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Abstract

We consider hypoelliptic Kolmogorov equations in n+ 1 spatial dimensions, with n ≥ 1, where the
differential operator in the first n spatial variables featuring in the equation is second-order elliptic,
and with respect to the (n+1)st spatial variable the equation contains a pure transport term only and
is therefore first-order hyperbolic. If the two differential operators, in the first n and in the (n + 1)st
co-ordinate directions, do not commute, we benefit from hypoelliptic regularization in time, and the
solution for t > 0 is smooth even for a Dirac initial datum prescribed at t = 0. We study specifically
the case where the coefficients depend only on the first n variables. In that case, a Fourier transform
in the last variable and standard central finite difference approximation in the other variables can be
applied for the numerical solution. We prove second-order convergence in the spatial mesh size for the

model hypoelliptic equation ∂u
∂t

+ x∂u
∂y

= ∂2u
∂x2 subject to the initial condition u(x, y, 0) = δ(x) ⊗ δ(y),

with (x, y) ∈ R × R and t > 0, proposed by Kolmogorov, and for an extension with n = 2. We also
demonstrate exponential convergence of an approximation of the inverse Fourier transform based on
the trapezium rule. Lastly, we apply the method to a PDE arising in mathematical finance, which
models the distribution of the hedging error under a mis-specified derivative pricing model.

AMS Subject Classification: 65N06, 35H10, 35Q84, 65T50
Keywords: Hypoelliptic equations, Kolmogorov equation, Dirac initial datum, Fourier methods,

finite difference methods

1 Introduction

This paper is concerned with the numerical solution of initial-value problems for a class of partial differ-
ential equations, subject to Dirac initial datum, which have the form

∂u

∂t
+ c(x, t)

∂u

∂y
= Lu, (x, y, t) ∈ R

n × R× (0, T ], (1.1)

u(x, y, 0) = δ(x− x0)⊗ δ(y − y0), (x, y) ∈ R
n × R, (1.2)

where n ≥ 1, T > 0, x0 ∈ R
n, y0 ∈ R, the symbol ⊗ signifies the (associative) binary operation of tensor

product of distributions, the drift coefficient c = c(x, t) is independent of the variable y ∈ R, ∇xc(x, t) 6= 0
for all (x, t) ∈ R

n × (0, T ], the elliptic differential operator L does not include any y-derivatives and its
coefficients only depend on x = (x1, . . . , xn) ∈ R

n and t ∈ [0, T ]; in other words, L is assumed to be of
the form

L =
n∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑

i=1

bi(x, t)
∂

∂xi
+ d(x, t), (1.3)
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where aij , i, j = 1, . . . , n, bi, i = 1, . . . n, and d are continuous functions of (x, t) ∈ R
n × [0, T ], and there

exists a constant c0 > 0 such that

n∑

i,j=1

aij(x, t)ξiξj ≥ c0|ξ|2 ∀ ξ = (ξ1, . . . , ξn) ∈ R
n ∀ (x, t) ∈ R

n × [0, T ].

Hypoelliptic problems of this kind arise naturally from statistical physics, stochastic analysis, and from
mathematical finance in particular, as Kolmogorov equations that describe the evolution of the probability
density function of stochastic processes, and the initial datum in such problems is frequently a point source,
which is modelled by a Dirac measure concentrated at a point. Such initial conditions are clearly also
relevant in the construction of Green’s functions.

For the definition of hypoellipticity and sufficient and necessary conditions for C∞ regularity see [5].
Contemporary applications and extensions to nonlinear problems are found in [16, 17].

Given the interest in this class of equations, methods have recently been put forward for their numerical
approximation, with a focus on preserving the long-time behaviour of solutions to the original equation.
In [2], a self-similar change of variables was performed and convergence of the numerical solution to the
steady state under these new variables was established; furthermore, an operator splitting scheme based
on decomposing the hypoelliptic operator into coercive and convective terms was proposed. In contrast,
in [12] asymptotic properties of standard central finite difference schemes are analyzed and decay rates
of difference quotients were proved in the case of L2 initial data. The analysis in those papers does not
cover the case of Dirac initial data, which are important in a number of applications, and indeed the
numerical experiments at the end of this section show that in the case of Dirac initial datum convergence
of a finite difference approximation to the problem based on central differences is not guaranteed in the
discrete maximum norm.

The semidiscrete Fourier scheme that we propose here for the numerical approximation of problem
(1.1) involves the application of a Fourier transform to (1.1) in the y-direction (y-FT) to reduce the
dimension of the problem by transforming it into a one-parameter family of parabolic problems, and it then
applies finite difference discretization in the x-direction to this parametrized family of parabolic problems,
followed by the application of an inverse Fourier transform. The observed exponential convergence of the
numerical approximation to the inverse Fourier transform reduces the computational complexity of the
proposed scheme to that of a finite difference approximation of a problem that has no dependence on y, as
long as the solution is required for a single value of y only. The application of the y-FT avoids the use of
lower-order stable upwind or semi-Lagrangian discretizations of the y-derivative. Moreover, it transforms
the Dirac initial datum into a constant function in the y-direction, which is easier to handle numerically.
To the best of our knowledge, the numerical scheme proposed in this paper is the first provably convergent
numerical method for hypoelliptic problems of this type, with Dirac initial datum.

We shall study in-depth the stylized problem

∂u

∂t
+ x

∂u

∂y
=

∂2u

∂x2
, (x, y, t) ∈ R× R× (0, T ], (1.4)

u(x, y, 0) = δ(x)⊗ δ(y), (x, y) ∈ R× R. (1.5)

This is the partial differential equation originally considered by Kolmogorov in his 1934 paper [8]. The
significance of this simple model problem stems from the fact that it incorporates two important features:
hypoellipticity and Dirac initial datum. The equation (1.4) results from (1.3) for d ≡ 0 by shifting the
point (x0, y0) at which the initial Dirac datum is concentrated to the origin, linearization of the coefficient
c with respect to the y variable around y = 0, translation in the y-direction with c(0, 0)t, and finally
freezing the coefficients c, b and a with respect to t. Since the final term in (1.3) does not affect the
ideas presented herein, for the sake of simplicity of the exposition we shall confine ourselves to the case
of d ≡ 0. Subject to sign change, our model equation (1.4) coincides with the one studied in [12].
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Because of the special structure of the equation (1.4), we shall apply Fourier methods in the con-
struction of its numerical approximation and also in the convergence analysis of the proposed numerical
algorithms. We shall explore the behaviour of two numerical schemes for the solution of our model
problem: a semidiscrete Fourier method and a fully-discrete Fourier method, which will be described
below.

Whereas the proposed numerical techniques apply to the more general model problem (1.1), (1.2), and,
in fact, with more general probability measures as initial data than the Dirac measure considered herein,
for the sake of simplicity and clarity of the exposition the mathematical analysis of the proposed numerical
methods is restricted to the simplified model (1.4), (1.5), which is a special case of the Cauchy problem
(1.1), (1.2) above. For this toy model, we shall prove the convergence of the semidiscrete Fourier method
and derive expressions for the leading order terms for the global discretization error. In particular, we
shall analyze the behaviour of the error between the analytical solution and its numerical approximation
and will establish the rate of convergence of the scheme as the spatial discretization parameter ∆x → 0. It
should be noted that this analysis only relates to the analytical solution of the semidiscrete scheme (2.7)
and its subsequent exact y-FT inversion. We shall discuss these additional approximations in Section 4.

We approach the task of error analysis by applying the inverse Fourier transform to the error between
W and w, where W is the solution of the equation resulting from Fourier transforming (1.4) with respect
to y, discretizing with respect to x, and applying a discrete Fourier transform with respect to x, whereas w
is the solution of the equation resulting from Fourier transforming (1.4) with respect to both x and y. We
then perform a wavenumber analysis of the resulting expressions to establish convergence. This method
is based on similar ideas to those in [1] and [13], where time-stepping schemes for the one-dimensional
heat equation with Dirac initial datum were analyzed. While in the cited papers the Fourier transform
was used purely as a mathematical tool in the analysis of the discretization error in the original space-
time co-ordinates, here we use a partial Fourier transform (i.e., we transform in the y-variable only) in
the construction of the actual numerical method and use a double-Fourier transform (i.e., the Fourier
transform in both the x and the y variable) to quantify the error of this approximation. An interesting
feature of the present analysis is the intricate interplay between the x- and y-Fourier modes, due to the
hypoellipticity of the equation.

In order to motivate the numerical method proposed in the next section, we illustrate the smoothing
and convergence properties of the central difference scheme with implicit Euler time stepping,

Un+1
j,k − Un

j,k

∆t
+ xj

Un+1
j,k+1 − Un+1

j,k−1

2∆y
=

Un+1
j+1,k − 2Un+1

j,k + Un+1
j−1,k

∆x2
, with (j, k) ∈ Z

2 and n ≥ 0.

