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TEMPLATES FOR BINARY MATROIDS

KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Abstract. A binary frame template is a device for creating bi-
nary matroids from graphic or cographic matroids. Such matroids
are said to conform or coconform to the template. We introduce a
preorder on these templates and determine the nontrivial templates
that are minimal with respect to this order. As an application of
our main result, we determine the eventual growth rates of certain
minor-closed classes of binary matroids, including the class of bi-
nary matroids with no minor isomorphic to PG(3, 2). Our main
result applies to all highly-connected matroids in a class, not just
those of maximum size. As a second application, we characterize
the highly-connected 1-flowing matroids.

1. Introduction

Geelen, Gerards, and Whittle [1] recently announced a structure
theorem describing the highly connected members of any proper minor-
closed class of matroids representable over a given finite field. In this
paper we study some consequences of their result. To state a first,
rough version of their result, we need the following definitions.
A matroid M is vertically k-connected if, for each partition (X, Y )

of the ground set of M with r(X) + r(Y )− r(M) < k− 1, either X or
Y is spanning. We denote the unique prime subfield of F by Fprime. We
say that a matroid M2 is a rank-(≤ t) perturbation of a matroid M1 if
there exist matrices A1 and A2 over F such that r(M(A1 − A2)) ≤ t
and such that M1

∼= M(A1) and M2
∼= M(A2).

We now restate [1, Theorem 3.3]. Its proof is forthcoming in a future
paper by Geelen, Gerards, and Whittle.

Theorem 1.1. Let F be a finite field and let m0 be a positive integer.
Then there exist k, n, t ∈ Z+ such that, if M is a matroid representable
over F such that M or M∗ is vertically k-connected and such that M
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has an M(Kn)-minor but no PG(m0 − 1,Fprime)-minor, then M is a
rank-(≤ t) perturbation of a frame matroid representable over F.

Let us consider a very simple example of a rank-1 perturbation. Let
A1 be the binary matrix









1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1









,

and let A2 be the binary matrix








0 1 1 1 1 1 1 0 0 0
1 0 1 1 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1









.

Note that A2 is the result of adding the rank-1 matrix








1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0









to A1. Therefore, the vector matroid M(A2) is a rank-1 perturbation
of M(A1).
Theorem 1.1 is essentially a simplified version of a much more com-

plex structure theorem [1, Theorem 4.2]. Geelen, Gerards, and Whittle
introduced the concept of a template as a tool to capture much of this
complexity.
Our focus in this paper is on the binary case. Roughly speaking, a

binary frame template can be thought of as a recipe for constructing a
representable matroid from a graphic or cographic matroid. A matroid
constructed in this way is said to conform or coconform to the template.
In the example above, we may think of M(A2) as the matroid ob-

tained from the vector matroid of the following matrix by contracting
the element indexing the final column. Note that the large submatrix
on the bottom left is A1:













1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0 0 0 1
0 1 0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 0 1 0 1 0
0 0 0 1 0 0 1 0 1 1 0












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In fact, for any matrix A of the following form, where v and w are
arbitrary binary vectors, the matroidM(A)/c conforms to the template
ΦCX , which we will define in Section 3:

c
v 1

incidence matrix of a graph w

Let M(Φ) denote the set of matroids representable over a field F
that conform to a frame template Φ. Theorem 1.2 below is a slight
modification of [1, Theorem 4.2]. The modification is explained in
Section 2.

Theorem 1.2. Let F be a finite field, let m be a positive integer, and
let M be a minor-closed class of matroids representable over F. Then
there exist k, l ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such
that

• M contains each of the classes M(Φ1), . . . ,M(Φs),
• M contains the duals of the matroids in each of the classes
M(Ψ1), . . . ,M(Ψt), and

• if M is a simple vertically k-connected member of M with at
least l elements and with no PG(m− 1,Fprime) minor, then ei-
ther M is a member of at least one of the classesM(Φ1), . . . ,M(Φs),
or M∗ is a member of at least one of the classesM(Ψ1), . . . ,M(Ψt).

Our contribution is to shed some light on how these templates are
related to each other. We define a preorder on the set of frame tem-
plates. Our main result, Theorem 3.19, is a list of nontrivial binary
frame templates that are minimal with respect to this preorder.
One application of this result involves growth rates of minor-closed

classes of binary matroids. The growth rate function of a minor-closed
class M is the function whose value at an integer r ≥ 0 is given by
the maximum number of elements in a simple matroid in M of rank
at most r. We prove that a minor-closed class of binary matroids has
a growth rate that is eventually equal to the growth rate of the class
of graphic matroids if and only if it contains all graphic matroids but
does not contain the class of matroids conforming to a certain template.
The class of matroids conforming to this template is exactly the class
of matroids having an even-cycle representation with a blocking pair.
Geelen and Nelson also proved this result in [5]. We also prove the
following theorem. Here, EX (F ) denotes the class of binary matroids
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with no F -minor. If f and g are functions, we write f(r) ≈ g(r) if
f(r) = g(r) for all but finitely many r.

Theorem 1.3. The growth rate function for EX (PG(3, 2)) is

hEX (PG(3,2)) ≈ r2 − r + 1.

Note that r2 − r + 1 is the growth rate of the class of even-cycle
matroids.
Our main result goes beyond growth rates because it gives informa-

tion about all highly-connected matroids in a minor-closed class, not
just the maximum-sized matroids. This is illustrated by our second
application, involving 1-flowing matroids. The 1-flowing property is a
generalization of the max-flow min-cut property of graphs. We prove
the following.

