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LARGE TIME APPROXIMATION FOR SHEARING MOTIONS

GIUSEPPE SACCOMANDI* AND LUIGI VERGORIf

Abstract. Small- and large-amplitude oscillatory shear tests are widely used by experimentalists
to measure, respectively, linear and nonlinear properties of visco-elastic materials. These tests are
based on the quasi-static approximation according to which the strain varies sinusoidally with time
after a number of loading cycles. Despite the extensive use of the quasi-static approximation in solid
mechanics, few attempts have been made to justify rigorously such an approximation. The validity of
the quasi-static approximation is studied here in the framework of the Mooney-Rivlin Kelvin-Voigt
visco-elastic model by solving the equations of motion analytically. For a general nonlinear model,
the quasi-static approximation is instead derived by means of a perturbation analysis.

Key words. Shearing motion, Mooney-Rivlin Kelvin-Voigt visco-elastic model, SAOS and
LAOS tests.

AMS subject classifications. 74D05, 74D10, 74H10, 74H40

1. Introduction. According to Truesdell [24], the most illuminating homoge-
neous static deformation is the simple shear deformation. Denoting (X,Y,Z) and
(x,y, z) the Cartesian coordinates of a particle P of a given body B in the reference
and current configurations, respectively, the simple shear deformation is given by the
following equations

(1) r=X+KY, y=Y, z=2,

where the constant K is called the amount of shear. The simple shear deformation
(1) is a homogeneous isochoric deformation and therefore it is a universal solution
to all nonlinear incompressible isotropic materials (see for instance the textbook by
Tadmor et al. [23]). In the linear theory of elasticity the infinitesimal deformation of
the form (1) is associated with an infinitesimal shear stress o0 = S(i® k+ k ® 1), S
being a constant. This fact does not carry over to the framework of finite elasticity
[7]. Indeed, the simple shear test in the framework of the theory of linear elasticity is
a well defined experiment (see for example the BS ISO 8013 standard [3]), but in the
theory of nonlinear elasticity it is not easy to model because of the unequal normal
stresses needed to achieve the required simple shear deformation [18].

In his celebrated paper [16] Mooney notices that “when a sample of soft rubber is
stretched by an imposed tension, neither the force-elongation nor the stress-elongation
relationship agrees with Hooke’s law. On the other hand, if the sample is sheared
by a shearing stress, or traction, Hooke’s law is obeyed over a very wide range in
deformation”. Mooney’s statement is imprecise. In fact, as pointed out by Destrade
et al. [7], for homogeneous, isotropic, non-linearly elastic materials the form of the
homogeneous deformation consistent with the application of a Cauchy shear stress is
not simple shear, in contrast to the situation in linear elasticity. Instead, it consists
of a triaxial stretch superposed on a classical simple shear deformation, for which
the amount of shear cannot be greater than 1. In other words, the faces of a cubic
block cannot be slanted by an angle greater than 45° by the application of a pure
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2 G. SACCOMANDI AND L. VERGORI

shear stress alone. Mooney [16] ignored that in the framework of the nonlinear theory
of elasticity the slanted surfaces of the sample are not stress-free. Both normal and
shear traction must be applied on the inclined faces of the block to maintain the
homogeneous deformation (1). Nevertheless, in his efforts at deriving the most general
strain energy density function such that Hooke’s law is obeyed in simple shear, Mooney
[16] derived the celebrated Mooney-Rivlin model: the starting point of the modern
theory of nonlinear elasticity. Very recently, Mangan et al. [13] showed that Mooney-
Rivlin model is only a special case of the most general strain energy function such
that Hooke’s law is obeyed in simple shear.

In many experimental tests it is common practice to idealize the deformation that
occurs in the real world as a simple shear deformation. For instance, the dynamic
oscillatory shear tests that are used in rheometry to investigate a wide range of soft
matter and complex fluids [8] are performed by subjecting a material to a sinusoidal
deformation and measuring the resulting mechanical response as a function of time
[13]. These oscillatory tests are usually divided into two regimes. In one regime a
linear visco-elastic response is a suitable idealization of the experimental results found
at small amplitude oscillatory shear (SAOS) deformations. In the other regime the
material response is nonlinear as a consequence of large amplitude oscillatory shear
(LAOS) deformations.

Clearly, LAOS tests present all the issues pointed out by Destrade et al. [7] for
the classical static simple shear tests. In addition, in the dynamic context a new
problem occurs for both the SAOS and LAOS tests. If the amount of shear in (1) is
a function of time, say K = K(t), the corresponding motion is neither a solution to
the balance equation of linear momentum nor a self-equilibrated motion. The simple
shear deformation (1) with K = K (t) is an admissible motion only in the framework
of a quasi-static approximation derived from the equations of motion by ignoring the
inertia terms.

In solids mechanics there have been very few attempts to justify rigorously the
quasi-static approximation. The quasi-static approximation is widely employed (see,
for instance, [2] and [19]), but it is not completely clear when it represents a good
approximation of the exact solutions to the equations of motion.

A general discussion of the quasi-static approximation in solid mechanics can be
found in [11]. In the literature very few mathematical results to study this approxima-
tion can be reported. From a mathematical perspective the quasi-static approximation
can be obtained by means of a singular perturbation analysis of the dynamic theory
[20].

