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Abstract. We are given a bipartite graph G = (A ∪ B,E) where each vertex has a preference list
ranking its neighbors: in particular, every a ∈ A ranks its neighbors in a strict order of preference,
whereas the preference lists of b ∈ B may contain ties. A matching M is popular if there is no matching
M ′ such that the number of vertices that prefer M ′ to M exceeds the number of vertices that prefer M
to M ′. We show that the problem of deciding whether G admits a popular matching or not is NP-hard.
This is the case even when every b ∈ B either has a strict preference list or puts all its neighbors into a
single tie. In contrast, we show that the problem becomes polynomially solvable in the case when each
b ∈ B puts all its neighbors into a single tie. That is, all neighbors of b are tied in b’s list and b desires
to be matched to any of them. Our main result is an O(n2) algorithm (where n = |A ∪ B|) for the
popular matching problem in this model. Note that this model is quite different from the model where
vertices in B have no preferences and do not care whether they are matched or not.

1 Introduction

We are given a bipartite graph G = (A ∪ B,E) where the vertices in A are called applicants and
the vertices in B are called posts, and each vertex has a preference list ranking its neighbors in an
order of preference. Here we assume that vertices in A have strict preferences while vertices in B
are allowed to have ties in their preference lists. Thus each applicant ranks all posts that she finds
interesting in a strict order of preference, while each post need not come up with a total order on
all interested applicants – here applicants may get grouped together in terms of their suitability,
thus equally competent applicants are tied together at the same rank.

Our goal is to compute a popular matching in G. The definition of popularity uses the notion
of each vertex casting a “vote” for one matching versus another. A vertex v prefers matching M to
matching M ′ if either v is unmatched in M ′ and matched in M or v is matched in both matchings
and M(v) (v’s partner in M) is ranked better than M ′(v) in v’s preference list. In an election
between matchings M and M ′, each vertex v votes for the matching that it prefers or it abstains
from voting if M and M ′ are equally preferable to v. Let φ(M,M ′) be the number of vertices that
vote for M in an election between M and M ′.

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for every matching M ′.

If φ(M ′,M) > φ(M,M ′), then we say M ′ is more popular than M and denote it by M ′ � M ;
else M � M ′. Observe that popular matchings need not always exist. Consider an instance where
A = {a1, a2, a3} and B = {b1, b2, b3} and for i = 1, 2, 3, each ai has the same preference list which
is b1 followed by b2 followed by b3 while each bi ranks a1, a2, a3 the same, i.e. a1, a2, a3 are tied
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together in bi’s preference list (see bottom left instance in Fig. 1). It is easy to see that for any
matching M here, there is another matching M ′ such that M ′ � M , thus this instance admits no
popular matching.

The popular matching problem is to determine if a given instance G = (A ∪ B,E) admits a
popular matching or not, and if so, to compute one. This problem has been studied in the following
two models.

– 1-sided model: here it is only vertices in A that have preferences and cast votes; vertices in B
are objects with no preferences or votes.

– 2-sided model: vertices on both sides have preferences and cast votes.

Popular matchings need not always exist in the 1-sided model and the problem of whether a given
instance admits one or not can be solved efficiently using the characterization and algorithm from [1].
In the 2-sided model when all preference lists are strict, it can be shown that any stable matching
is popular; thus a popular matching can be found in linear time using the Gale-Shapley algorithm.
However when ties are allowed in preference lists on both sides, Biró, Irving, and Manlove [3] showed
that the popular matching problem is NP-complete. In this paper we focus on the following variant:

∗ it is only vertices in A that have preference lists ranking their neighbors, however vertices on
both sides cast votes.

That is, vertices in B have no preference lists ranking their neighbors – however each b ∈ B
desires to be matched to any of its neighbors. Thus in an election between two matchings, b abstains
from voting if it is matched in both or unmatched in both, else it votes for the matching where it
is matched. An intuitive understanding of such an instance is that A is a set of applicants and B
is a set of tasks – while each applicant has a preference list over the tasks that she is interested in,
each task just cares to be assigned to anyone who is interested in performing it.

For instance, each task is a building that seeks to have some guard assigned to it and it has
no preferences over the identity of the guard. Another application is in the many-to-one popular
matching problem where each b ∈ B also has a capacity cap(b) associated with it. Here we seek
a popular matching that can match every b ∈ B to up to cap(b)-many neighbors and we need to
devise natural and succinct rules to decide when b prefers one subset over another. A possible model
is to say that b just cares to have enough partners in the matching and it does not care about the
identities of these partners. That is, we say b prefers M1 to M2 if cap(b) ≥ |M1(b)| > |M2(b)|, where
|M(b)| is the number of partners of b in M .

In this paper we deal with the one-to-one setting of the above problem, i.e. cap(b) = 1 for all
b ∈ B. We will see in Section 2 that this problem is significantly different from the popular matching
problem in the 1-sided model where vertices in B do not cast votes. We show the following results
here, complementing our polynomial time algorithm in Theorem 1 with our hardness result in
Theorem 2.

Theorem 1. Let G = (A∪B,E) be a bipartite graph where each a ∈ A has a strict preference list
while each b ∈ B puts all its neighbors into a single tie. The popular matching problem in G can be
solved in O(n2) time, where |A ∪B| = n.
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Theorem 2. Let G = (A∪B,E) be a bipartite graph where each a ∈ A has a strict preference list
while each b ∈ B either has a strict preference list or puts all its neighbors into a single tie. The
popular matching problem in G is NP-complete.

Theorem 2 follows from a simple reduction from the (2,2)-e3-sat problem. The (2,2)-e3-sat
problem takes as its input a Boolean formula I in CNF, where each clause contains three literals
and every variable appears exactly twice in unnegated form and exactly twice in negated form in
the clauses. The problem is to determine if I is satisfiable or not. This problem is NP-complete [2]
and our reduction shows that the following version of the 2-sided popular matching problem in
G = (A ∪B,E) with 1-sided ties is NP-complete:

– every vertex in A has a strict preference list of length 2 or 4;
– every vertex in B has either a strict preference list of length 2 or a single tie of length 2 or 3 as

a preference list.

Note that our NP-hardness reduction needs B to have Ω(|B|) vertices with strict preference lists
and Ω(|B|) vertices with single ties as their preference lists.

Our algorithm that proves Theorem 1 performs a partition of the set B into three sets: the first
set X is a subset of top posts and, roughly speaking, the second set Y consists of mid-level posts,
while the third set Z consists of unwanted posts (see Fig. 2). Applicants get divided into two sets:
the set of those with one or more neighbors in the set Z (call this set nbr(Z)) and the rest (this set
is A \ nbr(Z)).

Our algorithm performs the partition of B into X,Y , and Z over several iterations. Initially
X = F , where F is the set of top posts, Y = B \ F , and Z = ∅. In each iteration, certain top
posts get demoted from X to Y and certain non-top posts get demoted from Y to Z. With new
posts entering Z, we also have applicants moving from A \ nbr(Z) to nbr(Z). Using the partition
〈X,Y, Z〉 of B, we will build a graph H where each applicant keeps at most two edges: either to
its most preferred post in X and also in Y or to its most preferred post in Z and also in Y . Some
dummy posts may be included in Y .

We prove that G admits a popular matching if and only if H admits an A-complete matching,
i.e. one that matches all vertices in A. We show that corresponding to any popular matching in G,
there is a partition 〈L1, L2, L3〉 of B into top posts, mid-level posts, and unwanted posts such that
X ⊇ L1 and Z ⊆ L3, where 〈X,Y, Z〉 is the partition computed by our algorithm. This allows us
to show that if H does not admit an A-complete matching, then G has no popular matching. In
fact, not every popular matching in G becomes an A-complete matching in H (Section 3 has such
an example). However it will be the case that if G admits popular matchings, then at least one of
them becomes an A-complete matching in H.

Background. Popular matchings have been well-studied in the 1-sided model [1,10,11,12,14,15]
where only vertices of A have preferences and cast votes. Abraham et al. [1] gave efficient algorithms
to determine if a given instance admits a popular matching or not – their algorithm also works
when preference lists of vertices in A admit ties. The notions of least unpopular matchings [13]
and popular mixed matchings [9] were also proposed to deal with instances that had no popular
matchings.

Gärdenfors [5], who introduced the notion of popular matchings, considered this problem in the
domain of 2-sided preference lists. In any instance G = (A ∪ B,E) with 2-sided strict preference
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lists, a stable matching is actually a minimum size popular matching and efficient algorithms for
computing a maximum size popular matching were given in [7,8].

Organization of the paper. Section 2 has preliminaries. Section 3 contains our algorithm and
its proof of correctness. Section 4 shows our NP-hardness result. We conclude with some open
problems.

2 Preliminaries

For any a ∈ A, let f(a) denote a’s most desired, first choice post. Let F = {f(a) : a ∈ A} be the
set of these top posts. We will refer to posts in F as f -posts and to those in B \ F as non-f -posts.
For any a ∈ A, let ra be the rank of a’s most preferred non-f -post in a’s preference list; when all
of a’s neighbors are in F , we set ra = ∞. The following theorem characterizes popular matchings
in the 1-sided voting model.

Theorem 3 (from [1]). Let G = (A ∪ B,E) be an instance of the 1-sided popular matching
problem, where each a ∈ A has a strict preference list. Let M be any matching in G. M is popular
if and only if the following two properties are satisfied:

(i) M matches every b ∈ F to some applicant a such that b = f(a);

(ii) M matches each applicant a to either f(a) or its neighbor of rank ra.

Thus the only applicants that may be left unmatched in a popular matching here are those
a ∈ A that satisfy ra =∞.