This is the scheme studied in [12]; it is shown there in particular that, for ℓ2 initial data, the ℓ2 norms of
the first-order difference quotients in the x- and y-directions decay as t−1 and t−3, respectively, as t → ∞.
Closer to the situation in the present paper, let us consider, instead, a Dirac delta concentrated at the
origin in the (x, y)-plane. We approximate the Dirac initial datum by

U0
j,k =

{ 1
∆x∆y for (j, k) = (0, 0),

0 for (j, k) 6= (0, 0),
(j, k) ∈ Z

2,

which can be viewed as the mollification of the Dirac measure concentrated at the origin through convolu-
tion, in the sense of distributions, with the scaled characteristic function 1

∆x∆yχ[−∆x/2,∆x/2]×[−∆y/2,∆y/2]

with unit L1 norm (cf. [6]). We shall consider the problem on a sufficiently large square domain
(−L,L) × (−L,L) in the (x, y)-plane, with zero Dirichlet boundary condition along (±L, y) for all
y ∈ [−L,L] and along (x,−L) for all x ∈ [−L,L]; in our numerical experiment below we took L = 10,
which ensures that the Dirichlet boundary condition has negligible influence on the values of the numerical
solution at the final time of interest, T = 1 in our case, close to the centre of the square where the initial
Dirac delta is concentrated.

Fig. 1, left, shows the numerical solution at T = 1, which exhibits large oscillations in the x-
direction, but is smooth in the y-direction. Indeed, good approximation to the analytical solution is
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visible between the oscillations. The discrete Fourier transform of the numerical solution, with wavenum-
bers s and p (described in more detail later), is depicted in the right panel in Fig. 1. It shows low
wavenumber components in both s and p near the origin in Fourier space, which approximate well the
Fourier transform of the analytical solution, and low s-/high p-wavenumber components concentrated
at (s, p) = (0,±π/∆y) = (0,±20π) ≈ (0,±63), which trigger the spurious oscillations in the numerical
approximation of the analytical solution.

Figure 1: Central difference scheme with Dirac initial datum; the computational domain is x ∈ [−10, 10],
y ∈ [−10, 10] (smaller plot range); the numerical solution at T = 1 with nx = ny = nt = 400 grid spacings
in the x-, y-, and t-directions, respectively; left the numerical solution, right its discrete Fourier transform,
with s and p signifying wavenumbers corresponding to the x and y co-ordinate directions, respectively.

Extending the techniques from [1], the time-discrete evolution of the discrete Fourier transform W of
the numerical solution U is found to be governed by the recursion (see also Sections 3.1 and especially
4.5)

(
1 + 4

∆t

∆x2
sin2

(
s∆x

2

))
W n+1(s, p) = W n(s, p) +

∆t

∆y
sin(p∆y)

∂W n+1

∂s
(s, p), n ≥ 0,

W 0(s, p) = 1,

for all (s, p) ∈ [− π
∆x ,

π
∆x ]× [− π

∆y ,
π
∆y ]. Setting s = 0 and p = ±π/∆y we deduce that

W n(0,±π/∆y) = 1 ∀n ≥ 1.

This finding is in line with our numerical simulations, and suggests that the numerical solution will not
converge to the analytical solution as ∆x,∆y → 0. To reconcile this evidence with the results in [12], we
compute a numerical approximation to the solution at T = 2, starting with the exact (smooth) solution
(see (4.5)) as initial datum at t = 1. The numerical solution and its discrete Fourier transform are shown
in Fig. 2.

As the initial datum in this case does not have high wavenumber components, the numerical solution
approximates the analytical solution well. Indeed, the maximum error is around 1.8 × 10−4 (solution
≈ 0.07), compared to 0.28 (solution ≈ 0.3) for the Dirac case.

Replacing the central y-difference with an upwind y-difference is observed to produce a convergent
sequence of numerical approximations to the analytical solution in the case of a Dirac initial datum, just
as for smooth initial data, but such a finite difference scheme is only of first-order accuracy with respect to
∆y. We shall therefore propose in the next section a numerical scheme applied to the analytical y-Fourier
transform, which does not suffer from this shortcoming.

4



Figure 2: Central difference scheme with smooth initial datum: x ∈ [−10, 10], y ∈ [−10, 10], t ∈ [1, 2],
nx = ny = nt = 400; the numerical solution at T = 2 (left) and its discrete Fourier transform (right).

The remainder of the article is structured as follows. In Section 2 we introduce the semidiscrete Fourier
scheme and formulate the discretization of the model problem (1.4), (1.5); in Section 3 we prove that
the scheme is second-order convergent in ∆x in the space-time ℓ∞ norm. Next, in Section 4, we describe
aspects of the numerical implementation including the exponential convergence in ∆p, the mesh size of
the Fourier variable in the y-direction, and present numerical results for the model problem (1.4), (1.5).
In Section 5, we discuss the application of the method to a financial hedging problem, while Section 6
is concerned with the convergence analysis of the extension of the scheme to the case of n = 2, i.e. the
diffusion operator acts in two spatial directions, x = (x1, x2), while in the third spatial direction, y, there
is only a transport term present in the equation; in other words, there is no diffusion in the y-direction.
Our findings are summarized in the concluding section.

2 The semidiscrete Fourier scheme

The Fourier transform in the y-direction (briefly, y-FT) is defined by

v(x, p, t) :=

∫ ∞

−∞
u(x, y, t) eipy dy, x ∈ R, p ∈ R, t > 0.

where it is tacitly understood that the function y ∈ R 7→ u(x, y, t) ∈ R is an element of L1(R) for all (x, t) ∈
R
n × (0,∞). The Fourier transform in the y-direction of the initial Dirac measure δ(x − x0)⊗ δ(y − y0)

at t = 0 is to be understood in the sense of distributions, and is equal to δ(x− x0)⊗ eipy0 .
Application of the Fourier transform to (1.1) yields

∂v

∂t
− ipc(x, t)v = Lv x ∈ R, p ∈ R, t > 0,

which is a family of PDEs in x and t, parametrized by p, for the y-FT: v(x, p, t). We then discretize
the operator L from (1.3) in the x-direction(s) by means of a standard finite difference scheme, using
equally spaced grid points, with spacing ∆x, but we keep the time variable continuous for the moment
at least. This leads to a system of ordinary differential equations (ODEs) indexed by the x-grid points,
xj , and also by the Fourier wavenumber in the y-direction, which we are denoting by p, for the function
Vj(p, t). After solving this system of ODEs (in practice numerically, for a finite set of grid points xj
subject to an artificial/numerical Dirichlet boundary condition at the ‘far-field’, and a finite set of y-
wave numbers, {pl}lmax

l=lmin
), we use the inverse y-FT to obtain an approximate solution, U(xj, y, t), in the
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original co-ordinates as

U(xj , y, t) =
1

2π

∫ 2t/(∆x)r

−2t/(∆x)r
Vj(p, t) e

−iyp dp. (2.1)

The truncation of the p-integration range in the inversion (2.1) from p ∈ (−∞,∞) to the truncated range
p ∈ (−2t/(∆x)r, 2t/(∆x)r), for a suitable r > 0, is dictated by the practical requirement to carry out
numerical integration over a finite range. The scaling with 2t simplifies the numerical analysis, but of
course in practice any suitable scaling would be chosen empirically.

To find the approximation Uj,k(t) to u(xj , yk, t) numerically, we apply a uniformly spaced and equally
weighted quadrature rule to (2.1) and obtain

Uj,k(t) :=
∆p

2π

lmax∑

l=lmin

Vj(pl, t) e
−iykpl (2.2)

for a given k, lmax > 0, lmin < 0, lmax∆p = −lmin∆p = 2t∆x−r. We will also denote np := lmax− lmin+1.
The numerical results will be seen to exhibit exponential convergence of the p-quadrature (see below and
[15]). For an efficient implementation of (2.2), if the solution is needed for several values of k, the Fast
Fourier Transform (FFT) can be used.

We illustrate the method by applying it to the Cauchy problem

∂u

∂t
+ x

∂u

∂y
=

∂2u

∂x2
, (x, y, t) ∈ R× R× (0, T ], (2.3)

u(x, y, 0) = δ(x)⊗ δ(y), (x, y) ∈ R× R, (2.4)

with the aim to analyze the stability and accuracy of the numerical scheme we develop below.
Applying the y-FT to (2.3) we get

∂v

∂t
− ipxv =

∂2v

∂x2
, (x, p, t) ∈ R× R× (0, T ], (2.5)

u(x, p, 0) = δ(x), (x, p) ∈ R× R, (2.6)

and we then discretize this one-parameter family of Cauchy problems in the x-direction only, using central
differencing with spacing ∆x > 0, to obtain, for xj = j∆x, j ∈ Z,

∂Vj(p, t)

∂t
− ipxjVj(p, t) =

Vj+1(p, t)− 2Vj(p, t) + Vj−1(p, t)

∆x2
, p ∈ R, t ∈ (0, T ], (2.7)

so that the function Vj(p, t), which approximates v(xj , p, t), satisfies this equation for each j ∈ Z and for
all (p, t) ∈ R× (0, T ]. The initial condition we use for this parametrized ODE system is

Vj(p, 0) =

{
0 for j 6= 0,
1
∆x for j = 0,

(2.8)

for all p ∈ R, which approximates (2.6).

3 Analysis of the numerical method for the stylized problem

In this section, we will prove the following theorem, which is one of our main results.

