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Abstract

The transcritical bifurcation without parameters (TBWP) describes a stability
change along a line of equilibria, resulting from the loss of normal hyperbolicity at
a given point of such a line. Memristive circuits systematically yield manifolds of
non-isolated equilibria, and in this paper we address a systematic characterization
of the TBWP in circuits with a single memristor. To achieve this we develop
two mathematical results of independent interest; the first one is an extension of
the TBWP theorem to explicit ordinary differential equations (ODEs) in arbitrary
dimension; the second result drives the characterization of this phenomenon to
semiexplicit differential-algebraic equations (DAEs), which provide the appropriate
framework for the analysis of circuit dynamics. In the circuit context the analysis
is performed in graph-theoretic terms: in this setting, our first working scenario is
restricted to passive problems (exception made of the bifurcating memristor), and
in a second step some results are presented for the analysis of non-passive cases.
The latter context is illustrated by means of a memristive neural network model.

Keywords: Manifold of equilibria, normal hyperbolicity, transcritical bifurcation
without parameters, differential-algebraic equation, nonlinear circuit, memristor.

AMS Subject Classification: 34A09, 34C45, 34D35, 37G10, 94C05, 94C15.

1 Introduction

Memristors and other related electronic devices [10, 12, 41] are known to exhibit sys-
tematically manifolds of non-isolated equilibrium points. This is a consequence of the
form of the voltage-current characteristic of memristive devices. As shown in [37], in the
absence of certain configurations equilibrium manifolds of strictly locally passive memris-
tive circuits are normally hyperbolic, that is, all remaining eigenvalues of the linearized
vector field (except for those whose eigenvectors span the tangent space to the equilib-
rium manifold) are away from the imaginary axis. From a qualitative point of view it is
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petitividad (MINECO)/Fondo Europeo de Desarrollo Regional (FEDER).
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therefore natural to examine what happens in the memristive circuit dynamics when the
aforementioned passivity assumption does not hold.

This problem must be framed in the theory of bifurcation without parameters origi-
nally introduced in the seminal papers [14, 15, 16]; cf. also the recent book [25]. When
normal hyperbolicity fails, a change in the local qualitative properties typically occurs
along the equilibrium manifold, hence the “bifurcation without parameters” term. In this
context, the most basic phenomenon is the transcritical bifurcation without parameters
(TBWP throughout the whole manuscript), which describes the transition of one eigen-
value through the origin under certain local conditions on the vector field. Our purpose in
this paper is to present a systematic circuit-theoretic characterization of this bifurcation
for memristive circuits. Due to the systematic presence of non-isolated equilibria in mem-
ristive circuits, this is the most elementary phenomenon responsible for a stability loss in
nonlinear circuits with memristors, and its analysis seems therefore to be very relevant
for the development of the qualitative theory of memristive circuits.

This is actually a three-fold goal. First, the characterization of the TBWP in [14]
(and also in [25]) is only addressed for two-dimensional dynamics. However, most non-
linear circuits involve a large number of dynamic variables and a two-dimensional model
reduction is rarely feasible. For their results to apply to higher dimensional problems, the
authors assume in [14, 25] that a prior reduction to a center two-dimensional manifold
has been performed, but no explicit conditions paving the way for an appropriate reduc-
tion are given in arbitrary (finite) dimension. As a somewhat natural (yet not trivial)
extension of their characterization we will present a TBWP theorem for explicit ODEs
in R

n, addressing the geometrical conditions which allow for a center manifold reduction
in which the two-dimensional conditions of [14] do hold. This first goal is addressed in
Section 2 (cf. Theorem 2).

Many nonlinear circuits do not admit a dynamical description in terms of an explicit
ODE. This is clearly the case in large scale integration circuits, for which such a state
space description in terms of an explicit ODE model is hardly automatable. For this
reason, semistate models based on differential-algebraic equations (DAEs) are preferred
instead [13, 18, 24, 34, 44]. Analytical results involving dynamical systems intended to
apply to nonlinear circuit models should therefore be addressed to DAEs. Many qualita-
tive investigations about nonlinear circuits require a prior reduction to an ODE model,
involving unnecessarily restrictive hypotheses which, in addition, make the analysis more
difficult (see e.g. [11] as a sample). In the DAE framework the approach is different:
instead of trying to drive a model to the ODE context in order to apply a given known
result, it is more convenient to extend such result to the DAE setting, allowing for a direct
application to whatever semistate model. In this direction, our second goal is to drive the
TBWP theorem to the semiexplicit DAE setting, a task which is accomplished in Section
3 and, specifically, in Theorem 3.

As indicated above, our third goal is to obtain a characterization of the TBWP for
memristive circuits in circuit-theoretic terms. This means that the characterization should
be stated in terms of the underlying circuit digraph and the electrical features of the de-
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vices. This so-called structural approach has its roots in the state-space formulation
problem (whose origins can be traced back to [5, 8]) and, more recently, has been suc-
cessfully applied to the DAE index characterization of several nonlinear circuit models
[13, 18, 20, 34, 42, 44, 45]. This approach makes it possible to directly transfer different
analytical and qualitative results to circuit simulation programs. Allowed by the TBWP
theorem for DAEs obtained in Section 3, such a characterization is detailed in Section
4 for circuits displaying a line of equilibria (that is, including exactly one memristor),
under the assumption that the failing of a passivity assumption on this memristor is the
one responsible for the loss of normal hyperbolicity: cf. Theorem 4. The analysis in this
section extends some preliminary results presented in [17].

Section 5 discusses this phenomenon relaxing the passivity assumption on the remain-
ing circuit devices, and includes an example coming from the theory of memristive neural
networks. Finally, Section 6 compiles some concluding remarks.

2 The TBWP theorem for explicit ODEs

2.1 Two-dimensional dynamics

We begin by recalling the characterization of the TBWP in two-dimensional problems
presented by Fiedler, Liebscher and Alexander in [14].

Theorem 1 (Fiedler, Liebscher & Alexander, 2000). Consider the system

x′ = ξ1(x, y) (1a)

y′ = ξ2(x, y), (1b)

with ξ ∈ C2(R2,R2), and assume that

1. ξ(x, 0) = 0;

2.
∂ξ2
∂y

(0, 0) = 0;

3.
∂ξ1
∂y

(0, 0) 6= 0;

4.
∂2ξ2
∂x∂y

(0, 0) 6= 0.