Let us consider the following example where A = {a1, a2, a3} and B = {b1, b2, b3}: both a1 and
a2 have the same preference list which is b1 > b2 (b1 followed by b2) while a3’s preference list is
b1 > b2 > b3 (see the top left figure in Fig. 1). Assume first that only applicants cast votes. The
only posts that any of a1, a2, a3 can be matched to in a popular matching here are b1 and b2. As
there are three applicants and only two possible partners in a popular matching, there is no popular
matching here. However in our 2-sided voting model, where posts also care about being matched
and all neighbors are in a single tie, we have a popular matching {(a1, b1), (a2, b2), (a3, b3)}. Note
that b3 is ranked third in a3’s preference list, which is worse than ra3 = 2, however such edges are
permitted in popular matchings in our 2-sided model.

Consider the following example (see the middle figure in Fig. 1): A = {a0, a1, a2, a3} and B =
{b0, b1, b2, b3}; both a1 and a2 have the same preference list which is b1 > b2 while a3’s preference
list is b1 > b0 > b2 and a0’s preference list is b0 > b3. There is again no popular matching
here in the 1-sided model, however in our 2-sided voting model, we have a popular matching
{(a0, b3), (a1, b1), (a2, b2), (a3, b0)}. Note that b0 ∈ F and here it is matched to a3 and f(a3) 6= b0;
also a3 is matched to its second ranked post: this is neither its top post nor its ra3-th ranked post
(ra3 = 3 here).

Thus popular matchings in our 2-sided voting model are quite different from the characterization
given in Theorem 3 for popular matchings in the 1-sided model. Our algorithm (presented in
Section 3) uses the following decomposition.

4



Dulmage-Mendelsohn decomposition [4]. Let M be a maximum matching in a bipartite graph
G = (A ∪ B,E). Using M , we can partition A ∪ B into three disjoint sets: a vertex v is even
(similarly, odd) if there is an even (resp., odd) length alternating path with respect to M from an
unmatched vertex to v. Similarly, a vertex v is unreachable if there is no alternating path from an
unmatched vertex to v. Denote by E , O, and U the sets of even, odd, and unreachable vertices,
respectively. The following properties (proved in [6]) will be used in our algorithm and analysis.

– E , O, and U are pairwise disjoint. Let M ′ be any maximum matching in G and let E ′, O′, and
U ′ be the sets of even, odd, and unreachable vertices with respect to M ′, respectively. Then
E = E ′, O = O′, and U = U ′.

– Every maximum matching M matches all vertices in O ∪ U and has size |O| + |U|/2. In M ,
every vertex in O is matched with some vertex in E , and every vertex in U is matched with
another vertex in U .

– The graph G has no edge in E × (E ∪ U).

3 Finding popular matchings in a 2-sided voting model

The input is G = (A∪B,E) where each applicant a ∈ A has a strict preference list while each post
b ∈ B has a single tie as its preference list. Our algorithm below builds a graph H using a partition
〈X,Y, Z〉 of B that is constructed in an iterative manner. Initialize X = F , Y = B \F , and Z = ∅.

For any a ∈ A, recall that ra is the rank of a’s most preferred non-f -post. For any U ⊆ B, let
nbr(U) (similarly, nbrH(U)) denote the set of neighbors in G (resp., in H) of the vertices in U . Note
that our algorithm will maintain nbrH(X) ∩ nbr(Z) = ∅ by ensuring that nbrH(X) ⊆ A \ nbr(Z).

(I) While true do
0. H is the empty graph on A ∪B.
1. For each a ∈ A \ nbr(Z) do:

– if f(a) ∈ X then add the edge (a, f(a)) to H.
2. For every b ∈ X that is isolated in H do:

– delete b from X and add b to Y .
3. For each a ∈ A do:

– let b be a’s most preferred post in the set Y ; if the rank of b in a’s preference list is ≤ ra
(i.e. ra or better), then add (a, b) to H.

4. Consider the graph H constructed in steps 1-3. Compute a maximum matching in H.
[This is to identify “even” posts in H.]
– If there exist even posts in Y then delete all even posts from Y and add them to Z.
– Else quit the While-loop.

(II) Every a ∈ nbr(Z) adds the edge (a, b) to H where b is a’s most preferred post in the set Z.

(III) Add all posts in D = {`(a) : a ∈ A and ra = ∞} to Y , where `(a) is the dummy last resort
post of applicant a. For every applicant a such that nbr({a}) ⊆ X, add the edge (a, `(a))
to H.

Note that introducing dummy posts does not interfere with the voting for popular matchings
because dummy posts do not vote – they are only present in the “helper” graph H constructed
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above and not in the popular matching instance G. For any applicant a, being matched to `(a) is
equivalent to a being left unmatched. Thus any matching M in H can be projected to a matching
in G, by deleting all (a, `(a)) edges from M and for convenience, we will refer to the resulting
matching also as M .

The condition for exiting the While-loop ensures that all posts in Y , and hence all in X∪Y , are
odd/unreachable in the subgraph of H with the set of posts restricted to real posts in X ∪ Y (i.e.
the non-dummy ones). So starting with a maximum matching in this subgraph and augmenting it
after adding the edges on posts in Z in phase (II) and the edges on dummy posts in phase (III),
we get a maximum matching in H that matches all real posts in X ∪ Y . After the construction of
H, our algorithm for the popular matching problem in G is given below.

– If H admits an A-complete matching, then return one that matches all real posts in X ∪Y ; else
output “G has no popular matching”.

In the rest of this section, we prove the following theorem.

Theorem 4. G admits a popular matching if and only if H admits an A-complete matching, i.e.
one that matches all vertices in A.

Some examples. We present some examples here and describe how our algorithm builds the
graph H on these examples. Let Xi, Yi, Zi denote the sets X,Y, Z at the end of the i-th iteration
of our algorithm and let Hi denote the graph H in step 4 of the i-th iteration of our algorithm.

In the first example (top left of Fig. 1), we have A = {a1, a2, a3} and B = {b1, b2, b3} and the
preferences of applicants are denoted on the edges. By our initialization, we have X0 = {b1},
Y0 = {b2, b3}, and Z0 = ∅. In step 4 of our first iteration, we identify b3 as an even post
in H1. So Y1 = {b2} and Z1 = {b3}. In the second iteration, a3 ∈ nbr(Z1) and so it has no
edge to b1 in H2. This is the last iteration of our algorithm. Our final graph H has the edge set
{(a1, b1), (a2, b1), (a1, b2), (a2, b2), (a3, b2), (a3, b3)}.

While the above example admits a popular matching, consider the graph in the bottom left of
Fig. 1. The first iteration of our algorithm is exactly the same on this graph as it was with the
earlier graph. We have X1 = {b1}, Y1 = {b2}, and Z1 = {b3}. However in the second iteration, all
the applicants a1, a2, a3 become elements of nbr(Z1) and b1 becomes an isolated vertex in step 2,
so b1 becomes an element of Y2. In step 4 of the second iteration, b2 is identified as an even
post in H2 as it is isolated in H2. So Y2 = {b1} and Z2 = {b2, b3}. No demotions happen in the
third iteration, which is the last iteration of our algorithm. Our final graph H has the edge set
{(a1, b1), (a2, b1), (a3, b1), (a1, b2), (a2, b2), (a3, b2)}. Observe that H has no A-complete matching.

In the third example (middle of Fig. 1), we have A = {a0, a1, a2, a3} and B = {b0, b1, b2, b3}
and the preferences of applicants are again denoted on the edges. In step 4 of the first iteration
of this algorithm, the post b3 is identified as an even vertex in Y0 and it becomes an element
of Z1. So a0 ∈ nbr(Z1) and b0 becomes isolated in step 2 of the second iteration. So b0 be-
comes an element of Y2 and this is the last iteration of our algorithm. Our final graph H has
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Fig. 1. We have 4 examples here: except for the graph in bottom left, all the other graphs admit popular matchings
and these are highlighted. In the graph on the extreme right, both the red dotted and green dashed matchings are
popular, however the matching {(a1, b1), (a2, b2), (a3, b3), (x1, y1), (x2, y2)} in their union is not popular.

the edge set {(a1, b1), (a2, b1), (a3, b1), (a1, b2), (a2, b2), (a3, b0), (a0, b0), (a0, b3)}. This graph admits
an A-complete matching {(a1, b1), (a2, b2), (a3, b0), (a0, b3)}.

The fourth example here (the rightmost graph in Fig. 1) is that of a graph G with several
popular matchings. It is not the case that H contains all these matchings. At the end of our entire
algorithm, we have X = {b1, y1}, Y = {b2}, and Z = {b3, y2, y3}. The graph H does not contain the
edges (a3, b1) and (x1, y1) since a3 and x1 belong to nbr(Z). The subgraph H admits an A-complete
matching M = {(a1, b1), (a2, b2), (a3, b3), (x2, y1), (x1, y2)} and this is a popular matching in G.
However H does not contain M ′ = {(a1, b2), (a2, b1), (a3, b3), (x1, y1), (x2, y2)}, which is another
popular matching in G. In fact, any subgraph that contains both M and M ′ would also contain the
following A-complete matching {(a1, b1), (a2, b2), (a3, b3), (x1, y1), (x2, y2)}, which is not popular.

3.1 Proof of Theorem 4: the sufficient part

We first show that if H admits an A-complete matching, then G admits a popular matching.
We have already observed that if H admits an A-complete matching, then H has an A-complete
matching M that matches all real posts in X ∪ Y .

A useful observation is that Z ⊆ B \ F . This is because in step 4 of the While-loop in our
algorithm, all f -posts in Y are odd/unreachable in H as they are the only neighbors in H of
applicants who regard them as f -posts.
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We now assign edge labels in {±1} to all edges in G\M : for an edge (a, b) in G\M , if a prefers
b to M(a), then we label this edge +1, else we label this −1. The label of (a, b) is basically a’s vote
for b vs M(a). Fig. 2 is helpful here.
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X

Y

Z

nbr(Z)

A \ nbr(Z)

XM(X)

M(Z)

M(Y ) Y

Z

Fig. 2. The set B gets partitioned into X,Y , and Z. We have nbrH(X) ∩ nbr(Z) = ∅. In the figure on the right, the
horizontal edges belong to M . Only the edges of (M(Y )×X) ∪ (M(Z)× (X ∪ Y )) can be labeled +1.