Theorem 1. Let u be the solution to the Cauchy problem (2.3), (2.4), and let U be given by (2.1), (2.7),
(2.8). Then, for any r > 0 in (2.1),

U(xj, y, t)− u(xj , y, t) = C(xj, y, t)∆x2 + o(∆x2), j ∈ Z, y ∈ R, t > 0,

where

C(xj , y, t) :=

[
t

2π2

(
1

4!

(
∂

∂x
+

t

2

∂

∂y

)4

+
1

5!

(
t

2

∂

∂y

)4
)
u

] ∣∣∣∣∣
(xj ,y,t)

.
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3.1 The time evolution of the numerical double transform

To investigate the stability and accuracy of the numerical scheme, we use techniques motivated by those
in [1] and [13]. Thus, given a set of values {fj}j∈Z ∈ ℓ1(Z), on a uniformly-spaced grid {xj}j∈Z of spacing
∆x > 0 on R, we consider the (semi-)discrete Fourier transform

f̂(s) := ∆x

∞∑

j=−∞

fj e
isxj , s ∈

[
− π

∆x
,
π

∆x

]
,

and the inverse of this transform,

fj =
1

2π

∫ π
∆x

− π
∆x

f̂(s) eisxj ds, j ∈ Z,

(see, e.g. [9]). We note that the method of analysis here is specific to equation (2.3) and its higher-
dimensional variants (see Section 6), but the numerical algorithm itself is not, as we demonstrate in the
numerical example of Section 5.

Then, by applying the semidiscrete x-FT to the system of ODEs (2.7), we find

∂W (s, p, t)

∂t
− p

∂W (s, p, t)

∂s
=

∞∑

j=−∞

∂Vj(p, t)

∂t
eisxj∆x− ip

∞∑

j=−∞

xjVj(p, t) e
isxj∆x

=
∞∑

j=−∞

Vj+1(p, t) e
isxj − 2Vj(p, t) e

isxj + Vj−1(p, t) e
isxj

∆x2
∆x

= W (s, p, t)
4

∆x2
sin2

(
s∆x

2

)
, (s, p) ∈

[
− π

∆x
,
π

∆x

]
× R, t > 0.

As W (s, p, 0) = 1, it follows by the method of characteristics that W (s, p, t) > 0 for all t > 0, and therefore

∂ logW

∂t
− p

∂ logW

∂s
=

4

∆x2
sin2

(
s∆x

2

)
, (s, p) ∈

[
− π

∆x
,
π

∆x

]
× R, t > 0.

In contrast, taking the x-FT of (2.5), the true double Fourier transform satisfies

∂w

∂t
− p

∂w

∂s
= −s2w, (s, p) ∈ R

2, t > 0.

Since w(s, p, 0) = 1, and therefore, by the method of characteristics w(s, p, t) > 0 for all t > 0, we have
that

∂ logw

∂t
− p

∂ logw

∂s
= −s2, (s, p) ∈ R

2, t > 0. (3.1)

Then, by defining

Z(s, p, t) = log

(
W (s, p, t)

w(s, p, t)

)
, (s, p) ∈

[
− π

∆x
,
π

∆x

]
× R, t ≥ 0,

we find that

∂Z(s, p, t)

∂t
− p

∂Z(s, p, t)

∂s
= s2 − 4

∆x2
sin2

(
s∆x

2

)
, (s, p) ∈

[
− π

∆x
,
π

∆x

]
× R, t > 0,

where

g(s) = s2 − 4

∆x2
sin2

(
s∆x

2

)
, s ∈

[
− π

∆x
,
π

∆x

]
,

7



and Z(s, p, 0) = 0. We can solve for Z(s, p, t) to obtain

Z(s, p, t) =
1

p

∫ s+pt

s
g(σ) dσ, (s, p) ∈

[
− π

∆x
,
π

∆x

]
×R, t ≥ 0.

Finally, we have

W (s, p, t) = w(s, p, t) exp

(
1

p

∫ s+pt

s
g(σ) dσ

)
, (s, p) ∈

[
− π

∆x
,
π

∆x

]
× R, t ≥ 0, (3.2)

an expression for the numerical double transform, W , in terms of the true double transform, w, with the
exponential factor on the right-hand side of (3.2) reflecting the error introduced by the finite difference
approximation in the x-direction. In fact, one can solve (3.1) with initial datum w(s, p, 0) = 1 to obtain

w(s, p, t) = exp

(
−s2t− spt2 − 1

3
p2t3

)
, (s, p) ∈ R

2, t ≥ 0. (3.3)

A key observation is that it is more convenient to restate the solution in terms of the variables

η = s+
pt

2
, ξ =

pt

2
,

in Fourier space, a manifestation of the mixing of Fourier modes due to the lack of commutativity of
the differential operators in x and y in (2.3). We will refer to these variables in Fourier space as wave
numbers, and it is only in these new variables that suitable wave number regimes can be defined. Indeed,
in these new variables, we get

W (s, p, t) = w(s, p, t) exp

(
1

p

∫ s+pt

s
σ2 dσ

)
exp

(
−1

p

∫ s+pt

s

4

∆x2
sin2

(
σ∆x

2

)
dσ

)

= w(s, p, t)w(s, p, t)−1 exp

(
− 2

p∆x2

∫ s+pt

s
(1− cos (σ∆x)) dσ

)

= exp

(
− 2t

∆x2
(1− sinc (ξ∆x) cos (η∆x))

)
, (s, p) ∈

[
− π

∆x
,
π

∆x

]
× R, t ≥ 0, (3.4)

where sinc is the unnormalized sinc function, defined as follows (see, for example, [11]):

sinc x :=
sinx

x
for x ∈ R \ {0} and sinc 0 := 1.

We also have

w(η, ξ, t) = exp
(
− η2t− 1

3
ξ2t
)
, (η, ξ) ∈ R

2, t ≥ 0,

in the new variables, η and ξ.

3.2 The wave number regimes

We decompose R
2 into suitable wave number regimes in η and ξ, for some 0 < q < 1 and r > 0,

Ω1 := [−∆xq−1,∆xq−1]× [−∆xq−1,∆xq−1], (3.5)

Ω2 :=
{
(η, ξ) : −∆xq−1 ≤ ξ ≤ ∆xq−1, − π

∆x
+ ξ ≤ η ≤ −∆xq−1 ∨∆xq−1 ≤ η ≤ π

∆x
+ ξ
}
, (3.6)

Ω3 :=
{
(η, ξ) : − π

∆x
+ ξ ≤ η ≤ π

∆x
+ ξ, −∆x−r ≤ ξ ≤ −∆xq−1 ∨∆xq−1 ≤ ξ ≤ ∆x−r

}
, (3.7)

Ω4 := R
2\(Ω1 ∪ Ω2 ∪ Ω3), (3.8)

8
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Figure 3: Schematic representation of the wave number regimes defined by (3.5) to (3.8).

which are also illustrated in Fig. 3. By applying the inverse transforms to the error term we obtain an
equation for the error in the (x, y)-plane for t > 0, i.e.,

(2π)2(U(x, y, t) − u(x, y, t)) =

∫ 2t∆x−r

−2t∆x−r

∫ π
∆x

− π
∆x

(W (s, p, t)− w(s, p, t)) e−isx e−ipy ds dp

−
∫

Ω4

w(s, p, t) e−isx e−ipy ds dp

=
2

t

∫ ∆x−r

−∆x−r

∫ π
∆x

+ξ

− π
∆x

+ξ
(W (η, ξ, t) − w(η, ξ, t)) e−i(η−ξ)x e−i 2ξy

t dη dξ

− 2

t

∫

Ω4

w(η, ξ, t) e−i(η−ξ)x e−i 2ξy
t dη dξ.

Here x is any x-grid node. We now define

I1(x, y, t) :=

∫

Ω1

(W (η, ξ, t) − w(η, ξ, t)) e−i(η−ξ)x e−i 2ξy
t dη dξ,

Ik(x, y, t) :=

∫

Ωk

W (η, ξ, t) e−i(η−ξ)x e−i 2ξy
t dη dξ, k = 2, 3,

I4(x, y, t) :=

∫

R2\Ω1

w(η, ξ, t) e−i(η−ξ)x e−i 2ξy
t dη dξ.

Except for the joint low wavenumber regime, we will perform separate calculations on W and w. We will
find that all but the first term can be made exponentially small, while the first term is O(∆x2). We begin
by considering the joint low wavenumber analysis for W and w.