Then (1) is locally orbitally C1-equivalent to the normal form

x′ = y (2a)

y′ = xy (2b)

around the origin.
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Needless to say, it is enough to assume that condition 1 holds for x sufficiently close to 0.
Note that y = 0 is a line of equilibria for both (1) and (2), and that λ = 0 is an eigenvalue
for the linearization of both systems at any (x, 0). This zero eigenvalue becomes a double
(index-two) one at (0, 0), in a way such that the second system eigenvalue changes sign
along the line of equilibria; specifically, this second eigenvalue is positive (resp. negative)
if x > 0 (resp. x < 0) in the normal form (2). This means that the line of equilibria is
normally hyperbolic for x 6= 0, and a stability change along the line of equilibria occurs
as a result of the loss of normal hyperbolicity at the origin. This is the transcritical
bifurcation without parameters.

2.2 The TBWP for explicit ODEs in R
n

Theorem 1 can be extended to explicit ODEs in arbitrary (finite) dimension as fol-
lows. Mind a notational abuse used in different situations throughout the paper, namely
writing both f(x) and f(x1, . . . , xn), the latter standing for the (more cumbersome)
f((x1, . . . , xn)). Obviously, the result below can be also stated for an open set Ω ⊆ R

n

with 0 ∈ Ω or for a germ of a map at the origin.

Theorem 2 (TBWP in R
n). Assume that f ∈ C2(Rn,Rn) verifies the following.

1. f(x1, 0, . . . , 0) = 0;

2. f ′(0) has a double index-two zero eigenvalue, and Reλ 6= 0 for the remaining ones;

3. f ′′(0)pq /∈ imf ′(0), if p ∈ kerf ′(0)− {0} and q ∈ ker (f ′(0))2 − kerf ′(0).

Then there exists a local, two-dimensional, C2 center manifold, where the reduced dynam-
ics admits a description in local coordinates of the form u′ = ξ(u), with ξ verifying the
conditions of Theorem 1 in u∗ = (0, 0).

Proof. The proof relies on the fact that the linear transformation driving the linear part
to Jordan form leaves the line of equilibria invariant; note also that condition 3 captures
the geometric (transversality) hypothesis which extends to higher-dimensional contexts
the second-order condition in Theorem 1. For better clarity we proceed in numbered
steps.

1. Let P be a matrix that drives f ′(0) to Jordan form:

J̃ = P−1f ′(0)P =

(

J0 0
0 Jh

)

, J0 =

(

0 1
0 0

)

, Jh hyperbolic.

2. Under the change of coordinates x = Py, the system x′ = f(x) is transformed into
y′ = f̃(y) = P−1f(Py), which reads as

u′ = f̃1(u, v) = J0u+ η(u, v)

v′ = f̃2(u, v) = Jhv + γ(u, v)
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with y = (u, v), u ∈ R
2, v ∈ R

n−2 and η′(0, 0) = 0, γ′(0, 0) = 0.

3. Now, from the fact that p̃ ∈ ker f̃
′

(0) ⇔ p = P p̃ ∈ kerf ′(0) it follows that P
leaves the space kerf ′(0) = span{e1} (with e1 = (1, 0, . . . , 0)) invariant, and therefore
the equilibrium line of f̃ is (u1, 0, . . . , 0).

4. Using, analogously, the properties q̃ ∈ ker (f̃
′

(0))2 ⇔ q = P q̃ ∈ ker (f ′(0))2 and

w̃ ∈ im f̃
′

(0) ⇔ w = Pw̃ ∈ imf ′(0), the condition

f ′′(0)pq /∈ imf ′(0) with p ∈ kerf ′(0)− {0} and q ∈ ker (f ′(0))2 − kerf ′(0)

yields

f̃
′′

(0)p̃q̃ /∈ im f̃
′

(0), with p̃ ∈ ker f̃
′

(0)− {0} and q̃ ∈ ker ( f̃
′

(0))2 − ker f̃
′

(0)

and, in turn, this leads to
∂2η2
∂u1∂u2

(0, 0) 6= 0. (3)

5. The system y′ = f̃(y) admits a local center manifold of the form v = ζ(u), with
ζ(0) = 0, ζ ′(0) = 0 (see e.g. [9, 32, 48]). The dynamics on this manifold reads as

u′ = ξ(u) = J0u+ η(u, ζ(u)).

6. Locally, the curve of equilibria must belong to the center manifold [9, 48], and this
yields condition 1 of Theorem 1, that is, ξ(u1, 0) = 0. Additionally, the form of J0 renders
conditions 2-3 trivial, and (3) yields condition 4, that is,

∂2ξ2
∂u1∂u2

(0, 0) 6= 0,

since η′(0, 0) = 0, ζ ′(0, 0) = 0. This completes the proof.

✷

Remark. Geometrically, condition 3 expresses the transversality at x∗ of the center
manifold and the so-called singular manifold

{x ∈ R
n / det f ′(x) = 0}, (4)

as a consequence of the following well-known property from matrix analysis (we omit the
proof; find details e.g. in [36]).

Lemma 1. If H ∈ C1(Rm,Rn×n), rkH(x∗) = n− 1 and p ∈ kerH(x∗)− {0}, then

(H ′(x∗)q)p /∈ imH(x∗) ⇔ (detH)′(x∗)q 6= 0.
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Lemma 1 implies in particular that, if f ∈ C2(Rn,Rn) and rkf ′(x∗) = n− 1, then

f ′′(x∗)pq /∈ imf ′(x∗) ⇔ (det f ′)′(x∗)q 6= 0,

a condition which, in the setting of Theorem 2, expresses the transversal intersection of
the direction spanned by the generalized eigenvector q (hence of the center manifold itself)
and the singular manifold (4), as indicated in the Remark above. For later use, we also
note that for a single-parameter valued matrix map H ∈ C1(R,Rn×n) with H ′(λ∗) = n−1
we have

H ′(λ∗)p /∈ imH(λ∗) ⇔ (detH)′(λ∗) 6= 0.

Lemma 1 also shows that condition 3 does not depend on the choice of q, since kerf ′(0)
is tangent to the singular manifold, so that f ′′(0)pp ∈ imf ′(0) and then, for q̂ = αq + βp
with α 6= 0, we have

f ′′(0)pq̂ = (αf ′′(0)pq + βf ′′(0)pp) /∈ imf ′(0) ⇔ f ′′(0)pq /∈ imf ′(0).