The aim of this paper is to investigate the validity of the quasi-static approxi-
mation in the framework of the Mooney-Rivlin Kelvin-Voigt viscoelastic model. Our
results represent a first step toward a rigorous justification of the SAOS procedure.
The advantage of considering the Mooney-Rivlin Kelvin-Voigt viscoelastic model is
that the equation governing shear motions is linear and this allows a rigorous and de-
tailed analysis of the problem. On the other hand, our asymptotic results for nonlinear
models provide some insights into the LAOS procedure.

The plan of the paper is as follows. In Sections 2 and 3 we introduce the gov-
erning equations and the initial and boundary conditions. The basic properties of
the solutions to the resulting initial-boundary value problem (IBVP) are established
in Section 4. The exact solution to the IBVP governing shearing motions is derived
in Section 5 and it is specialized to the case of oscillating boundaries in Section 6.
Then, by considering the behaviour of the ezact solution at large times we derive the
quasi-static approximation. For large amplitude shear oscillations we instead derive
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SHEARING MOTIONS 3

the quasi-static approximation by means of a perturbation analysis (Section 7).

2. Constitutive equations. Let X = X4 + Y3 + Zk be the position vector
(relative to an origin O) of a particle P of a body B at the initial time ¢ = 0, and
x = xt + yj + zk be the position vector (relative to the same origin O) of the same
particle at time t. Choose the configuration occupied by B at the initial time as
the reference configuration and denote it B,. A motion of the body B in the time
interval (0,7") is a mapping x defined in B, x (0,7) such that, for any ¢ € (0,7,
X: = x(+,t) is one-to-one, and = x(X,t). The configuration of the solid at time ¢,
B: = x:(Br) = x(B,,1), is called current configuration. The deformation gradient F'
and the left Cauchy-Green tensor B associated with the motion x are the second-order
Cartesian tensors defined as

_ O

_—rr — T
(2) F=o%. B=FF'

respectively, and the strain-rate tensor is instead given by
1 /. .
(3) D= (FF_I + F—TFT) :

where the superimposed dot denotes the material time derivative. In the sequel we
shall consider a solid made of an incompressible visco-elastic material. Such a solid
can then undergo only isochoric motions, that is motions such that det FF = 1 and,
for smooth enough motions, trD = 0.

The elastic part of the model is characterized by a strain-energy density (measured
per unit volume in the undeformed state)

(4) W =W(I,I),

where I; and I are the first and second principal invariants of B:
1
(5) Li=tB, IL=; [(trB)? — trB*| = txtB™".

For consistency of the model (4) with linear elasticity in the limit of small strains, it
is necessary that

(6) Wi(3.3) + Wa(3.3) = 5.

where the subscript 7 (¢ = 1,2) denotes differentiation with respect to I; and u is the
infinitesimal shear modulus. Since throughout this paper we shall assume that the
strain energy function (4) satisfies the strong ellipticity condition, the infinitesimal
shear stress is assumed to be positive [18].

The strong ellipticity condition is satisfied by many strain energy functions, in-
cluding the Mooney-Riviln model

@ W= S0 -3+ 2 (- 3),

where, in virtue of (6), the non-negative constants C and D are such that C'+ D = y;
the generalized Varga model [12, 25]

(8) Wy =c(iy —3)+d(ia—3), ¢>0,d>0,c+d=2pu,
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4 G. SACCOMANDI AND L. VERGORI

where i, and iy are the first and second principal invariants of the left stretch tensor
V = B'/?; the Fung-Demiray model [6]

(9) Wrp = i {exp [k(I} — 3)] — 1},

where k is a positive constant; and the Gent model [9]

I, -3
Im

(10) WG:_% n<1_

)) Jm>0’

where J,,, is a constant and the range of deformation is limited by the condition
that I1 < J,, + 3. Note that both the Fung-Demiray and Gent models tend to the
neo-Hookean model

1
(11) Wy = 5(-’1 —-3)

as J,, — 400 and k — 0, respectively. Moreover, in plane strain deformations (and
hence in shearing motions) Mooney-Rivlin model reduces to (11).

The elastic part o of the Cauchy stress tensor o can be derived from the strain-
energy function (4) through the following equation

(12) of = —pI +2W,B — 2W,B ™!,

where p is a Lagrange multiplier associated with the constraint of incompressibility.
Regarding the dissipative part of the stress o, in a nonlinear setting the constitutive
equation for o may be very complex, but here, for the sake of illustration and
simplicity, only materials whose Cauchy stress representation contains a term linear

in the symmetric part of the velocity gradient D, and no other dependence on D,
will be considered. We then assume that the viscous stress o@ is of the form

(13) o” =2uD,
where the constant v is the shear viscosity that, in virtue of the second law of ther-

modynamics, is positive. Consequently, the Cauchy stress tensor o = ¥ + o is
given by the following constitutive equation

(14) o=—pl+2W;B - 2W,B~ !+ 2uD.