3.3 Joint low wavenumbers (region Ω1)

We have to determine an exponent q ∈ (0, 1) such that, in Ω1,

|η∆x| < ∆xq → 0 and |ξ∆x| < ∆xq → 0,

and certain expansions can be usefully truncated. By straightforward Taylor expansion,

− 2t

∆x2
(1− sinc (ξ∆x) cos (η∆x)) = −η2t− 1

3
ξ2t+

2t

4!
η4∆x2 +

2t

5!
ξ4∆x2

+ O(η6∆x4) +O(ξ6∆x4).
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Our objective is to choose q ∈ (0, 1) so that the remainder terms, resulting from approximating the
integrand of I1 by its Taylor series expansion, are o(∆x2). To this end, we write

I1(x, y, t) =

∫

Ω1

w

(
exp

(
2t

4!
η4∆x2 +

2t

5!
ξ4∆x2 + o(∆x2)

)
− 1

)
e−i(η−ξ)x e−i 2ξy

t dη dξ

= ∆x2
∫

Ω1

w

(
2t

4!
η4∆x2 +

2t

5!
ξ4∆x2

)
e−i(η−ξ)x e−i 2ξy

t dη dξ + o(∆x2) (3.9)

= ∆x2
∫

R2

w

(
2t

4!
η4∆x2 +

2t

5!
ξ4∆x2

)
e−i(η−ξ)x e−i 2ξy

t dη dξ + o(∆x2)

= ∆x2 F (x, y, t) + o(∆x2),

where

F (x, y, t) :=

∫

R2

w

(
2t

4!
η4 +

2t

5!
ξ4
)

e−i(η−ξ)x e−i 2ξy
t dη dξ

=
t

2

∫

R2

w

(
2t

4!

(
s+

pt

2

)4

+
2t

5!

(
pt

2

)4
)

e−isx e−ipy ds dp

= t2

(
1

4!

(
∂

∂x
+

t

2

∂

∂y

)4

+
1

5!

(
t

2

∂

∂y

)4
)
u.

We are able to replace Ω1 by R
2 in (3.9) to o(∆x2) because w decays exponentially in η and ξ (see also

Section 3.6). The last step uses the relation between the Fourier transform of a smooth function and the
transforms of its derivatives. We also require

∆x2(η8 + ξ8) → 0

for the remainders in the Taylor expansion of the exponential to be o(∆x2). We can therefore take
q ∈ (34 , 1) to define the joint low wavenumber regime.

Having dealt with the region Ω1 in the (s, p)-plane, we move on to consider the remaining terms
involvingW . There are two cases to discuss, corresponding to low ξ-wavenumbers and high η-wavenumbers
(region Ω2), and to high ξ-wavenumbers (region Ω3).

3.4 Low ξ-wavenumbers and high η-wavenumbers (region Ω2)

For these wavenumbers we have η∆x ∈ [−π+ ξ∆x, π+ ξ∆x] and in this interval η = 0 is the only solution
to cos (η∆x) = 1 since |ξ∆x| ≤ ∆xq. The following inequality is valid for θ ∈ [−π, π]:

sin2
(
θ

2

)
≥
(
θ

π

)2

.

However since we wish to take θ = η∆x with θ ∈ [−π + ξ∆x, π + ξ∆x] and |ξ∆x| ≤ ∆xq, we shall use
instead the weaker inequality

sin2
(
θ

2

)
≥ 1

4

(
θ

π

)2

,

which is valid for all such θ, provided that ∆x is sufficiently small (whereby also |ξ∆x| ≤ ∆xq is sufficiently
small). Hence,

cos (η∆x) = 1− 2 sin2
(
η∆x

2

)
≤ 1− 1

2

(
η∆x

π

)2

= 1− 1

2π2
(η∆x)2.
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We can then choose α < 1
2π2 such that for small enough ∆x we have

cos (η∆x) ≤ 1− α(η∆x)2

for η∆x ∈ [−π+ ξ∆x, π+ ξ∆x], since |ξ∆x| ≤ ∆xq → 0 as ∆x → 0. Also, for ξ∆x small enough, we can
ensure that

1

2
< sinc (ξ∆x) ≤ 1.

So then, for cos(η∆x) ≥ 0,

α(η∆x)2 ≤ 1− sinc (ξ∆x) cos (η∆x). (3.10)

If, on the other hand, cos(η∆x) ≤ 0, then, because we always have α(η∆x)2 ≤ 1
2π2 (π+∆xq)2 ≤ 1 for ∆x

sufficiently small (more precisely, for ∆x ≤ [(
√
2− 1)π]1/q), while the right-hand side of (3.10) is ≥ 1 for

cos(η∆x) ≤ 0, it once again follows that (3.10) holds. Hence,

exp

(
− 2t

∆x2
(1− sinc (ξ∆x) cos (η∆x))

)
≤ exp

(
− 2t

∆x2
α(η∆x)2

)
≤ exp (−2αt∆x2(q−1))

as η∆x > ∆xq and η2 > ∆x2(q−1). Thus, the contribution to the integral satisfies

|I2| ≤
∫

Ω2

W (η, ξ, t) dη dξ = o(∆xm) as ∆x → 0

for all m > 0. We therefore deduce that this contribution to the integral is exponentially small as ∆x → 0.

3.5 High ξ-wavenumbers (region Ω3)

We observe that ξ 7→ sinc (ξ∆x) is a decreasing function from ξ = ∆xq−1 to some ξ = ξ0, if we make ∆x
small enough. At that first local minimum, ξ0, one then has tan (ξ0∆x) = ξ0∆x and then | sinc (ξ0∆x)| = α
with α < 0.3, say, and for values of ξ > ξ0, we have | sinc (ξ∆x)| < α. This is illustrated in Figure 4, with
the symbol x in the figure signifying ξ∆x.

Figure 4: Plot of sincx = sinx
x and its relation to other functions needed in Section 3.5.
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We see that for 0 < ξ ≤ ξ0 we also have (see again Figure 4)

sinc(ξ∆x) cos(η∆x) ≤ | sinc (ξ∆x)| < 1− 1

100
(ξ∆x)2,
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while for ξ ≥ ξ0 we have
sinc(ξ∆x) cos(η∆x) ≤ | sinc(ξ∆x)| ≤ α (< 0.3).

So, for ξ∆x ≥ ∆xq, the following inequality holds:

1− sinc(ξ∆x) cos(η∆x) ≥ 1

100
min

(
∆x2q, 100(1 − α)

)
.

Therefore,

exp

(
− 2t

∆x2
(1− sinc (ξ∆x) cos (η∆x))

)
≤ exp

(
− t

50∆x2
min (∆x2q, 100(1 − α))

)

≤ exp

(
− t

50∆x2(1−q)

)

for small enough ∆x. Hence, similarly as before (cf. Section 3.4),

|I3| ≤(2∆x−r)(2π∆x−1) exp

(
− t

50
∆x−2(1−q)

)
= o(∆xm) as ∆x → 0

for all m > 0. So this contribution to the integral is also exponentially small as ∆x → 0.

Remark 1. We note that for the high ξ-wavenumber integration range to be nonempty, we need that

∆x−(1−q) < ξ < ∆x−r,

i.e. r > 1 − q. If r ≤ 1 − q, there is only a low ξ-wavenumber regime, but this is irrelevant for the
computations, and quadratic convergence is still guaranteed for any r ∈ (0, 1) because the contributions
from outside (−∆x−r,∆x−r) decay exponentially for all r as ∆x → 0.

Remark 2. For any fixed ∆x, the numerical double Fourier transform W in (3.4) approaches a constant
value of exp(−2t/∆x2) as ξ → ±∞ (equivalently, p → ±∞) independent of η (or s), hence

lim
p→±∞

Vj(p, t) = lim
p→±∞

1

2π

∫ π
∆x

− π
∆x

W (s, p, t) eisxj ds =

{
1
∆x exp(−2t/∆x2) if j = 0,

0 if j 6= 0.

This implies that for j = 0, the integrand appearing in (2.1), as a function of p, does not belong to L1(R),
which is yet another reason why instead of using the actual inverse Fourier transform in (2.1) to define
U(xj , y, t), with R as integration range, we have integrated over the compact interval [−2t∆x−r, 2t∆x−r].
However, because V0(p, t) rapidly decays to zero with ∆x → 0 for t > 0 as p → ±∞, the sequence of
integrals over [−2t∆x−r, 2t∆x−r] converges to the true inverse Fourier transform, as ∆x → 0.

3.6 Localization of the exact Fourier transform (region Ω4)

Finally, we need to estimate the error contribution for the remaining terms, which involve w. We get

|I4| ≤
∫ ∞

−∞

∫ −∆xq−1

−∞
w dη dξ +

∫ ∞

−∞

∫ ∞

∆xq−1

w dη dξ +

∫ ∞

∆xq−1

∫ ∞

−∞
w dη dξ +

∫ −∆xq−1

−∞

∫ ∞

−∞
w dη dξ.

As we have ∫ ∞

−∞
w(η, ξ, t) dη = exp

(
− 1

3
ξ2
)∫ ∞

−∞
exp (−η2) dη =

√
π exp

(
− 1

3
ξ2
)

and ∫ ∞

−∞
w(η, ξ, t) dξ = exp (−η2)

∫ ∞

−∞
exp

(
− 1

3
ξ2
)
dξ =

√
3π exp (−η2),
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it follows that

|I4| ≤
√
3π

∫ −∆xq−1

−∞
exp (−η2) dη +

√
3π

∫ ∞

∆xq−1

exp (−η2) dη

+
√
π

∫ ∞

∆xq−1

exp

(
− 1

3
ξ2
)
dξ +

√
π

∫ −∆xq−1

−∞
exp

(
− 1

3
ξ2
)
dξ.