For any U ∈ {X,Y, Z}, let M(U) ⊆ A be the set of applicants matched in M to posts in U .
The following lemma is important.

Lemma 1. Every edge of G in M(X) × Y is labeled −1; similarly, every edge in M(Y ) × Z is
labeled −1. Any edge labeled +1 has to be either in M(Y )×X or in M(Z)× (X ∪ Y ).

Proof. Every edge of nbr(X) × X that is present in H is a top ranked edge. Since M belongs to
H, the edges of M from nbr(X)×X are top ranked edges. Thus it is clear that every edge of G in
M(X) × Y is labeled −1. Regarding M(Y ) × Z, every edge of nbr(Y ) × Y that is present in the
graph H is an edge (a, b) where the rank of b in a’s preference list is ≤ ra (i.e. ra or better); on
the other hand, every edge of nbr(Z) × Z that is present in the graph H is an edge (a, b′) where
the rank of b′ in a’s preference list is ≥ ra (because b′ ∈ B \ F ). Since M belongs to H, the edges
of M from nbr(Y ) × Y are ranked better than the edges of nbr(Z) × Z. Thus every edge of G in
M(Y )× Z is labeled −1.

We now show that any edge labeled +1 has to be in either M(Y )×X or M(Z)× (X ∪ Y ) (see
Fig. 2). Consider any edge (a, b) /∈ M such that b ∈ U and a ∈ M(U), where U ∈ {X,Y, Z}. It
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follows from the construction of the graph H that a vertex in nbr(U) can be adjacent in H to only
its most preferred post in U . Thus any edge (a, b) /∈ M where b ∈ U and a ∈ M(U) is ranked −1.
We have already seen that all edges in M(X) × Y and in M(Y ) × Z are labeled −1. There are
no edges in M(X) × Z since M(X) ⊆ A \ nbr(Z). Thus any edge labeled +1 has to be in either
M(Y )×X or M(Z)× (X ∪ Y ). ut

Let M ′ be any matching in G. The symmetric difference of M ′ and M is denoted by M ′ ⊕M :
this consists of alternating paths and alternating cycles – note that edges here alternate between
M and M ′. Recall that last resort posts are not used in M ′ (which is a matching in G) whereas
last resort posts may be present in M (which is a matching in H).

Lemma 2. Consider M ′ ⊕M . The following three properties hold:

(i) in any alternating cycle in M ′ ⊕M , the number of edges that are labeled −1 is at least the
number of edges that are labeled +1.

(ii) in any alternating path in M ′ ⊕M , the number of edges that are labeled +1 is at most two
plus the number of edges that are labeled −1; in case one of the endpoints of this path is a
last resort post, then the number of edges labeled +1 is at most one plus the number of edges
labeled −1.

(iii) in any even length alternating path in M ′ ⊕M , the number of edges that are labeled −1 is at
least the number of edges that are labeled +1; in case one of the endpoints of this path is a
last resort post, then the number of edges labeled −1 is at least one plus the number of edges
labeled +1.

Proof. Property (i). Let C ∈M ⊕M ′ be an alternating cycle. Let C be b0-a0-b1-a1-b2-· · · -ak−1-b0,
where (ai, bi) ∈ M for 0 ≤ i ≤ k − 1. If C contains no vertex of Z, then there cannot be two
consecutive non-matching edges labeled +1 in C. That is, if (ai, bi+1) is labeled +1, then bi+1 ∈ X
and there is no +1 edge incident on M(bi+1) = ai+1, thus the non-matching edge incident on ai+1

in C has to be labeled −1. Hence the number of edges that are labeled −1 is at least the number
of edges that are labeled +1.

Suppose C contains a vertex of Z: let bi be such a vertex. There can be two consecutive non-
matching edges labeled +1 now: let bi-ai-bi+1-ai+1-bi+2 be such an alternating path within C, where
both (ai, bi+1) and (ai+1, bi+2) are labeled +1. Then bi ∈ Z, bi+1 ∈ Y , and bi+2 ∈ X. In the first
place, there is no +1 edge incident on ai+2 and the crucial part is that there is no edge in G between
a vertex in nbrH(X) and a vertex in Z. Thus once we reach a vertex ai+2 ∈ M(X), we have to
see an edge labeled −1 and so as to reach a vertex in Z, we need to see at least two consecutive
non-matching edges labeled −1. Thus it again follows that the number of edges that are labeled −1
is at least the number of edges that are labeled +1.

Property (ii). Let ρ ∈M⊕M ′ be an alternating path. Let ρ be b0-a0-b1-a1-b2-· · · -ak−1-bk-ak, where
(ai, bi) ∈ M for 0 ≤ i ≤ k. The same argument that was used in the proof of property (i) shows
us that there can be at most two consecutive non-matching edges labeled +1 in ρ and once we
traverse such an alternating path bi-ai-bi+1-ai+1-bi+2 in ρ (where bi has to be in Z), we are at a
vertex bi+2 ∈ X. Thereafter we have to see at least two more non-matching edges labeled −1 than
those labeled +1 to again reach a vertex in Z. Thus it follows that the difference between the
number of edges that are labeled +1 and the number of edges that are labeled −1 is at most two.
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In fact, for the difference between the number of edges that are labeled +1 and the number of
edges that are labeled −1 to be exactly two, it has to be the case that b0 is in Z. For, in case b0
is in Y , then it is easy to see that the difference between the number of non-matching edges that
are labeled +1 and the number of non-matching edges that are labeled −1 is at most one. Note
that all last resort posts belong to Y . Thus when b0 is a last resort post, then the number of edges
labeled +1 in ρ is at most one plus the number of edges labeled −1.

Property (iii). Let ρ = b0-a0-b1-a1-b2-· · · -ak−1-bk be an even length alternating path where (ai, bi) ∈
M for 0 ≤ i ≤ k− 1. The post b0 is unmatched in M ′ and bk is unmatched in M . Recall that M is
A-complete, thus any even length alternating path with respect to M has to have vertices in B as
its endpoints (since one of them is left unmatched in M). Since bk is a post that is matched in M ′

but not in M , it follows that bk ∈ Z (as all non-dummy posts in X ∪ Y are matched in M).
Now the argument is similar to the proof of property (ii). In order to maximize the difference

between the number of edges labeled +1 and those labeled −1, we assumed that the starting vertex
b0 ∈ Z. For the final vertex bk to be in Z, it follows that the number of edges that are labeled −1 is
at least the number of edges that are labeled +1. In particular, when b0 is a last resort post, then
the starting vertex is in Y and so the number of edges that are labeled −1 is at least one plus the
number of edges that are labeled +1. ut

Lemma 3 uses the above lemma to show the popularity of M . This completes the proof that if
H admits an A-complete matching then G admits a popular matching.

Lemma 3. For any matching M ′ in G, we have φ(M,M ′) ≥ φ(M ′,M).

Proof. Recall that M is A-complete (where some of the posts used in M can be last resort posts).
For any a ∈ A and any neighbor b of a such that b 6= M(a), let votea(b,M(a)) be the label of the edge
(a, b), which is a’s vote for b vs M(a). Consider M ⊕M ′. We will now investigate each component
of M ⊕M ′ – being a cycle, an odd path or an even path – and show φ(M,M ′) ≥ φ(M ′,M) for
each of them.

– For any alternating cycle C ∈ M ⊕M ′, among the vertices of C, the difference between those
who prefer M ′ and those who prefer M is equal to

∑
(a,M ′(a))∈C votea(M

′(a),M(a)). It follows
from property (i) that this sum is at most 0.

– Consider any odd length alternating path ρ ∈M ⊕M ′: its endpoints are an applicant a′ and a
post b′ that are unmatched in M ′. Assume b′ is a non-dummy post. Then among the vertices
of ρ that are matched in M ′, the difference between those who prefer M ′ and those who prefer
M is equal to

∑
(a,M ′(a))∈ρ votea(M

′(a),M(a)). It follows from property (ii) that this sum is at

most 2. The two vertices a′ and b′ prefer M to M ′ as they are matched in M and unmatched
in M ′, since a′ is unmatched in M ′. Thus summed over all vertices of ρ, the difference between
those who prefer M ′ and those who prefer M is again at most 0.
Now suppose b′ is a dummy post. Then it follows from property (ii) that among the vertices
of ρ that are matched in M ′, the difference between those who prefer M ′ and those who prefer
M is at most 1. The vertex a′ prefers M to M ′. Thus summed over all real vertices of ρ, the
difference between those who prefer M ′ and those who prefer M is again at most 0.

– Consider any even length alternating path ρ ∈ M ⊕M ′: its endpoints are a post b0 that is
unmatched in M ′ and a post bk that is unmatched in M . Assume b0 is a non-dummy post.
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Then summed over all vertices of ρ (this includes b0 who prefers M and bk who prefers M ′), the
difference between those who prefer M and those who prefer M ′ is at least 0 (by property (iii)).
Now suppose b0 is a dummy post. Then summed over all real vertices of ρ that are matched
in M , the difference between those who prefer M and those who prefer M ′ is at least 1 (by
property (iii)). Thus summed over all real vertices of ρ (this includes bk who prefers M ′), the
difference between those who prefer M and those who prefer M ′ is at least 0.

All vertices whose partners in M and in M ′ are different belong to some alternating path or cycle
in M ⊕M ′. Hence the difference between the number of vertices that prefer M and those that
prefer M ′ is non-negative. In other words, φ(M,M ′) ≥ φ(M ′,M). ut

3.2 Proof of Theorem 4: the necessary part

We now show the other side of Theorem 4. That is, if G admits a popular matching, then H admits
an A-complete matching. Let M∗ be a popular matching in G. Lemma 4 will be useful to us.

Lemma 4. If (a, b) ∈M∗ and b ∈ F , then b has rank better than ra in a’s preference list.