Theorem 1.4. There exist k, l ∈ Z+ such that every simple, vertically
k-connected, 1-flowing matroid with at least l elements is either graphic
or cographic.

We use templates to study a minor-closed class M by describing the
highly-connected matroids in the class. This analysis follows a certain
pattern:

(1) Find a matroid N not in M.
(2) Find all templates such that N is not a minor of any matroid

conforming to that template.
(3) If all matroids conforming to these templates are in M, then

the analysis is complete.
(4) Otherwise, repeat Step (1).

From the definition of conforming to a template, which we will give
in Section 2, it will not be difficult to see that for each binary frame
template Φ, there are integers t1 and t2 such that every matroid con-
forming to Φ is a rank-(≤ t1) perturbation of a graphic matroid and
every matroid coconforming to Φ is a rank-(≤ t2) perturbation of a co-
graphic matroid. Thus, by Theorem 1.2, the highly connected matroids
in a minor-closed class of binary matroids are “close” to being graphic
or cographic. In this regard, the work regarding templates resembles
work done by Robertson and Seymour concerning minor-closed classes
of graphs. In Theorem 1.3 of [9], Robertson and Seymour showed
that highly-connected graphs in a minor-closed class are in some sense
“close” to being embeddable in some surface.
Section 2 of this paper repeats the necessary definitions found in [1].

In Section 3, we prove our main result, as well as giving some ma-
chinery leading up to it. Section 4 applies our result to growth rates
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of minor-closed classes of binary matroids, and in Section 5, we prove
Theorem 1.4.

2. Preliminaries

We repeat here several definitions concerning highly connected ma-
troids which can be found in Geelen, Gerards, and Whittle [1]. Al-
though the results found in [1] are technically about matrices rather
than matroids, it suffices for our purposes to state the results in terms
of their immediate matroid consequences.
Let A be a matrix over a field F. Then A is a frame matrix if each

column of A has at most two nonzero entries. We let F× denote the
multiplicative group of F. Let Γ be a subgroup of F×. A Γ-frame
matrix is a frame matrix A such that:

• Each column of A with a nonzero entry contains a 1.
• If a column of A has a second nonzero entry, then that entry is
−γ for some γ ∈ Γ.

In the case where Γ is the multiplicative group of one element, a matrix
is a Γ-frame matrix if and only if it is the signed incidence matrix of a
graph, with possibly a row removed. In particular, a binary matroid is
graphic if and only if it can be represented by a matrix over GF(2) in
which no column has more than two nonzero entries.
To facilitate the description of their structure theorem, Geelen, Ger-

ards, and Whittle capture capture much of the complexity with the
concept of a “template.” Let F be a finite field. A frame template
over F is a tuple Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) such that the following
hold1:

(i) Γ is a subgroup of F×.
(ii) C, X , Y0 and Y1 are disjoint finite sets.
(iii) A1 ∈ FX×(C∪Y0∪Y1).
(iv) Λ is a subgroup of the additive group of FX and is closed under

scaling by elements of Γ.
(v) ∆ is a subgroup of the additive group of FC∪Y0∪Y1 and is closed

under scaling by elements of Γ.

Let Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) be a frame template. Let B and
E be finite sets, and let A′ ∈ FB×E . We say that A′ respects Φ if the
following hold:

(i) X ⊆ B and C, Y0, Y1 ⊆ E.
(ii) A′[X,C ∪ Y0 ∪ Y1] = A1.

1The authors of [1] divided our set X into two separate sets which they called
X and D. Their set X can be absorbed into Y0, therefore we omit it.
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Z Y0 Y1 C

X columns from Λ 0 A1

Γ-frame matrix unit columns
rows
from ∆

Figure 1.

(iii) There exists a set Z ⊆ E−(C∪Y0∪Y1) such that A′[X,Z] = 0,
each column of A′[B−X,Z] is a unit vector, and A′[B−X,E−
(C ∪ Y0 ∪ Y1 ∪ Z)] is a Γ-frame matrix.

(iv) Each column of A′[X,E − (C ∪ Y0 ∪ Y1 ∪Z)] is contained in Λ.
(v) Each row of A′[B −X,C ∪ Y0 ∪ Y1] is contained in ∆.

Figure 1 shows the structure of A′.
Suppose that A′ respects Φ and that Z satisfies (iii) above. Now

suppose that A ∈ FB×E satisfies the following conditions:

(i) A[B,E − Z] = A′[B,E − Z]
(ii) For each i ∈ Z there exists j ∈ Y1 such that the i-th column of

A is the sum of the i-th and the j-th columns of A′.

We say that any such matrix conforms to Φ.
Let M be a matroid representable over F. We say that M conforms

to Φ if there is a matrix A that conforms to Φ such thatM is isomorphic
to M(A)/C\Y1.
Let M(Φ) denote the set of matroids representable over F that con-

form to Φ. Recall that a matroidM is vertically k-connected if, for each
partition (X, Y ) of the ground set ofM with r(X)+r(Y )−r(M) < k−1,
either X or Y is spanning. We denote the unique prime subfield of F
by Fprime. Geelen, Gerards, and Whittle will prove Theorem 1.2 in
a future paper. This theorem is actually a slight modification of the
theorem found in [1]. In that paper, there is no mention of the require-
ment that a matroid have size at least l. However, Geelen (personal
communication) has stated that this is necessary to ensure that adding
a finite number of matroids to the class M does not add any templates
to the list Φ1, . . . ,Φs,Ψ1, . . . ,Ψt.
Although the term coconform does not appear in [1], we define it in

the following obvious way.
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Definition 2.1. A matroid M coconforms to a template Φ if its dual
M∗ conforms to Φ.