Note also that the form of kerf ′(0) = span{e1} makes it possible to simplify the
statement of condition 3 to

fx1x(0)q /∈ imf ′(0),

where fx1x denotes the matrix of partial derivatives

(

∂2fi
∂x1∂xj

)

.

Finally, from the S̆os̆ităı̆svili-Palmer Theorem [31], it follows that the normal form for
the TBWP in R

n is

x′ = y

y′ = xy

v′ = Jhv.

Certainly, the form of the latter equation may be further simplified to that of a standard
node or saddle point, depending on the inertia of Jh.

3 TBWP in semiexplicit DAEs

Along the route indicated in Section 1, we extend below the TBWP to the setting of
semiexplicit DAEs.

Theorem 3 (TBWP in semiexplicit index-one DAEs). Let h ∈ C2(Rr+p,Rr), g ∈
C2(Rr+p,Rp), and consider the system

y′ = h(y, z) (5a)

0 = g(y, z). (5b)

Write E =

(

Ir 0
0 0

)

, F = (h, g). Assume that gz(0, 0) is non-singular and that
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1. h(y1, 0, 0) = 0, g(y1, 0, 0) = 0;

2. the matrix pencil λE−F ′(0, 0) has a double index-two zero eigenvalue, and Reλ 6= 0
for the remaining eigenvalues;

3. F ′′(0, 0)pq /∈ imF ′(0, 0), where

p ∈ kerF ′(0, 0)− {0}, q ∈ ker (F ′(0, 0))2 − kerF ′(0, 0). (6)

Then, there exists an invariant, two-dimensional, C2 submanifold of g(y, z) = 0 where the
dynamics admits a local description of the form u′ = ξ(u) with ξ satisfying the conditions
of Theorem 1 at the origin.

Before proceeding with the proof we present some auxiliary results.

Lemma 2 (Schur). Let D be a non-singular matrix and

M =

(

A B
C D

)

, (M/D) = A−BD−1C, (7)

with A (hence M) square. Then detM = det(M/D) detD and corkM = cork(M/D).

We will make use of this Lemma at several points in our analysis, mostly with

M = F ′(0, 0) =

(

hy(0, 0) hz(0, 0)
gy(0, 0) gz(0, 0)

)

≡

(

A B
C D

)

. (8)

The proof of Theorem 3 will be based on checking conditions 1-3 of Theorem 2 for the
reduced dynamics of the DAE (5) on the solution manifold (5b). Conditions 1 and 2 will
be derived in a more or less straightforward manner; condition 3 is not trivial, though.
Remember that the goal is to state the conditions in terms of the original problem setting,
that is, in terms of h and g (that is, of F ), as it is done in our statement of condition
3. But note that it is the matrix pencil λE − F ′(0, 0) (and not the matrix F ′(0, 0)) the
one that is assumed to have a double, index-two zero eigenvalue; this means that it is not
obvious that there should exist an q satisfying the requirement depicted in (6) in light
of the previous hypotheses. As a cautionary example consider, for instance, the Schur
reduction of

M =





0 1 1
1 0 0
0 1 1



 , (M/D) =

(

0 0
1 0

)

,

and note that λ = 0 is a double eigenvalue for (M/D) but a simple one for M ; no
generalized eigenvector exists in this case for M . This cannot occur in the setting of
Theorem 3 (that is, there will indeed exist a q satisfying the condition in (6)) because of
item (c) of Lemma 3 below.
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Lemma 3. Given M and (M/D) in (7), consider the operators L and T : Rr → R
r+p

defined by

Lu =

(

u
−D−1Cu

)

, Tu =

(

u
0

)

.

Then

(a) p ∈ kerM ⇔ p = Lp, with p ∈ ker (M/D);

(b) w ∈ im(M/D) ⇔ Tw ∈ imM . Actually, Tw =Mu ⇔ u = Lu, with w = (M/D)u;

(c) if kerM ⊆ imT = R
r × {0}, then q ∈ kerM2 ⇔ q = Lq, with q ∈ ker (M/D)2.

Proof. Items (a) and (b) are immediate in light of the definition of (M/D) in (7).
Regarding (c), let q ∈ kerM2 and denote w =Mq ∈ kerM ∩ imM . Then:

(i) since w ∈ kerM , then w = Lw with w ∈ ker (M/D) because of (a);

(ii) owing to the hypothesis kerM ⊆ imT , necessarily w = Tu for a certain u; additionally,
because of the form of L and T it follows that u = w and then w = Lw = Tw;

(iii) the condition w = Tw =Mq implies, because of (b), that q = Lq, with w = (M/D)q;

(iv) finally, since w ∈ ker (M/D) (cf. (i)), it follows that q ∈ ker (M/D)2.

The converse result in (c) is entirely analogous and the proof is left to the reader.

✷

WithM as defined in (8), then the linear operator L is the differential at the origin of the
parameterization y → (y, ψ(y)) of the manifold M in (5b), with ψ given by the implicit
function theorem, and therefore L will define an isomorphism R

r → ker
(

C D
)

= T(0,0)M.
Item (a) in Lemma 3 expresses that L also induces an isomorphism between the spaces
ker (M/D) → kerM ⊆ T(0,0)M. Moreover, in the scenario assumed in (c), one can check
that kerM2 ⊆ T(0,0)M and that L also induces an isomorphism ker (M/D)2 → kerM2.

For later use, we also note that a coordinate description α of a map β defined on M,
that is, a relation of the form α(y) = β(y, ψ(y)), implies α′(0) = β ′(0, ψ(0))L. We will
make use of this remark in the final step of the proof of Theorem 3.

Proof of Theorem 3.

1. The hypothesis that gz(0, 0) is non-singular implies, by the implicit function theorem,
that M ≡ g = 0 is locally a manifold that can be described by z = ψ(y). The goal is
then to apply Theorem 2 to the reduced system

y′ = f(y) = h(y, ψ(y)). (9)

Specifically, we need to check that the requirements imposed on F = (h, g) yield the
conditions 1-3 in Theorem 2.

2. The first condition holds trivially, since

f(y1, 0) = h(y1, 0, ψ(y1, 0)) = h(y1, 0, 0) = 0,
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where the second identity is due to the fact that ψ(y1, 0) = 0 because g(y1, 0, 0) = 0.

