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Abstract

Using the theory ofLp–graphons [4, 5], we derive and rigorously justify the continuum limit for
systems of differential equations on sparse random graphs.Specifically, we show that the solutions
of the initial value problems for the discrete models can be approximated by those of an appropriate
nonlocal diffusion equation. Our results apply to a range ofspatially extended dynamical models of dif-
ferent physical, biological, social, and economic networks. Importantly, our assumptions cover network
topologies featured in many important real-world networks. In particular, we derive the continuum limit
for coupled dynamical systems on power law graphs. The latter is the main motivation for this work.

1 Introduction

Reaction-diffusion equations describe the change of concentration of chemical, biological, or other species
as a result of local reaction and spatial diffusion:

∂

∂t
u = ∆u+ f(u). (1.1)

Here,u : Q × R
+ is an unknown function, whose interpretation depends on themodel at hand, defined on

spatial domainQ ⊂ R
n and evolving in time. Reaction-difussion systems have beensuccessfully used to

study pattern formation and propagation phenomena in such diverse areas of science as ecology, molecular
biology, morphogenesis, neuroscience, and material science, to name a few [6].

In many models of collective behavior of discrete agents, one is led to replace the spatial domainQ by
a graph and the Laplace operator∆ by the graph Laplacian [2]. Specifically, letΓn = 〈V (Γn), E(Γn)〉
denote a graph onn nodes. Here,V (Γn) andE(Γn) stand for the sets of nodes and edges respectively.
Without loss of generality, letV (Γn) = {1, 2, . . . , n} =: [n] and consider the following nonlinear evolution
equation onΓn:

u̇ni =
1

degΓn
(i)

∑

j:{i,j}∈E(Γn)

D(unj − uni) + f(uni), i ∈ [n], (1.2)
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whereD andf are Lipschitz continuous functions anddegΓn
(i) stands for the degree of nodei ∈ [n]. The

sum on the right-hand side of (1.2) models nonlinear diffusion onΓn. Discrete diffusion operators of this
form have been used in various models of collective behavior. For instance, withD(u) = sinu it appears
in the Kuramoto model [11] and in the power network models [8], withD(u) = φ(|u|)u for an appropriate
functionφ, it is used in models of flocking [7] and opinion dynamics [17], and withD(u) = u - in consensus
protocols [13]. In the latter case, (1.2) becomes a semilinear heat equation onΓn:

u̇ni =
1

degΓn
(i)

∑

j:{j,i}∈E(Γn)

(unj − uni) + f(uni), i ∈ [n]. (1.3)

Understanding the dynamics of coupled systems (1.2) and (1.3) on graphs modeling connectivity in
real-life systems like neuronal networks, power grids, or the Internet, can be quite challenging. Recently,
new powerful techniques for describing and analyzing the structure of large graphs, based on the appropriate
notions of convergence, have been developed in the graph theory [12]. Many nontrivial graph sequences that
are of interest in applications, such as Erdős-Rényi, small-world, and preferential attachment graphs, have
relatively simple limits, expressed by symmetric measurable functions on a unit square, called graphons
[12]. These graph limits can be used for developing continuum models approximating the dynamics of (1.2)
for largen:

∂

∂t
u(x, t) =

∫

I
W (x, y)D(u(y, t)− u(x, t))dy + f(u(x, t)), (1.4)

whereW is the graphon describing the limiting behavior of{Γn}.

In [14, 15], the continuum limit (1.4) was derived and rigorously justified for coupled dynamical systems
on convergent families of dense graphs1. The analysis in [14, 15] covers systems on many interesting
graphs including small-world and Erdős-Rényi graphs. However, many real-world networks feature sparse
connectivity. Thus, in this paper, we focus on coupled systems on convergent families of sparse graphs.

Our work is inspired by the recent progress made by Borgs, Chayes, Cohn, and Zhao, who extended the
theory of graph limits originally developed for dense graphs to sparse graphs of unbounded degree [4, 5].
The new theory covers many interesting examples of graphs. Notably, it applies to graphs with power
law degree distribution, which was identified in many different systems [1]. A distinctive feature of the
convergence theory for sparse graphs is that the graphons are no longer bounded, as in the dense case, but
in general are functions fromLp(I2), p > 1. This leads to continuum model (1.4) withW ∈ Lp(I2). The
analysis of (1.4) with anLp kernel presents new challenges that were not present in theL∞-case, analyzed
in [14, 15]. Overcoming these problems is the goal of this paper.

In the next section, we adapt the notion of W-random sparse graph from [4] to define a sequence of
random graphsΓn = G(W,ρn,Xn) with edge densityρn → 0 asn → ∞ and with the graph limit
W ∈ Lp(I2), p > 1. This random graph model will be used throughout this paper. It covers power law
graphs, our main motivating example, as well as sparse stochastic block and sparse Erdős-Rényi graphs
(cf. Examples 2.12 and 2.4) among many other sparse graphs. In §2.1, we compute the expected degree and
edge density ofΓn = G(W,ρn,Xn). We then formulate the dynamical model onΓn and formally derive
the continuum limit (1.4). The derivation includes two steps. First, we average the right hand side of the
coupled model (which depends on the random realization ofΓn) to obtain a deterministic equation. We then

1If |E| = O(|V |2), Γ = 〈V,E〉 is called dense, otherwise it is called sparse.

2



sendn→ ∞ in the averaged system to derive the continuum limit. This derivation is done for the semilinear
heat equation (1.3), which will be studied in the main part ofthe paper. However, the same derivation easily
translates to the nonlinear equation (1.2), which results in (1.4). In Section 3, we establish well-posedness
of the IVP for (1.4) and derive certain a priori estimates forsolutions of the initial value problems (IVPs).
For technical reasons, we restrict to studying the semilinear heat equation for the remainder of this paper.
In the last section, we comment on how this analysis extends to cover to certain nonlinear models arising in
applications. In particular, we discuss the Kuramoto modelon power law graphs.

The main result of this work is formulated in§2.3. Under the appropriate assumptions on the graphon
W ∈ L2(I2) and the nonlinearityf , we prove that the solutions of the IVP for the semilinear heat equation
(1.3) onΓn converge inL2(0, T ;L2(I)) (for anyT > 0) almost surely (a.s.) to the solution of the continuum
limit (1.4) subject to the appropriate initial condition asn→ ∞. This is the subject of Theorem 2.6, which is
proved in Sections 4 and 5. In the former section, the justification for the averaging is provided. In the latter,
we show that the solutions of the IVP for the averaged equation onΓn converge to those for the continuum
limit as n → ∞. To this end, we show that the solutions of the averaged equation can be approximated
by the solutions of certain Galerkin problems, which, in turn, converge to the solution of the continuum
limit. The final section discusses extensions of our work to certain nonlinear models that are important in
applications.

2 The model

2.1 The random graph model

We start with the description of the sparse random graphs that will be used in this paper. Our random
graph model is motivated by the construction of sparseW -random graphs in [4, 5]. Specifically, letW be a
symmetric nonnegative function on a unit squareI2,Xn be a discretization ofI

Xn = {xn0, xn1, xn2, . . . , xnn}, xni = i/n, i = 0, 1, . . . , n, (2.1)

and{ρn} be a sequence of positive numbers such thatρn → 0 andnρn → ∞ asn→ ∞.