To simplify the proofs in this paper, it will be helpful to expand the
concept of conforming slightly.

Definition 2.2. Let A′ be a matrix that respects Φ, as defined above,
except that we allow columns of A′[B−X,Z] to be either unit columns
or zero columns. Let A be a matrix that is constructed from A′ as
described above. Thus, A[B,E−Z] = A′[B,E−Z], and for each i ∈ Z
there exists j ∈ Y1 such that the i-th column of A is the sum of the i-th
and the j-th columns of A′. Let M be isomorphic to M(A)/C\Y1. We
say that A and M virtually conform to Φ and that A′ virtually respects
Φ. If M∗ virtually conforms to Φ, we say that M virtually coconforms
to Φ.

We will denote the set of matroids representable over F that virtually
conform to Φ by Mv(Φ) and the set of matroids representable over F
that virtually coconform to Φ by M∗

v(Φ).
The following notation will be used throughout this paper. We de-

note an empty matrix by [∅]. We denote a group of one element by {0}
or {1}, if it is an additive or multiplicative group, respectively. If S ′ is
a subset of a set S and G is a subgroup of the additive group FS, we
denote by G|S ′ the projection of G into FS′

. Similarly, if x̄ ∈ G, we
denote the projection of x̄ into FS′

by x̄|S ′.
Unexplained notation and terminology will generally follow Oxley [8].

One exception is that we denote the vector matroid of a matrix A by
M(A), rather than M [A].

3. Reducing a Template

In this section, we will introduce reductions and show that every
template reduces to one of several basic templates.
Since templates are used to study minor-closed classes of matroids, a

natural question to ask is whether the set of matroids conforming to a
particular template is minor-closed. The answer is no, in general. For
example, if |Y0| = 1, then a matroid conforms to the following binary
frame template if and only if it is a graphic matroid with a loop:

({1}, ∅, ∅, Y0, ∅, [∅], {0}, {0}).

Clearly, this is not a minor-closed class.
Another question to ask is whether there might be some sort of

minor relationship between a pair of templates, where every matroid
conforming to one template is a minor of a matroid conforming to the
other. These questions motivate the following discussion.
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Definition 3.1. A reduction is an operation on a frame template Φ
that produces a frame template Φ′ such that M(Φ′) ⊆ M(Φ).

Proposition 3.2. The following operations are reductions on a frame
template Φ:

(1) Replace Γ with a proper subgroup.
(2) Replace Λ with a proper subgroup closed under multiplication by

elements from Γ.
(3) Replace ∆ with a proper subgroup closed under multiplication

by elements from Γ.
(4) Remove an element y from Y1. (More precisely, replace A1 with

A1[X, Y0∪(Y1−y)∪C] and replace ∆ with ∆|(Y0∪(Y1−y)∪C).
(5) For all matrices A′ respecting Φ, perform an elementary row

operation on A′[X,E]. (Note that this alters the matrix A1 and
performs a change of basis on Λ.)

(6) If there is some element x ∈ X such that, for every matrix
A′ respecting Φ, we have that A′[{x}, E] is a zero row vector,
remove x from X. (This simply has the effect of removing a
zero row from every matrix conforming to Φ.)

(7) Let c ∈ C be such that A1[X, {c}] is a unit column whose
nonzero entry is in the row indexed by x ∈ X, and let either
λx = 0 for each λ ∈ Λ or δc = 0 for each δ ∈ ∆. Let ∆′ be the
result of adding −δcA1[{x}, Y0∪Y1∪C] to each element δ ∈ ∆.
Replace ∆ with ∆′, and then remove c from C and d from D.
(More precisely, replace A1 with A1[X−x, Y0∪Y1∪(C−c)], re-
place Λ with Λ|(X−x), and replace ∆ with ∆′|(Y0∪Y1∪(C−c)).)

(8) Let c ∈ C be such that A1[X, {c}] is a zero column and δc =
0 for all δ ∈ ∆. Then remove c from C. (More precisely,
replace A1 with A1[X, Y0 ∪ Y1 ∪ (C − c)], and replace ∆ with
∆|(Y0 ∪ Y1 ∪ (C − c)).)

Proof. Let Φ′ be the template that results from performing one of op-
erations (1)-(8) on Φ.
For (1)-(3), every matrix A′ respecting Φ′ also respects Φ.
For (4), let A′ be a matrix respecting Φ′, and let M be the matroid

M(A)/C\Y1, where A is a matrix conforming to Φ′ that has been con-
structed from A′ respecting Φ′ as described in Section 2. Since Y1 is
deleted to produce M , the only effect of Y1 on M is that for each i ∈ Z
there exists j ∈ Y1 such that the i-th column of A is the sum of the
i-th and the j-th columns of A′. But each j ∈ Y1 in the template Φ′ is
also contained in Y1 in the template Φ. Therefore, A conforms to Φ,
as does M .
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For (5) and (6), elementary row operations and removing zero rows
produce isomorphic matroids.
Operations (7) and (8) have the effect of contracting c fromM(A)\Y1

for every matrix A conforming to Φ. Since all of C is contracted to
produce a matroid M conforming to Φ, the matroids we produce by
performing either of these operations still conform to Φ. �

For i ∈ {1, . . . , 8}, we call operation (i) above a reduction of type i.
The operations listed in the definition below are not reductions as

defined above, but we continue the numbering from Proposition 3.2 for
ease of reference.