Finally, we recall that, in the absence of body forces, the equation of motion reads
(15) pa = dive
where p is the (constant) mass density of the material and

_ Px

(16) - X

X=x; ()

is the spatial description of the acceleration.
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SHEARING MOTIONS 5

3. Basic equations. Our aim is to investigate what happens in the shearing
motion of a block made of a viscoelastic material of length L, width B and height H.
Specifically, the motion is given by

(17) r=X+4+u(lZt), y=Y, z=12,

where the function u is as yet unknown. Straightforward computations give

(18a) B=T+u}i®ituz(i®k+k®i),
(18b) B l'=T+ukok—-—uz(iok+k®i),
(18¢) D= %(i@kﬂ:@i),

(18d) I =1, =3+u},

where the subscript notation for differentiation is adopted. From (14) and (18) the
shear stress 013 is found to be

(19) 013 = 2(W1 —l—WQ)Uz—‘rVUZt.
— =
UlEs 0'1D3

Next, in view of (6), (14), (17) and (18), the equations of motion (15) read
pu = =Dy + 2(W1 + Wa)uzlz + vuzze,

(20) 0= —py,
0=[p—2W; 4+ 2Wa(1 4+ UQZ)]Z.

We now assume that the normal stress vanishes on the boundary Z = H. Thus,
with the aid of (14) and (18), we derive the boundary condition

(21) 0=0(z,y, H )k k= [-p+2W1 —2Wy(1 + uZ)]|z=p -
Then, from (20) and (21) we deduce that the Lagrange multiplier p is given by
(22) p=p(Z,t) =2W; — 2Wy(1 + u%).

In this way, the equations of motion (20) reduce to the single partial differential
equation

(23) puy, = [2(W1 + Wa)uz|z + vuzz:.

Since our main goal is to justify the SAOS procedure, for most part of this paper
we shall be interested in a shearing regime such that, setting

(24) U= sup lu(Z,t)],
(Z,t)€[0,H]x[0,+00]

(25) U? < H?.

As a consequence of this assumption and the consistency condition (6),

(26) Wl([17.[2) + W2(11712) = W1(3,3) + W2(3,3) + 0 (ZZ) = L +0 (U2> ,
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6 G. SACCOMANDI AND L. VERGORI

whence, to a first approximation, the elastic response of the material is linear and
equation (23) reduces to the following linear partial differential equation

(27) PUte = PUzz + VUzze.

Equation (27) represents the exact equation of balance of linear momentum when the
strain-energy function W is given by the Mooney-Rivlin model (7).

Obviously, equation (27) can be solved provided that both initial and boundary
conditions are prescribed. To this end, since the solid occupies the reference configu-
ration B, = [0, L] x [0, B] x [0, H] at the initial time ¢t = 0 we require that

(28) u(Z,0)=0 VZel0,H],
while we prescribe the initial velocity profile by
(29) w(2,0) = f(2) VZ €0, H),

where f is a given function of the height Z. We further assume that the only nonzero
component of the displacement field x — X satisfies the boundary conditions

(30) uw(0,t) = go(t), w(H,t)=gu(t) Yt >0,

go and gg being given functions of time. The initial and boundary conditions are
compatible providing that

(31) 90(0) = gu(0) =0, f(0) =go(0), f(H)=gm(0).

In SAOS and LAOS tests between parallel plates go(t) = 0 and gy (t) = Asin(wt),
A and w being constants (see Section 6).

We conclude this section by pointing out that very few analytical results for the
IBVP (27)—(30) are reported in the literature. To the best of our knowledge, the only
solution to (27)—(30) that has been studied in details is the one corresponding to the
Stokes first problem [17, 21].

4. Basic properties of the solutions. We shall first establish some qualitative
features of the solutions to the IBVP (27)—(30). We start with the uniqueness of the
solution to the IBVP (27)—(30).

PROPOSITION 1. Let uy and us be generalized solutions to the IBVP (27)—(30).
Then

(32) w1 (Z,t) =uz(Z,t) for a.e. Z €10, H], ¥Vt € [0, +00].
Proof. The hypothesis implies that w = u; — us satisfies the following IBVP
PWy = pWzz + VWZ 71,
(33) w(Z,0) =0, w(Z,0)=0,
w(0,t) =w(H,t) =0.

Multiplying (33), by wy, integrating over [0, H] and taking into account the boundary
conditions (33), yield

d H

(34) il

H
(,owt2 + uw%) dZ = 721// ws,dZ <0.
0

This manuscript is for review purposes only.



228

229

230

232

233

234

246

247
248
249

SHEARING MOTIONS 7

Therefore, denoting || - || the L2[0, H]-norm, p|lw:(-,t)||3 + pllwz(-,t)||3 is a non-
negative non-increasing function of time that, by virtue of the initial conditions (33),,
vanishes at ¢ = 0. Then, in virtue of the boundary conditions (33),, w vanishes for
a.e. Z € [0, H] for all ¢ € [0, +o0]. O

PROPOSITION 2. Assume that f =0, go and gy are bounded, and

(35) A = min { inf go(t), inf gH(t)} <0

and

(36) Aar = max {supgo (0, sup (1) | = 0.
t>0 t>0

Let u be the generalized solution to (27)—(30). Then
(37) w(Z,t) € [Am,Ap]  for a.e. Z €0, H], ¥Vt € [0,400].

Moreover, if gy and gy are continuously differentiable with bounded first deriva-
tives such that

e — . . . . . <
(38) Ay = min { inf go(t), inf gH(t)} <0
and
(39) A = max {sup 9o(t), sup gH(t>} >0,
t>0 t>0

then the only non-zero component of the velocity field v = u; satisisfies the inequalities
(40) A <0(Z,t) < Ay for ace. Z € [0, H], Vt € [0, +00].