Proof. Suppose (a, b) ∈M∗, where b ∈ F , and b has rank worse than ra in a’s preference list. Note
that the rank of b cannot be exactly ra since there is another post b′ /∈ F that has rank ra in a’s
preference list. We know that a = M∗(b) prefers post b′ to b. If post b′ is unmatched, then consider
M∗⊕p where p = M∗(a0)-a0-b-a-b′, where a0 is an applicant such that f(a0) = b (there exists such
an applicant since b ∈ F ). The matching M∗ ⊕ p is more popular than M∗.

So suppose the post b′ is matched and let a1 = M∗(b′). If a0 = a1, then consider the alternating
cycle C = a0-b-a-b′-a0; the matching M∗⊕C makes a0 and a swap their partners and both applicants
prefer M∗⊕C to M∗ while nobody prefers M∗ to M∗⊕C. Thus M∗⊕C is more popular than M∗. If
a0 6= a1, then consider the alternating path ρ that promotes a0 to its top post b and then M∗(b) = a
to a more preferred post b′ and finally, M∗(b′) = a1 to its top post f(a1). The vertices M∗(a0) and
M∗(f(a1)) become unmatched in M∗⊕ ρ and so they prefer M∗ to M∗⊕ ρ while the three vertices
a0, a, and a1 prefer M∗ ⊕ ρ to M∗. Every other vertex is indifferent between M∗ ⊕ ρ and M∗.
So M∗ ⊕ ρ is more popular than M∗. Thus we have contradicted the popularity of M∗ in all the
cases. ut

Analogous to Section 3.1, we label the edges of G \M∗ by +1 or −1: the label of an edge (a, b)
in G \M∗ is the vote of a for b vs M∗(a). In case a is not matched in M∗, then vote(a, b) = +1 for
any neighbor b of a. Due to the popularity of M∗, the following two properties hold on these edge
labels (otherwise M∗ ⊕ ρ �M∗).

(i) There is no alternating path ρ such that the edge labels in ρ \M∗ are 〈+1,+1,+1, · · · 〉, i.e. no
three consecutive non-matching edges are labeled +1.

(ii) There is no alternating path ρ where the edge labels in ρ \M∗ are 〈+1,+1,−1, +1,+1, · · · 〉,
i.e. no five consecutive non-matching edge labels add up to 4.

Based on the matching M∗ and the edge labels on G \M∗, we partition B into L1 ∪ L2 ∪ L3.

– Roughly speaking, L3 consists of unwanted posts, so all posts that are unmatched in M∗ belong
to L3. Similarly, posts like b3 with a length-5 alternating path M∗(b1)-b1-M

∗(b2)-b2-M
∗(b3)-b3

incident on them, with both the non-matching edges labeled +1 (see Fig. 3) are in L3.
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– Top posts are split across L1 and L2: property (ii) indicates that applicants matched to posts in
L1 should not be adjacent to posts in L3, hence those top posts whose partners have neighbors
in L3 are in L2 and the top posts whose partners have no neighbors in L3 are in L1.
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b3M ∗(b3)

M ∗(b2)

M ∗(b1)

Fig. 3. A length-5 alternating path M∗(b1)-b1-M∗(b2)-b2-M∗(b3)-b3, where both (M∗(b3), b2) and (M∗(b2), b1) are
labeled +1.

More formally, we define the partition B = L1 ∪ L2 ∪ L3 below.

0. Initialize L1 = L2 = ∅ and L3 = {b ∈ B : b is unmatched in M∗}. We now add more posts to
the sets L1, L2, L3 as described below.

1. For each length-5 alternating path ρ = a1-b1-a2-b2-a3-b3 where (a1, b1), (a2, b2), (a3, b3) ∈ M∗
and both (a2, b1) and (a3, b2) are marked +1, add bi to Li, for i = 1, 2, 3.

2. Now consider those b ∈ B that are matched in M∗ but b is not a part of any length-5 alternating
path where both the non-matching edges are labeled +1. We repeat the following two steps till
there are no more posts to be added to either L2 or L3 via these rules:
– suppose M∗(b) has no +1 edge incident on it: if M∗(b) ∈ nbr(L3), then add b to L2.
– if M∗(b) has a +1 edge to a vertex in L2, then add b to L3.

3. For each b such that M∗(b) has no +1 edge incident on it:
– if M∗(b) /∈ nbr(L3), then add b to L1.

4. For each b not yet in L2 ∪ L3 and M∗(b) has a +1 edge to a vertex in L1:
– add b to L2.

Lemma 5. Recall that F is the set of top posts. The above partition 〈L1, L2, L3〉 satisfies the
following properties:

1. F ⊆ L1 ∪ L2;
2. M∗(L1) ∩ nbr(L3) = ∅.

Proof. Suppose b1 = f(a0) belongs to L3. The post b1 has to be matched in M∗. Let a1 = M∗(b1)
and we also know from the construction of the set L3 that there is an edge (a1, b2) with b2 ∈ L2

that is labeled +1. If the vertex a0 is unmatched in M∗, then by promoting a0 to b1 and a1 to b2,
and leaving M∗(b2) unmatched, we obtain a matching that is more popular than M∗.
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Hence let us assume that a0 is matched in M∗. Consider the alternating path M∗(a0)-a0-b1-a1-
b2 with respect to M∗: this has two consecutive non-matching edges that are labeled +1. Thus it
follows from our construction of L1, L2, L3 that M∗(a0) ∈ L3, b1 ∈ L2, and b2 ∈ L1. This contradicts
our assumption that b1 ∈ L3. This finishes the proof of (1).

We first state the following claim, which will be used in the proof of (2). We will assume Claim 1
and finish the proof of (2) and then prove this claim.

Claim 1 If a ∈ nbr(L3) and M∗(a) = f(a), then there is an alternating path ρa with respect
to M∗ with a as an endpoint such that either ρa is even and the edge labels on ρa \ M∗ are
〈−1,+1,−1, · · · ,+1,+1〉 or ρa is odd and the edge labels on ρa \M∗ are 〈−1,+1,−1, · · · ,+1,−1〉
where the last edge is incident on an unmatched post.

We now use Claim 1 to show that M∗(L1) ∩ nbr(L3) = ∅. Posts get added to L1 in steps 1
and 3 of the partition scheme. Let b1 be a post that got added to L1 in step 1 – then there is an
alternating path p = a3-b2-a2-b1-a1 where both (a3, b2) and (a2, b1) are labeled +1. We know from
property (i) that b1 = f(a1); if a1 ∈ nbr(L3), then there is an alternating path ρa1 as described in
Claim 1. If the posts a2 and a3 do not appear in ρa1 , then consider the alternating path p′ which
consists of p followed by ρa1 . It is easy to see that M∗⊕p′ is more popular than M∗: a contradiction
to the popularity of M∗.

In case a2 appears in ρa1 , then we have an alternating cycle C, which is ρa1 truncated till the
vertex a2 followed by a2-b1-a1. This cycle has a stretch of alternating −1 and +1 labeled non-
matching edges along with two consecutive non-matching edges labeled +1: these are the edge
(a2, b1) and the edge incident on b2 in ρa1 from a vertex in M∗(L3). Thus M∗ ⊕C is more popular
than M∗: a contradiction again. If a3 appears in ρa1 , then we can again construct an alternating
cycle C ′ (using the a1 ; a3 subpath of ρa1 followed by the alternating path p). The matching
M∗ ⊕ C ′ is more popular than M∗ since C ′ has more +1 labeled non-matching edges than −1
labeled non-matching edges. This again contradicts the popularity of M∗.

Regarding posts added to L1 in step 3, we add any post b to L1 only after checking that
M∗(b) /∈ nbr(L3). This completes the proof that M∗(L1) ∩ nbr(L3) = ∅. ut

Proof of Claim 1. Posts are added to L3 in steps 1, 2 and 3. We now study each of these cases. The
set L3 was initialized to the set of posts left unmatched in M∗. So at the end of step 0, it is the
case that every a ∈ nbr(L3) has an odd alternating path, which is in fact an edge (a, b) labeled −1,
whose one endpoint is a and the other endpoint is an unmatched post b.

Let b3 be a post that got added to L3 in step 1. Then there is an alternating path b3-a3-b2-
a2-b1-a1 such that (ai, bi) ∈ M∗ for i = 1, 2, 3, and both (a3, b2) and (a2, b1) are marked +1. Thus
every neighbor a ∈ nbr({b3}) with M∗(a) = f(a) has an even length alternating path ρa = a-b3-a3-
b2-a2-b1-a1 where the edge labels on ρa \M∗ are 〈−1,+1,+1〉. Note that a 6= a1 – otherwise ρa is
an alternating cycle and M∗ ⊕ ρa is more popular than M∗.

Thus the claim that every a ∈ nbr(L3) with M∗(a) = f(a) has a desired alternating path ρa is
true at the end of step 1. Let b3 be a post that got added to L3 in step 2 and let us assume that till
the point b3 gets added to L3, the claim holds. Since b3 was added to L3 in step 2, this was due to
a +1 edge between a3 = M∗(b3) and a post b2 ∈ L2 whose partner a2 = M∗(b2) regards b2 as a top
post. The post b2 ∈ L2 because its partner a2 ∈ nbr(L3). This means there is a desired alternating
path ρa2 incident on a2. Neither b3 nor b2 lies on ρa2 since all the posts in ρa2 that belong to L2∪L3
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were added to L2 ∪L3 prior to b2 joining L2 and b3 joining L3. Consider any neighbor a of b3 that
is in nbr(L3) because b3 ∈ L3 and M∗(a) = f(a). The desired alternating path ρa is a-b3-a3-b2-a2
followed by ρa2 . ut

We will use the partition 〈L1, L2, L3〉 of B to build the following subgraph G′ = (A ∪ B,E′)
of G. For each a ∈ A, include the following edges in E′:

(i) if a /∈ nbr(L3), then add the edge (a, f(a)) to E′.