Definition 3.3. A template Φ′ is a template minor of Φ if Φ′ is ob-
tained from Φ by repeatedly performing the following operations:

(9) Performing a reduction of type 1-8 on Φ.
(10) Removing an element y from Y0, replacing A1 with A1[X, (Y0−

y)∪ Y1 ∪C], and replacing ∆ with ∆|((Y0− y)∪ Y1 ∪C). (This
has the effect of deleting y from every matroid conforming to
Φ.)

(11) Let x ∈ X with λx = 0 for every λ ∈ Λ, and let y ∈ Y0

be such that (A1)x,y 6= 0. Then contract y from every ma-
troid conforming to Φ. (More precisely, perform row opera-
tions on A1 so that A1[X, {y}] is a unit column with (A1)x,y =
1. Then replace every element δ ∈ ∆ with the row vector
−δyA1[{x}, Y0 ∪ Y1 ∪ C] + δ. This induces a group homomor-
phism ∆ → ∆′, where ∆′ is also a subgroup of the additive
group of FC∪Y0∪Y1 and is closed under scaling by elements of Γ.
Finally, replace A1 with A1[X − x, (Y0 − y) ∪ Y1 ∪ C], project
Λ into FX−x, and project ∆′ into F(Y0−y)∪Y1∪C . The resulting
groups play the roles of Λ and ∆, respectively in Φ′.)

(12) Let y ∈ Y0 with δy = 0 for every δ ∈ ∆. Then contract y from
every matroid conforming to Φ. (More precisely, if A1[X, {y}]
is a zero vector, this is the same as simply removing y from Y0.
Otherwise, choose some x ∈ X such that (A1)x,y 6= 0. Then
for every matrix A′ that respects Φ, perform row operations so
that A1[X, {y}] is a unit column with (A1)x,y = 1. This induces
a group isomorphism Λ → Λ′ where Λ′ is also a subgroup of the
additive group of FX and is closed under scaling by elements of
Γ. Finally, replace A1 with A1[X−x, (Y0−y)∪Y1∪C], project
Λ′ into FX−x, and project ∆ into F(Y0−y)∪Y1∪C . The resulting
groups play the roles of Λ and ∆, respectively in Φ′.)
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Let Φ′ be a template minor of Φ, and let A′ be a matrix that virtually
respects Φ′. Let A be a matrix that virtually conforms to Φ′, and let
M be a matroid that virtually conforms to Φ′. We say that A′ weakly
respects Φ and that A and M weakly conform to Φ. Let Mw(Φ) denote
the set of matroids representable over F that weakly conform to Φ,
and let M∗

w(Φ) denote the set of matroids representable over F whose
duals weakly conform to Φ. If M ∈ M∗

w(Φ), we say that M weakly
coconforms to Φ.

Lemma 3.4. If a matroid M weakly conforms to a template Φ, then
M is a minor of a matroid that conforms to Φ.

Proof. Let Φ′ be a template minor of Φ. As we can see from Defi-
nition 3.3, every matroid M weakly conforming to Φ′ is a minor of
a matroid virtually conforming to Φ. It remains to analyze the case
where M virtually conforms to Φ; so M is isomorphic to M(K)/C\Y1,
where K is built from a matrix K ′ that virtually respects Φ. Consider
the following matrix A′ obtained from K ′ by adding a row r and a
column c.

c Z Y0 Y1 C

X 0 columns from Λ 0 A1

0 Γ-frame matrix 0 unit columns
rows

from ∆

r 1 0 1 · · · 1 0 0

From A′, we can obtain a matrix A conforming to Φ such that M is
isomorphic toM(A)/C\Y1/c. So M is a minor of a matroid conforming
to Φ. �

An easy consequence of Lemma 3.4 is that Theorem 1.2, which deals
with minor-closed classes, can be restated in terms of weak conforming.

Corollary 3.5. Let F be a finite field, let m be a positive integer, and
let M be a minor-closed class of matroids representable over F. Then
there exist k, l ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such
that

• M contains each of the classes Mw(Φ1), . . . ,Mw(Φs),
• M contains the duals of the matroids in each of the classes
Mw(Ψ1),. . . ,Mw(Ψt), and
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• if M is a simple vertically k-connected member of M with at
least l elements and with no PG(m− 1,Fprime) minor, then ei-
ther M is a member of at least one of the classes
Mv(Φ1), . . . ,Mv(Φs) or M∗ is a member of at least one of the
classes Mv(Ψ1), . . . ,Mv(Ψt).

Proof. Let Φ1, . . . ,Φs,Ψ1, . . . ,Ψt be the templates whose existence is
implied by Theorem 1.2. For Φ ∈ {Φ1, . . . ,Φs}, Lemma 3.4 implies that
any matroid M ∈ Mw(Φ) is a minor of a matroid N ∈ M(Φ). Since
M contains M(Φ) and is minor-closed, M contains Mw(Φ) as well.
Similarly, M contains the duals of the matroids in each of the classes
Mw(Ψ1), . . . ,Mw(Ψt). The third condition above holds since every
matroid conforming to a template also virtually conforms to it. �

If Mw(Φ) = Mw(Φ
′), we say that Φ is equivalent to Φ′ and write

Φ ∼ Φ′. It is clear that ∼ is indeed an equivalence relation.

Definition 3.6. Let TF be the set of all frame templates over F. We de-
fine a preorder � on TF as follows. We say Φ � Φ′ ifMw(Φ) ⊆ Mw(Φ

′).
This is indeed a preorder since reflexivity and transitivity follow from
the subset relation. We may obtain a partial order by considering
equivalence classes of templates, with equivalence as defined above.
However, the templates themselves, rather than equivalence classes,
are the objects we work with in this paper.