Proof. Given ¢ : [0, H] x [0,4+00[— R, we define
(41) 6 (Z,t) = min{p(Z,1),0}, 6+(Z,t) = max{(Z,1),0}.

From (35) and (36) it follows that both (v — A,,)— and (u — Ap)+ satisfy the IBVP
(33). Therefore, by virtue of Proposition 1 we deduce that

(42) (u—Ap)-=w—Apy)y =0 forae Ze[0,H] Vte[0,+o0],

whence (37) is proved.
Next, the only nonzero component of the velocity v = u; satisfies the IBVP

pPUt = PUzz + VVzz¢,
(43) ’U(Z, O) = Ov Ut(Zv O) = Oa
v(0,t) = go(t), wv(H,t)=gu(t).

Then, by following the same arguments as in the proof of Proposition 1 one proves
the uniqueness of the solution to the IBVP (43) and, by following similar arguments
as in the proof of (37), one can prove inequalities (40). d
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8 G. SACCOMANDI AND L. VERGORI

The next result shows that, on a long time scale, the solution to the IBVP (27)-
(30) is not affected by the velocity field at the initial time.

PROPOSITION 3. Let u and @ be generalized solutions to the partial differential
equation (27) satisfying the initial condition (28) and the boundary conditions (30).
Assume that 4:(Z,0) = [(H — Z)§o(0) + Zgu (0)]/H for all Z € [0, H]. Then, irre-
spective of the initial condition that u; satisfies, ||u — a|la — 0 as t — +oo.

Proof. Assume that u(Z,0) = f(Z), with f € L2[0,d]. Then, w = u — @ is the
solution to the following IBVP:

PWit = PWzz + VWzZz¢,

(44) w(Z,0) =0, wi(Z,0)=f(Z)—
w(0,t) = w(H,t) =0.
Solving the IBVP (44) by means of the method of separation of variables gives
= nnz
(45) w(Z,t) = 7;1 [anNn(t) sin (H)] ,

where

(46) a, = \/E/OH [f(Z) B (H_Z)QO(_IS)+ZQH(O)] sin (NZZ) 4z

are the Fourier coefficients of f(Z) — [(H — Z)go(0) + Z¢u(0)]/H with respect to

[2 Z
the Hilbert basis # = { T sin (ﬁg)} of the functional space X = {h €

L2[0, H] : h(0) = h(H) = 0}, neN

sinh(\,,t) £ vin?n?
A B="pom
2 vn?m? v2n2r?
47 N,(t) =1/ = -t fy=_"
(47) (t) \/HeXp( 2pH2>>< t if 41 L
sin(A,t) . v2n2r?
f
. Ry PR
and
nmw v2n2n?
48 LU | L L P §
(48) Y ANNE pu‘
Next, from (45)—(48) we deduce that
HX
2 _ 2 A72
(49) (-, DF =% ;anNn(t) —0 ast— +oo
which completes the proof. 0
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SHEARING MOTIONS 9

Let || - || be the C°[0, H]-norm. The following Proposition shows how the previous
result can be improved by making assumptions on the initial velocity profile.

PROPOSITION 4. Let u and u be generalized solutions to the partial differential
equation (27) satisfying the initial condition (28) and the boundary conditions (30).
Assume that u(Z,0) = [(H — Z)§0(0) + Zgu (0)]/H for all Z € [0, H] and u(Z,0) =
f(Z), where f € C°(0, H] satisfies the compatibility conditions (31), and (31),. Then,
||lw—al = 0 as t — +o0.

Proof. Under the new hypotheses on the initial datum f, the solution (45)—(48)
to the IBVP (44) is classical. Thus, it follows that

—+oo
50 S| = Z,t)| < 2Np(t)] — 0 t— . a
(0) w0l = max Ww(Z 0] < 3 JanNa(®)] 50 st +oo

n=1

5. Solving the IBVP. Due to the linearity of equation (27), the solution to the
IBVP (27)—(30) can be written as

(H—Z)go(t) + Zgu(t)
H

where ug and 1) are the solutions to the following IBVPs

(51) w(Z,t) = +uo(Z,t) +(Z,1),

PUO = HUozz + VU0 Z ¢,

(H = Z)40(0) + Zgu (0)

(52) uo(Z,0) =0, ug,(Z,0) = f(Z) — i ’

up(0,8) =0, wuo(H,t) =0,
and
prbu = b2z + vz — L (H = Z)io(t) + Zin (1)
(53) (Z.0) = 0i(2,0) =0,
$(0,6) = Y(H, 1) =0,

respectively.
Solving the IBVP (52) by means of the method of separation of variables gives

+oo

(54) uo(Z,t) = [%Nn(t) sin <"ZZ>] ,

n=1

with an, N,(t) and A, as in (46), (47) and (48), respectively

As the IBVP (53) is concerned, in virtue of the completeness of the Hilbert basis
2 in the space X and since ¥ meets homogeneous boundary conditions for all ¢ > 0,
we may expand 1) as follows

(55) W(Z,t) = :fl \/g@n(t) sin (’T) ,

2 [H zZ
where ®,,(t) =/ = WY(Z,t) sin nne dZ (n € N) are the finite Fourier trans-
H H
0

forms of .
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H
[0, H]. Then, by taking into account the initial and boundary conditions satisfied by
1, we obtain a hierarchy of Cauchy problems for ®,,:

Z?}j [wi)n(t) +u<I>n(t)] _ veH

®,,(0) = ®,(0) = 0.