Γn = G(W,ρn,Xn) stands for a random graph with the node setV (Γn) = [n] and the edge setE(Γn)
such that the probability that{i, j} forms an edge is

P ({i, j} ∈ E(Γn)) = ρnW̄n(xni, xnj), i, j ∈ [n], 2 (2.2)

where
W̄n(x, y) = ρ−1

n ∧W (x, y).3 (2.3)

The decision whether a given pair of nodes is included in the edge set is made independently from other
pairs. In other words,G(W,ρn,Xn) is a product probability space

(Ωn = {0, 1}n(n+1)/2 , 2Ωn ,P ). (2.4)

2To keep notation simple, we allow for loops, i.e., edges connecting a node to itself, in our random graph model. Excluding
loops would not lead to any changes in the analysis.

3Throughout this paper, we usea ∧ b anda ∨ b to denotemin{a, b} andmax{a, b} respectively.
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By Γn(ω), ω ∈ Ωn, we will denote a random graph drawn from the probability distributionG(W,ρn,Xn).

Throughout this paper, we use Bernoulli random variables

ξnij(ω) = 1{i,j}∈E(Γn)(ω), i, j ∈ [n]. (2.5)

to describe the edge set ofΓn. Random variableξnij takes value1 if {i, j} forms an edge and0 otherwise.
In particular,

E ξnij = P ({i, j} ∈ E(Γn)) = ρnW̄n(xni, xnj), {i, j} ∈ [n], (2.6)

and the expected degree of nodei of Γn

E degΓn
(i) = E





n
∑

j=1

ξnij



 = ρn

n
∑

j=1

W̄n(xni, xnj). (2.7)

Next, we formulate our assumptions on the graphonW .

W-1) W ∈ L2(I2) is a nonnegative symmetric on the unit squareI2 that is continuous on its interior.

W-2)
∫

I2 W (x, y)dxdy > 0 and

n−2
n
∑

i,j=1

W̄n(xni, xnj) =

∫

I2
W (x, y)dxdy + o(1). (2.8)

W-3) For everyx ∈ (0, 1], W (x, ·) ∈ L1(I), and

inf
x∈(0,1)

∫

I
W (x, z)dz =: ν > 0. (2.9)

Moreover,

n−1
n
∑

j=1

W̄n(x, xj) =

∫

I
W (x, y)dy (1 + δn(x)) , (2.10)

whereδn(x) → 0 asn→ ∞ uniformly in x ∈ (0, 1).

Conditions inW-2) andW-3) guarantee that the expected edge density and expected degrees of nodes of
Γn for n ≫ 1 are well-defined and are well-approximated by the corresponding integrals ofW . The above
assumptions on graphonW are dictated by the random graph model and are practically minimal.

We will now introduce two more technical assumptions that are needed for the proof of our main result:
W-4) W ∈ L4(I2) and

lim sup
n

n−2
n
∑

i,j=1

W̄n(x, xj)
2 <∞. (2.11)

Assumptions inW-4) will not be used until§5.3.

The main example motivating our random graph model is the following configuration model of a power
law graph.
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Example 2.1. Let0 < α < γ < 1 and considerG(W,ρn,Xn), whereρn = n−γ and

W (x, y) = (1− α)2(xy)−α. (2.12)

Lemma 2.2. Γn = G(W,ρn,Xn) of Example 2.1 is a sparse graph with a power law expected degree
distribution. In particular, we have

A) The expected degree of nodei ∈ [n] of Γn is

E degΓn
(i) = (1− α)n1+α−γi−α(1 + o(1)). (2.13)

B) The expected edge density ofΓn is n−γ(1 + o(1)).

Proof. By (2.2),

E degΓn
(i) =

n
∑

j=1

P ({i, j} ∈ E(Γn)) = ρnn

n
∑

j=1

W̄n(xni, xnj)n
−1. (2.14)

Pluggingρn = n−γ and (2.3) in (2.14), we have as

E degΓn
(i) = (1− α)n1+α−γi−α

n
∑

j=1

[

δn ∧W (1)(xnj)
]

n−1, (2.15)

whereW (1)(x) = (1− α)x−α andδn = iαnγ−α(1− α)−1.

Denote
Ini := (xn(i−1), xni], i ∈ [n]. (2.16)

Next, let

W (1)
n (x) =

n
∑

j=1

(δn ∧W (1)(xnj))1Inj
(x) (2.17)

and note that

n−1
n
∑

j=1

δn ∧W (1)
n (xnj) =

∫

I
W (1)

n dx. (2.18)

Furthermore,W (1)
n ≤ W (1) andW (1)

n → W (1) pointwise on(0, 1] asn → ∞. By the Dominated Conver-
gence Theorem [3],

lim
n→∞

∫

I
W (1)

n dx =

∫

I
W (1)dx = 1. (2.19)

The combination of (2.15), (2.18), and (2.19) yields (2.13). This showsA).

A similar argument is used to estimate the expected number ofedges inΓn

E |E(Γn)| =
1

2

n
∑

i=1

n
∑

j=1

ρnW̄n(xni, xnj) =
1

2
n2−γ

n
∑

i=1

n
∑

j=1

W̄n(xni, xnj)n
−2.

5



Define

Wn(x, y) =
n
∑

i,j=1

(ρ−1
n ∧W (xni, xnj))1Ini×Inj

(x, y). (2.20)

Then

E |E(Γn)| =
n2−γ

2

∫

I2
Wndxdy. (2.21)

By construction,Wn ≤ W andWn → W asn → ∞ on (0, 1] × (0, 1]. By the Dominated Convergence
Theorem,

lim
n→∞

∫

I2
Wndxdy =

∫

I2
Wdxdy = 1. (2.22)

Equations (2.21) and (2.22) imply

E |E(Γn)| =
n2−γ

2
(1 + o(1)). (2.23)

By dividing both sides of (2.23) byn(n+1)/2, the total number of possible edges, we obtain the statement
in B). �

Remark2.3. The power law graphs defined above are sparse, because the expected edge density isO(n−γ),
γ > 0. On the other hand, the expected number of edges grows superlinearlyn2−γ , becauseγ < 1. To
preserve these features, in the general random graph modelG(W,ρn,Xn), n ∈ N, above it is assumed that
ρn → 0 andnρn → ∞ asn→ ∞.

We conclude the discussion of the graph model with two more examples of sparse graphs covered by
our assumptions. Both examples are taken from [5].

Example 2.4. ConsiderΓn = G(W,n−β ,Xn), β ∈ (0, 1) for the following choices ofW .

1) LetW ≡ 1. ThenΓn is a generalization of an Erd̋os-Ŕenyi random graphGn,p with p = n−β. Note
that the edge density in this case isn−β. For the classical Erd̋os-Ŕenyi graphGn,p with constant
p ∈ (0, 1), the edge density is equal top. The latter graph is dense, whereas the former is sparse.

2) LetW (x, y) = bij ≥ 0, (x, y) ∈ Vi × Vj , (i, j) ∈ [n]2, where
∑k

i,j=1 bij > 0 and(V1, V2, . . . , Vk) is a
partition of I into k disjoint intervals. In this case,Γn is a sparse stochastic block graph with edge
densityn−β.