Let Φ0 be the frame template with all groups trivial and all sets
empty. We call this template the trivial template. In general, we say
that a template Φ is trivial if Φ � Φ0. It is easy to see that for any
template Φ, we have Φ0 � Φ. Therefore, if Φ � Φ0, then actually
Φ ∼ Φ0.
Our desire is to find a collection of minimal nontrivial templates. For

the remainder of this paper, we restrict our attention to binary frame
templates: those frame templates where F = GF(2) and Γ is the group
of one element.

Definition 3.7.

• Let ΦC be the template with all groups trivial and all sets empty
except that |C| = 1 and ∆ ∼= Z/2Z.

• Let ΦX be the template with all groups trivial and all sets empty
except that |X| = 1 and Λ ∼= Z/2Z.

• Let ΦY0
be the template with all groups trivial and all sets

empty except that |Y0| = 1 and ∆ ∼= Z/2Z.
• Let ΦCX be the template with Y0 = Y1 = ∅, with |C| = |X| = 1,
with ∆ ∼= Λ ∼= Z/2Z, with Γ trivial, and with A1 = [1].
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• Let ΦY1
be the template with all groups trivial, with C = Y0 =

∅, with |Y1| = 3 and |X| = 2, and with A1 =

[

1 0 1
0 1 1

]

.

It is not too difficult to see that the Fano matroid F7 virtually con-
forms to each of ΦC , ΦX , ΦCX , ΦY0

, and ΦY1
. Therefore, these tem-

plates are nontrivial. In fact, one can see that M(ΦY0
) is the set of

graft matroids, thatM(ΦC) is the class of matroids obtained by closing
the set of graft matroids under minors, and that M(ΦX) is the class of
even-cycle matroids. In Lemma 4.5, we will show that Mv(ΦY1

) is the
class of matroids having an even-cycle representation with a blocking
pair.
Our goal in defining reductions and weak conforming was essentially

to perform operations on matrices while leaving the Γ-frame submatrix
intact. The following lemma does not contribute to that goal; so we
will only make occasional use of it.

Lemma 3.8. The following relations hold:

(1) ΦY1
� ΦX

(2) ΦY1
� ΦC

(3) ΦY0
� ΦC

(4) ΦC � ΦCX

(5) ΦX � ΦCX

Proof. For (1), note that any simple matroid M of rank r virtually
conforming to ΦY1

is a restriction of the vector matroid of a matrix A
of the following form:

0
1 0 1 1 · · ·1 0 · · ·0 1 · · ·1
0 1 1 0 · · ·0 1 · · ·1 1 · · ·1

Γ-frame matrix 0 I I I

If we label the sets of rows and columns of A as B and E respectively,
and the first row as x, then we see that A[B−x, E] is a Γ-frame matrix.
If we let X = {x}, then we see that M conforms to ΦX .
For (2), consider the matrix A above. Note that it is obtained by

contracting c in the following matrix:

c

0
0 0 1 0· · · 0 0· · · 0 1· · · 1 1
1 0 0 1 · · ·1 0 · · ·0 0 · · ·0 1
0 1 0 0 · · ·0 1 · · ·1 0 · · ·0 1

Γ-frame matrix 0 I I I 0

Removing c from this matrix, we obtain a Γ-frame matrix. Therefore,
M conforms to ΦC .
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For (3), any matroid M conforming to ΦY0
is the vector matroid of

a matrix of the following form, where v is an arbitrary column vector:

Γ-frame matrix v

Let A be the matrix below. Label its sets of rows and columns as B
and E respectively, and let c be the last column, with C = {c}.

0 1 1

Γ-frame matrix 0 v

Note that M is isomorphic to M(A)/C. Since A[B,E − C] is a
Γ-frame matrix, we see that M conforms to ΦC .
For (4), let A be a matrix conforming to ΦC and let M = M(A)/C

be the corresponding matroid conforming to ΦC . If the column of
A indexed by C is a zero column, then construct the matrix Ā by
adding a unit row, indexed by X , whose nonzero entry is in the column
indexed by C. One readily sees that Ā conforms to ΦCX and that
the corresponding matroid M(Ā)/C is equal to M . Otherwise, if the
column of A indexed by C has a nonzero entry, then one readily sees
that A conforms to ΦCX by considering the row containing the nonzero
entry to be indexed by X .
For (5), any matroid M conforming to ΦD is the vector matroid of

a matrix of the following form, where v is an arbitrary row vector:

v

Γ-frame matrix

Consider the following matrix A, whose last column is indexed by
{c} = C:

v 1
0 1

Γ-frame matrix 0

The matroid M is isomorphic to M(A)/c, which conforms to ΦCX . �



14 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Z Y0 Y1 C0 C1

X0 columns from Λ|X0 0
∗

I ∗
X1 columns from Λ|X1 0 0

Γ-frame matrix unit or zero columns
rows
from ∆

Figure 2. Standard form

Lemma 3.9. Let Φ be a template with y ∈ Y1. Let Φ′ be the template
obtained from Φ by removing y from Y1 and placing it in Y0. Then
Φ′ � Φ.

Proof. Any matrix respecting Φ′ virtually respects Φ by adding column
y only to the zero Z column. Thus, any matroid conforming to Φ′

weakly conforms to Φ. �

We call the operation described in Lemma 3.9 a y-shift.