(ii) if a has a neighbor of rank ≤ ra in L2, then add the edge (a, b) to E′, where b is a’s most
preferred neighbor in L2.

(iii) if a ∈ nbr(L3), then add the edge (a, b) to E′, where b is a’s most preferred neighbor in L3.

Lemma 6. Every edge of the matching M∗ belongs to the graph G′.

Proof. The set B has been partitioned into L1 ∪ L2 ∪ L3. We will now show that for each post b0
that is matched in M∗, the edge (M∗(b0), b0) belongs to G′. We distinguish three cases: b0 ∈ L1,
b0 ∈ L2 and b0 ∈ L3.

– Case 1. The post b0 ∈ L1. Hence there is no +1 edge incident on a0 = M∗(b0), in other words,
b0 = f(a0). Lemma 5.2 tells us that M∗(L1) ∩ nbr(L3) = ∅; hence a0 has no neighbor in L3 and by
rule (i) above, the edge (a0, f(a0)) = (a0, b0) belongs to the edge set of G′.

– Case 2. Next we consider the case when b0 ∈ L2. It is easy to see that b0 has to be a0’s
most preferred post in L2, where a0 = M∗(b0). Otherwise there would have been an edge (a0, b1)
labeled +1 with b1 ∈ L2, where b1 is a0’s most preferred post in L2. Then either b1 ∈ L1 or b0 ∈ L3

(from how we construct the sets L1, L2, L3), a contradiction. We now have to show that the rank
of b0 in a0’s preference list is ≤ ra, otherwise the edge (a0, b0) does not belong to G′.

Suppose b0 ∈ F . Since the edge (a0, b0) ∈ M∗, which is a popular matching, it follows from
Lemma 4 that b0 is ranked better than ra0 in a0’s preference list; thus the edge (a0, b0) belongs
to G′. So the case left is when b0 /∈ F . If b0 is not a0’s most preferred post outside F , then there is
the length-5 alternating path ρ = b0-a0-b1-a1-f(a1)-M

∗(f(a1)), where b1 is the most preferred post
of a0 outside F and a1 = M∗(b1). The alternating path ρ has two consecutive non-matching edges
(a0, b1) and (a1, f(a1)) that are labeled +1. This contradicts the presence of b0 in L2 as such a post
would have to be in L3. Thus if b0 /∈ F , then b0 has to be a0’s most preferred post outside F , i.e.
b0 has rank ra0 in a0’s preference list.

– Case 3. We finally consider the case when the post b0 ∈ L3. We need to show that b0 is the most
preferred post of a0 = M∗(b0) in L3. Suppose not. Let b1 be a0’s most preferred post in L3. Since
b1 ∈ L3 while F ∩ L3 = ∅ (by Lemma 5.1), we know that there is an edge labeled +1 incident on
a1 = M∗(b1). Let this edge be (a1, b2) and let a2 be M∗(b2). So there is a length-5 alternating path
p = b0-a0-b1-a1-b2-a2 where both the non-matching edges (a0, b1) and (a1, b2) are labeled +1. This
contradicts the presence of b1 in L3 as such a post would have to be in L2. Thus b0 is a0’s most
preferred post in L3. ut

The following lemma shows the relationship between the partition 〈L1, L2, L3〉 and the partition
〈X,Y, Z〉 constructed by our algorithm that builds the graph H.

Lemma 7. The set X ⊇ L1 and the set Z ⊆ L3.
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Proof. In our algorithm that constructs the graph H and the partition 〈X,Y, Z〉, the set X is
initialized to F and the set Y is initialized to B \F . As our algorithm progresses, in each iteration
of the While-loop, some f -posts get demoted from X to Y and similarly, some non-f -posts get
demoted from Y to Z till there is an iteration (say, iteration h + 1) where all posts in Y are
odd/unreachable in H – this is the last iteration of the While-loop.

For any 1 ≤ k ≤ h+ 1, let Tk (similarly, Fk) be the set of posts that got demoted from Y to Z
(resp., X to Y ) in the k-th iteration of the While-loop in our algorithm. We have Th+1 = ∅.

Note that F1 = ∅ since Z is initialized to ∅, so in the first iteration of our algorithm, every
f -post b has a neighbor a ∈ A \ nbr(Z) such that f(a) = b. Thus no post is demoted from X to Y
in the first iteration.

The graph H1 is the subgraph of G where each a ∈ A has at most two neighbors: its top post and
when ra <∞, its neighbor of rank ra. Let S be the set of posts in B \F that are odd/unreachable
in the graph H1. The set T1 is the set of even non-f -posts in H1, i.e. T1 = B \ (F ∪ S).

We will use the following claims and finish the proof of this lemma (the proofs of Claims 2-4
are given after the proof of Lemma 7).

Claim 2 The set T1 ⊆ L3.

Claim 3 For any 1 ≤ k ≤ h, if
⋃k
i=1 Ti ⊆ L3 then Fk+1 ⊆ L2.

Claim 4 For any 2 ≤ k ≤ h, if
⋃k
i=2 Fi ⊆ L2 then Tk ⊆ L3.

Claim 2 tells us that T1 ⊆ L3. We now use Claims 3 and 4 alternately to conclude that for every
1 ≤ k ≤ h, we have ∪k+1

i=2 Fi ⊆ L2 and ∪ki=1Ti ⊆ L3.

Thus the set Z = ∪hi=1Ti is a subset of L3 and the set F \X = ∪h+1
i=2 Fi is a subset of L2. Since

F \X ⊆ L2, it follows that X ⊇ F \ L2 = L1. ut

Proof of Claim 2. Any post in T1 that is left unmatched in M∗ has to belong to L3. Similarly, any
b0 ∈ T1 that is matched to an applicant a0 that ranks b0 worse than ra0 has to belong to L3: this
is because there is a length-5 alternating path p = b0-a0-b1-a1-b2-a2 where b1 is a post of rank ra0
in a0’s preference list, a1 = M∗(b1), and b2 = f(a1). The path p has two consecutive non-matching
edges that are labeled +1, so b0 ∈ L3.

Now consider any b0 ∈ T1 that is matched in M∗ to an applicant a0 such that the rank of
(a0, b0) is ra0 . So a0 is a neighbor of b0 in H1. Since b0 is even in H1, all the neighbors of b0 in H1

are odd and thus they have to be of degree exactly 2 in H1 (recall that all applicants have degree
at most 2 in H1). Thus the neighbors of these applicants are again even. Let C be the connected
component containing b0 in H1. It is easy to see that in C, all posts are even, all applicants are
odd, and the number of posts is more than the number of applicants. (In fact, C is a tree with b0
as the root and the number of posts in C is one plus the number of applicants in C.)

If b0 ∈ L2, then a0’s other neighbor in C, which is f(a0), has to be in L1 since there is a +1
edge from a0 to f(a0). This means f(a0) is matched to an applicant a′0 that ranks it as a top post,
so the applicant a′0 is a neighbor of f(a0) in C. There has to be another neighbor of a′0 in C, call
this b1. The important observation is that b1 cannot be in L3 as that would violate Lemma 5.2
since a′0 ∈M∗(L1). So b1 ∈ L2 and this means b1 is matched to an applicant a1 that ranks it ra1 , in
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other words, a1 is a neighbor of b1 in C. So f(a1) has to be in L1 and we continue in this manner
marking all f -posts in C as elements of L1 and all non-f -posts in C as elements of L2.

This means all posts in C are matched to their neighbors in C, however this is not possible as
there are more posts than applicants in C. This contradicts our assumption that b0 ∈ L2, in other
words, b0 has to be in L3. Thus T1 ⊆ L3. ut

Proof of Claim 3. The set Fk+1 is the set of posts that got demoted from X to Y in the (k+ 1)-th
iteration of the While-loop: this means each post b in Fk+1 had no applicant outside nbr(∪ki=1Ti)
that regarded b as an f -post. In other words, every applicant a such that f(a) = b belongs to
nbr(∪ki=1Ti). Since ∪ki=1Ti ⊆ L3, each such applicant a is present in nbr(L3).

Let Fk+1 = {b1, . . . , bh}. For 1 ≤ i ≤ h, let (ai, bi) ∈ M∗: if f(ai) = bi, then bi ∈ L2 (because
ai ∈ nbr(L3)); else there is an edge (ai, f(ai)) that is labeled +1 incident on ai and hence bi cannot
be in L1. Thus Fk+1 ∩ L1 = ∅, i.e. Fk+1 ⊆ L2 (by Lemma 5.1). ut

Proof of Claim 4. Let us assume that we have proved Claim 4 for all smaller values of k. That is,
for j ≤ k − 1, we have shown that if ∪ji=2Fi ⊆ L2 then the set Tj ⊆ L3. This is indeed the case for
k = 2 since we know T1 ⊆ L3 (by Claim 2). Using Claim 3 and Claim 4 (for j ≤ k − 1) alternately
now, it follows that Tj ⊆ L3 for j ≤ k−1. Thus ∪k−1i=1 Ti ⊆ L3. We will now show that Tk is a subset
of L3.

Let Hk denote the graph H in step 4 in the k-th iteration of the While-loop in our algorithm.
This is the graph where we determine the even posts that will get demoted from Y to Z. In step 4
of the k-th iteration of the While-loop, the set X = F \ ∪ki=2Fi (call this set Xk), Z = ∪k−1i=1 Ti (call
this set Zk), and let Yk be the set of posts outside Xk ∪ Zk. The edge set of Hk is as follows:

– for each a ∈ A: if the rank of a’s most preferred post b in Yk is ≤ ra, then the edge (a, b) belongs
to Hk

– for a ∈ A \ nbr(Zk): the edge (a, f(a)) is also present in Hk.

Let us refer to posts in S as s-posts: recall that these are odd/unreachable non-f -posts in the
graph H1. We will now show that all s-posts in L2 are odd/unreachable in Hk; so every s-post that
is even in Hk has to be in L3, in other words, Tk ⊆ L3. Let G′0 be the subgraph of G′ with the set
of posts restricted to L1 ∪ L2 (see Fig. 4). Consider the subgraph G′k of G′0 obtained by deleting
edges missing in Hk from G′0.