2 Z
To proceed, we multiply (53), by 4/ I sin <m> and integrate over the interval

O, (1) + [(=1)" gu(t) = gGo(t)],

nmw

(56)

Therefore, solving (56) yields

(57) Z N, (t) sin <”]7;Z > :

N \/ﬁ

— §Go(7)]Nn(t — 7)dr.

Obviously, this approach makes sense if and only if ¢(-,t) € X for any ¢ > 0, i.e.,
if and only if

“+oo t 2
(59) > 21 {/0 [(—1)" Gr (7) — Go(T)] N (t — T)dT} < 400 VE>0.

Condition (59) is satisfied if g and gy are continuously differentiable functions with
piecewise continuous second derivatives.

Finally, if f is continuous, go and gg are continuously differentiable functions with
piecewise continuous second derivatives, and f, go and gy satisfy the compatibility
conditions (31), then the series in (54) and (57) and their term-by-term derivatives

3

0?2 92
22 92 and 27201 converge uniformly. Thus, in such a case

(60) w(Z,t) = io {anNn(t) sin (”ZZ)] L H= Z)gog) + Zgy(t)

n=1
Z
—|—ZN sm(nzl),

with a,, N,(t) and N, (t) as in (46), (47) and (58), is a classical solution to the IBVP
(27)-(30). If the initial datum f is not continuous but of class L2[0, H], then (60)
represents a generalized solution to the IBVP (27)—(30).

6. Oscillating boundaries. We now assume that the boundary Z = 0 is at
rest (i.e., go = 0) whereas the upper boundary oscillates with period 27/w (w > 0)
according to the law

(61) gu(t) = Asin(wt).

Now, it is convenient to non-dimensionalize equations (27)—(30) by introducing
the following dimensionless quantities

(62) 7r=2 t=uwt u=

This manuscript is for review purposes only.



SHEARING MOTIONS 11

329 By dropping the asterisks for simplicity of notation, the IBVP (27)—(30) reduces to
330 the dimensionless form
eut = Ougzyz + uzzt V(Z,t) € [0,1]x]0, +o0],
331 (63) w(Z,0) =0, w(Z,0)=F(Z) VYZe]0,1]
u(0,t) =0, wu(l,t) =sint vt >0,
332 where

H? ReH
e pollT Rell g byt po S

v A vw Aw’

334 and Re = pwAH/v and Wi = vw/u are the Reynolds and Weissenberg numbers,
335 respectively. In the present case the compatibility conditions (31) read

333 (64)

336 (65) F0)=0, F(1)=1.
337 Solving the IBVP (63) as indicated in the previous section gives
+00 too
338 (66) w(Z,t) = Zsint + Z [bn My, (t) sin(nmZ)] + Z M, (t)sin(nwZ),
n=1 n=1
339 where
1
340 (67) by = \@/ [F(Z) — Z]sin(nwZ)dZ,
0
341
2,2 inh(X,t 2.2
V2exp Ty SmA( ) ifs(5<n7r,
2e An 4
n?n?
312 (68) M,(t) ={ V2texp(—20t) if e = ——,
2.2 () 2,2
V2 exp (_n T t) Smg/\"t) if €6 > T ,
2e An
343
344 (69) An:Z—: [n?m2 — 4eé],
345
- 2(—1)"e?
346 (70 M, (t) =
o (70) ®) nrle? — 2edn2n? + (1 + 62)nim4]
Sn2m2 2.2 2.2
347 X [(1— i )sin?ﬁ—i—n7T cost—exp(—nﬂ- t)gon(t)]
. € € 2e
348
349 and
(71)
4.4 5n2.2 inh(X,,t 2.2 A 2,2
L L | SmA( )+nﬁcosh()\nt) if55<n7r,
2e2 5 A 5 4
n?n?
350 en(t) =< (402 +1)t+40 if e§ = T
4pd 5n2g2 ; S\nt 2,2 . 22
DT g smg )—i—nﬂcos()\nt) ifes > L
2e2 € A € 4
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12 G. SACCOMANDI AND L. VERGORI

If F is a continuous function satisfying the compatibility conditions (65), then
(66)—(71) yield the classical solution to the IBVP (63). If the initial datum F' is only
of class L2[0, 1] or it does not satisfy the compatibility conditions (65), then (66)—(71)
yield instead the generalized solution to the IBVP (63).

6.1. Short-time approximation. For short times, from (66)—(71) we deduce
that if the initial datum F is a function of class C?[0, 1] satisfying (65) and F"'(0) =
F"(1) = 0 (where the prime denotes differentiation with respect to Z), then

(72) w(Z,t) = F(Z)t + 2%F”(Z)t2 +O0(t*) ast—0

for all Z € [0,1]. Proceeding with the approximation as t — 0, if F is of class C*[0, 1],
satisfies (65) and is such that F”(0) = F"(1) = F'V(0) = FIV(1) = 0, then

(73)  w(Z,t)= F(Z)t+ Q%F”(Z)t? . 52FW(Z6); F(Z)

3+ 0" ast—0

for all Z € [0,1].