Lemma 3 in the Appendix of [3] implies that each of these integrals is o(∆xm), for any m > 0, and so |I4|
is exponentially small as ∆x → 0.

Collecting the above results we find that

U(x, y, t) − u(x, y, t) =
1

2tπ2
(I1(x, y, t) + I2 + I3 − I4)

=
1

2tπ2
(I1(x, y, t) + o(∆xm))

= ∆x2

[
t

2π2

(
1

4!

(
∂

∂x
+

t

2

∂

∂y

)4

+
1

5!

(
t

2

∂

∂y

)4
)
u

] ∣∣∣∣∣
(x,y,t)

+ o(∆x2) as ∆x → 0,

which completes the proof of Theorem 1.

4 Computation of the semidiscrete Fourier solution

In this section we present the results of applying the semidiscrete Fourier scheme to the toy model (1.4),
(1.5). We compute the solution to (2.7), (2.8) by using the matrix exponential and we then use the
trapezium rule and the Fast Fourier Transform (FFT) to compute the values of U(xj , yk, T ) from (2.1).

4.1 Solving the ODEs

The ODE system (2.7) can be written as

d

dt
V (p, t) = MV (p, t), (4.1)

where V = (Vj)j , M = M1 + ipM2 is a bi-infinite matrix, with

M1 =
1

∆x2




. . . . . . . . . . . . . . . . . . . . .

. . . −2 1 0 0 0 . . .

. . . 1 −2 1 0 0 . . .

. . . 0 1 −2 1 0 . . .

. . . 0 0 1 −2 1 . . .

. . . 0 0 0 1 −2 . . .

. . . . . . . . . . . . . . . . . . . . .




, M2 = ∆x




. . . . . . . . . . . . . . . . . . . . .

. . . −2 0 0 0 0 . . .

. . . 0 −1 0 0 0 . . .

. . . 0 0 0 0 0 . . .

. . . 0 0 0 1 0 . . .

. . . 0 0 0 0 2 . . .

. . . . . . . . . . . . . . . . . . . . .




.

In our implementation, the problem is considered over a sufficiently large square domain x ∈ (−L,L)
with zero Dirichlet boundary condition at x = ±L; in our numerical experiment below we took L large
enough (L = 10 or L = 20) to ensure that the Dirichlet boundary condition has negligible influence on
the values of the numerical solution at the final time of interest, T > 0. Hence, the bi-infinite matrices
M1, M2 and M are truncated to square matrices M̃1, M̃2 and M̃ of a certain finite size (depending on

the choice of L and ∆x). Since the matrix M̃ is independent of t, the truncated counterpart of (4.1) has
the obvious solution:

Ṽ (p, t) = V (p, 0) eM̃ t, p ∈ R, t > 0, (4.2)
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where Vj(p, 0) = 0 for j 6= 0 and V0(p, 0) =
1
∆x .

We use the Matlab expm function for the matrix exponential, which is based on the scaling and
squaring method (cf. [4]). To improve this part of the algorithm, one could exploit that the eigenvalues of

the symmetric matrix ∆x2M̃ are contained in the Gershgorin discs with centers −2 + ijp∆x3, and radii
≤ 2, where |jp∆x3| ≤ xmax∆x2−r. We do not pursue this further here.

The exact solution (4.2) in the form of a matrix exponential is only available because the coefficients
of (1.4) do not depend on time. We present results for a time stepping method in Section 4.5.

The solution of (4.1) can, in principle, be found for any value of p but, in practice we will only be
able to calculate a finite number of values, Ṽj(pk, T ). To compute the solution in the original variables,

we numerically invert the y-FT, using the grid values, Ṽj(pk, T ). By using this method, we have avoided
discretizing the y-partial derivative: in effect, this is replaced by a discretization in the p-direction.

4.2 Convergence of the p-discretization

When we solve the Kolmogorov forward equation (KFE) using the semidiscrete Fourier method, we need
to consider the effect of the numerical inversion of the y-FT in the final step of the solution procedure.
As the inversion is only approximate, we have to decide how to set the parameters for the inversion, and,
more specifically, how to choose the range of p-wave numbers and the p-step.

According to the Euler–Maclaurin expansion of the error of the composite trapezium rule applied to
a sufficiently smooth function f over an interval [a, b] (see, for example, [14], pp. 213, Theorem 7.4),

k∑

j=1

cjh
2j
[
f (2k−1)(b)− f (2k−1)(a)

]
−
(
h

2

)2k ∫ b

a
q2k(τ(p))f

(2k)(p) dp, (4.3)

where h = (b− a)/m is the uniform mesh size, τ is a piecewise linear ‘saw tooth’ function with values in
[−1, 1], and q2k and cj , j = 1, . . . , k, are computable polynomials and constants, respectively.

The integrand in (2.1), up to a p-integrable O(h2) term, is, for x, y and t fixed,

f(p) = V (x, p, t) exp(−ipy) =
1

2
√
πt

exp

(
− t3

12
p2 + i

xt

2
p− x2

4t

)
exp(−ipy), (4.4)

as one finds by taking the inverse Fourier transform (in p) of (3.3).
In our case, the integrand (4.4) and its derivatives (in p) vanish so rapidly for large p that by taking the

integration limits to be a = −2t∆x−r and b = 2t∆x−r the first term in (4.3) becomes exponentially small
in ∆x for any fixed k. Then, taking m = np := lmax−lmin+1 in (2.2) such that h = ∆p = 4t∆x−r/np → 0,
say h = ∆xr, the second term is O(h2k) for any k. Hence, the total error can be made exponentially small
in ∆x. See [15] for a detailed discussion of the behaviour of the trapezium rule for analytic integrands in
a neighbourhood of the real line.

4.3 Using the inverse FFT

When inverting the y-FT, we use the formula (2.2) and we can take advantage of the low computational
complexity of the Inverse Fast Fourier Transform (IFFT). Specifically, we use the MATLAB procedure
ifft. In the MATLAB documentation [10], the IFFT is defined by the discrete inverse Fourier transform
as

Xj =
1

N

N∑

l=1

Ylω
−(j−1)(k−1)
N ,

where
ωN = e−2iπ/N ,

and where both X and Y have length N . We have to relate our inversion formula to the definition of the
inversion formula in MATLAB; the details of this are described in the Appendix A.
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4.4 Numerical experiments

By taking the inverse Fourier transform (in s) of V in (4.4), one finds the exact solution to (1.4),

u(x, y, t) =

√
3

2πt2
exp

(
− 1

4t
x2
)
exp

(
− 3

t3

(
y − t

2
x

)2
)
, (x, y) ∈ R

2, t > 0, (4.5)

(see also [8]), with which the numerical solution can be compared.
As ∆x is reduced we will find that we also need to reduce ∆p in order to maintain quadratic conver-

gence. This behaviour is shown in Figure 5.

Figure 5: Toy model: maximum error in the semi-discrete Fourier method against the number of spatial
steps. We show the effect of the choice of np on the accuracy of the y-FT and the resulting convergence
in ∆x → 0.

Number of space steps
80 160 320 640 1280 2560

M
a
x
im

u
m

 E
rr

o
r

10-5

10-4

10-3

np=36
np=40
np=44
np=48
np=52

Here, we have chosen the x-range as [−10, 10] and the p-range as [−20, 20] and we then monitor the
convergence as ∆x → 0 for a range of values of ∆p, which correspond to np = 36, 40, 44, 48, 52.

For large enough np, e.g. np = 52, the plot shows quadratic convergence to the true solutions. However,
for a given value of ∆p, quadratic convergence only continues to hold, as ∆x → 0, up to a critical
value of ∆x, beyond which the decay of the discretization error stops. Consequently, we need to reduce
∆p appropriately in order to achieve a satisfactory degree of accuracy. We can also see that as np

increases towards the value where the error approaches the log-log line of quadratic convergence in x, the
convergence in p is very fast. Indeed, the horizontal asymptotes for large nx, are roughly equally spaced
on a log-scale when np increases by a constant step, in line with the theoretical exponential convergence
in np.

In the application in Section 5 we will study a setting where u is interpreted as a joint probability
density of two variables and we will be interested in the marginal density in y. We study this next.
The numerical solution, U , at time T > 0, is calculated at grid points (xj, yk) and is then numerically
integrated over x to give the marginal probability distribution for y.

Figure 6, left, plots the true and numerical marginal densities, while Figure 6, right, shows the
difference between the marginal densities of the true and numerical solutions. We took x ∈ [−20, 20] and
p ∈ [−20, 20] with 80 grid points in the p-direction and 2560 grid points in the x-direction.
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Figure 6: Toy model approximated by the semidiscrete Fourier method using the matrix exponential.
Left, a comparison of marginal densities for x ∈ [−20, 20], p ∈ [−20, 20], np = 80, nx = 2560. Right, the
difference between solutions.
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4.5 A fully-discrete Fourier scheme

The fully-discrete Fourier scheme again uses the y-FT to reduce the dimension of the problem, but it then
applies discretization in both the x- and t-direction. After solving the linear system we again invert the
y-FT to obtain our approximate solution, U(xj , y, tl), for the original problem. Here tl = l∆t are equally
spaced time steps. We use the toy model described above to study this scheme.