We now show that G′k contains all edges in G′0 incident on s-posts in L2. This is because any
edge (a, b) incident on an s-post b ∈ L2 in G′0 is present in Hk also. Since the edge (a, b) belongs to
G′0, the post b has to be ranked ra in a’s preference list and there is no f -post in L2 of rank better
than ra in a’s list. If the edge (a, b) does not exist in Hk, then it means there is some f -post in Yk
that a prefers to b. All f -posts in Yk are in ∪ki=2Fi and we are given that ∪ki=2Fi ⊆ L2. Since we
know there is no f -post in L2 that a prefers to b, it follows that b has to be a’s most preferred post
in Yk and so the edge (a, b) belongs to Hk. Thus G′k, whose edge set is the intersection of the edge
sets of G′0 and Hk, contains all edges in G′0 incident on s-posts in L2.

Every post in L1 ∪ L2 is odd/unreachable in G′0 since the matching M∗ restricted to the edge
set of G′0 is (L1∪L2)-complete. We have shown that G′k contains all edges in G′0 incident on s-posts
in L2: thus all s-posts in L2 are odd/unreachable in G′k. It is easy to see that all top-ranked edges
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L1

Xk ∩ L2

Yk ∩ L2

Fig. 4. The set of posts in G′0 can be viewed as L1 ∪ (Xk ∩ L2) ∪ (Yk ∩ L2). All s-posts in L2 are in Yk ∩ L2.

in G′0 incident on f -posts in Yk ∩L2 are also present in G′k: each such post has a degree 1 neighbor
in G′k, thus all f -posts in Yk ∩ L2 are also odd/unreachable in G′k.

We now claim that all posts in L1 are also odd/unreachable in G′k. We first show that all edges
incident on L1 in G′0 are present in Hk. This is because each edge (a, b) in G′0 such that b ∈ L1

is incident on an applicant a ∈ A \ nbr(L3) such that b = f(a) and we know the graph Hk has
(a, f(a)) edges for all a ∈ A \ nbr(Zk) ⊇ A \ nbr(L3) since Zk = ∪k−1i=1 Ti ⊆ L3.

In G′k, each vertex b ∈ L1 either has a degree 1 neighbor (in which case our claim is true) or
it has a degree 2 neighbor a whose other neighbor is in Yk ∩ L2, i.e. it is not in Xk ∩ L2. This is
because a cannot have 2 neighbors in Xk in the graph Hk and we know L1 ⊆ Xk since all f -posts
missing in Xk (these are posts in ∪k−1i=2 Fi) are absent from L1 also. Since all posts in Yk ∩ L2 are
odd/unreachable in G′k, it follows that all posts in L1 are also odd/unreachable in G′k.

Let us now compare the graph Hk with the graph G′k. The graph Hk has additional vertices:
these are the ones in Yk ∩L3 and the new edges in Hk (new relative to G′k) belong to the following
two classes: (i) nbr(L3)× (Yk ∩L3) and (ii) A× (L1∪ (Yk ∩L2)). This is because every edge incident
on Xk ∩ L2 in Hk (these are all top-ranked edges) is present in G′0 as well.

Consider any new edge (a, b) in Hk of type (i), i.e. (a, b) ∈ nbr(L3) × (Yk ∩ L3). Since (a, b)
belongs to Hk, it must be the case that a’s most preferred neighbor in Yk is b. So the post b is
ranked ra in a’s list and a has no neighbor of rank better than ra in Yk. Recall that G′0 has no edge
in nbr(L3)× L1. So the only edge that can be incident on a in the graph G′k is an edge to f(a) in
Xk ∩ L2.

Consider any connected component C in G′k that contains an s-post in L2: every post here
belongs to either L1 or Yk ∩ L2, in other words, there is no post in Xk ∩ L2 here. This is because
there is no applicant a in G′k with neighbors in Yk ∩ L2 and Xk ∩ L2 as this means a has two
neighbors in L2, which is forbidden in G′0. Similarly, there is no applicant a′ in G′k with neighbors
in L1 and Xk ∩L2 as this means a has two neighbors in Xk, which is forbidden in Hk. Thus C has
no post from Xk ∩ L2.

So the new edges in Hk of type (i) do not touch components in G′k that contain s-posts in L2.
All the new edges incident upon these components have their endpoints in L1 ∪ (Yk ∩ L2). These
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posts are already odd/unreachable in G′k. So these posts remain odd/unreachable in Hk. Hence
every s-post in L2 is odd/unreachable in Hk. ut

The augmented graph G′. The matching M∗ need not be A-complete. However it would help us
to assume that M∗ is A-complete, so we augment M∗ by adding (a, `(a)) edges for every a ∈ A that
is unmatched in M∗. Recall that `(a) is the dummy last resort post of a. However the augmented
matching M∗ need not belong to the graph G′ any longer – hence we augment G′ also by adding
some dummy vertices and some edges as described below.

The augmentation of G′ is analogous to phase (III) of our algorithm – we augment G′ as follows:
let L2 = L2 ∪D, where D = {`(a) : a ∈ A and ra =∞}; if nbr({a}) ⊆ L1, then add (a, `(a)) to G′.
Thus when compared to G′, the augmented G′ has some new vertices (all these are dummy last
resort posts) and some new edges – each new edge is of the form (a, `(a)) where `(a) is a’s only
neighbor in L2 ∪ L3. These new edges are enough to show the following lemma.

Lemma 8. The augmented matching M∗ belongs to the augmented graph G′.

Proof. Before the augmentations of G′ and M∗, the matching M∗ belonged to the graph G′ (by
Lemma 6). We now need to show that if a is left unmatched in M∗ (before augmentation), then
ra =∞ and all of a’s neighbors belong to L1.

Suppose a is left unmatched in M∗ and ra < ∞. Since ra < ∞, there is a post b /∈ F such
that the post b has rank ra in a’s preference list. Consider the alternating path p = a-b-a′-f(a′)-a′′,
where a′ = M∗(b) and a′′ = M∗(f(a′)). The matching M∗⊕p matches a to b and promotes a′ to its
top post f(a′) and leaves a′′ unmatched. Thus M∗ ⊕ p is more popular than M∗, a contradiction.

So let us assume ra = ∞ and a was left unmatched in M∗. Suppose a has some neighbor b0
outside L1. The post b0 has to be in F because ra = ∞, i.e. a has no neighbors outside F . Since
F ⊆ L1∪L2 (by Lemma 5.1), it follows that b0 ∈ L2. Let a0 = M∗(b0); if b0 6= f(a0), then we again
have an alternating path p = a-b0-a0-f(a0)-a1, where a1 = M∗(f(a0)) such that M∗ ⊕ p is more
popular than M∗. This contradicts the popularity of M∗.

So suppose b0 = f(a0) and b0 ∈ L2 because a0 ∈ nbr(L3). We know from Claim 1 that there is
a desired alternating path ρa0 , where either the last two non-matching edges are labeled +1 or the
last post in ρa0 is unmatched. Consider the alternating path ρ which is the path a-b0-a0 followed
by the path ρa0 . It is easy to see that M∗ ⊕ ρ is more popular than M∗, a contradiction to the
popularity of M∗. ut

Since the augmented M∗ is an A-complete matching, it follows from Lemma 8 that the aug-
mented graph G′ admits an A-complete matching. Theorem 5 uses Lemma 7 to show that if the
augmented graph G′ admits an A-complete matching, then so does the graph H constructed by
our algorithm.

Theorem 5. If H does not admit an A-complete matching, then the augmented graph G′ cannot
admit an A-complete matching.

Proof. We will use G′ to refer to the augmented graph G′ in this proof. The rules for adding edges
in H and in G′ are exactly the same – the only difference is in the partition 〈X,Y, Z〉 on which
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L1

Y ∩ L2

L2

A \ nbr(Z)

Z

A′

B′

A′′

X ∩ L2

nbr(Z) \ nbrH(Y ∩ L3)

nbr(Z) ∩ nbrH(Y ∩ L3)

Y ∩ L3

Fig. 5. The part of G′ inside the box will be called G′′. The graph G′ has no edge between any applicant in A′ and
any post in Z.

H is based vs the partition 〈L1, L2, L3〉 on which G′ is based. If 〈X,Y, Z〉 = 〈L1, L2, L3〉, then the
graphs H and G′ are exactly the same.

Fig. 5 denotes how the partition 〈X,Y, Z〉 can be modified to the partition 〈L1, L2, L3〉. We
know from Lemma 7 that X ⊇ L1 and Z ⊆ L3. Consider the subgraph G′′ of G′ induced on the
vertex set A′ = (A \ nbr(Z)) ∪ (nbr(Z) ∩ nbrH(Y ∩ L3)) and B′ = X ∪ Y . This is the part bounded
by the box in Fig. 5. In our analysis, we can essentially separate G′ into G′′ and the part outside
G′′ due to the following claim that says G′ has no edges between A′ and Z.

Claim 5 G′ has no edge (a, b) where a ∈ A′ and b ∈ Z.

Proof. Any applicant a ∈ A′ has to belong to either A \ nbr(Z) or to nbr(Z) ∩ nbrH(Y ∩ L3) (see
Fig. 5). There is obviously no edge in G between a vertex in A \ nbr(Z) and any vertex in Z. So
suppose a ∈ nbr(Z)∩ nbrH(Y ∩L3). For b ∈ L3, if the edge (a, b) is in G′, then b has to be a’s most
preferred post in L3. We will now show that b ∈ Y ∩ L3, equivalently b /∈ Z. Thus G′ has no edge
(a, b) where a ∈ A′ and b ∈ Z.