3. The second condition also follows easily from the implicit function theorem, since the
linearization of the reduced system (9) at the origin is

f ′(0) = hy(0, 0) + hz(0, 0)ψ
′(0) = hy(0, 0)− hz(0, 0)(gz(0, 0))

−1gy(0, 0),

and the spectrum of f ′(0) = A−BD−1C equals that of the matrix pencil λE−M , as an
immediate consequence of Schur’s lemma:

det(λE −M) = det

(

λ

(

Ir 0
0 0

)

−

(

A B
C D

))

= det

(

λIr −A −B
−C −D

)

= det
(

λIr − (A− BD−1C)
)

det(−D).

4. The only non-immediate step consists in checking that

F ′′(0, 0)pq /∈ imF ′(0, 0),

where p ∈ kerF ′(0, 0)− {0}, q ∈ ker (F ′(0, 0))2 − kerF ′(0, 0), implies

f ′′(0)pq /∈ imf ′(0),

with p ∈ kerf ′(0) − {0} and q ∈ ker (f ′(0))2 − kerf ′(0). Note that item (c) of Lemma 3
applies because kerF ′(0, 0) = span{e1}, and then q yields a generalized eigenvector q of
f ′(0), with q = Lq.

It then suffices to use the characterization

F ′′(0, 0)pq /∈ imF ′(0, 0) ⇔ (detF ′)′(0, 0)q 6= 0,

following from Lemma 1 because, differentiating detF ′ = det gz det(F
′/gz) and using the

fact that det(F ′/gz)(0, 0) = det(f ′)(0) = 0 (because λ = 0 is an eigenvalue), we have

(detF ′)′(0, 0) = det gz(0, 0)(det(F
′/gz))

′(0, 0);

additionally, since det gz(0, 0) 6= 0, it follows that

(detF ′)′(0, 0)q 6= 0 ⇔ (det(F ′/gz))
′(0, 0)Lq 6= 0 ⇔ (det(f ′))′(0)q 6= 0,

because det f ′(y) = det(F ′/gz)(y, ψ(y)) ⇒ (det(f ′))′(0) = (det(F ′/gz))
′(0, 0)L as indi-

cated right before the proof of Theorem 3. Finally,

(det(f ′))′(0)q 6= 0 ⇔ f ′′(0)pq /∈ imf ′(0)

and the proof is complete.

✷

Remark. As in the explicit ODE case, condition 3 can be recast as

Fx1x(0, 0)q /∈ imF ′(0, 0),

where x = (y, z) and Fx1x stands for the matrix of partial derivatives

(

∂2Fi

∂x1∂xj

)

.

9



4 TBWP in memristive circuits

The memristor (an abbreviation for memory-resistor) is a new electronic device governed
by a nonlinear, C1 flux-charge relation of the form ϕ = φ(q). The existence of such a
device was predicted for symmetry reasons by Chua in 1971 [10], but it was not until
2008 that it began to attract considerable attention. The reason for this was the report
in [41] of the design of a nanometric memristor by the HP company. The key aspect of
this device is that, by differentiation of the aforementioned constitutive relation, one gets
the voltage-current relation

v =M(q)i, (10)

with M(q) = φ′(q). For later use, we will assume that φ is a C2 map. Note that in
(10) the “resistance” (or, better, memristance) M depends on q(t) =

∫ t

−∞
i(τ)dτ , so that

the device somehow keeps track of its own history (hence the memory-resistor name). A
great amount of research has been directed to this and other related devices since 2008;
cf. [1, 12, 19, 22, 23, 26, 28, 29, 33, 35, 37, 43] as a sample of literature.

It is easy to check that memristors systematically yield manifolds of non-isolated equi-
librium points; find details below. In order to focus on problems with lines of equilibria,
we will restrict our attention to circuits including a single memristor, besides capacitors,
inductors, resistors, and (independent) voltage and current sources. Capacitors, inductors
and resistors may be nonlinear, and they will respectively be assumed to be defined by
a voltage-dependent capacitance matrix C(vc), a current-dependent inductance matrix
L(il), and a current-controlled C1 description vr = γ(ir) in the case of resistors; for later
use we denote the resistance matrix γ′(ir) as R(ir). All three matrices need not be di-
agonal, allowing for the presence of coupling effects in the corresponding sets of devices.
Capacitors, inductors and resistors are said to be strictly locally passive at a given op-
erating point if the corresponding characteristic matrix, that is, C(vc), L(il) or R(ir), is
positive definite (a square matrix P is positive definite if it verifies vTPv > 0 for non-
vanishing real vectors v; note that we do not require these matrices to be symmetric). We
assume the circuit to be autonomous, that is, sources are DC ones or, in mathematical
terms, they take constant values (grouped together in vectors V and I).

In this context, the circuit equations can be modeled by the differential-algebraic
system (see e.g. [34])

q′m = im (11a)

C(vc)v
′

c = ic (11b)

L(il)i
′

l = vl (11c)

0 = BmM(qm)im +Bcvc +Blvl +Brγ(ir) +BuV +Bjvj (11d)

0 = Qmim +Qcic +Qlil +Qrir +Quiu +QjI, (11e)

where the subscripts m, c, l, r, u, j are used for memristors, capacitors, inductors, resis-
tors, voltage sources and current sources, respectively. It is worth emphasizing that (11d)
and (11e) express Kirchhoff voltage and current laws in terms of the so-called loop and
cutset matrices B and Q (cf. the Appendix and [6, 34, 44]); we split these matrices as
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B = (Bm Bc Bl Br Bu Bj) and Q = (Qm Qc Ql Qr Qu Qj), where Bm (resp. Bc, Bl, Br,
Bu, Bj) corresponds to the columns of B accommodating memristors (resp. capacitors,
inductors, resistors, voltage sources, current sources), and the same notational convention
applies to the cutset matrix.

By denoting y = (qm, vc, il), z = (im, ic, vl, ir, vj , iu), the DAE (11) takes the form

E(y)y′ = h(y, z)

0 = g(y, z)

and equilibria are defined by the pair of conditions h(y, z) = 0, g(y, z) = 0, that is,

im = ic = vl = 0 (12a)

Bcvc +Brγ(ir) +BuV +Bjvj = 0 (12b)

Qlil +Qrir +Quiu +QjI = 0. (12c)

Note that the variable qm is not at all involved in (12). This means that, necessarily, no
equilibrium point may be isolated, since the variable qm unfolds any given equilibrium
point to a line (or even a higher dimensional set) of equilibria. In our working setting
equilibria will actually define a line, as a consequence of the condition corkF ′ = 1 shown
within the proof of Theorem 4.