2.2 The dynamical model

Having defined the structure of the network, we next turn to its dynamics. LetΓn = Γn(ω), ω ∈ Ωn (cf.
(2.4)) be a random graph taken from the probability distribution G(W,ρn,Xn) and consider the following
system of differential equations

u̇ni =
1

dni

n
∑

j=1

ξnij(ω) (unj − uni) + f(uni), i ∈ [n], (2.24)

6



whereun(t) = (un1(t), un2(t), . . . , unn(t)), ξnij, i, j ∈ [n], are Bernoulli random variables defined in
(2.5),dni = E degΓn

(i) (cf. (2.7)), andf : R → R is a Lipschitz continuous function

∃Lf > 0 : |f(x)− f(y)| ≤ Lf |x− y|, ∀x, y ∈ R. (2.25)

The sum on the right hand side of (2.24) defines a discrete diffusion operator. For simplicity, we scale
the sum on the right-hand side of (2.24) by the expected degree rather than by the actual degree. Thus, (2.24)
is an evolution equation on a random graphΓn. Specifically, it is a semilinear heat equation onΓn, since
the sum on the right-hand side of (2.24) is a discrete graph Laplacian.

We are interested in describing the dynamics of (2.24) forn≫ 1. However, the right-hand side of (2.24)
depends on the random graphΓn(ω), i.e., on the random eventω ∈ Ωn:

Fni(un, ω) =
1

dni

n
∑

j=1

ξnij(ω) (unj − uni) + f(uni), i ∈ [n].

As the first step in the analysis of (2.24), we approximate it by the deterministic problem by averaging the
right-hand side of (2.24) over all realizations ofΓn:

v̇ni(t) = F̄ni(vn), vn(t) = (vn1(t), vn2(t), . . . , vnn(t)), (2.26)

where

F̄ni(v) = E Fni(vn, ·) =
ρn
dni

n
∑

j=1

W̄n(xni, xnj)(vnj − vni) + f(vni),

=
1

n

n
∑

j=1

Vnij(vnj − vni) + f(vni), i ∈ [n], (2.27)

where

Vnij =
W̄n(xni, xnj)

n−1
∑n

k=1 W̄n(xni, xnk)
. (2.28)

Next, we take the limit in the averaged equation (2.27) asn→ ∞. To this end, we represent the solution of
(2.27) as a step function

vn(x, t) =

n
∑

i=1

vni(t)1Ini
(x), (2.29)

and rewrite (2.27) as

∂

∂t
vn(x, t) =

∫

I
Vn(x, y)(vn(y, t)− vn(x, t))dy + f(vn(x, t)), (2.30)

where

Vn(x, y) =
n
∑

i,j=1

Vnij1Ini×Inj
. (2.31)

Assuming thatvn(x, t) → u(x, t) in the appropriate sense, and using the integrability assumptionsW-2)
andW-3), in the limit asn→ ∞ we formally obtain the following continuum limit of (2.26)

∂

∂t
u(x, t) =

∫

I
U(x, y) (u(y, t)− u(x, t)) dy + f(u(x, t)), (2.32)

7



U(x, y) =W (x, y)

(
∫

I
W (x, z)dz

)−1

. (2.33)

Note thatU ∈ L2(I2) (cf. W-1) and (2.9)).

Example 2.5. For the power law graphs defined in Example 2.1 with square integrable graphons, the
continuum limit takes the following form

∂

∂t
u(x, t) =

∫

I
y−α (u(y, t)− u(x, t)) dy + f(u(x, t)), 0 < α < 1/2.

The goal of this paper is to describe the relation between thesolutions of the IVPs for the discrete model
(2.24) on sparse graphΓn, n ≫ 1, the averaged model (2.26), and the continuum limit (2.32).

2.3 The main result

Let g ∈ L∞(I) and consider the IVP for (2.32) subject to the initial condition

u(x, 0) = g(x), x ∈ I. (2.34)

Likewise, we supply the discrete problem (2.24) with the initial condition

uni(0) = n

∫

Ini

g(x)dx, i ∈ [n]. (2.35)

To compare solutions of the IVPs for the discrete and continuous models, we define the step function

un(x, t) =
n
∑

i=1

uni(t)1Ini
(x). (2.36)

The main result of this paper concerns theL2-proximity of un(·, t) andu(·, t) on finite time intervals for
largen.

Theorem 2.6. LetΓn = G(W,ρn,Xn) be a sequence of random graphs, whereW satisfies conditions
W-1)-W-4), Xn, n ∈ N, are defined in(2.1) and the positive sequence{ρn} is such thatρn → 0 and
nρn → ∞ asn → ∞. Supposef : R → R is Lipschitz continuous function (cf.(2.25)), g ∈ L∞(I), and
T > 0 is arbitrary.

Then with probability1, for solutions of the IVPs(2.32), (2.34)and (2.24), (2.35), we have

∫ T

0
‖un(·, t) − u(·, t)‖2L2(I)dt→ 0, asn→ ∞.
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3 The IVP for the nonlocal equation

3.1 Existence and uniqueness of solutions

In this section, we show that the IVP for (2.32), (2.33) has a unique solution. The contraction mapping
principle used below applies to the nonlinear heat equation

∂

∂t
u(x, t) =

∫

I
U(x, y)D (u(y, t)− u(x, t)) dy + f(u(x, t)), (3.1)

whereD : R → R is Lipschitz continuous:

|D(u)−D(v)| ≤ LD|u− v| ∀u, v ∈ R. (3.2)

Below, we study the well-posedness of the IVP for (3.1). The results of this section will obviously hold for
(2.32) as well.

With the definition (2.33) in mind, in this section, we assumethatU ∈ Lp(I2), p ≥ 2, is a nonnegative
function, satisfying

∫

I
U(x, y)dy = 1. (3.3)

We interpret the solution of the IVP for (3.1),u(x, t), as a vector-valued mapu : R → Lq(I), i.e.,
[u(t)](x) = u(x, t).

Theorem 3.1. SupposeU ∈ Lp(I2), p ≥ 2, is a nonnegative function satisfying(3.3)and functionsf and
D satisfy(2.25)and (3.2) respectively. Then the IVP for(3.1) with initial data u(0) = g ∈ Lq(I), q =
p/(p− 1) has a unique solutionu ∈ C1(R;Lq(I)), which depends continuously ong.

Proof. Denote
τ = (2L

(

‖U‖Lp(I2) + 2
)

)−1, (3.4)

whereL = Lf ∨ LD is the largest of the two Lipschitz constants ofD andf (cf. (2.25), (3.2)). Denote
M = C(0, τ ;Lq(I)) and defineK : M → M as follows:

[Ku](t) = g +

∫ t

0

(
∫

I
U(·, y)D (u(y, s)− u(·, s)) dy + f(u(·, s))

)

ds. (3.5)

(The correctness of this definition will be shown later.) We rewrite the IVP for (3.1) as a fixed point equation
for the mappingK,

u = Ku, (3.6)

and show thatK is a contraction onM.