Since a ∈ nbrH(Y ∩L3), the graph H contains an edge between a and some b′ ∈ Y ∩L3. Recall
that an element of Y ∩ L3 is a real post in Y . By the rules of including edges in H, it follows that
the rank of b′ in a’s preference list is ≤ ra. The entire set L3 cannot contain any post of rank better
than ra for any a ∈ A since any post of rank better than ra in a’s list belongs to F while L3∩F = ∅
(by Lemma 5.1). So b′ has rank ra in a’s list. Thus a’s most preferred neighbor in L3 belongs to
Y ∩ L3. ut
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Let G0 be the subgraph of G′′ obtained by deleting from G′′ the edges that are absent in H.
Thus G0 is a subgraph of both G′ and H. The following claim (whose proof is given after the proof
of Theorem 5) will be useful to us.

Claim 6 All posts in (X ∩ L2) ∪ (Y ∩ L3) are odd/unreachable in G0. Moreover, every edge (a, b)
in G′ that is missing in H satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3).

Consider the graph G1 whose edge set is the intersection of the edge sets of G′ and H.
Equivalently, G1 can be constructed by adding to the edge set of G0, the edges incident on
A′′ = nbr(Z) \ nbrH(Y ∩ L3) that are present in both G′ and H (see Fig. 5). This is due to
the fact that G′ has no edge in A′ × Z.

We claim that all posts in (X ∩ L2) ∪ (Y ∩ L3) are odd/unreachable in G1. This is because
Claim 6 tells us that each post in this set is odd/unreachable in G0 and due to the absence of
A′×Z edges in G′, the graph G1 has no new edge (new when compared to G0) incident on the set
A′ of applicants in G0. Hence all posts in (X ∩ L2) ∪ (Y ∩ L3) remain odd/unreachable in G1.

Claim 6 also tells us that all edges in G′ that are missing in H are incident on posts in (X∩L2)∪
(Y ∩L3). We know that all these posts are odd/unreachable in G1, hence G′ has no new edge (new
when compared to G1) on posts that are even in G1. Thus the size of a maximum matching in G′

equals the size of a maximum matching in G1. This is at most the size of a maximum matching in
H, since G1 is a subgraph of H. Hence if H has no A-complete matching, then neither does G′. ut

Proof of Claim 6. We will now show that all posts in (X ∩ L2) ∪ (Y ∩ L3) are odd/unreachable
in G0. Let a be an applicant with degree 2 in the graph G0, let b1 and b2 be the two neighbors of
a, where b1 is the more preferred neighbor of a. We claim either (i) b1 ∈ X ∩ L2 and b2 ∈ Y ∩ L3

or (ii) b1 ∈ L1 and b2 ∈ Y ∩ L2. This is because of the following.

– There is no applicant in G0 with edges to both a post in L1 and post in X ∩ L2. If there was
such an applicant a, then a would have two neighbors in the set X, which is forbidden in H.
Recall that any edge in G0 is an edge in H as well.

– There is no applicant in G0 with edges to both a post in X ∩ L2 and a post in Y ∩ L2. If there
was such an applicant a, then a would have two neighbors in the set L2, which is forbidden
in G′. Recall that any edge in G0 is an edge in G′ as well.

– There is no applicant in G0 with edges to both a post in Y ∩ L2 and a post in Y ∩ L3. If there
was such an applicant a, then a would have two neighbors in the set Y , which is forbidden in H.

– There is no applicant a in G0 with edges to both a post in L1 and a post in Y ∩ L3. This is
because G′ cannot contain such a pair of edges as it is only applicants in A \ nbr(L3) that are
adjacent to posts in L1.

Thus in the graph G0, vertices in (X ∩ L2) ∪ (Y ∩ L3) and those in L1 ∪ (Y ∩ L2) belong to
different connected components. Note that all dummy posts belong to Y ∩ L2. So none of these
posts belongs to any connected component in G0 that contains vertices in (X ∩ L2) ∪ (Y ∩ L3).
Consider the subgraph H ′ of H, obtained by restricting the set of posts in H to real posts in X∪Y .
All real posts in X ∪Y are odd/unreachable in H ′. Since (X ∩L2)∪ (Y ∩L3) consists of real posts,
all these posts are odd/unreachable in H ′.
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We now claim that all posts in (X ∩L2)∪ (Y ∩L3) remain odd/unreachable in G0. In the first
place, every edge (a0, b0) in H ′ incident on any vertex b0 ∈ Y ∩ L3 is present in G′′ as well. This is
because a0 ∈ A′ and if b0 ∈ Y ∩L3 is the most preferred post in Y for applicant a0, then the rank of
b0 in a0’s preference list is ra0 and thus b0 is also a0’s most preferred post in L3, so the edge (a0, b0)
belongs to the graph G′′. Similarly every edge (a1, b1) in H ′ incident on any post b1 ∈ X ∩ L2 is
present in G′′ as well – this is because a1 ∈ A′ and b1 has to be f(a1) for the edge (a1, b1) to exist
in H ′. Thus b1 is also a1’s most preferred post in L2. Hence all edges in H ′ incident on posts in
(X ∩ L2) ∪ (Y ∩ L3) are present in G0.

Let b be any post in (X ∩ L2) ∪ (Y ∩ L3). The connected component in G0 that contains b
can be obtained by taking the connected component containing b in H ′ and deleting all vertices in
L1 ∪ (Y ∩L2) from this component. Since no edge incident on b has been deleted here and because
b is odd/unreachable in the starting component, it follows that b is odd/unreachable in G0.

We will now show the second part of Claim 6: every edge (a, b) in G′ that is missing in H
satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3). We partitioned the set B of posts into five sets (refer to Fig. 5).
These are L1, X ∩ L2, Y ∩ L2, L3 ∩ Z, and Z. We will now show that every edge in G′ that is
incident on L1 ∪ (Y ∩ L2) ∪ Z is present in H also.

– Any edge (a, b) in G′ where b ∈ L1 is such that f(a) = b and a ∈ A \ nbr(L3). Since L3 ⊇ Z (by
Lemma 7), this means a ∈ A \ nbr(Z). Thus H also contains the edge (a, b).

– Any edge (a, b) in G′ where b ∈ Y ∩ L2 is such that b is a’s most preferred post in L2 and the
rank of b in a’s preference list is ≤ ra. Note that Y \ L2 = (Y ∩ L3) ⊆ B \ F (by Lemma 5.1).
Thus the rank of a’s most preferred post in Y \ L2 is ≥ ra and hence no post in Y \ L2 can
be preferred to b. So the post b is, in fact, a’s most preferred post in Y . Thus the edge (a, b)
belongs to H as well.

– Any edge (a, b) in G′ where b ∈ Z is such that b is a’s most preferred post in L3. Since L3 ⊇ Z,
this means b is a’s most preferred post in Z. Thus H also contains the edge (a, b).

Thus every edge (a, b) in G′ that is missing in H satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3). ut

Theorem 5, along with Lemma 8, finishes the proof of the necessary part of Theorem 4 and this
completes the proof of correctness of our algorithm. We now analyze its running time.

Observe that we can maintain the most preferred posts in X,Y , and Z for all applicants over all
iterations in O(m) time, where m is the number of edges in G. To begin with, the most preferred
non-f -post for all applicants can be determined in O(m) time. Thereafter, whenever a post b moves
from X to Y (similarly, from Y to Z), we charge b a cost of the degree of b to pay for checking if
any of its neighbors now has b as its most preferred post in Y (resp., Z).

Let n be the number of vertices in G. The number of iterations is O(n) and the most expensive
step in each iteration is finding a maximum matching in a subgraph where each vertex in A has
degree at most 2. It is easy to see that this step can be performed in O(n) time. Thus the running
time of our algorithm is O(n2). Hence we can conclude Theorem 1 stated in Section 1.

There are instances on O(n) vertices and O(n) edges where our algorithm takes Θ(n2) time.
Consider the example given in Fig. 6: here there are 2n + 1 applicants and 2n + 2 posts and the
number of edges is 5n+2. For each 1 ≤ i ≤ n, we have f(ai) = f(a′i) = fi and si is the most preferred
non-f -post for both ai and a′i. For a0, we have f(a0) = f0 and a0’s most preferred non-f -post is s0.
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Fig. 6. The preferences of applicants are indicated on the edges. Our algorithm runs for n + 1 iterations here.

In the starting graph H1, there is exactly one post that is even in Y1: this is s0 and so s0 moves
from Y1 to Z1. In the second iteration, f0 has no applicant in A \ nbr(Z) that regards it as a top
post and this causes the demotion of f0 from X2 to Y2. Now the post f0 is the most preferred post
in Y2 for a1 and this makes s1 even in Y2 and causes s1 to move from Y2 to Z2.

This makes both a1 and a′1 belong to nbr(Z) and hence f1 gets isolated in H3 and so f1 moves
from X3 to Y3. Now f1 becomes the most preferred post in Y3 for a2 and this causes s2 to move
from Y3 to Z3 and so on. Thus our algorithm runs for n+1 iterations. This instance admits popular
matchings, for instance, {(a0, f0), (ai, fi), (a′i, si) : 1 ≤ i ≤ n} is a popular matching here.

4 Our NP-hardness result

Given a matching M in G = (A∪B,E), it was shown in [3] that M can be tested for popularity in
O(

√
|V |·|E|) time (even in the presence of ties), where |V | = |A∪B|. We now show the NP-hardness

of the 2-sided popular matching problem in G with 1-sided ties using the (2,2)-e3-sat problem.

Recall that the (2,2)-e3-sat problem takes as its input a Boolean formula I in CNF, where
each clause contains three literals and every variable appears exactly twice in unnegated form and
exactly twice in negated form in the clauses. The problem is to determine if I is satisfiable or not
and this problem is NP-complete [2].