Definition 3.10. Let Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) be a frame tem-
plate over a finite field F. We say that Φ is in standard form if there
are disjoint sets C0, C1, X0, and X1 such that C = C0 ∪ C1, such that
X = X0∪X1, such that A1[X0, C0] is an identity matrix, and such that
A1[X1, C] is a zero matrix.

Figure 2, with the stars representing arbitrary matrices, shows a
matrix that virtually respects a template in standard form. Note that
if Φ is in standard form, |C0| = |X0|. Also note that any of C0, C1, X0,
or X1 may be empty. Finally, note that we have defined standard
form for frame templates over any finite field, not just binary frame
templates.

Lemma 3.11. Every frame template Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) is
equivalent to a frame template in standard form.

Proof. Choose a basis C0 for M(A1[X,C]), and let C1 = C − C0. Re-
peatedly perform operation (5) to obtain a template Φ′ where A1[X,C0]
consists of an identity matrix on top of a zero matrix. Each use of op-
eration (5) results in an equivalent template; therefore, Φ ∼ Φ′. Let
X0 ⊆ X index the rows of the identity matrix, and let X1 ⊆ X index
the rows of the zero matrix. Since C0 is a basis for M(A1[X,C]), the
matrix A1[X,C1] must be a zero matrix as well. Thus, Φ′ is in standard
form. �
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Throughout the rest of this paper, we will implicitly use Lemma 3.11
to assume that all templates are in standard form. Also, the opera-
tions (1)-(12) to which we will refer throughout the rest of this paper
are the operations (1)-(8) from Proposition 3.2 and (9)-(12) from Def-
inition 3.3.

Lemma 3.12. If Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ) is a binary frame
template with Λ|X1 nontrivial, then ΦX � Φ.

Proof. Perform operations (2) and (3) on Φ to obtain the following
template, where λ is an element of Λ with λx 6= 0 for some x ∈ X1:

({1}, C,X, Y0, Y1, A1, {0}, {0, λ}).

On this template, repeatedly perform operation (7), then (8), then (4),
and then (10) until the following template is obtained:

({1}, ∅, X1, ∅, ∅, [∅], {0}, {0, λ}).

On this template, repeatedly perform operation (5) to obtain a tem-
plate that is identical to the previous one except that the support of λ
contains only one element of X1. On this template, repeatedly perform
operation (6) to obtain the following template, where x ∈ X1:

({1}, ∅, {x}, ∅, ∅, [∅], {0},Z/2Z).

This template is ΦX . �

Lemma 3.13. If Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ) is a binary frame
template, then either ΦC � Φ or Φ is equivalent to a template with
C1 = ∅.

Proof. Suppose there is an element δ ∈ ∆|C that is not in the row
space of A1[X,C]. Repeatedly perform operations (4) and (10) on Φ
until the following template is obtained:

({1}, C,X, ∅, ∅, A1[X,C],∆|C,Λ).

On this template, perform operations (2) and (3) to obtain the following
template:

({1}, C,X, ∅, ∅, A1[X,C], {0, δ}, {0}).

Every matrix virtually respecting this template is row equivalent to a
matrix virtually respecting a template that is identical to the previous
template except that there is the additional condition that δ|C0 is a
zero vector. Note that δ|C1 is nonzero since, in the previous template,
δ was not in the row space of A1[X,C]. Now, on the current template,
repeatedly perform operation (7) and then operation (6) to obtain the
following template:

Φ′ = ({1}, C1, ∅, ∅, ∅, [∅], {0, δ|C1}, {0}).
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Now, any matroid M conforming to Φ′ is obtained by contracting C1

from M(A), where A is a matrix conforming to Φ′. By contracting any
single element c ∈ C1, where δc = 1, we turn the rest of the elements
of C1 into loops. So C1 − c is deleted to obtain M . Thus, M conforms
to the template

({1}, {c}, ∅, ∅, ∅, [∅],Z/2Z, {0}),

which is ΦC . Similarly, the converse is true that any matroid conform-
ing to ΦC conforms to Φ′. Thus, ΦC ∼ Φ′ � Φ.
Now suppose that every element of ∆|C is in the row space of

A1[X,C]. Thus, contraction of C0 turns the elements of C1 into loops,
and contraction of C1 is the same as deletion of C1. By deleting C1 from
every matrix virtually conforming to Φ, we see that Φ is equivalent to
a template with C1 = ∅. �

Lemma 3.14. If Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ) is a binary frame
template, then one of the following is true:

• ΦC � Φ
• Φ is equivalent to a template with Λ|X1 nontrivial and ΦX � Φ
• Φ is equivalent to a template with Λ|X0 nontrivial and ΦCX � Φ
• Φ is equivalent to a template with Λ trivial and C = ∅.

Proof. By Lemmas 3.12 and 3.13, we may assume that Λ|X1 is trivial
and that C1 = ∅.
First, suppose there exist elements δ ∈ ∆|C0 and λ ∈ Λ|X0 such that

there are an odd number of natural numbers i with δi = λi = 1. Thus,
Λ|X0 is nontrivial. Repeatedly perform operations (4) and (10) on Φ
until the following template is obtained:

({1}, C0, X, ∅, ∅, A1[X,C0],∆|C0,Λ).

On this template, repeatedly perform operation (6) to obtain the fol-
lowing template:

Φ′ = ({1}, C0, X0, ∅, ∅, A1[X0, C0],∆|C0,Λ|X0).

Perform operations (2) and (3) on Φ′ to obtain the following template:

({1}, C0, X0, ∅, ∅, A1[X0, C0], {0, δ}, {0, λ}).