The following inequalities hold for anyu ∈ Lq(I) andW ∈ Lp(I2), p > 1, q = p/(p− 1),

‖u‖Lq(I) ≤ ‖u‖Lp∨q(I), ‖W‖Lp(I2) ≤ ‖W‖Lp∨q(I2). (3.7)

They follow from the Hölder inequality applied to functions defined on the unit intervalI and the unit square
I2 respectively. In particular, forq ≤ 2 ≤ p, we have

‖u‖Lq(I) ≤ ‖u‖Lp(I), ‖U‖Lq(I2) ≤ ‖U‖Lp(I2). (3.8)

9



For anyu,v ∈ M, we have

‖Ku−Kv‖
M

= max
t∈[0,τ ]

‖Ku(t)−Kv(t)‖Lq(I)

≤ max
t∈[0,τ ]

∥

∥

∥

∥

∫ t

0

(∫

I
U(·, y) |D (u(y, s)− u(·, s)) −D (v(y, s)− v(·, s))| dy + L|u(·, s) − v(·, s)|

)

ds

∥

∥

∥

∥

Lq(I)

≤ L max
t∈[0,τ ]

∥

∥

∥

∥

∫ t

0

(
∫

I
U(·, y) |u(y, s)− u(·, s)− v(y, s) + v(·, s)| dy + |u(·, s)− v(·, s)|

)

ds

∥

∥

∥

∥

Lq(I)

≤ τL max
t∈[0,τ ]

{

∥

∥

∥

∥

∫

I
U(·, y) |u(y, t)− v(y, t)| dy

∥

∥

∥

∥

Lq(I)

+

∥

∥

∥

∥

∫

I
U(·, y) |u(·, t)− v(·, t)| dy

∥

∥

∥

∥

Lq(I)

+ ‖u(·, t) − v(·, t)‖Lq(I)

}

= τL max
t∈[0,τ ]

{

∥

∥

∥

∥

∫

I
U(·, y) |u(y, t)− v(y, t)| dy

∥

∥

∥

∥

Lq(I)

+ 2 ‖u(·, t)− v(·, t)‖Lq(I)

}

, (3.9)

where we used Lipschitz continuity ofD andf , and (3.3). Using the Hölder inequality and the second
inequality in (3.8), we have

∥

∥

∥

∥

∫

I
U(·, y) |u(y, t)− v(y, t)| dy

∥

∥

∥

∥

Lq(I)

≤
∥

∥

∥
‖U(x, ·)‖Lp(I) ‖u(·, t)− v(·, t)‖Lq(I)

∥

∥

∥

Lq(Ix)

≤ ‖U‖Lp(I2) ‖u(t)− v(t)‖Lq(I) , (3.10)

whereIx = [0, 1] refers to the domain of a function ofx.

The combination of (3.9) and (3.10) yields

‖Ku−Kv‖
M

≤ Lτ
(

‖U‖Lp∨q(I2) + 2
)

‖u− v‖
M
. (3.11)

Thus, using (3.4), we have

‖Ku−Kv‖
M

≤ 1

2
‖u− v‖

M
.

It follows thatK is a correctly defined contraction onM.

Next, we showK(M) ⊂ M. To this end, forz ≡ 0 on I × [0, τ ], we have

‖Ku‖M ≤ ‖Ku−Kz‖M + ‖Kz‖M
≤ 1

2
‖u‖M + ‖Kz‖M. (3.12)

Further,
[Kz](t) = g + t (D(0) + f(0)) ,

so thatKz ∈ M, and then (3.12) implies thatKu ∈ M.

From (3.11), by the Banach contraction mapping principle, there exists a unique solution of the IVP
for (3.1) ū ∈ M ⊂ C(0, τ ;Lq(I)). Using ū(τ) as the initial condition, the local solution can be extended
to [0, 2τ ], and by repeating this argument to[0, T ] for anyT > 0. In a similar fashion, we can prove the
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existence and uniqueness of the solution of (3.6) on[−T, 0] for anyT > 0. Thus, we have a unique solution
of (3.6) on the whole real axis, i.e.,u ∈ C(0,R;Lq(I)). The integrand in (3.5) is continuous as a map
Lq(I) → Lq(I). Thus, (3.5) and (3.6) imply thatu is continuously differentiable and we obtain a classical
solution of the IVP for (3.1) on the whole real axis. Finally,sinceK : M → M is a uniform contraction
(cf. (3.11)), which depends ong continuously (cf.(3.5)), the fixed point is a continuous function ofg as well
(cf. [10,§1.2.6, Exercise 3]).
�

3.2 A priori estimates

Theorem 3.2. Let u(t) denote the solution of the IVP for(3.1) with U ∈ L1(U) and initial condition
u(0) = g ∈ L∞(I). Thenu ∈ C(R;L∞(I)) and for anyT > 0, there existsC > 0 depending onT but
not onU such that

‖u‖C(0,T ;L∞(I)) ≤ C‖u(0)‖L∞(I). (3.13)

Proof. If U ∈ L1(I2) andu(0) = g ∈ L∞(I) then the contraction mapping argument used in the proof
of Theorem 3.1 yields exisitence of the unique solutionu ∈ C1(R;L∞(I)). Indeed, let

M := C(0, τ ;L∞(I)), for τ := (6L)−1

and consider the operatorK defined by (3.5). As before, we show thatK is a well defined contraction on
M.

Indeed, for anyu,v ∈ M, we have

‖Ku−Kv‖
M

= max
t∈[0,τ ]

‖Ku(t)−Kv(t)‖L∞(I)

≤ max
t∈[0,τ ]

∥

∥

∥

∥

∫ t

0

(∫

I
U(·, y) |D (u(y, s)− u(·, s)) −D (v(y, s)− v(·, s))| dy + |f(u(·, s)) − f(v(·, s))|

)

ds

∥

∥

∥

∥

L∞(I)

.

Using the Lipschitz continuity ofD andf and the triangle inequality, we further obtain

‖Ku−Kv‖
M

≤ max
t∈[0,τ ]

L

∥

∥

∥

∥

∫ t

0

(∫

I
U(·, y) |u(y, s)− u(·, s)− v(y, s) + v(·, s)| dy + |u(·, s)− (v(·, s)|

)

ds

∥

∥

∥

∥

L∞(I)

≤ max
t∈[0,τ ]

(

2L

∫

I
U(·, y) + L

)
∫ t

0
‖u(·, s) − v(·, s)‖L∞(I)ds ≤ 3Lτ ‖u− v‖

M

Recalling, the definition ofτ , we arrive at

‖Ku−Kv‖
M

≤ 1

2
‖u− v‖

M
.

Following the lines of the proof of Theorem 3.1, it is straightforward to show that the fixed point of (3.6) is
the unique solution of the IVP for (3.1),u ∈ C1(R, L∞(I)), which depends continuously on the initial data
g ∈ L∞(I).
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Denote
m(t) := ‖u(·, t)‖L∞(I).

From (3.1), using Lipschitz continuity ofD andf, we have

|u(x, t)| = |g(x)| + L

∫ t

0

(
∫

I
U(x, y) (|u(y, s)− v(y, s)|+ |u(x, s)− v(x, s)|) dy + |u(x, s)− v(x, s)|

)

ds

≤ m(0) + L(2

∫

I
U(x, y)dy + 1)

∫ t

0
m(s)ds.

Thus,

m(t) ≤ m(0) + 3L

∫ t

0
m(s)ds.

Sinceu ∈ C(0, T ;L∞(I)), by Gronwall’s inequality (cf. [9, Appendix B]), for anyt ∈ [0, T ]

m(t) ≤ m(0)
(

1 + 3Lte3Lt
)

≤ Cm(0), C := 1 + 3LTe3LT ,

and (3.13) follows.
�

We will also use the following observation.

