6) satisfyind0) = g. This follows from a
standard argument (see, e.gl, [9, Theorem 7.1.3]).
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Fix N € N and choose a function of the form

N
v(t) =) di(t)pns, (5.22)

j=1

whered;(t) are continuously differentiable functions angl; are defined in(517). Next, we multiply
(5.9) withn > N and¢ := ¢,; by d;(t), sum overj, and integrate the result frofnto 7" to obtain

T
/0 (Wnt) — K (un(t)) — f(un(t)),v(£))dt = 0.

Passing to the limit along = ny, we have

T
/0 (W' (t) — K(u(t)) — f(u(t)),v(t))dt = 0. (5.23)

This equality holds for an arbitrary as in [5.22). Since functions of this form fof € N are dense
in L2(0, T; X ), we conclude thaf{5.23) holds for allc L?(0,T; X). Therefore,

(W — K(u) - f(u),v) =0 ¥veL*0,T;X) (5.24)
a.e. on0, 7.

. To show thai is a weak solution of (2.32)[ (5.1), it remains to veriiy0) = g. To this end, we
choosev € C(0,T; X) vanishing at = T as a test function ii(5.6) and integrate by parts to obtain

T T
- /0 (u(t), v/(1)) dt = /0 (K(u(®)) + F(u(t)), v(t)) dt + (u(0),v(0)). (5.25)

Using the same test functions [n (5.9), we have

T
—/0 (wn, (8), V' (1)) dt = (K (un, (t)) + f(un, (1)), v(2)) dt + (un, (0), v(0)) . (5.26)

Passing to the limit if(5.26) yields

T T
- /0 (u(t), V(1)) dt = /0 (K(u() + Fu(®), v(t) dt + (g,v(0)) (5.27)

Comparing the limiting equation_(5.27) with (5]25) we cam# thatu(0) = g. Thus,u is a weak
solution of [5.4).

. To show that the just constructed weak solution is uniquppose that there is another solution

w = K(w) + f(w) (5.28)
satisfying the same initial conditiow(0) = g. Denote¢ = u — w. By subtracting the[(5.28) from
(5.4), multiplying both sides by ()¢ and integrating ovef, we have

3 IVEECIE = [ W) (6(0t) = €ant) €lo. Oyt | G@) (Fu(a.0) = Flu.) e )da
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Using Lemma 313 and Lipschitz continuity ¢f we obtain

d

SIVGEC DI < LIVGEC DI
Sinced is strictly positive onl (cf. (2.9)), from the last inequality angl0) = 0, we conclude that
u(t) = w(t) for all ¢ € [0, T]. This proves uniqueness.

7. The uniqueness of the weak solution entajs— u asn — oco. Indeed, suppose on the contrary that
there exists a subsequeneg, which is not converging ta. Then for a givere > 0 one can select a

subsequenca,,, such that
Humi — uHLQ(O,T;X) >eVieN.

However, (u,, ) is precompact inL?(0, T, X) and contains a subsequence converging to a weak
solution of [5.4), which must ba by uniqueness. Contradiction.

5.3 Approximation

It remains to estimate the difference between the solutidrike averaged equatioh (2126) and that of the
Galerkin problem[(5.11). The key is the estimate for ffenorm of the difference betweén, andU,, (see
(2.31) and[(5.15)), the kernels used in the averaged anddlexks problems respectively.

Lemma 5.3.
”Un — Vn”L4(12) — 0, asn — oo. (529)

Proof. First, we show that/,,, n € N, form a sequence df*—bounded martingales [19]. To this end, we
consider a probability spadé?, B(1?), \) with I? as a sample space equipped with th@lgebra of Borel
sets, and the Lebesgue measure as probability.Aletenote the algebra of subsetsiéfgenerated by the
setsl,; x I;, (i,7) € [n]*. ThenU, can be represented as the conditional expectation

U, =E (UJA,), neN.
SinceU ¢ L*(I1?) (cf. W-4) and [2.9)), the.»~Martingale Convergence Theorem yields

U, — U ae.andin.*(I?) asn — oc. (5.30)

Next, we turn to function¥/,,n € N (cf. (2.31)):

Va(wy) = Zn: Wol@ns 20s) 11,,x 1, (2, Y)
) 52 n—l 2221 Wn(ajm, xnk) niXIinj ’
szzl Wn(l'm, mnj)llniXInj (SL’, y)
Z:’Lzl n-! Zzzl Wn(ajm» xnk)]-lm- (x)
= Hny) (5.31)

21



From [2.3) andV-1), we haveP,, — W a.e. on/2. Likewise, by [2.1D),
Qn = /W(-,z)dz(l +9,) > v >0, asn — oo
I

uniformly on any closed interval lying if0, 1). Thus,% — U a.e. onI? asn — oo. Furthermore, by
(2.3) andw-3),

P, W
Pl =
Qn| ~ v
SinceV,,,U > 0,
4W?
(Vo —U)* <a(Vi4+U" < T

Thus,V,, — U — 0 a.e. on/? and
V, — Ul <V2u='W e LYI?).

By the Dominated Convergence Theor&n— U in L*(1?). From this and{5.30), we conclude
[Un = Vallpagey = 0, n — oo.