6.2. Large-time approximation. If F is a continuous function satisfying the
compatibility conditions (65), from (66)—(71) we deduce that |u — us| — 0 as t —
+00, where

1
Z
(74) Uoo(Z,t) = a(Z) sint + a i )((5sint—cost),
—+oo
2(—1)"e? .
75 Z)=7 Z
(75) a(Z) + nz::l nrle? — 2edn2n? + (02 + 1)nim4] sin(nnZ)
iih b \si
_ 0 sin )\cozw—&—cos Asinw cosh(AZ) sin(wZ)
cosh® \ — cos?2 w
h )\ si — sinh
B ¢ cosh Asinw — sinh A cos @ Sinh(\Z) cos(w 2),

cosh? \ — cos2 @

e (Vo2 +1-14) o e (Vo2 +1+4)

(76) AN Ty 2(62 + 1)

If F satisfies the milder conditions stated at the end of Section 6, then the generalized
solution given by (66)—(71) tends in the mean to us as t — +oo. In both cases, one
can readily check that u is a solution of (63); and satisfies the boundary conditions
(63),.

Figure 1 shows the non-zero component of displacement u, the strain v = uz and
the (dimensionless) shear stress

(77) o= =067 + n
— =~

at large times. The strain and shear stress fields at large times (denoted Yoo and oo,
respectively) are

"
(78) Yoo = | (Z) + go/”(Z) sint — & 5( )cost
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SHEARING MOTIONS 13
and

(79) O =02 + 02 = 6d/(Z) +

2 +1
T-}_O/H(Z) sint + o'(Z) cost,

with « as in (75). The fields oo, Yoo and oy are periodic in time with the same
period as the oscillating upper boundary and for this reason in Figure 1 they are
plotted for ¢, =t — 2nm € [0,27] (n € N, n.> 1).

1 1
25
08 08 09
2
06
08 15 08
07 0.4 ' 07
06 02 05 06
N o o N
04 02 -0s 4 B
03 -04 ! 03
15 -
02 08 02
2
01 08 01 i B
25
o T 2 3 @ 5 6 o T 2 3 0 5 6 % T 2 B 4+ 5 6
tx tx tx

(a) too. (b) Yoo- (¢) 0oo-

Fic. 1. Dimensionless displacement, strain and shear stress fields at large times t. =t — 2nmw
(n €N, n> 1) fore =10 and § = 1. For this value of § the phase lag between oo and Yoo s
O =m/4.

Clearly, oZ is in phase with the strain 7., whereas o2 is 90° out of phase with
it. Furthermore, from (78) and (79) the phase lag © between the shear stress and the

strain, also known as the mechanical loss angle [10], is
(80) O = arctan § ! = arctan(Wi).

Integrating the in-phase and out-of-phase components separately, the mechanical
work #, done per loading cycle is

1 27
(81) Woo = / dZ/ (cf + 02y, dt,
0 0

) 1 = 1 2
- 5/0 LEA b dZ+/O dZ/O V2., dt, =0+ ma/(1)(> 0).

Hence, the in-phase components produce no net work when integrated over a cycle,
whereas the out-of-phase components result in a net dissipation per cycle equal to
ma'(1). Tt is worth noting that the work done per loading cycle tends to m as § — +o0
like in the case of slowly oscillating upper boundary (Section 6.3), while

B sinh(v/2¢) + sin(v/2¢)
2 cosh(v/2¢) — cos(v/2¢)’

for § = 0, that is for a Newtonian fluid.

6.3. Slowly oscillating upper boundary. We now assume that the upper
boundary oscillates so slowly that the Reynolds number is very small compared to

the ratio of the amplitude of oscillations of the upper boundary and the thickness of
the block, i.e.,

A

This manuscript is for review purposes only.
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14 G. SACCOMANDI AND L. VERGORI

Under such an assumption ¢ < 1 and the asymptotic solution (74)-(75) approxi-
mates to

(84) Uoo = Zsint +0(e),

ulY
that is to the quasi-static solution widely used by experimentalists to study the ma-
terial response at long times. At order O(e”) the strain and the shear stress depend
sinusoidally on time according to

(85) 7Oz, t) =sint, c9(Z,t) = /62 + 1sin(t + ©),

with the phase lag © between them as in (80). Proceeding with the power series
expansion of us in terms of the small parameter ¢, at order O(e) we find that the
time dependence of the strain 7(%) and the shear stress ag)) is still sinusoidal but their
amplitudes are not constant like at order O(1) but vary with the height Z. More

precisely,

Z(1—-22)
86 W(Z,t) = ——=Lsin(t — O),
(86a) ug (Z,1) G THSIH( )
1-322
86b W(Z,t) = ——=—sin(t — O),
(86b) Vo' (Z:1) 5 Fulsm( )
1—322
(86¢) c(Z,t) = T?, sint,

by which it is evident that the phase lag between a(()é) and m()é) is ©.

We finally observe that when the upper boundary oscillates slowly, from (81) the
mechanical work done per loading cycle approximates to

— 2 3
(87) Woo =7 + T e? 4+ 0(e”).