Lemma 3.3. LetW ∈ L2(I2) be a symmetric function andu ∈ L∞(I). Then
∫

I2
W (x, y) (u(y)− u(x)) u(x)dxdy =

−1

2

∫

I2
W (x, y) (u(y)− u(x))2 dxdy. (3.14)

Proof. Rewrite the left-hand side of (3.14) as
∫

I2
W (x, y) (u(y)− u(x)) u(x)dxdy = −

∫

I2
W (x, y) (u(y)− u(x)) (u(x)− u(y)) dxdy

+

∫

I2
W (x, y) (u(y)− u(x)) u(y)dxdy. (3.15)

Using the symmetry ofW (x, y), for the second term on the right-hand side of (3.15) we have
∫

I2
W (x, y) (u(y)− u(x)) u(y)dxdy = −

∫

I2
W (x, y) (u(y)− u(x)) u(x)dxdy. (3.16)

After plugging (3.16) into (3.15), we obtain (3.14).
�

Next, we formulate the discrete counterparts of Theorem 3.2and Lemma 3.3. To this end, consider an
IVP for the semilinear discrete heat equation

u̇ni =
1

n

n
∑

j=1

VnijD(unj − uni) + f(uni), i ∈ [n], (3.17)

where(Vnij) is a nonnegative matrix with entries derived from the graphonW (see (2.28)).
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Let un(t) = (un1(t), un2(t), . . . , unn(t)) be a solution of (3.17). Denote

‖un‖2,n =

√

√

√

√n−1

n
∑

i=1

u2ni and ‖un‖∞,n = max
i∈[n]

|uni|. (3.18)

Recall that the discrete problem (3.17) can be rewritten as the nonlocal equation (2.30). By applying
Theorem 3.2 to (2.30), we obtain the following theorem.

Theorem 3.4. For the solution of the IVP for(3.17), we have

max
t∈[0,T ]

‖un(t)‖∞,n = C‖un(0)‖∞,n ∀n, (3.19)

whereC > 0 depends onT only.

Finally, we state a discrete version of Lemma 3.3. It can be derived from Lemma 3.3, or proved directly.

Lemma 3.5. Let (Wij) be ann× n symmetric matrix. Then for any(θ1, θ2, . . . , θn) ∈ R
n

n
∑

i,j=1

Wij(θj − θi)θi =
−1

2

n
∑

i,j=1

Wij(θj − θi)
2. (3.20)

4 Averaging

In this section, we show that for largen the solutions of the heat equation (2.24) onΓn can be approximated
by the solutions of the averaged equation (2.26), (2.27).

For convenience, we rewrite the original and the averaged models. For the former model, we plug in the
expression for the mean degreedni (2.7) into (2.24) to obtain

u̇ni = n−1
n
∑

j=1

ηnij(unj − uni) + f(uni), i ∈ [n], (4.1)

where

ηnij = ξnij



ρnn
−1

n
∑

j=1

W̄nij





−1

. (4.2)

Recall the averaged model (2.26):

v̇ni = n−1
n
∑

j=1

Vnij(vnj − vni) + f(vni), i ∈ [n], (4.3)

where

Vnij = Ḡ−1
ni Wnij , Gni := n−1

n
∑

j=1

W̄nij . (4.4)
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Note that for fixedi ∈ [n], {ηnij , j ∈ [n]} are independent random variables and

E ηnij = Unij , i, j ∈ [n]. (4.5)

Below, we use the following weighted norm inRn :

‖ψn‖Gn :=

√

√

√

√n−1

n
∑

i=1

Gniψ2
ni. (4.6)

Here, we implicitly assume thatn is large enough, so thatmini∈[n]Gni > 0 (cf. W-3)).

We now formulate the main result of this section.

Theorem 4.1. Letun(t) andvn(t) denote solutions of the IVP for(4.1)and(4.3)respectively. Suppose that
the initial data for these problems satisfy

max{|un(0)|, |vn(0)|} ≤ C1 uniformly inn and (4.7)

lim
n→∞

‖vn(0)− un(0)‖Gn
= 0. (4.8)

Then
lim
n→∞

max
t∈[0,T ]

‖vn(t)− un(t)‖Gn
= 0 a.s.. (4.9)

For the proof of Theorem 4.1, we will need the following lemma.

Lemma 4.2. LetT > 0 and(anij(t)) be ann× n matrix, whose entries depend ont ∈ [0, T ]. Suppose

sup
t∈[0,T ]

max
(i,j)∈[n]2

|anij(t)| ≤ C2 ∀n. (4.10)

DefineZn(t) = (Zn1(t), Zn2(t), . . . , Znn(t)), where

Zni(t) = n−1
n
∑

j=1

anij(t)(ηnij − Vnij), i ∈ [n], t ∈ [0, T ], (4.11)

ηnij are defined in(4.2) (see(2.5) for the definition ofξnij.)

Then
lim
n→∞

sup
t∈[0,T ]

‖Zn(t)‖Gn = 0 a.s.. (4.12)

Proof. Using the definitions (4.2), (4.11) and the bound in (4.10), for arbitraryt ∈ [0, T ], we have

E sup
t∈[0,T ]

Zni(t)
2 = n−2

E



 sup
t∈[0,T ]

n
∑

k,j=1

anij(t)anik(t) (ηnij − Vnij) (ηnik − Unik)





= n−2
E

n
∑

j=1

sup
t∈[0,T ]

anij(t)
2
E (ηnij − Vnij)

2 = n−2
E

n
∑

j=1

sup
t∈[0,T ]

anij(t)(E η
2
nij − V 2

nij)

≤ ρ−1
n n−2

n
∑

j=1

sup
t∈[0,T ]

anij(t)
2Vnij ≤ C2

2ρ
−1
n n−2

n
∑

j=1

Vnij = C2
2ρ

−1
n n−2. (4.13)
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Let ǫ > 0 andt ∈ [0, T ] be arbitrary but fixed and denote the event

An =

{

sup
t∈[0,T ]

‖Zn(t)‖Gn ≥ ǫ

}

.

By Markov’s inequality, for arbitraryǫ > 0

P

(

sup
t∈[0,T ]

n−1
n
∑

i=1

GniZni(t)
2 ≥ ǫ

)

≤ (ǫρnn
2)−1C2

2



n−2
n
∑

i,j=1

W̄nij



 . (4.14)

where we used the definition ofGni in (4.2). Sinceρnn→ ∞ asn→ ∞ and

lim
n→∞

n−2
n
∑

i,j=1

W̄nij =

∫

I2
W (x, y)dxdy (cf. (2.8)),

we have
∞
∑

n=1

P (An) <∞.