Constructing a popular matching instance G = (A ∪ B,E) from I. Let I have m clauses and n
variables. The instance G constructed consists of n variable gadgets, m clause gadgets, and some
interconnecting edges between these, see Fig. 7. A variable gadget representing variable vj , for
1 ≤ j ≤ n, is a 4-cycle on vertices aj1 , bj1 , aj2 , and bj2 , where aj1 , aj2 ∈ A and bj1 , bj2 ∈ B. A clause
gadget representing clause Ci, for 1 ≤ i ≤ m, is a subdivision graph of a claw. Its edges are divided
into three classes: ci ∈ B is at the center, the neighbors of ci are xi1 , xi2 , xi3 ∈ A, and finally, each
of xi1 , xi2 , xi3 is adjacent to its respective copy in Yi = {yi1 , yi2 , yi3}, where Yi ⊆ B.

A vertex in Yi represents an appearance of a variable. For instance, y31 is the first literal of
the third clause. Each of the vertices in Yi is connected to a vertex in the variable gadget via an
interconnecting edge. Vertex yik is connected to the gadget standing for variable j if the k-th literal
of the ith clause is either vj or ¬vj . If it is vj , then the interconnecting edge ends at aj1 , else at aj2 .
The preferences of this instance can be seen in Fig. 7. The constructed graph trivially satisfies both
conditions claimed in Section 1, i.e. every vertex in A has a strict preference list of length 2 or 4
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and every vertex in B has either a strict preference list of length 2 or a single tie of length 2 or 3
as a preference list.

ci1

xi1

xi2

xi3

yi1

yi2

yi3

1

1

1 1

1

1

2 1

2 1

2 1

2

2

2

aj1 bj1

aj2 bj2

1 1

4

11

1

4 1

2

3

2

3

(-1,0)

(+1,0)

(+1,0)

(+1,0)

(-1,+1) (+1,-1)

(+1,0)

(+1,0)

(-1,+1)

(-1,+1)

Fig. 7. A clause gadget, a variable gadget, and the structure of the entire construction with a variable that appears
at the second place in the first clause in unnegated form and at the third place in the second clause in negated form.
The thick red matching corresponds to a true variable.

Constructing a truth assignment in I, given a popular matching M in G. The graph G is as
described above. Claim 7 states that any popular matching M in G has a certain structure.

Claim 7 Any popular matching M in G has to obey the following properties.

– M avoids all interconnecting edges.
– M is one of the two perfect matchings on any variable gadget; i.e. for each j, the edges of M ,

restricted to the gadget corresponding to variable vj, are either (i) (aj1 , bj1) and (aj2 , bj2), or
(ii) (aj1 , bj2) and (aj2 , bj1).
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– M leaves exactly one vertex per clause i unmatched and this unmatched vertex yik is adjacent
to an ajt that is matched to bj1.

Proof. Label each edge (a, b) in G \M by the pair (α, β), where α ∈ {±1} is a’s vote for b versus
M(a) and β ∈ {±1, 0} is b’s vote for a versus M(b). Our first observation is that every ci, for
1 ≤ i ≤ m, and every bj1 , for 1 ≤ j ≤ n, must be matched in M . That is because these vertices are
the top choices for each of their neighbors, hence if one of them is left unmatched, then there would
be an edge labeled (+1,+1) incident to an unmatched vertex. This contradicts the popularity of M .

Assume without loss of generality that {(ci, xi3), (aj1 , bj1)} ⊆ M . Also, the edges (xi1 , yi1) and
(xi2 , yi2) must be in M , because they are the top-ranked edges of yi1 and yi2 , respectively. We now
claim that (aj2 , bj2) ∈M as well.

Suppose (aj2 , bj2) /∈M . Since M is a maximal matching, (aj2 , yik) ∈M for some ik. Based on the
above described structure of the clause gadgets, the edges (xjk , cj), (xjk+1

, yjk+1
), and (xjk+2

, yjk+2
)

are in M , where the subscripts are taken modulo 3. Consider the following augmenting path p
wrt M :

ρ = bj2 − aj1 − bj1 − aj2 − yjk − xjk − cj − xjk+1
− yjk+1

.

We have M ⊕ p �M , which contradicts the popularity of M . Thus (aj2 , bj2) ∈M .

An analogous argument proves that if (aj2 , bj1) ∈M for some j, then (aj1 , bj2) has to be in M .
The last observation we make is that if yik is unmatched in M , then its interconnecting edge leads
to an ajt that is matched to bj1 . Otherwise (yik , ajt) would be labeled (+1,+1) with one vertex
unmatched, a contradiction again to the popularity of M . This finishes the proof of Claim 7. ut

We assign true to all variables vj such that M ⊇ {(aj1 , bj1), (aj2 , bj2)} and false to all variables
vj such that M ⊇ {(aj1 , bj2), (aj2 , bj1)}.

So the truth value of every variable is uniquely defined and all we need to show is that every
clause has a true literal. Assume that in clause Ci, all three literals are false. The clause gadget
has an unmatched vertex yik that is adjacent to an ajt . If the literal is false, then ajt prefers yik
to M(ajt) = bj2 and this becomes an edge labeled (+1,+1) with an unmatched end vertex – this
contradicts the popularity of M . Hence in every clause, there is at least one true literal and so this
is a satisfying assignment.

Constructing a popular matching in G, given a truth assignment in I. Here we first construct a
matching M in the graph G as described below and then show that it is popular. Initially M = ∅.
For each j, where 1 ≤ j ≤ n, if vj = true in the assignment, then add (aj1 , bj1) and (aj2 , bj2) to M ,
else add (aj1 , bj2) and (aj2 , bj1) to M . For each i, where 1 ≤ i ≤ m, in the gadget corresponding to
clause Ci, any true literal is chosen (say, the k-th literal) and yik , representing its appearance, is
left unmatched. Moreover, (xik , ci), (xik+1

, yik+1
) and (xik+2

, yik+2
) (where the subscripts are taken

modulo 3) are added to M . No interconnecting edge appears in M . This finishes the description
of M .

Claim 8 The matching M is popular in G.

Proof. Suppose M is not popular. Then there is another matching M ′ that is more popular than M .
This can only happen if M ⊕M ′ contains a component ρ such that the number of vertices in ρ
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that prefer M ′ to M is more than those that prefer M to M ′. To achieve this, the matching M ′

should contain at least one edge labeled either (+1,+1) or (+1, 0), where we use edge labels (α, β)
as described in the proof of Claim 7. We now analyze the cases based on the occurrences of such
“positive” edges.

Since we started with a truth assignment, no interconnecting edge can be labeled (+1,+1). In
fact, it is easy to check that no edge here can be labeled (+1,+1). We now check for the occurrences
of edges labeled (+1, 0). These can occur at two places: the edge (ajt , bj1) for any 1 ≤ j ≤ n and
the edge (xik , ci) for any 1 ≤ i ≤ m.
Case 1. Suppose (aj2 , bj1) is labeled (+1, 0). This happens if vj is true in the truth assignment. We
start the augmenting path ρ at (aj2 , bj1). Augmenting along the 4-cycle is not sufficient to break
popularity, therefore, aj1 must be matched along one of its interconnecting edges, say (aj1 , yik).

– If yik is unmatched, consider the path ρ = bj2-aj2-bj1-aj1-yik . There are two vertices (aj1 and
bj2) that prefer M to M ⊕ ρ and two vertices (aj2 and yik) that prefer M ⊕ ρ to M .

– If yik is matched, then extend the path ρ till the unmatched vertex of the ith variable gadget
(call this yit). The path ρ is described below:

ρ = bj2 − aj2 − bj1 − aj1 − yik − xik − ci − xit − yit .

So 4 vertices, i.e. bj2 , aj1 , yik , and xit , prefer M to M ⊕ ρ while 3 vertices, i.e. aj2 , xik , and yit ,
prefer M ⊕ ρ to M .

Case 2. Now suppose (xik , ci) is labeled (+1, 0). Let us assume that this edge is (xi3 , ci) and
suppose (xi1 , ci) ∈M . Consider the alternating path ρ = yi1-xi1-ci-xi3-yi3 . In the matching M ⊕ ρ,
the vertices xi3 and yi1 are better-off while xi1 and yi3 are worse-off, i.e. they prefer M to M ⊕ ρ.
In order to collect one more vertex that prefers M ⊕ ρ, let us extend this alternating path ρ to
include (ajk , yi3), the interconnecting edge of yi3 . The vertex yi3 still prefers M to M ⊕ ρ since yi3
was paired in M to its top-ranked neighbor.

Without loss of generality, let us assume that this interconnecting edge is (aj2 , yi3). We have
two cases here: either {(aj1 , bj1), (aj2 , bj2)} ⊆M or {(aj1 , bj2), (aj2 , bj1)} ⊆M .

– In the first case, the path ρ gets extended to · · · -aj2-bj2 . So aj2 prefers M ⊕ ρ to M , however
bj2 is left unmatched in M ⊕ ρ, so bj2 prefers M to M ⊕ ρ.

– In the second case, the path ρ gets extended to · · · -aj2-bj1-aj1-bj2 . So aj1 prefers M ⊕ ρ to M ,
however both aj2 and bj2 prefer M to M ⊕ ρ.

We have analyzed all the cases where edges can labeled (+1, 0) and we showed that there is no
alternating cycle or path ρ containing an edge labeled (+1, 0) such that M ⊕ ρ � M . Thus M is
popular. ut

This finishes the proof of Theorem 2 stated in Section 1.

Conclusions and open problems. We gave an O(n2) algorithm for the popular matching prob-
lem in G = (A∪B,E) where vertices in A have strict preference lists while each vertex in B puts all
its neighbors into a single tie and n = |A ∪B|. Our algorithm needs the preference lists of vertices
in A to be strict and the complexity of the popular matching problem when ties are allowed in the
preference lists of vertices in A is currently unknown.
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When each b ∈ B either has a single tie of length at most 3 or a strict preference list (and
each a ∈ A has a strict preference list), we showed that the popular matching problem becomes
NP-hard. The complexity of the same problem with ties of length at most 2 instead of 3 is open.
Another open problem is to extend our algorithm to solve the popular matching problem in the
many-to-one setting where each post b has a capacity cap(b) and post b prefers M1 to M2 if
cap(b) ≥ |M1(b)| > |M2(b)|.
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