The previous remarks drive the stability analysis of equilibria in memristive circuits
to the mathematical context considered in [4, 14, 15, 16, 25]. In this setting, the existence
of an m-dimensional manifold of equilibria implies that at least m eigenvalues of the lin-
earization of the vector field at any of these equilibria are null. The manifold is then said
to be normally hyperbolic (locally around such an equilibrium) if the remaining eigenval-
ues are not in the imaginary axis. The failing of the normal hyperbolicity requirement
typically yields a bifurcation without parameters [14, 15, 16, 25], where the qualitative
properties of the local phase portrait change.

In [37] one can find graph-theoretic conditions under which any manifold of equilibria
of a strictly locally passive memristive circuit is guaranteed to be normally hyperbolic. It
is therefore natural to address what happens when the passivity assumption does not hold;
allowed by Theorem 3, Theorem 4 below answers this question, again in circuit-theoretic
terms, for circuits with one memristor which becomes locally active at a given operating
point, yielding a transcritical bifurcation without parameters. Note that in the statement
of Theorem 4, a VMC-loop is a loop composed only of voltage sources, memristors and/or
capacitors. ILC-cutsets, VML-loops, etc. are defined analogously.

Theorem 4 (TBWP in memristive circuits). Consider a nonlinear circuit with a single
memristor, modeled by (11). Fix an equilibrium point (q∗m, v

∗

c , i
∗

l , i
∗

m, i
∗

c , v
∗

l , i
∗

r, v
∗

j , i
∗

u) (with
i∗m = 0, i∗c = 0, v∗l = 0), and assume that the following conditions hold.

1. The circuit displays neither VMC-loops nor ILC-cutsets.

2. There is a unique VML-loop, which includes the memristor and at least one inductor.
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3. The capacitance, inductance and resistance matrices C(v∗c ), L(i
∗

l ), R(i
∗

r) = γ′(i∗r)
are positive definite, with C(v∗c ) and L(i

∗

l ) symmetric; additionally, M(q∗m) = 0 and
M ′(q∗m) 6= 0.

Then the circuit undergoes a transcritical bifurcation without parameters at the aforemen-
tioned equilibrium point; moreover, near this bifurcating equilibrium, all eigenvalues of the
linearization (but the null one) have negative real part in the region where M(qm) > 0,
whereas a single (real) eigenvalue becomes positive at points where M(qm) < 0.

In the proof of Theorem 4 we will make use of some graph-theoretic results which are
compiled in advance. Proofs of these auxiliary results can be found in [3, 6, 34, 37].

Lemma 4. Let Bi and Qi denote, for i = 1, 2, 3, the submatrices of B and Q defined by
three pairwise-disjoint branch sets K1, K2, K3 of a given directed graph. If P is a positive
definite matrix, then

ker

(

B1 0 B3P
0 Q2 Q3

)

= kerB1 × kerQ2 × {0}.

The same terminological convention is used in Lemma 5 below. By a Ki-cutset (resp.
loop) we mean a cutset (resp. loop) defined only by branches belonging to Ki.

Lemma 5. The identity kerB1 = {0} (resp. kerQ2 = {0}) holds if and only if the digraph
has no K1-cutsets (resp. K2-loops).

The proof of Theorem 4 below is based on Theorem 3, which for simplicity was stated
under the assumption that the bifurcating equilibrium is located at the origin. Obviously,
we can make use of this result at a generic equilibrium (y∗, z∗) (with y∗ = (q∗m, v

∗

c , i
∗

l ) and
z∗ = (i∗m, i

∗

c , v
∗

l , i
∗

r , v
∗

j , i
∗

u)) and we will do so without further explicit mention.

Proof of Theorem 4. Note first that the strict passivity assumption on C(v∗c ) and L(i
∗

l )
makes these matrices non-singular, and therefore the maps h and g from (5) have (at least
locally) the form

h(y, z) =





im
(C(vc))

−1ic
(L(il))

−1vl





g(y, z) =

(

BmM(qm)im +Bcvc +Blvl +Brγ(ir) +BuV +Bjvj
Qmim +Qcic +Qlil +Qrir +Quiu +QjI

)

,

where we are denoting y = (qm, vc, il), z = (im, ic, vl, ir, vj, iu).

1. The matrix of partial derivatives gz(y
∗, z∗) is (using i∗m = 0, M(q∗m) = 0)

gz(y
∗, z∗) =

(

0 0 Bl BrR(i
∗

r) Bj 0
Qm Qc 0 Qr 0 Qu

)

,

12



which is invertible in light of Lemmas 4 and 5, since R(i∗r) is positive definite and there
are neither IL-cutsets (which are a particular instance of an ILC-cutset) nor VMC-loops.

2. Denoting y = (qm, ỹ), the conditions h(qm, ỹ
∗, z∗) = 0, g(qm, ỹ

∗, z∗) = 0 (arising in
condition 1 of Theorem 3) are trivially met (cf. (12)).

3. Condition 2 of Theorem 3 involves a matrix pencil spectrum which is given by the
determinant of















λ 0 0 −1 0 0 0 0 0

0 λIc 0 0 −(C(v∗c ))
−1 0 0 0 0

0 0 λIl 0 0 −(L(i∗l ))
−1 0 0 0

0 −Bc 0 0 0 −Bl −BrR(i
∗

r) −Bj 0

0 0 −Ql −Qm −Qc 0 −Qr 0 −Qu















, (14)

and which can be written as λd(λ) with d(λ) = detK(λ), provided that K(λ) is the
bottom-right submatrix of (14) (that is, the one obtained after removing the top row and
the left column).

The eigenvalue λ = 0 being a double one amounts to d(0) = 0 (ie. to K(0) being
singular) with d′(0) 6= 0. Additionally, provided that corkK(0) = 1 (a condition which
will be proved to hold), then the condition d′(0) 6= 0 is equivalent (cf. Lemma 1) to
K ′(0)p /∈ imK(0) for p ∈ kerK(0) − {0}. Finally, for the (double) zero eigenvalue to
be index-two it will be enough to show that corkF ′(y∗, z∗) = 1. We examine this set of
conditions in items 4, 5 and 6 below.

4. The matrix K(0) reads as









0 0 0 −(C(v∗c ))
−1 0 0 0 0

0 0 0 0 −(L(i∗l ))
−1 0 0 0

−Bc 0 0 0 −Bl −BrR(i
∗

r) −Bj 0
0 −Ql −Qm −Qc 0 −Qr 0 −Qu









and, following Schur’s lemma (Lemma 2), this matrix is easily seen to have the same
corank as

(

Bc 0 0 BrR(i
∗

r) Bj 0
0 Ql Qm Qr 0 Qu

)

.