By Borel–Cantelli Lemma [18],P (An holds infinitely often) = 0, i.e., supt∈[0,T ] ‖Zn(t)‖Gn → 0 a.s. as
n→ ∞. This proves the lemma.
�

Proof. (Theorem 4.1) Denoteφni = uni − vni. By subtracting (2.26) from (2.24), multiplying the result
by n−1Gniφni, and summing overi ∈ [n], we obtain

2−1 d

dt
‖φn‖2Gn

= n−2
n
∑

i,j=1

W̄nij(φnj − φni)φni + n−2
n
∑

i,j=1

Gni(ηnij − Vnij)(unj − uni)φni

+ n−1
n
∑

i=1

Gni [f(uni)− f(vni)]φni. (4.15)

By Lemma 3.5, the first term on the right–hand side of (4.15) isnonpositive

n
∑

i,j=1

W̄nij(φnj − φni)φni = −2−1
n
∑

j=1

W̄nij(φnj − φni)
2 ≤ 0. (4.16)

Thus, using (4.16) and (2.25), from (4.15) we have

2−1 d

dt
‖φn‖2Gn

≤ n−2
n
∑

i,j=1

Gni(ηnij − Vnij)(unj − uni)φni + Lf‖φn‖2Gn
. (4.17)

Further, denote

anij(t) := unj(t)− uni(t), Zni(t) := n−1
n
∑

j=1

anij(t)(ηnij − Vnij), (i, j) ∈ [n]2, t ∈ [0, T ],
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and useab ≤ 2−1(a2 + b2) to obtain
∣

∣

∣

∣

∣

∣

n−2
n
∑

i,j=1

Gni(ηnij − Vnij)(unj − uni)φni

∣

∣

∣

∣

∣

∣

≤ 2−1(‖Zn‖2Gn
+ ‖φn‖2Gn

). (4.18)

Using (4.18), from (4.17) we obtain

d

dt
‖φn‖2Gn

≤ (2Lf + 1)‖φn‖2Gn
+ ‖Zn‖2Gn

. (4.19)

Using (4.7), from Theorem 3.4, we have

max
t∈[0,T ]

max
(i,j)∈[n]2

|anij(t)| ≤ C3, ∀n.

By Lemma 4.2, with probability1, for a givenǫ > 0

∃N1(ǫ) : sup
t∈[0,T ]

‖Zn‖2Gn
≥ ǫ2/2,

whenevern ≥ N1. Thus, for suchn,

d

dt
‖φn‖2Gn

≤ (2Lf + 1)‖φn‖2Gn
+ ǫ2/2. (4.20)

Thus, by Gronwall’s inequality, we obtain

sup
t∈[0,T ]

‖φn(t)‖2Gn
≤ ‖φn(0)‖2Gn

e(2L+1)T +
ǫ2

2(2Lf + 1)
.

Furthermore, by (4.8)

∃N2(ǫ, T ) : ∀n ≥ N2 ‖φn(0)‖2Gn
e(2Lf+1)T ≤ ǫ2/2.

Thus, forn ≥ N(T, ǫ) := N1 ∨N2 we have

sup
t∈[0,T ]

‖φn(t)‖Gn ≤ ǫ.

�

5 The continuum limit

Having justified averaging in (2.26), our next goal is to showthat the IVP for the averaged equation (2.26)
can be approximated by that for the continuum limit (2.32), (2.33), subject to the initial condition

u(x, 0) = g(x), (5.1)
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whereg ∈ L∞(I). To compare the solutions of the discrete problem (2.26) andcontinuous equation (2.32)
we supply the former problem with the initial condition thatis consistent with (5.1):

vni(0) = n

∫

Ini

g(x)dx, i ∈ [n]. (5.2)

Below, we construct a finite-dimensional Galerkin approximation of (2.32) and (5.1) and prove its con-
vergence. In the next section, we compare solutions obtained by the Galerkin’s scheme with the solutions
of the IVP for (2.26).

Throughout this section, we assume that conditionsW-1)-W-3) and (2.25) hold.

5.1 The Galerkin problem

LetX = L2(I), defineK : X → X by

[K(u)](x) =

∫

I
U(x, y)(u(y) − u(x))dy. (5.3)

and rewrite (2.32) as follows

u′ = K(u) + f(u), (5.4)

u(0) = g. (5.5)

Recall thatu : R → X stands for the vector-valued function defined by[u(t)](x) = u(x, t) for eacht ∈ R.

Definition 5.1. Functionu ∈ H1(0, T ;X) is called a weak solution of the IVP (5.4), (5.5) on[0, T ] if
(

u′(t)−K(u(t))− f(u(t)),v
)

= 0 ∀v ∈ X (5.6)

almost everywhere (a.e.) on[0, T ] andu(0) = g.

To construct a finite-dimensional problem approximating (5.6), we introduceXn = span{φni : i ∈
[n]}, a linear subspace ofX. Here,

φni(x) = 1Ini
(x) =

{

1, x ∈ Ini,
0, x 6∈ Ini,

i ∈ [n]. (5.7)

Next, we construct the Galerkin approximation of the solution of (5.4), (5.5). To this end, we fixn ∈ N

and look for the approximate solution in the form

un(t) =
n
∑

i=1

uni(t)φni. (5.8)

The differentiable coefficientsuni(t), i ∈ [n], are determined by projecting the original equation and the
initial condition onXn:

(

u′
n(t)−K(un(t))− f(un(t)), φ

)

= 0 ∀φ ∈ Xn, (5.9)
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un(0) = PXng =

n
∑

i=1

(g, φni)

(φni, φni)
φni, (5.10)

wherePXn : X → Xn stands for the orthogonal projector ontoXn. After plugging (5.8) into (5.9) and
settingv = φni, i ∈ [n], we arrive at the following IVP for the unknown coefficientsuni(t), i ∈ [n]:

u̇ni(t) = n−1
n
∑

j=1

Unij (unj(t)− uni(t)) + f(uni), (5.11)

uni(0) =
(g, φni)

(φni, φni)
= n

∫

Ini

g(x)dx. (5.12)

Here,

Unij = n2
∫

Ini×Inj

U(x, y)dxdy = n2
∫

Ini×Inj

W (x, y)
∫

I W (x, z)dz
dxdy ≤ n. (5.13)

Note that the right–hand side of (5.11) is uniformly Lipschitz continuous, which guarantees the existence of
a unique solution of the IVP (5.11), (5.12) onR.

It will be convenient to have the Galerkin equation (5.11) rewritten as the integral equation

∂

∂t
un(x, t) =

∫

I
Un(x, y) (un(y, t)− un(x, t)) dy + f(un(x, t)), (5.14)

whereUn andun are step functions

Un(x, y) =
n
∑

i,j=1

Unij1Ini×Inj
(x, y), (5.15)

un(x, t) =

n
∑

i=1

uni(t)1Ini
(x).

5.2 Convergence of the Galerkin scheme

In this section, we show that the solutions of the Galerkin problems (5.9), (5.10),un, converge tou, a unique
weak solution of (5.4), (5.5), in theL2(0, T ;X) norm asn→ ∞.

Theorem 5.2. For any T > 0, there is a unique weak solution of(5.4), (5.5), u ∈ H1(0, T ;X). The
solutions of the Galerkin problems(5.9), (5.10), un converge tou in theL2(0, T ;X) norm asn→ ∞.

Proof.

1. We shall first establish the following bounds for the solutionsun of the Galerkin problem (5.9), (5.10)
that hold uniformly inn

∃C4 = C4(T, ‖u(0)‖L∞(I)) : max{‖un‖C(0,T ;L∞(I)), ‖un‖C(0,T ;X), ‖u′
n‖C(0,T ;X)} ≤ C4.

(5.16)
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TheL∞-bound and, therefore, theX–bound follow from Theorem 3.2. These bounds are uniform in
n, because

‖un(0)‖L∞(I) = ‖PXng‖L∞(I) ≤ ‖g‖L∞(I).

To bound‖u′
n‖C(0,T ;X) we proceed as follows

∣

∣(u′
n(t),v)

∣

∣ ≤
∫

I
Ūn(x, y)|un(x, t)− un(y, t)||v(x, t)|dxdy +

∫

I
|f(un(x))||v(x)|dx.