(62+1)

7. Nonlinear case. We now consider regimes which do not satisfy the restriction
(25).

In a fully nonlinear (differential) theory the (dimensionless) equation governing
shearing motions is of the form

(88) uy = [0 (uz) + JD(uZ,uZt)}Z.

A satisfactory qualitative study of equation (88) is still missing. Few results on the
existence and uniqueness of the solution to (88) are thus far available in the literature.
However, there is evidence that a global solution does not exists for a large class of
analytic constitutive functions o”. Therefore, it makes no sense to consider large-
time approximations for a general fully nonlinear differential model for o”. If the
viscous part of the Cauchy stress is constitutively given by the Kelvin-Voigt model,
viz 0P = uzy, it has been shown by several authors (see, for instance, [1, 2, 5] and
references therein) that the IBVPs for equation (88) admit global (weak) solutions
under mild hypotheses on o. For this reason we restrict our attention to the Kelvin-
Voigt model for oP.
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In this framework the IBVP governing the motion of a block whose upper plate
oscillates sinusoidally is given by

cu = 5lQUEuz)z + uzz,
(89) u(Z,0) =0, w(Z,0)=F(2),
w(0,) =0, u(l,t) = sint,
where
(90) Quy) = 2

is the dimensionless generalized shear modulus. When ¢ is small, that is the Reynolds
number satisfies the inequality (83), the inertial term can be neglected at large enough
times and thus the quasi-static solution u(Z,¢) = Z sint approximates the solution to
(89) provided that the generalized shear modulus @ satisfies appropriate conditions.
However, the inertial term cannot be neglected at small times. In fact, if one neglects
the inertial term the initial conditions (89), cannot be satisfied unless the initial
velocity profile is F'(Z) = Z. Therefore, a singular perturbation analysis in the time
variable needs to be performed. We will distinguish two distinct approximations of the
solution to the equation of motion (89),. One holds in the initial time interval (0, ¢)
during which the inertial effects must be taken into account (initial layer solution),
and the other is valid at large times and corresponds to the quasi-static regime (outer
solution).

7.1. Initial layer solution. At short times t = ¢t (f € [0,1]) the IBVP (89)
becomes

uz = e0[Q(uZ)uzlz + ugy g,
(91) u(Z,0) =0, wu;(Z,0)=cF(2),
u(0,et) =0, wu(l,et) = sin(et).

Expanding u as

(92) u(Z, et) Zs” M (z

and collecting terms of the same order in € give the following hierarchy of approxima-
tions:

o) _ (0
Uz = Ugzzp

(93) u®(2,0)=0, u{”(2,0)=0,
u©(0,1) =0, wO(1,£) =0
at order O(g%), and
G _ (-1)%)  (i-1) (i)
Y [Q (uz ) Yz }Z T Uz
(94) u®(2,0)=0, u{(Z,0)=F(2),

u(i)(Of) =0, u(i)(Lf) = g;(t)
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16 G. SACCOMANDI AND L. VERGORI

at order O(g%) (i € N), where

o —1)G=1)/2
F(z) iti=1, CEDP 5 it ks odd,
95)  Fi(2)= g9i(t) = il
0 ifi>2, 0 if 7 is even.
By solving (93) and (94) we deduce that the effects due to the nonlinear general-
ized shear modulus do not manifest at orders O(1) and O(g) and the solution to (89)
approximates to

(96)  u(Z,et) =¢ +0(e?) ast—0,

Zt—l—sz (1 e—"zﬂzf) sin(nrZ)
n=1

with b, as in (67) irrespective of the model for the strain energy function W. If
the initial condition F' is a continuous function satisfying the compatibility conditions
(65), then the function between square brackets in (96) is the classical solution to (94)
with ¢ = 1. In the special case in which the initial velocity profile is F(Z) = Z, then
the effects due to the nonlinearity of the model for the elastic strain energy become
evident only at the fourth order because one can readily check that

(97)
u(Zet) =eZt
+oo n+1 4.4
3 (-1) 2 27 W o n?x%) Z 4
—— (1 - t+ —1" — Z)— —t .
+e ”521 . ( n mt + 5 e >sm(mr ) : +O0(e%)

7.2. Outer solution. At large times t = ¢/ (£ > 1) the IBVP (89) reduces to
the following boundary-value problem

{ Puzp = 0[Q(uy)uzlz + euyyy,

(98) . . ]
u(0,t) =0, wu(H,t)=sint.

As before, expanding u as

(99) Z "™ (Z

and collecting terms of the same order in € yield the following hierarchy of approxi-
mations:

02\ O] _
(100) {Q (UZ ) Yz }z =0
u©(0,8) =0, uO(1,#) =sint

at order O(1),

(101)
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SHEARING MOTIONS 17
at order O(g?) (i = 1,2) and

(i—3) _ @2\, @) (i-1)
= [0 ()], o2

u®(0,1) =0, wD(1,£) =0

(102)

at order O(g?) (i > 3).

In solving (100) and (102), we observe that since the strain energy function W
satisfies the strong ellipticity condition, F (&) = Q(£2)¢ is invertible (see Appendix A
for details). Thus, if the domain of F contains the interval [—1,1], then the outer
solution to (89) approximates to

(103) u(Z,t) = Zsint + O(e?).