From Lemmas 4 and 5, the positive definiteness of R(i∗r), the absence of IC-cutsets
and the existence of a unique VML-loop, it follows that corkK(0) = 1, with

kerK(0) = span{(0, pl, pm, 0, 0, 0, 0, pu)}

where (pl, pm, pu) ∈ ker
(

Ql Qm Qu

)

(and note, for later use, that pl 6= 0).

5. The condition K ′(0)p /∈ imK(0) is

13











0
pl
0
0









/∈ im









0 0 0 −(C(v∗c ))
−1 0 0 0 0

0 0 0 0 −(L(i∗l ))
−1 0 0 0

−Bc 0 0 0 −Bl −BrR(i
∗

r) −Bj 0
0 −Ql −Qm −Qc 0 −Qr 0 Qu









.

Assuming that this condition does not hold, we would have a solution for

Bcu1 − BlL(i
∗

l )pl +BrR(i
∗

r)u6 +Bju7 = 0.

Together with the identity Qlpl+Qmpm+Qupu = 0 and the orthogonality of the so-called

cut and cycle spaces kerB, kerQ (cf. [6]), we would get pTl L(i
∗

l )pl = 0 and therefore pl = 0
(since L(i∗l ) is positive definite), against the fact that pl 6= 0.

Hence, K ′(0)p /∈ imK(0) for p ∈ kerK(0)− {0}, and as indicated above this implies
that λ = 0 is a double eigenvalue.

6. The matrix F ′(y∗, z∗) is

F ′(y∗, z∗) =













0 0 0 1 0 0 0 0 0
0 0 0 0 (C(v∗c ))

−1 0 0 0 0
0 0 0 0 0 (L(i∗l ))

−1 0 0 0
0 Bc 0 0 0 Bl BrR(i

∗

r) Bj 0
0 0 Ql Qm Qc 0 Qr 0 Qu













and, via Schur’s lemma, corkF ′(y∗, z∗) = 1 follows again from Lemmas 4 and 5, which
imply that

ker

(

Bc 0 BrR(i
∗

r) Bj 0
0 Ql Qr 0 Qu

)

= {0}.

As indicated above, this implies that the double zero eigenvalue is indeed index two.

7. The fact that all non-vanishing eigenvalues (λ 6= 0) have non-zero real part follows
from the eigenvalue-eigenvector equations of the pencil, which can be written as

Bcuc + λBlL(i
∗

l )wl +BrR(i
∗

r)wr +Bjuj = 0

λQcC(v
∗

c )uc +Qlwl +Qrwr +Qmwm +Quwu = 0

together with λσm = wm, wc = λC(v∗c )uc, ul = λL(i∗l )wl. By taking conjugate transposes
and using the orthogonality of the cut and cycle spaces, we derive

(Reλ) (u⋆cC(v
∗

c )uc + w⋆
l L(i

∗

l )wl) + w⋆
r

R(i∗r) + (R(i∗r))
T

2
wr = 0. (15)

Now, if Reλ = 0, the positive definiteness of R(i∗r) implies wr = 0, and then

Bcuc + λBlLwl +Bjuj = 0 (16a)

λQcCuc +Qlwl +Qmwm +Quwu = 0. (16b)
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But in this setting the hypothesis that there are no ILC-cutsets implies, in light of (16a),
uc = 0 (and then wc = 0), wl = 0 (so that ul = 0) and uj = 0. Additionally, the absence
of VM-loops and (16b) would then imply wm = 0 (and then σm = 0) and wu = 0; this
would yield a vanishing eigenvector, which is a contradiction in terms.

8. In order to check that condition 3 of Theorem 3 holds, we take q from the requirement
F ′(y∗, z∗)q ∈ kerF ′(y∗, z∗)− {0}, which gives q the form

q = (q1, 0, q3, q4, 0, 0, 0, 0, q9), with (q3, q4, q9) ∈ ker
(

Ql Qm Qu

)

− {0}

and, in particular, q4 6= 0. The condition F ′′(y∗, z∗)pq /∈ imF ′(y∗, z∗) then reads as













0
0
0

BmM
′(q∗)q4
0













/∈ im













0 0 0 1 0 0 0 0 0
0 0 0 0 (C(v∗c ))

−1 0 0 0 0
0 0 0 0 0 (L(i∗l ))

−1 0 0 0
0 Bc 0 0 0 Bl BrR(i

∗

r) Bj 0
0 0 Ql Qm Qc 0 Qr 0 Qu













.

Again, assuming that this condition is not met, we would derive the existence of a non-
trivial solution for

Bcu2 − BmM
′(q∗)q4 +BrR(i

∗

r)u7 +Biu8 = 0,

but the presence of a VML-loop with the memristor rules out, because of the colored
branch theorem (according to which, in a three-color graph with just one blue branch,
this branch cannot form simultaneously a loop exclusively with green branches and a
cutset only with red branches; cf. [27, 46]), the existence of any CMRI-cutset including
the memristor. This would yield M ′(q∗)q4 = 0, against the fact that M ′(q∗) 6= 0 6= q4.

9. Finally, the proof that all eigenvalues (but the null one) have negative real part at
points of the equilibrium half-line where M(qm) > 0 (and, certainly, on a neighborhood
of the bifurcating point) is essentially similar to the one in item 7. Note only that the
fact that M(qm) 6= 0 make the eigenvalue-eigenvector equations read

Bcuc + λBlL(il)wl +BrR(ir)wr +BmM(qm)wm +Bjuj = 0

λQcC(vc)uc +Qlwl +Qrwr +Qmwm +Quwu = 0,

and (15) is now

(Reλ) (u⋆cC(vc)uc + w⋆
l L(il)wl) + w⋆

r

R(ir) + (R(ir))
T

2
wr + w⋆

mM(qm)wm = 0.

But since not only C(vc), L(il), R(ir) but also M(qm) are positive definite (always at
equilibrium points close enough to the bifurcating one), from the assumption Reλ ≥ 0
we would derive wm = wr = 0 and the reasoning proceeds as in item 7 above to show
that all non-vanishing eigenvalues must verify Reλ < 0. On the other hand, the fact that
only one real eigenvalue changes sign (and hence becomes positive) in the transition to
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the region where M(qm) < 0 follows from the TBWP phenomenon itself. This completes
the proof.