Using theL∞-bound forun (5.16), the continuity off , ‖Ūn‖L2(I2) ≤ ‖U‖L2(I2), and the triangle
and Cauchy-Schwarz inequalities, we obtain

∣

∣(u′
n(t),v)

∣

∣ ≤ C5(‖U‖L2(I2) + C6)‖v‖ ∀v ∈ X.

Thus,
‖u′

n(t)‖ ≤ C6, t ≥ 0. (5.17)

uniformly in n.

2. Estimates in (5.16) imply

‖un‖L2(0,T ;X) ≤ C4, (5.18)

‖un(t+ h)− un(t)‖X ≤ C4|h|, (5.19)

respectively. From (5.19), we further have

∫ T

0
‖un(t+ h)− un(t)‖2Xdt ≤ C2

4Th
2. (5.20)

From (5.18) and (5.20), using the Frechet–Kolmogorov theorem (cf. [20]), we see that(un) is precom-
pact inL2(0, T ;X). Thus, one can select a subsequence(unk

) that converges tou ∈ L2(0, T ;X).

3. Likewise, integrating both sides of (5.17) from0 to T , we obtain

‖u′
n‖L2(0,T ;X) ≤ C6

√
T

uniformly in n. Thus,(u′
nk
) is weakly precompact inL2(0, T ;X), and one can select a subsequence

(u′
nk′

) that weakly converges tow ∈ L2(0, T ;X) and strongly converges tou′ ∈ L2(0, T ;X).
Clearly,w = u′. Indeed, takingφ ∈ C1(0, T ;X) with compact support in(0, T ) and using integra-
tion by parts, we obtain

∫ T

0
u′
nk′

(t)φ(t)dt = −
∫ T

0
unk′

(t)φ′(t)dt. (5.21)

By sendingk′ → ∞ in (5.21), we see thatu′ ∈ H1(0, T ;X) andu′ = w.

4. Next, we show thatu is a unique weak solution of (5.6) satisfyingu(0) = g. This follows from a
standard argument (see, e.g., [9, Theorem 7.1.3]).
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Fix N ∈ N and choose a function of the form

v(t) =

N
∑

j=1

dj(t)φnj, (5.22)

wheredj(t) are continuously differentiable functions andφnj are defined in (5.7). Next, we multiply
(5.9) withn > N andφ := φnj by dj(t), sum overj, and integrate the result from0 to T to obtain

∫ T

0
(u′

n(t)−K(un(t))− f(un(t)),v(t))dt = 0.

Passing to the limit alongn = nk, we have

∫ T

0
(u′(t)−K(u(t))− f(u(t)),v(t))dt = 0. (5.23)

This equality holds for an arbitraryv as in (5.22). Since functions of this form forN ∈ N are dense
in L2(0, T ;X), we conclude that (5.23) holds for allv ∈ L2(0, T ;X). Therefore,

(u′ −K(u)− f(u),v) = 0 ∀v ∈ L2(0, T ;X) (5.24)

a.e. on[0, T ].

5. To show thatu is a weak solution of (2.32), (5.1), it remains to verifyu(0) = g. To this end, we
choosev ∈ C1(0, T ;X) vanishing att = T as a test function in (5.6) and integrate by parts to obtain

−
∫ T

0

(

u(t),v′(t)
)

dt =

∫ T

0
(K(u(t)) + f(u(t)),v(t)) dt+ (u(0),v(0)) . (5.25)

Using the same test functions in (5.9), we have

−
∫ T

0

(

unk
(t),v′(t)

)

dt = (K(unk
(t)) + f(unk

(t)),v(t)) dt+ (unk
(0),v(0)) . (5.26)

Passing to the limit in (5.26) yields

−
∫ T

0

(

u(t),v′(t)
)

dt =

∫ T

0
(K(u(t)) + f(u(t)),v(t)) dt+ (g,v(0)) . (5.27)

Comparing the limiting equation (5.27) with (5.25) we conclude thatu(0) = g. Thus,u is a weak
solution of (5.4).

6. To show that the just constructed weak solution is unique,suppose that there is another solution

w′ = K(w) + f(w) (5.28)

satisfying the same initial conditionw(0) = g. Denoteξ = u −w. By subtracting the (5.28) from
(5.4), multiplying both sides byG(x)ξ and integrating overI, we have

1

2

d

dt
‖
√
Gξ(·, t)‖2X =

∫

I2
W (x, y) (ξ(y, t)− ξ(x, t)) ξ(x, t)dydx+

∫

I
G(x) (f(u(x, t))− f(w(x, t)) ξ(x, t)dx
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Using Lemma 3.3 and Lipschitz continuity off , we obtain

d

dt
‖
√
Gξ(·, t)‖2X ≤ L‖

√
Gξ(·, t)‖2X .

SinceG is strictly positive onI (cf. (2.9)), from the last inequality andξ(0) = 0, we conclude that
u(t) = w(t) for all t ∈ [0, T ]. This proves uniqueness.

7. The uniqueness of the weak solution entailsun → u asn→ ∞. Indeed, suppose on the contrary that
there exists a subsequenceunl

, which is not converging tou. Then for a givenǫ > 0 one can select a
subsequenceunli

such that
‖unli

− u‖L2(0,T ;X) > ǫ ∀i ∈ N.

However, (unli
) is precompact inL2(0, T,X) and contains a subsequence converging to a weak

solution of (5.4), which must beu by uniqueness. Contradiction.

�

5.3 Approximation

It remains to estimate the difference between the solutionsof the averaged equation (2.26) and that of the
Galerkin problem (5.11). The key is the estimate for theL4–norm of the difference betweenVn andUn (see
(2.31) and (5.15)), the kernels used in the averaged and the Galerkin problems respectively.

Lemma 5.3.
‖Un − Vn‖L4(I2) → 0, asn→ ∞. (5.29)

Proof. First, we show thatUn, n ∈ N, form a sequence ofL4–bounded martingales [19]. To this end, we
consider a probability space(I2,B(I2), λ) with I2 as a sample space equipped with theσ–algebra of Borel
sets, and the Lebesgue measure as probability. LetAn denote the algebra of subsets ofI2 generated by the
setsIni × Inj, (i, j) ∈ [n]2. ThenUn can be represented as the conditional expectation

Un = E (U |An), n ∈ N.

SinceU ∈ L4(I2) (cf. W-4) and (2.9)), theLp–Martingale Convergence Theorem yields

Un → U a.e. and inL4(I2) asn→ ∞. (5.30)

Next, we turn to functionsVn, n ∈ N (cf. (2.31)):

Vn(x, y) =
n
∑

i,j=1

W̄n(xni, xnj)

n−1
∑n

k=1 W̄n(xni, xnk)
1Ini×Inj

(x, y)

=

∑n
i,j=1 W̄n(xni, xnj)1Ini×Inj

(x, y)
∑n

i=1 n
−1
∑n

k=1 W̄n(xni, xnk)1Ini
(x)

=:
Pn(x, y)

Qn(x)
. (5.31)
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From (2.3) andW-1), we havePn → W a.e. onI2. Likewise, by (2.10),

Qn =

∫

I
W (·, z)dz(1 + δn) ≥ ν > 0, asn→ ∞

uniformly on any closed interval lying in(0, 1). Thus, Pn

Qn
→ U a.e. onI2 asn → ∞. Furthermore, by

(2.3) andW-3),
∣

∣

∣

∣

Pn

Qn

∣

∣

∣

∣

≤ W

ν
.