O

Lemma 5.4. For anyT' > 0, solutions of the IVPs fof2.26)and (5.11)satisfy

li 2 —va(®)|lc, =0, 5.32
i, max fun(®) = vn ()G, (5.32)

provided
li_)m ||un (0) — v, (0)||c,, = O, (5.33)

Proof. Denoteg,,; := un; — v, ¢ € [n]. By subtracting[(2.26) fron(5.11), multiplying the resujt b
N Gridn (seel[@.R) for the definition af,,;) and summing ovei € [n], we obtain

Tl%\l%\l?;n = n? z":l Wiij (6nj — ¢ni)ni + 1> 'anl Gri(Unij = Viig) (Unj — Uni) P
Q= i,5=
+ n! Zn: G [f (uni) — f(vni)] dni- (5.34)
=1
As before, we use Lemnia 3.5 and (2.25) to obtain
n=? E": Whij (dnj — bni)dni <0, (5.35)
ij=1
B3 Gt () — Fon)) 6] < Lsllonll,. (5.36)
=1
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Usingmax;e(o 7] [|tn()]lco,n < C7 (cf. Theoreni34), we estimate

n~? Z Gri(Unij = Vinij) (g — Uni)bni| < Cs(An(W) + || 9nllE,.),

i,j=1

where
1 n
An(W)i= 5 3 Gui(Unig = Vi)™

i,j=1
Further, using the Cauchy-Schwarz inequality, we have

n 1/2
Ay (W) < (n—l ZG&) U = VallZarey (5.37)
=1

Recalling the definition of+,,; and using the Cauchy-Schwarz inequality again, we obtain

i,j=1

2
n~! Z G2 =n"! Z (nl Z Wm-j) <n? Z ng (5.38)
i=1 i=1 j=1

Using (2.11),[(5.38), and Lemrha 5.4, we obtain
lim A, (W) =0. (5.39)

n—oo

The combination of(5.34)-(5.87) yields

d
a\l%llén < 2(Cs + L) 6nllZ, +2C7A0(W).

By Gronwall's inequality,

s [én (017, < (H%(O)H%n "

te[0,T Cs A (W)> exp{(Cs + Ly)T'}. (5.40)

Cg—l—Lf "

The right hand side in(5.40) tends loasn — oo, as follows from [[5.38) and (5.B9). This proves the
lemma.
O

Theoreni 2.6 now follows from Theorems4.1.15.2 and Lerimia 5.4.

6 Discussion

The analysis in the preceding sections justifies the contimlimit (2.32) for the semilinear heat equation
(2.24) on sparse W-random graphs. In conclusion, we ousiveral extensions of this work to certain
nonlinear models, which are of interest in applications.
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6.1 The Kuramoto model

The analysis in Sectiofi$ 4 and 5 can be extended to coverltbeiftg nonlinear heat equation:
i =" Y Dty — ) + f (), (6.1)
j{i,i}eETR)

whereD and f are Lipschitz continuous functions (cf._(B.Z), (2.25)).alidition, we assume thd? is an
odd function satisfying the sign condition
uD(u) > 0. (6.2)

Both conditions hold for the original Kuramoto model with'w) = sin u.
Under the above assumptions gand D, we can justify the continuum limit fof (6.1).

Theorem 6.1. Letg € L°°(I) andT > 0 be arbitrary. Denote the solutions @6.1) and (1.2) subject to
the initial conditions(2.38)and (2.34)by u,,;(t), i € [n] andu(x,t) respectively.

Then with probabilityl,

lim sup |lun(-t) —u(-,t)| 2y = 0,
n—>0t€[07T}

where

up(z,t) := Zum(t)ljm. ().
i=1

For the proof of Theoren 6.1, one needs the following modificeof Lemmd_3.B.

Lemma 6.2. Let W € L?(I) be a symmetric function an® be an odd symmetric continuous function.
Then for anyu € L*>(1),

. W (z,y)D(uly) — u(z))u(e)dedy = -2 /I W@, y)D(uly) — u(z))(uly) — u(z))dzdy.
If, in addition, W > 0 and D satisfieq[6.2), then

[ W 0)D(u(y) — u(w)u(w)dady <0

With Lemmal6.2 in hand, the proofs of the statements in Sest and b can be translated to the
nonlinear equatiori (6. 1) with minor changes.

6.2 An alternative scaling and other graph models

If the diffusion term is scaled byp,, instead ofd,; = O(np,) as in (2.24), the formal derivation of the
continuum limit yields

gy = [ Wlep)D (pt) = uta,) dy + Flu, 1) ©3
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Here, the kernel i$V instead ofU (cf. (2.33)). In particular, for the Kuramoto model on theygo law
family of graphs, the alternative scaling yields

0 e “%sin —
O (e t) =2 /1 Y~ sin (u(y, t) — ulz, 1)) dy. (6.4)

The presence of the-dependent factor on the right—hand side[of](6.4) has istiageimplications for the
spatial patterns generated by the Kuramoto model. In paaticit is responsible for the existence of the
chimera-like patterns in the Kuramoto model with repulsieeipling on power law graphs (cf._[16]).

The proof of existence of the strong solution of the IVP inti®ed3 does not cover the equatidn (6.3),
because it relies on condition (8.3), which does not holdifoin general (sed_(3.9)). However, one can
show the existence of the weak solution for the IVP far](6¢3) Definition[5.1) by constructing it as the
limit of solutions of the Galerkin problems following theés of the analysis i§5.2.

Likewise, there are many different ways how to define a cayerr family of sparse random graphs.
Instead of[(2.2) one could, for example, define the prokglddir a given pair of nodes to belong to the edge
set using averaging:

P (i} € BI) = pan [ Wia,y)ddy, (6.5)

-[nz' XInj

The analysis of this paper can be used to justify the continlimnit for coupled systems ofil’,,} defined

by (6.5).
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