✷

Theorem 4 shows that, in essence, the presence of a VML-loop (in particular of an ML-
loop) with the memristor and at least one inductor is the essential configuration yielding
a transcritical bifurcation without parameters, which occurs if the memristance M(qm)
vanishes (and eventually becomes negative) at a given q∗m. A simple parallel connection
of a memristor and a linear inductor yields this phenomenon, as shown in [17].

Note that Theorem 4 assumes that, except for the memristor, the remaining circuit
devices are strictly locally passive. If this assumption is relaxed things become more
complicated; we present some results in this context in the forthcoming section.

5 Non-passive problems

Consider the circuit displayed in Figure 1. Note that the absence of a (V)ML-loop rules out
an application of Theorem 4 in order to characterize an eventual transcritical bifurcation
without parameters in this circuit. However, it is easy to check that the series connection
of the linear resistor R and the memristor M can itself be modelled as a memristor with
memristance R + M(q). Moreover, provided that R +M(q∗) = 0 at a given q∗ (with
M ′(q∗) 6= 0), the circuit is expected and can be easily shown to undergo a TBWP.

L

R

M

Figure 1: MRL-circuit.

Obviously, for the condition R+M(q∗) = 0 to hold, either both R andM must vanish
or one of them need become negative. In particular, when R becomes zero or negative,
the problem does not fit the strict passivity assumption for resistors stated in Theorem
4. This means that a wider framework is needed to address this phenomenon in general.
Although in its broad generality this is a difficult problem, some remarks in this direction
can be provided, as detailed in what follows.

Specifically, we provide below conditions guaranteeing, in non-passive circuits with
a single memristor, that the null eigenvalue is indeed a multiple one, generalizing (as
detailed later, cf. the Remark after Proposition 1) the framework considered in Theorem
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4. We use the notion of both a proper tree and an L-proper tree. Split the branches of
a given connected graph G in three pairwise disjoint sets K1, K2 and K3, in a way such
that K1 includes no loops and K3 no cutsets. Then, as a consequence of the matroid
structure of the set of acyclic subgraphs of G [30], one can guarantee that there exists
at least one spanning tree including all branches from K1 and none from K3 (an explicit
proof can be found e.g. in [7]). Such a spanning tree is called (in general) a proper tree.
In circuit theory, this term is usually restricted to connected circuits without VC-loops
and IL-cutsets, to denote a spanning tree including all voltage sources and capacitors,
and neither current sources nor inductors. This notion can be traced back at least to
[5]. We will also make use of the (in a certain sense dual) concept of an L-proper tree,
which is a spanning tree including all voltage sources and inductors, and neither current
sources nor capacitors; such a tree exists if and only if the circuit has neither VL-loops
nor IC-cutsets. From [38] we borrow the concept of an MR-product; given a spanning tree
in a connected circuit with voltage and current sources, capacitors, inductors, resistors
and memristors, the MR-product of this tree is simply the product of all resistances and
memristances in the co-tree branches (namely, the branches that do not belong to the
spanning tree), evaluated at equilibrium and setting this product to 1 if all resistors and
memristors are actually located in the tree.

Proposition 1. Consider, as in Theorem 4, a circuit with a single memristor displaying
an equilibrium point at a given (y∗, z∗), with y∗ = (q∗m, v

∗

c , i
∗

l ) and z
∗ = (i∗m, i

∗

c , v
∗

l , i
∗

r , v
∗

j , i
∗

u).
Assume that C(v∗c ) and L(i

∗

l ) are non-singular, besides the following.

1. The circuit displays no VC-loops, IL-cutsets, VL-loops or IC-cutsets.

2. The sum of MR-products in proper trees does not vanish.

3. The sum of MR-products in L-proper trees does vanish.

Then the algebraic multiplicity of the zero eigenvalue at (y∗, z∗) is greater than one.

The proof of this result follows from the results detailed in [38]. First, the absence of
VC-loops and IL-cutsets, together with the non-vanishing condition on the MR-product
sum in proper trees, guarantees the matrix gz(y

∗, z∗) to be non-singular, cf. Proposition
3 in [38]. Note that this matrix has now the form

gz(y
∗, z∗) =

(

BmM(q∗m) 0 Bl BrR(i
∗

r) Bj 0
Qm Qc 0 Qr 0 Qu

)

. (17)

Additionally, the null eigenvalue having a multiplicity greater than one is in a way the
dual property to the one above, and relies on the structure of the matrix K(0) from (14),
which in the presence of a possibly non-vanishing memristance reads as








0 0 0 −(C(v∗c ))
−1 0 0 0 0

0 0 0 0 −(L(i∗l ))
−1 0 0 0

−Bc 0 −BmM(q∗m) 0 −Bl −BrR(i
∗

r) −Bj 0
0 −Ql −Qm −Qc 0 −Qr 0 −Qu









.
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Again, this matrix can be checked to be singular if and only if so it is the matrix
(

Bc 0 BmM(q∗m) BrR(i
∗

r) Bj 0
0 Ql Qm Qr 0 Qu

)

, (18)

but from Proposition 3 in [38] one can show that, in the absence of VL-loops and IC-
cutsets, the latter matrix is singular if and only if the sum of MR-products in L-proper
trees does vanish. Details are not difficult and are left to the reader. The above-referred
duality property becomes clear in the light of the matrices (17) and (18), which have
exactly the same form after a change of reactive devices (capacitors and inductors) and
an obvious column reordering.

Proposition 1 opens a way for future research, which should address the remaining
conditions from Theorem 3 in order to characterize the TBWP in this wider setting. Note
that Proposition 1 does not require any passivity assumption on the circuit characteristic
matrices.

Remark. In the presence of an VML-loop, as in the setting of Theorem 4, the mem-
ristor must by definition belong to the cotree of all L-proper trees (since these must
accommodate all voltage sources and inductors); M is therefore a common factor in all
MR-products and therefore the condition M = 0 in Theorem 4 arises naturally.

Proposition 1 above explains, in topological terms, why the bifurcating condition in
the circuit of Figure 1 is M(q∗m) + R = 0. Just note that the circuit has two L-proper
trees, displayed in Figure 2, the cotrees of which amount, respectively, to the memristor
M and the resistor R; the sum of products arising in item 3 of Proposition 1 is just
M(q∗m)+R and for this reason the vanishing of this sum is responsible for a multiple zero
eigenvalue supporting the TBWP. However, the scope of this results goes much further
than this elementary (pedagogic) example, since the computation of spanning trees is an
easily automatable task and therefore the result applies to much more complex circuits.
A case of intermediate complexity is discussed below with illustrative purposes.