SinceVn, U ≥ 0,

(Vn − U)4 ≤ 4(V 4
n + U4) ≤ 4W 2

ν4
.

Thus,Vn − U → 0 a.e. onI2 and

|Vn − U | ≤
√
2ν−1W ∈ L4(I2).

By the Dominated Convergence TheoremVn → U in L4(I2). From this and (5.30), we conclude

‖Un − Vn‖L4(I2) → 0, n→ ∞.

�

Lemma 5.4. For anyT > 0, solutions of the IVPs for(2.26)and (5.11)satisfy

lim
n→∞

max
t∈[0,T ]

‖un(t)− vn(t)‖Gn = 0, (5.32)

provided
lim
n→∞

‖un(0)− vn(0)‖Gn = 0, (5.33)

Proof. Denoteφni := uni − vni, i ∈ [n]. By subtracting (2.26) from (5.11), multiplying the result by
n−1Gniφni (see (4.2) for the definition ofGni) and summing overi ∈ [n], we obtain

2−1 d

dt
‖φn‖2Gn

= n−2
n
∑

i,j=1

W̄nij(φnj − φni)φni + n−2
n
∑

i,j=1

Gni(Ūnij − Vnij)(unj − uni)φni

+ n−1
n
∑

i=1

Gni [f(uni)− f(vni)]φni. (5.34)

As before, we use Lemma 3.5 and (2.25) to obtain

n−2
n
∑

i,j=1

W̄nij(φnj − φni)φni ≤ 0, (5.35)

∣

∣

∣

∣

∣

n−1
n
∑

i=1

Gni [f(uni)− f(vni)]φni

∣

∣

∣

∣

∣

≤ Lf‖φn‖2Gn
. (5.36)
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Usingmaxt∈[0,T ] ‖un(t)‖∞,n ≤ C7 (cf. Theorem 3.4), we estimate

∣

∣

∣

∣

∣

∣

n−2
n
∑

i,j=1

Gni(Unij − Vnij)(unj − uni)φni

∣

∣

∣

∣

∣

∣

≤ C8(∆n(W ) + ‖φn‖2Gn
),

where

∆n(W ) :=
1

n2

n
∑

i,j=1

Gni(Unij − Vnij)
2.

Further, using the Cauchy-Schwarz inequality, we have

∆n(W ) ≤
(

n−1
n
∑

i=1

G2
ni

)1/2

‖Un − Vn‖2L4(I2) (5.37)

Recalling the definition ofGni and using the Cauchy-Schwarz inequality again, we obtain

n−1
n
∑

i=1

G2
ni = n−1

n
∑

i=1



n−1
n
∑

j=1

W̄nij





2

≤ n−2
n
∑

i,j=1

W̄ 2
nij. (5.38)

Using (2.11), (5.38), and Lemma 5.4, we obtain

lim
n→∞

∆n(W ) = 0. (5.39)

The combination of (5.34)-(5.37) yields

d

dt
‖φn‖2Gn

≤ 2(C8 + Lf )‖φn‖2Gn
+ 2C7∆n(W ).

By Gronwall’s inequality,

max
t∈[0,T ]

‖φn(t)‖2Gn
≤
(

‖φn(0)‖22,n +
C8

C8 + Lf
∆n(W )

)

exp{(C8 + Lf )T}. (5.40)

The right hand side in (5.40) tends to0 asn → ∞, as follows from (5.33) and (5.39). This proves the
lemma.
�

Theorem 2.6 now follows from Theorems 4.1, 5.2 and Lemma 5.4.

6 Discussion

The analysis in the preceding sections justifies the continuum limit (2.32) for the semilinear heat equation
(2.24) on sparse W–random graphs. In conclusion, we outlineseveral extensions of this work to certain
nonlinear models, which are of interest in applications.
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6.1 The Kuramoto model

The analysis in Sections 4 and 5 can be extended to cover the following nonlinear heat equation:

u̇ni = n−1
∑

j:{i,j}∈E(Γn)

D(unj − uni) + f(uni), (6.1)

whereD andf are Lipschitz continuous functions (cf. (3.2), (2.25)). Inaddition, we assume thatD is an
odd function satisfying the sign condition

uD(u) ≥ 0. (6.2)

Both conditions hold for the original Kuramoto model withD(u) = sinu.

Under the above assumptions onf andD, we can justify the continuum limit for (6.1).

Theorem 6.1. Let g ∈ L∞(I) andT > 0 be arbitrary. Denote the solutions of(6.1) and (1.2) subject to
the initial conditions(2.35)and (2.34)byuni(t), i ∈ [n] andu(x, t) respectively.

Then with probability1,
lim
n→0

sup
t∈[0,T ]

‖un(·, t) − u(·, t)‖L2(I) = 0,

where

un(x, t) :=

n
∑

i=1

uni(t)1Ini
(x).

For the proof of Theorem 6.1, one needs the following modification of Lemma 3.3.

Lemma 6.2. LetW ∈ L2(I) be a symmetric function andD be an odd symmetric continuous function.
Then for anyu ∈ L∞(I),

∫

I2
W (x, y)D(u(y) − u(x))u(x)dxdy = −2−1

∫

I2
W (x, y)D(u(y)− u(x))(u(y) − u(x))dxdy.

If, in addition,W ≥ 0 andD satisfies(6.2), then
∫

I2
W (x, y)D(u(y) − u(x))u(x)dxdy ≤ 0.

With Lemma 6.2 in hand, the proofs of the statements in Sections 4 and 5 can be translated to the
nonlinear equation (6.1) with minor changes.

6.2 An alternative scaling and other graph models

If the diffusion term is scaled bynρn instead ofdni = O(nρn) as in (2.24), the formal derivation of the
continuum limit yields

∂

∂t
u(x, t) =

∫

I
W (x, y)D (u(y, t)− u(x, t)) dy + f(u(x, t)). (6.3)
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Here, the kernel isW instead ofU (cf. (2.33)). In particular, for the Kuramoto model on the power law
family of graphs, the alternative scaling yields

∂

∂t
u(x, t) = x−α

∫

I
y−α sin (u(y, t)− u(x, t)) dy. (6.4)

The presence of thex–dependent factor on the right–hand side of (6.4) has interesting implications for the
spatial patterns generated by the Kuramoto model. In particular, it is responsible for the existence of the
chimera-like patterns in the Kuramoto model with repulsivecoupling on power law graphs (cf. [16]).

The proof of existence of the strong solution of the IVP in Section 3 does not cover the equation (6.3),
because it relies on condition (3.3), which does not hold forW in general (see (3.9)). However, one can
show the existence of the weak solution for the IVP for (6.3) (cf. Definition 5.1) by constructing it as the
limit of solutions of the Galerkin problems following the lines of the analysis in§5.2.

Likewise, there are many different ways how to define a convergent family of sparse random graphs.
Instead of (2.2) one could, for example, define the probability for a given pair of nodes to belong to the edge
set using averaging:

P ({i, j} ∈ E(Γn)) = ρnn

∫

Ini×Inj

W (x, y)dxdy. (6.5)

The analysis of this paper can be used to justify the continuum limit for coupled systems on{Γn} defined
by (6.5).
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