We discretize (2.5) in the x-direction, using equally spaced grid points, to obtain (2.7), and then in
the t-direction, using the (semi)implicit Euler scheme, to obtain

V n+1
j (p, t)− V n

j (p, t)

∆t
− ipxjV

n′

j (p, t) =
V n+1
j+1 (p, t)− 2V n+1

j (p, t) + V n+1
j−1 (p, t)

∆x2
,

where n′ = n if the drift term is treated explicitly and n′ = n+1 if it is treated implicitly. Obviously, other
time discretizations are also possible, such as second or higher order BDF, but for the sake of simplicity
of the analysis to be presented we shall focus here on time stepping via the Euler scheme.

Remark 3. For the purposes of an error analysis along the lines of Section 3, we would apply the
semidiscrete x-FT to obtain

W n+1(s, p, t)−W n(s, p, t)

∆t
− p

∂W n′

(s, p, t)

∂s
= −W n+1(s, p, t)

4 sin2 (s∆x
2 )

∆x2
,

which can then be written as

f(s)W n+1(s, p, t)− p∆t
∂W n′

(s, p, t)

∂s
= W n(s, p, t), (4.6)

where f(s) = 1 + 4λ sin2 (s∆x
2 ) and λ = ∆t

∆x2 . This equation is a ‘differential recursion’ for the double-FT
in the explicit case (n′ = n) and an ‘integral recursion’ in the implicit case (n′ = n + 1). Although it is
possible to identify leading order terms heuristically by an expansion, the rigorous analysis of these fully
discrete schemes has proved elusive due to the complexity of the error propagation over the time steps
across wave-numbers. We shall therefore explore these schemes by way of numerical tests.

We present the results obtained by applying the two methods above to the toy model PDE. As with
the semidiscrete Fourier method, the solution for U is first integrated over x, before being plotted against
y. We took x ∈ [−20, 20], p ∈ [−20, 20], t ∈ [0, 1], with nx = 1800 grid points in the x-direction, np = 80
grid points in the p-direction, and nt = 10240 grid points in the t-direction. We first present the results
obtained by treating the drift term explicitly.
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The left plot of Figure 7 shows the difference between the true and numerical solutions. The numerical
solution itself closely resembles the result in Figure 6, left.

Figure 7: Toy model approximated by the discrete Fourier method and an explicit approximation for
the drift term. Left, the difference between the exact and approximate solutions, with x ∈ [−20, 20],
p ∈ [−20, 20], t ∈ [0, 1], nx = 1800, np = 80, nt = 10240. Right, with the other parameters the same, the
error for decreasing timestep ∆t with ∆t/∆x2 held constant.
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Finally, the right plot of Figure 7 shows the convergence rate for the solution as the grid is refined
with λ = ∆t

∆x2 held constant. We observe first-order convergence in time where the error is evaluated in
the maximum norm. The slope of the last two points of the log-log plot is 1.00.

For this method, it is interesting to note that the maximum error in this case is approximately four
times the corresponding error of the semidiscrete method (see Figures 6 and 7) and we observe upwards
‘bumps’ at around ±2 in the latter case.

Next we present the results based on treating the drift implicitly. The left plot in Figure 8 shows
the difference between the true and numerical solutions. Once again, the numerical solution itself closely
resembles the result in Figure 6.

Figure 8: Toy model approximated by the discrete Fourier method with an implicit approximation for
the drift term. Left, the difference between the exact and approximate solutions, with x ∈ [−20, 20],
p ∈ [−20, 20], t ∈ [0, 1], nx = 1800, np = 80, nt = 10240. Right, with the other parameters the same, the
error for decreasing timestep ∆t with ∆t/∆x2 held constant.
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Finally, the right plot in Figure 8 shows the convergence rate for the solution as the grid is refined.
We observe first-order convergence in time where the error is evaluated in the maximum norm. The slope
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of the last two points of the log-log plot is 1.00.

We observe that the maximum error in this case is approximately twice the corresponding error of the
explicit drift case (see Figures 7 and 8).

5 Application to a financial hedging problem

In this section, we apply the Fourier method to a hypoelliptic problem from mathematical finance, namely
the computation of hedging errors under misspecification of the market model. If the true model governing
an underlying stock is known to the trader and the market is “complete”, they can perfectly hedge a
position in an option by dynamic trading in the stock. If the model is unknown and the hedging strategy
is based on a misspecified model, a certain profit or loss will materialize and one can ask what the
distribution of this hedging error is.

Our example follows a simplified version of the analysis in El Karoui et al., [7], where the true dynamics
of a single underlying asset satisfy the SDE

dSt

St
= µt dt+ σt dWt, (5.1)

where σ is a volatility process, µ a drift, and W a standard Brownian motion. We analyze the situation
where the trader instead assumes that the underlying follows a different process, i.e. mis-specifies the
model for S as

dSt

St
= µ̂t dt+ σ̂ dWt (5.2)

for some constant σ̂. We define V̂ (St, t) to be the (Black-Scholes) price of the European option with
payoff F (ST ) based on the process defined in (5.2), which satisfies the PDE

Lσ̂V̂ ≡ ∂V̂

∂t
+

1

2
σ̂2S2∂

2V̂

∂S2
+ rS

∂V̂

∂S
− rV̂ = 0. (5.3)

If the trader then uses the sensitivity ∂V̂
∂S of V̂ as the hedge ratio, it is shown in [7] that the hedging

“error” Yt, i.e, the difference in time t value between the option and the portfolio set up to hedge it,
discounted with the risk-free rate r to the present time, is governed by the stochastic differential equation

dYt =
1

2
e−rt(σ̂2 − σ2

t )S
2
t

∂2V̂

∂S2
dt. (5.4)

We notice that the dynamics of Yt only consists of a drift term, i.e. there is no Brownian component. In
the following, we assume that σt = σ constant, but different from σ̂.

Therefore, if we write down the Kolmogorov Forward Equation (KFE) for the probability density
function P of the pair (St, Yt) at time t, we find

∂P

∂t
=

1

2
σ2 ∂2

∂S2

(
S2P

)
− µ

∂

∂S
(SP )− c

∂P

∂y

=
1

2
σ2S2 ∂

2P

∂S2
+ (2σ2 − µ)S

∂P

∂S
+ (σ2 − µ)P − c

∂P

∂y
, (5.5)

where

c(S, t) =
1

2
e−rt(σ̂2 − σ2)S2∂

2V̂

∂S2
. (5.6)

The equation hence falls into the class of hypoelliptic PDEs studied in the preceding sections.
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We solve the KFE numerically using the following parameters, σ = 0.1, σ̂ = 0.2, µ = 0.05, and
r = 0.05. We take T = 1.0, S0 = 125, and the option being hedged is a so-called spread with payoff
defined as

F (ST ) = max(ST − 100, 0) −max(ST − 150, 0).

We note that the convexity of this option payoff changes as S varies, and hence also the sign of the
function c, which contains the second derivative of V̂ . The function V̂ is known in closed form in this
case as the solution to (5.3), and so is its second derivative, referred to as the “gamma” in the financial
community.

To find the univariate density of the discounted terminal hedging error, the joint density is integrated
over the S-direction. The univariate distribution of y has been calculated using the fully-discrete Fourier
method from Section 4.5. A Monte Carlo hedging simulation has been also performed where the asset
price was simulated according to the true asset model (which used the true volatility) while the hedged
portfolio was controlled by delta-hedging using the Black–Scholes equation with the erroneous volatility.

Figure 9 shows how the approximate distributions compare. The shape of the hedging error distribu-
tion can be rationalized by noting that the positive drift, µ, implies that the stock price is more likely to
move into a regime where the option gamma is negative, resulting in a preponderance of negative hedging
errors. Note that in these calculations, we assume that the option is sold for a price consistent with σ̂ so
that Y starts from zero. If some other price were initially realized, it would result in the densities being
shifted by this amount.

For the fully-discrete Fourier method, we used S ∈ [5, 245], y ∈ [−20, 20] (not plotted over whole
range) and p ∈ [−20, 20], np = ny = 220. For the Monte Carlo results, we used 100 time steps and 100000
paths as well as 50 bins for the approximation of the density.

Figure 9: Black–Scholes model with mis-specified volatility. Comparison of the KFE solution, integrated
over x, for an increasing number of spatial steps nS and keeping nt/n

2
S fixed. Shown also is the empirical

density from a Monte Carlo simulation as detailed in the text.
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Having derived an approximation to the hedging error distribution, one can compute quantities of
financial interest, such as the Value-at-Risk, a quantile-based risk-measure. For instance, the 10%-quantile
of the hedging error for the data set above is found to be −4.58. This compares to an initial option value
of 29.31 and 26.67, respectively, for the low and high volatility.
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6 Multi-dimensional problems

It is straightforward to extend the toy model (1.4), (1.5) to higher dimensions by introducing multiple
diffusive terms and/or multiple drift terms. For the semidiscrete case, we expect that the analysis will
be similar to that carried out for the one-dimensional case. We present this analysis in the remainder of
this section.