R
L L M

Figure 2: L-proper trees in the circuit of Figure 1

A memristive artificial neural network

Memristors provide an excellent framework for the implementation of artificial neural
networks. The key reason is that they define a nanometric scale, electrically adaptable
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device perfectly suited for implementing neural synapses, emulating (to a certain extent)
the STDP mechanism from biological neural systems [39]. A lot of recent literature
explores this idea; see e.g. [2, 21, 23, 33, 40, 47] and references therein.

In this context, we analyze below a simplification of an additive model proposed in [47].
We ignore delays and assume that each neuron is defined by a passive RC-connection, and
also that the input-output function in each neuron is just implemented by a linear passive
resistor. Furthermore, we focus on a problem with just two neurons and assume that the
conductivities of three out of four synaptic connections are fixed, in order to concentrate
the attention on a bifurcating memristor. This simplified model is depicted in Figure 3
(a); in (b) we arrange the circuit in a more convenient manner for later computations.

20R

10R

1R

2R 2C

1C

11R

22R

12R

M
1R 1C

22R 2C20R

11R10R12R

2R M

Figure 3: (a) Memristive network. (b) Alternative circuit description.

Note that, for any charge qm in the memristor and null values in the remaining circuit
variables one gets an equilibrium point. This simply expresses the presence of a line
of equilibria along the qm-coordinate axis, and the linearized dynamics exhibits a zero
eigenvalue along this axis. Omitting details for the sake of brevity, a state-space model
for this circuit indicates that the condition for the zero eigenvalue to be multiple is

RARB + (R1 +R2) [(R20 +R22)RA + (R10 +R11)RB] = 0, (19)

with

RA =M(R10 +R11) +R10R11, RB = R12(R20 +R22) +R20R22.
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This yields the bifurcation value

M =
−RC − RD

(R10 +R11)[RB + (R1 +R2)(R20 +R22)]

where

RC = R10R11[RB + (R1 +R2)(R20 +R22)], RD = RB(R1 +R2)(R10 +R11).

Actually, for negative values M smaller than the one above, and provided that all resis-
tances are positive, a transition of an eigenvalue to the positive real semiaxis signals a
stability loss due to to a TBWP.

Our goal is to explain in topological terms the condition (19) on the resistances and
the memristance, which makes this null eigenvalue a multiple one, in order to illustrate
the scope of Proposition 1. Note, that in large scale circuits the derivation of a model and
therefore the explicit computation of the bifurcation conditions are usually unfeasible,
and for this reason one has no option but to resort to circuit-theoretic results such as
the one in Proposition 1. To achieve this one needs to compute the set of L-proper trees
of the circuit. In our present example there are actually 33 L-proper trees, depicted in
Figure 4.

One can check that this set of trees actually explains the bifurcating condition (19), in
light of item 3 of Proposition 1. Specifically, the terms responsible for the product RARB

arise from the cotree branches of the trees 5, 8, 11, 12, 15, 18, 23, 28 and 33 in Figure 4;
analogously, the terms (R1 +R2)(R20 +R22)RA come from the cotree branches of trees 3,
4, 9, 10, 16, 17, 21, 22, 26, 27, 31 and 32, whereas the products (R1 +R2)(R10 +R11)RB

arise from the cotrees of the trees 1, 2, 6, 7, 13, 14, 19, 20, 24, 25, 29 and 30.

As indicated above, this graph-theoretic characterization of the bifurcation condition
is easily scalable to large circuits in which the analytical (model-based) computation of
such condition is not feasible.

6 Concluding remarks

We have presented in this paper a detailed circuit-theoretic characterization of the tran-
scritical bifurcation without parameters in circuits with one memristor, systematically
yielding lines of equilibrium points. To do so, we have developed mathematical statements
of the TBWP theorem for explicit ODEs in arbitrary dimension and also for semiexplicit
DAEs, which are believed to be of independent interest. This allows for a graph-theoretic
analysis of the bifurcation in the circuit context. Future research should provide a com-
plete characterization of this phenomenon in non-passive settings, along the lines discussed
in Section 5. Other related bifurcations, such as the Hopf bifurcation without parameters,
might be analyzed in similar terms.
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Appendix: digraph matrices

In the formulation of the circuit model (11) we make use of the so-called loop and cutset
matrices defined below. Given a digraph with m edges, n nodes and k connected compo-
nents, choose an orientation in every loop and define componentwise the loop matrix B̃
as (bij), with

bij =







1 if edge j is in loop i with the same orientation
−1 if edge j is in loop i with the opposite orientation
0 if edge j is not in loop i.

This matrix has rank m− n+ k, and a reduced loop matrix B is any ((m− n+ k)×m)-
submatrix of B̃ with full row rank.

The dual concept is that of a reduced cutset matrix. Recall that a set K of edges in
a digraph is a cutset if the removal of K increases the number of connected components,
and K is minimal with respect to this property, that is, retaining one or more edges from
K keeps the number of components invariant. All the edges of a cutset may be shown
to connect the same pair of connected components which result from the cutset deletion,
and this allows one to define the orientation of a cutset, say from one of these components
towards the other. This makes it possible to define the cutset matrix Q̃ = (qij) as

qij =







1 if edge j is in cutset i with the same orientation
−1 if edge j is in cutset i with the opposite orientation
0 if edge j is not in cutset i.

Now the rank of Q̃ is n − k, and a reduced cutset matrix Q ∈ R
(n−k)×m is obtained by

choosing any set of n− k linearly independent rows of Q̃.
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[13] D. Estévez-Schwarz and C. Tischendorf, Structural analysis of electric circuits and
consequences for MNA, Intl. J. Circuit Theory Appl. 28 (2000) 131-162.

[14] B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of
equilibria without parameters: I. Theory, J. Differential Equations 167 (2000) 16-35.

[15] B. Fiedler and S. Liebscher, Generic Hopf bifurcation from lines of equilibria without
parameters: II. Systems of viscous hyperbolic balance laws, SIAM J. Math. Anal. 31
(2000) 1396-1404.

[16] B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of
equilibria without parameters: III. Binary oscillations, Internat. J. Bifur. Chaos 10
(2000) 1613-1622.
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Figure 4: L-proper trees for the circuit in Figure 3.
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