Any matroid conforming to this template is obtained by contracting
C0. If δ is in the row labeled by r and λ is in the column labeled by
c, then when C0 is contracted, 1 is added to the entry of the Γ-frame
matrix in row r and column c. Otherwise, the entry remains unchanged
when C is contracted. We see then that this template is equivalent to
ΦCX , where 1s are used to replace δ and λ.
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Thus, we may assume that for every element δ ∈ ∆|C0 and λ ∈ Λ|X0,
there are an even number of natural numbers i such that δi = λi = 1.
This implies that contraction of C has no effect on the Γ-frame matrix.
So Φ is equivalent to a template with Λ|X0 trivial. Therefore, since
Λ|X1 is trivial, we see that Λ is trivial. Note that operation (7) is
a reduction that produces an equivalent template, since C must be
contracted to produce a matroid that conforms to a template. By
repeatedly performing operation (7), we obtain a template equivalent
to Φ with C = ∅. �

Lemma 3.15. If Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ) is a binary frame
template with Λ trivial and with C = ∅, then either ΦY0

� Φ or Φ is
equivalent to a template with ∆ trivial.

Proof. First, suppose there is an element δ ∈ ∆ that is not in the row
space of A1 = A1[X1, (Y0 ∪ Y1)]. Recall that a y-shift is the operation
described in Lemma 3.9. Repeatedly perform y-shifts to obtain the
following template, where Y ′

0 = Y0 ∪ Y1:

({1}, ∅, X, Y ′
0, ∅, A1,∆, {0}).

On this template, perform operation (3) to obtain the following tem-
plate:

({1}, ∅, X, Y ′
0 , ∅, A1, {0, δ}, {0}).

Choose a basis B′ for M(A1). By performing elementary row op-
erations on every matrix virtually respecting Φ, we may assume that
A1[X,B′] consists of an identity matrix with zero rows below it and
that δ|B′ is the zero vector. By assumption, there is some element
y ∈ (Y ′

0 − B′) such that δy is nonzero. Thus, we can repeatedly per-
form operation (10) to obtain the following template:

({1}, ∅, X,B′ ∪ y, ∅, A1[X,B′ ∪ y], {0, δ|(B′ ∪ y)}, {0}).

Now, we can repeatedly perform operation (6) and then operation (12)
to obtain the following template:

({1}, ∅, ∅, {y}, ∅, [∅],Z/2Z, {0}),

which is ΦY0
.

Now suppose that every element δ ∈ ∆ is in the row space of A1 =
A1[X, (Y0 ∪ Y1)]. Since Λ is trivial, by performing elementary row
operations on every matrix virtually respecting Φ, we obtain a template
equivalent to Φ with ∆ trivial. �

Lemma 3.16. Let Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ) be a binary frame
template with Λ and ∆ trivial. If M(A1[X1, (Y0∪Y1)]) has a circuit Y ′

with |Y ′ ∩ Y1| ≥ 3, then ΦY1
� Φ.
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Proof. Any matroid conforming to Φ is obtained by contracting C.
Since Λ and ∆ are trivial, we may assume that C = X0 = ∅ and
therefore that X = X1. Repeatedly perform operation (4) and then
operation (10) on Φ to obtain the following template:

({1}, ∅, X, Y0 ∩ Y ′, Y1 ∩ Y ′, A1[X, Y ′], {0}, {0}).

Choose any 3-element subset of Y ′ ∩ Y1 and call it Y ′′. Repeatedly
perform y-shifts to obtain the following template:

({1}, ∅, X, Y ′ − Y ′′, Y ′′, A1[X, Y ′], {0}, {0}).

On this template, repeatedly perform operation (11) to obtain the fol-
lowing template:

({1}, ∅, X ′, ∅, Y ′′, A1[X
′, Y ′′], {0}, {0}),

where X ′ is the subset of X that remains after Y ′ − Y ′′ is contracted.
On this template, repeatedly perform operations (5) and (6) to obtain
the following template, where X ′′ is a 2-element subset of X ′:

({1}, ∅, X ′′, ∅, Y ′′,

[

1 0 1
0 1 1

]

, {0}, {0}).

This template is ΦY1
. �

Lemma 3.17. If Φ is a frame template with ∆ trivial, then Φ is equiv-
alent to a template Φ′ where A1[X, Y1] is a matrix with every column
nonzero and where no column is a copy of another. Moreover, if Φ is
a binary frame template, then M(A1[X, Y1]) is simple.

Proof. Let A be a matrix that virtually conforms to Φ. Since ∆ is
trivial, the columns of A indexed by elements of Z are formed by placing
a column of A1[X, Y1] on top of a unit column or a zero column. These
columns can be made using any copy of the same column of A1[X, Y1];
so only one copy is needed. If any column of A1[X, Y1] is a zero column,
then any column indexed by an element of Z that is made with this
zero column can also be made as a column indexed by an element of
E− (Z∪Y0∪Y1∪C) and choosing for the element of Λ the zero vector.
Thus, no zero columns of A1[X, Y1] are needed.
In the binary case, M(A1[X, Y1]) has no parallel elements because

any such elements index copies of the same column. Also, M(A1[X, Y1])
has no loops because every column of A1[X, Y1] is nonzero. Therefore,
M(A1[X, Y1]) is simple. �

Lemma 3.18. Let Φ be a binary frame template. Then at least one of
the following is true:

(i) Φ0 ∼ Φ
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(ii) Φ′ � Φ for some Φ′ ∈ {ΦX ,ΦC ,ΦCX ,ΦY0
,ΦY1

}
(iii) Φ is equivalent to a template where C = ∅, where Λ and ∆ are

trivial, and where A1 is of the following form, with Y0 = V0∪V1,
with L an arbitrary binary matrix, and with each column of H
containing at most two nonzero entries:

Y1 V0 V1

I 0 H
0 I L

.