6.1 Multiple diffusive terms

We consider the case of a PDE with a single drift coefficient which is a linear combination of the compo-
nents of x,

∂u

∂t
+ (γ1x1 + γ2x2)

∂u

∂y
= a11

∂2u

∂x21
+ 2a12

∂2u

∂x1∂x2
+ a22

∂2u

∂x22
, (x1, x2, y, t) ∈ R

3 × (0, T ], (6.1)

u(x1, x2, y, 0) = δ(x1 − x1,0)⊗ δ(x2 − x2,0)⊗ δ(y − y0), (x1, x2, y) ∈ R
3,

which extends the toy model to one containing two independent variables x1 and x2. We consider the
hypoelliptic case, i.e., where (γ1, γ2) 6= (0, 0) and (aij)1≤i,j,≤2 is strictly positive definite, i.e., a11, a22 > 0
and a11a22 > a212.

We apply the y-FT to get

∂v

∂t
− ip(γ1x1 + γ2x2)v = a11

∂2v

∂x21
+ 2a12

∂2v

∂x1∂x2
+ a22

∂2v

∂x22
, (x1, x2, p, t) ∈ R

3 × (0, T ]. (6.2)

Now for the analytical solution we next apply the x1-FT and the x2-FT in turn to get

∂w

∂t
− p

(
γ1

∂w

∂s1
+ γ2

∂w

∂s2

)
= −(a11s

2
1 + 2a12s1s2 + a22s

2
2)w, (s1, s2, p, t) ∈ R

3 × (0, T ], (6.3)

in conjunction with the initial condition

w(s1, s2, p, 0) = 1.

We can now solve this first-order hyperbolic initial-value problem directly, but we can also use an ansatz
by seeking a solution of the form

w(s1, s2, p, t) = exp (−a11s
2
1t− 2a12s1s2t− a22s

2
2txs−B1s1pt

2 −B2s2pt
2 − Cp2t3)

and then finding the coefficients that fit the PDE. By insertion we get

B1 = γ1a11 + γ2a12,

B2 = γ1a12 + γ2a22,

C =
1

3
(γ1(a11 + a12) + γ2(a12 + a22)),

and thus we have the analytical solution in Fourier space. We could, if necessary, invert all these transforms
but we will instead concentrate on the effect of discretization in the x1- and x2-directions. So we now
start with the PDE (6.2) and discretize this as follows by writing

∂Vj,k

∂t
− ip(γ1x1,j + γ2x2,k)Vj,k = a11

Vj+1,k − 2Vj,k + Vj−1,k

∆x21
+ a22

Vj,k+1 − 2Vj,k + Vj,k−1

∆x22

+2a12
Vj+1,k+1 − Vj+1,k−1 − Vj−1,k+1 + Vj−1,k−1

4∆x1∆x2
,
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where we have omitted p and t as arguments for the sake of brevity, and where Vj,k(p, t) is an approximation
to v(x1,j , x2,k, p, t) on a uniform two-dimensional mesh of widths ∆x1,∆x2 > 0. We can then apply the
Fourier transforms in the x1 and x2 variables and after steps similar to the one-dimensional case obtain
the solution for the double-transformed equation,

W (s1, s2, p, t) = w(s1, s2, p, t) exp

(
1

p

∫ s1+pt

s1

(a11g11(σ, s2) + 2a12g12(σ, s2) + a22g22(σ, s2)) dσ

)
, (6.4)

where

g11(s1, s2) = s21 −
4

∆x21
sin2

(
s1∆x1

2

)
,

g12(s1, s2) = s1s2 −
1

∆x1∆x2
sin (s1∆x1) sin (s2∆x2),

g22(s1, s2) = s22 −
4

∆x22
sin2

(
s2∆x2

2

)
.

We can now investigate the low and high wavenumber behaviour in terms of the new variables. For the
sake of simplicity of the exposition, we shall do this for the special case γ1 = 1, γ2 = 0, a11 = a22 = 1,
a12 = ρ ∈ (−1, 1), i.e., we consider

∂u

∂t
+ x1

∂u

∂y
=

∂2u

∂x21
+ 2ρ

∂2u

∂x1∂x2
+

∂2u

∂x22
. (6.5)

Remark 4. Equation (6.5) is a simplified case of the general equation (6.1), where the term x2 has been
dropped from the drift and the diffusion is normalized. This can be achieved by a rotation of the original
co-ordinates to align the drift (γ1, γ2) with the x1-axis, and by subsequent scaling of the new y, x1 and x2
co-ordinates.

In this case, the numerical solution is

W (s1, s2, p, t) = w(s1, s2, p, t) exp

(
1

p

∫ s1+pt

s1

(g11(σ, s2) + 2ρg12(σ, s2) + g22(σ, s2)) dσ

)
.

Similarly to the one-dimensional case, this leads us to investigate

W (s1, s2, p, t) = W1(s1, p, t) exp

(
− 1

p

∫ s1+pt

s1

(
2ρ

sin (σ∆x1) sin (s2∆x2)

∆x1∆x2
+

4

∆x22
sin2

(
s2∆x2

2

))
dσ

)
,

where W1 is the solution from the one-dimensional case. By standard integration and the change of
variables ξ = pt/2 and η1 = s1 + pt/2 we find this to be

W (η1, s2, ξ, t) = W1(η1, ξ, t) exp

(
− 2tρ sinc(ξ∆x1)

sin(η1∆x1)

∆x1

sin(s2∆x2)

∆x2
− 4t

∆x22
sin2(s2∆x2/2)

)
,

where

W1(η1, ξ, t) = exp

(
− 2t

∆x21
(1− sinc(ξ∆x1) cos(η1∆x1))

)
.

The exact solution in these variables is

w(η1, s2, ξ, t) = exp

(
−t

{
η21 +

ξ2

3
+ s22 + 2ρη1s2

})
(6.6)

and we recognize in the first two terms the one-dimensional solution

w1(η1, ξ, t) = exp

(
−t

{
η21 +

ξ2

3

})
. (6.7)

We proceed by a wavenumber analysis broadly similar to the one before, but made somewhat more
complicated by the presence of an extra variable s2 and the fact that the problem degenerates as |ρ| → 1,
necessitating a more careful estimation for ρ close to 1.
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6.2 Joint low wavenumbers

We write

logW = logW1 − t

{
2ρ sinc(ξ∆x1)

sin(η1∆x1)

∆x1

sin (s2∆x2)

∆x2
+

4

∆x22
sin2

(
s2∆x2

2

)}

and compare this to

logw = logw1 − t{s22 + 2ρη1s2},

where w is the exact solution to the two-dimensional problem from (6.6) and w1 is the solution to the
one-dimensional problem from (6.7). By standard Taylor expansion we find

log(W/w) = log(W1/w1) + 2ρt

(
1

12
η1s

3
2∆x22 +

1

6
η31s

2
2∆x21 + η1s

2
2ξ

2∆x21

)
+

t

12
s42∆x22 + o(∆x21) + o(∆x22)

= log(W1/w1) +

(
ρt

3
η31s

2
2 + 2ρtη1s

2
2ξ

2

)
∆x21 +

(
ρt

6
η1s

3
2 +

t

12
s42

)
∆x22 + o(∆x21) + o(∆x22)

=

(
2t

4!
η41 +

2t

5!
ξ4 +

ρt

3
η31s

2
2 + 2ρtη1s

2
2ξ

2

)
∆x21 +

(
ρt

6
η1s

3
2 +

t

12
s42

)
∆x22 + o(∆x21) + o(∆x22).

Therefore the numerical error contribution from the low wavenumber regime is

I1(x1, x2, y, t) = ∆x21F1(x1, x2, y, t) + ∆x22F2(x1, x2, y, t) + o(∆x21) + o(∆x22), (6.8)

where

F1 = t2

(
1

4!

(
∂

∂x1
+

t

2

∂

∂y

)4

+
1

5!

(
t

2

∂

∂y

)4
)

u

+ t2

(
ρ

3!

(
∂

∂x1
+

t

2

∂

∂y

)3 ∂2

∂x22
+ ρ

(
∂

∂x1
+

t

2

∂

∂y

)
∂2

∂x22

(
t

2

∂

∂y

)2
)

u

F2 = t2
(
2ρ

4!

(
∂

∂x1
+

t

2

∂

∂y

)
∂3

∂x32
+

1

4!

∂4

∂x42

)
u.

The point is less the explicit form, but that the error can be expressed in terms of up to fifth mixed partial
derivatives, or up to fourth if ρ = 0. As in Section 3, we will find that this is the only wavenumber range
that contributes to the leading order error, and therefore, up to higher order terms, (6.8) fully describes
the discretization error.

6.3 Low ξ-wavenumbers and high η1- or s2-wavenumbers

We require two simple inequalities. The first one states that for |η1∆x1| ≤ π/2, and since sinc(ξ∆x1) > 0
(in the present small ξ regime),

1− sinc(ξ∆x1) cos(η1∆x1) ≥ 1− cos(η1∆x1) = 2 sin2(η1∆x1/2).

The second elementary inequality used in the argument below, in the transition from the second-to-last
inequality to the last inequality, is that

sinα ≥ 2

π
α for 0 ≤ α ≤ π

2
.