(If domF 2 [—1,1] equation (98), does not admit a solution that satisfies the bound-
ary conditions (98),, while if F is not invertible (98), may not admit a unique solution
satisfying (98),.) As a consequence of (103), up to terms of order O(e®) the strain
v(Z,t) is the same as in the linear regime, whereas the nonlinear stress response is
not a perfect sinusoid (see Figures 2(a), 2(d) and 2(g)) as

(104) o(Z,t) = 6Q(sin® #) sint + cos .
OFR oD

However, like in the linear case, the elastic part ¢ is in phase with the strain y = sin ¢,
whereas the viscous part o” is 90° out of phase with it. Unlike the linear case, the
mechanical loss angle © is not constant but it is a continuous m-periodic function of
time! (see Figures 2(c), 2(f) and 2(i)):

Wi
Q)

Like in the linear regime, at large times the mechanical work done per loading
cycle is #o, = 7 irrespective of the model for W as the component of stress in phase
with the strain does not produce work. Then, since the mechanical work done per
loading cycle equals the area enclosed by the Lissajous curve - the curve in the vo-
plane with parametric equations (y(£), o(t)) - the area enclosed by each Lissajous curve
in Figures 2(b), 2(e) and 2(h) is equal to w. On the contrary, the relative dissipation -

(105) O(t) = arctan

2
defined as the ratio between the net dissipation per loading cycle #.%* = / oP fyidf
0

and the maximum energy stored per loading cycle #5! = / of vzdt [22] - depends

0
on the nonlinear constitutive model for the elastic part of the Cauchy stress. More
precisely, from (64), and (90) we deduce that the relative dissipation is related to the
strain energy function through

dis
Y8 T VW

Wt oW (4,4)  W(4,4)

(106)

ISince the strain energy function W satisfies the strong ellipticity condition the dimensionless

generalized shear modulus Q is positive (see Appendix A).
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Varga
—— Mooney-Rivlin

T g 0 - = 5 = 0 0 : T

(a) Shear stress (V). (b) Lissajous curve (V). (c

=

Mechanical loss angle (V).

5 m 0 T 7 G

(d) Shear stress (FD). (e) Lissajous curves (FD).  (f) Mechanical loss angle (FD).

| T
— 1V

tx

A

(g) Shear stress (G). (h) Lissajous curves (G). (i) Mechanical loss angle (G).

Fia. 2. Shear stress, Lissajous curves and mechanical loss angle for Varga (V), Fung-Demiray
(FD) and Gent (G) models. The shear stresses and the mechanical loss angles are plotted against
t« =1t — 1. The results predicted by the linear theory (SAOS) coincide with those for the Mooney-
Rivlin model.

8. Concluding Remarks. In this paper we have derived the usual quasi-static
approximation that is widely used in dynamic oscillatory tests. In a parallel plate
geometry and assuming that the lower plate is at rest while the upper one oscillates
sinusoidally in time, we have derived the quasi-static approximation from the large-
time behaviour of the exact solution to the equations governing shearing motions.
We have shown that the quasi-static approximation is valid whenever the Reynolds
number is much smaller than the ratio between the amplitude of the oscillation and the
thickness of the sample. If the Reynolds number does not satisfy the aforementioned
inequality, we have proved that the strain and the stress vary sinusoidally in time but
their amplitudes vary with the height Z. The strain and stress are not in phase and the
phase lag is constant and equal to that predicted by the quasi-static approximation.

In the nonlinear case we have shown that for strong elliptic strain-energies the
same assumption on the Reynolds number guarantees the validity of the quasi-static
approximation. Interestingly, the displacement and strain fields have the same expres-
sions as in the linear case (up to terms of a certain order in the small parameter € and
under appropriate conditions on the generalized shear modulus). However, the stress
is completely different as its elastic part is proportional to the generalized shear mod-
ulus which, at this order of approximation, is a nonlinear function of time. Finally, in
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SHEARING MOTIONS 19

the nonlinear regime the mechanical loss angle (that in the linear case is a constant
depending on the Weissenberg number Wi) depends on the generalized shear modulus
as well as on Wi. This is an important difference between the two regimes that can
be used to investigate time dependent properties of soft materials using LAOS tests.

Appendix A. Invertibility of 7.  We now show that if the strain energy
function (4) satisfies the strong ellipticity condition then F is invertible. We start by
noticing that the principal stretches in the motion (17) are

2 2 \/ﬁ
(107) A =yttt 2“2(“2+ L T VS R V|

whence the principal invariants I; and I in terms of the principal stretches read
(108) L=XM4+X+ A= +A2+1=2\+ A\ + A3\3 = 1.

In view of (108), we introduce the function W (X\) = W (I;(\), Iz()\)). As proved
by Ogden [18], the strain energy function (4) satisfies the strong ellipticity condition
if and only if

Fd
(109) A;Vi_(i) >0, NW'(\)+

NV (N)
e 0

With the aid of (107) and (108), these inequalities can be rewritten as
(110) Wi +Wy >0 and Wi+ Wy 4 2(Wiy + 2Wia + Wa)uz > 0.

Inequality (110), implies the positivity of the generalized shear modulus, while (110),
yields the positivity of the first derivative (and hence the invertibility) of F.
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