22



Therefore

W (η1, s2) ≤ exp

(
− 4t

∆x21
sin2(η1∆x1/2) + 2t|ρ| | sin(η1∆x1)|

∆x1

| sin(s2∆x2)|
∆x2

− 4t

∆x22
sin2(s2∆x2/2)

)

≤ exp

(
− 4t

∆x21
sin2(η1∆x1/2) + 8t|ρ| | sin(η1∆x1/2)|

∆x1

| sin(s2∆x2/2)|
∆x2

− 4t

∆x22
sin2(s2∆x2/2)

)

= exp

(
− 4t(1− |ρ|)

(
1

∆x21
sin2(η1∆x1/2) +

1

∆x22
sin2(s2∆x2/2)

))

· exp

(
− 4t|ρ|

(
sin(η1∆x1/2)

∆x1
− sin2(s2∆x2)

∆x2

)2)

≤ exp

(
− 4t(1− |ρ|)

(
1

∆x21
sin2(η1∆x1/2) +

1

∆x22
sin2(s2∆x2/2)

))

≤ exp

(
− 4 t (1− |ρ|)

π2

(
η21 + s22

))

= o(∆xr) as ∆x → 0

for any r > 0 if either ν1 ≥ ∆x−q
1 or s2 ≥ ∆x−q

2 for any q > 0.
For |η1∆x1| > π/2, we have that

1− sinc(ξ∆x1) cos(η1∆x1) ≥ 1,

and therefore

W (η1, s2) ≤ exp

(
− 2t

∆x21
+ 2t|ρ| 1

∆x1

| sin(s2∆x2)|
∆x2

− 4t

∆x22
sin2(s2∆x2/2)

)

≤ exp

(
− 2t

∆x21
+

4t

∆x1

| sin(s2∆x2/2)|
∆x2

− 4t

∆x22
sin2(s2∆x2/2)

)

≤ exp

(
− 2t

∆x21
+

√
21t

∆x1

| sin(s2∆x2/2)|
∆x2

− 4t

∆x22
sin2(s2∆x2/2)

)

= exp

(
− t

2

(
1

∆x21
+

1

∆x22
sin2(s2∆x2/2)

))
·

· exp

(
− t

(√
3

2

1

∆x1
−
√

7

2

| sin(s2∆x2/2)|
∆x2

)2)

≤ exp

(
− t

2

(
1

∆x21
+

1

∆x22
sin2(s2∆x2/2)

))

= o(∆xr)

as before.

6.4 High ξ-wavenumbers

Completing squares, we write

W (η1, s2, ξ) = W1(η1, ξ) · exp
(

t

∆x21
cos2(s2∆x2/2) sinc

2(ξ∆x1) sin
2(η1∆x1)ρ

2

)
·

· exp
(
−t

(
ρ

∆x1
cos(s2∆x2/2) sinc(ξ∆x1) sin(η1∆x1) +

2

∆x2
sin(s2∆x2/2)

)2
)
,

23



and so, neglecting the last factor, which is ≤ 1,

logW ≤ − 2t

∆x21
(1− sinc(ξ∆x1) cos(η1∆x1)) + ρ2

t

∆x21
cos2(s2∆x2/2) sinc

2(ξ∆x1) sin
2(η1∆x1)

≤ t

∆x21

(
−2 + 2 sinc(ξ∆x1) cos(η1∆x1) + sinc2(ξ∆x1) sin

2(η1∆x1)
)

≤ t

∆x21

(
−2 + | sinc(ξ∆x1)|

(
2| cos(η1∆x1)|+ sin2(η1∆x1)

))

=
t

∆x21

(
−2 + | sinc(ξ∆x1)|

(
2− (1− | cos(η1∆x1)|)2

))

≤ − 2t

∆x21
(1− | sinc(ξ∆x1)|),

and following the remainder of the argument in the one-dimensional case we can deduce that the contri-
bution from this range is also exponentially small.

6.5 Multiple drift terms

Another possible extension is a model of the form

∂u

∂t
+ a1x

∂u

∂y1
+ a2x

∂u

∂y2
=

∂2u

∂x2
, (6.9)

where (a1, a2) 6= (0, 0) so that we have two drift terms and neither of the drift coefficients depend on y.
For this, we can apply the y1-FT and the y2-FT to get

∂v

∂t
− ia1p1xv − ia2p2xv =

∂2v

∂x2
,

where p1 and p2 are wavenumbers. To find the analytical solution we apply the x-FT to get

∂w

∂t
− (a1p1 + a2p2)

∂w

∂s
= −s2w.

The analysis would then continue as before but with a1p1+ a2p2 as a joint wavenumber. In this situation
however the wavenumbers have to be handled differently. For example, we can have separately large
values of |p1| and |p2| but the value of a1p1 + a2p2 can be small.

7 Conclusions

The numerical analysis of hypoelliptic PDEs with variable coefficients and Dirac initial datum is no-
toriously difficult because standard approaches to convergence analysis are not directly applicable. In
contrast with parabolic initial-value problems, in the case of hypoelliptic PDEs the situation is compli-
cated by the fact that diffusion generally acts only in some, but not all, co-ordinate directions. The
approach of [1] for the one-dimensional heat equation is based on Fourier analysis to show approximation
of a certain order for the low wavenumber components and exponential decay of the high wavenumber
components for smoothing schemes. In the present case of hypoelliptic equations the analysis is more
intricate because of the interplay of wavenumbers in the different co-ordinate directions as a consequence
of variable coefficients and the resulting noncommutativity of the spatial differential operators in the
different directions.

We exploit the special structure of the Kolmogorov equations under consideration by performing a
Fourier transform in the direction with the pure transport term, and discretize in the diffusive direction(s)
by a finite difference scheme. This results in a parametrized system of semi-discrete equations, which
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can be solved by standard methods, and the resulting solution is then transformed back from Fourier
space using exponentially convergent numerical quadrature, thus leading to an effective technique for
dimensional reduction. The numerical analysis sheds light on the interaction of different wavenumbers
and allows us to derive second-order convergence for the proposed numerical scheme in the absence of
time-discretization.

An open question at present is how to replicate the analysis herein for the fully discrete counterpart
of the method, which also includes time-discretization. Although unconditional stability of the backward
Euler scheme for initial data in L2, can be proved by standard energy estimates, a similar argument does
not seem to apply in the case of Dirac initial datum, as the use of a discrete negative-order Sobolev norm,
which would be the natural choice of norm for the discrete representation of the Dirac function on the
finite difference grid, in conjunction with discrete counterparts of parabolic smoothing estimates in the
diffusive directions, is obstructed by the particular form of the variable coefficients in the Kolmogorov
equations under consideration, and the complex nature of error propagation for the fully-discrete scheme
has not so far allowed a rigorous convergence analysis of the fully discrete scheme.
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A Implementation of the FFT

Starting from our inversion formula, for a given i and m, we have

Uj,k,m ∼ ∆p

2π

lmax∑

l=lmin

Vj,l,m e−iplyk

for a suitable range of l-values, and we choose lmin = −lmax. We write Yk = Uj,k,m and Xl = Vj,l,m, so
that

Yk ∼ ∆p

2π

lmax∑

l=lmin

Xl e
−iplyk .

We then have

∆p

2π

lmax∑

l=lmin

Xl e
−iplyk =

∆p

2π

lmax−lmin+1∑

l̃=1

Xl̃+lmin−1 e
−i∆p(l̃+lmin−1)∆yk

=
∆p

2π

lmax−lmin+1∑

l̃=1

Xl̃+lmin−1 e
− 2πi

N
N∆p∆y

2π
(l̃+lmin−1)k.

To align this with the MATLAB procedure, we require

N =
2π

∆p∆y

and N = lmax − lmin + 1. We then have

∆p

2π

N∑

l=1

Xl+lmin−1 e
− 2πi

N
(l+lmin−1)k =

∆p

2π

N∑

l=1

Xl+lmin−1 e
− 2πi

N
(l−1)k e−

2πi
N

lmink

=
1

N

N∑

l=1

(
e−

2πi
N

lmin(k̃−1)N∆p

2π

)
Xl+lmin−1 e

− 2πi
N

(l−1)(k̃−1)

so that

Yk̃−1 ∼
1

N

N∑

l=1

Wl,k̃ e
− 2πi

N
(l−1)(k̃−1) = IFFT (W ), (A.1)

where, for each value of k̃,

Wl,k̃ =

(
e−

2πi
N

lmin(k̃−1)N∆p

2π

)
Xl+lmin−1.
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This expresses our inversion in terms of the MATLAB IFFT. If the p grid values are (lmin∆p, . . . , lmax∆p),
then we have

prange = pmax − pmin = ∆p(lmax − lmin)

and

∆y =
2π

N∆p
=

2π

(lmax − lmin + 1)∆p
=

2π

prange +∆p
∼ 2π

prange
.

Due to this definition, care has to be taken when applying these procedures to evaluate the Fourier
transform above. If we fix prange and then refine the p-grid, the y-grid resolution will not change. If we
want to provide values of the approximation at more closely-spaced y-values, we will have to increase the
p-range.
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