Proof. Suppose neither (i) nor (ii) holds. By Lemma 3.14, we may
assume that Λ is trivial and C = ∅. By Lemma 3.15, we may assume
that ∆ is trivial. By Lemma 3.16, every dependent set of M(A) =
M(A1[X1, (Y0 ∪ Y1)]) has an intersection with Y1 with size at most 2.
So by elementary row operations, we may assume that A1 is of the
following form, where Y0 = V0 ∪ V1, where L is an arbitrary binary
matrix, where K consists of unit and zero columns, and where each
column of H contains at most two nonzero entries:

Y1 V0 V1

I K 0 H
0 0 I L

.

However, by Lemma 3.17, we may assume that K is an empty matrix.
Thus, (iii) holds. �

Theorem 3.19. Let Φ be a binary frame template. Then at least one
of the following is true:

(i) Φ0 ∼ Φ
(ii) Φ′ � Φ for some Φ′ ∈ {ΦX ,ΦC ,ΦCX ,ΦY0

,ΦY1
}

(iii) There exist k, l ∈ Z+ such that no simple, vertically k-connected
matroid with at least l elements either virtually conforms or
virtually coconforms to Φ.

Proof. Suppose for contradiction that none of outcomes (i)-(iii) hold for
Φ. By Lemma 3.18, outcome (iii) of that lemma holds. Note that any
simple matroid N virtually conforming to Φ is a restriction of a matroid
M represented by a matrix of the following form, where Z = Z0 ∪ Z1,
where Y0 = V0 ∪ V1, and where the Γ-frame matrix has n rows and has
a vector matroid isomorphic to the cycle matroid of the graph Kn+1:
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Z0 Z1 V0 V1

X 0

1 · · ·1

I 0 H
1 · · ·1

· · ·
1 · · ·1

0 0 I L
Γ-frame matrix I I · · · I 0 0 0

Also recall from the definition of conforming to a template that Y0 ⊆
E(N).
We see that

λN(Y0 ∪ (Z1 ∩ E(N))) ≤ λM(Y0 ∪ Z1)

= rM(Y0 ∪ Z1) + rM(E − (Y0 ∪ Z1))− r(M)

= |V0|+ |Y1|+ |Y1|+ n− (|Y1|+ |V0|+ n)

= |Y1|.

Note that each column of the above matrix, except possibly those
columns indexed by V1, has at most two nonzero entries. Thus, M
is graphic and Φ is trivial if V0 = ∅. Since (i) does not hold, Φ is
nontrivial. Therefore, V0 6= ∅, and E(N) − (Y0 ∪ Z1) is not spanning.
Thus, if k > |Y1| + 1, then N is not vertically k-connected unless
Y0∪(Z1∩E(N)) is spanning in N . This implies that n = 0; in that case,
N is only simple if the Γ-frame matrix is a 0× 0 matrix. This implies
that |E(N)| ≤ |Y0 ∪ Y1|. So if l > |Y0 ∪ Y1|, then no simple, vertically
k-connected matroid with at least l elements virtually conforms to Φ.
Now, consider a simple matroid N∗ which virtually coconforms to

Φ. Then N is a restriction of M with Y0 ⊆ E(N). Since a matroid and
its dual have the same connectivity function, we have λN∗(Y0 ∪ (Z1 ∩
E(N)) ≤ |Y1|. So if k > |Y1|+1, then N∗ is not vertically k-connected
unless either Y0 ∪ (Z1 ∩E(N)) or E(N)− (Z1 ∪ Y0) is spanning in N∗,
implying that either E(N)−(Z1∪Y0) or Y0∪(Z1∩E(N)) is independent
in N . If E(N)− (Z1 ∪ Y0) is independent in N , then

|E(N)− (Z1 ∪ Y0)| = rN(E(N)− (Z1 ∪ Y0))

≤ rM(E(M)− (Z1 ∪ Y0))

= |Y1|+ n.
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By the formula for corank, we have

rN∗(E(N)− (Z1 ∪ Y0)) ≤ rM∗(E(N)− (Z1 ∪ Y0))

= |E(N)− (Z1 ∪ Y0)|+ rM(Z1 ∪ Y0)− r(M)

≤ |Y1|+ n+ |Y1|+ |V0| − (|Y1|+ |V0|+ n)

= |Y1|.

Since N∗ is simple and binary, we have |E(N)− (Z1 ∪ Y0)| ≤ 2|Y1| − 1.
This implies that |E(N)| ≤ 2|Y1|−1+|Y1|+|Y0|. Thus, if we set l greater
than this value, then no simple, vertically k-connected matroid with at
least l elements virtually coconforms to Φ unless Y0 ∪ (Z1 ∩ E(N)) is
independent in N . Since (iii) does not hold, this must be true for some
matroid N . In particular, Y0 = V0 ∪ V1 is independent in N , implying
that H is a linearly independent matrix.
Let P denote the matrix

P =









1 0
0 1
0 1
1 1









.

Suppose A1[X, V1] has P as a submatrix, with the first three rows
of P contained in H and the last row of P contained in L. Then A1

contains the following submatrix, with the first three columns contained
in A1[X, Y1] and the last two contained in A1[X, V1]:









1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1









.

After contracting all other elements of Y1 by repeatedly performing y-
shifts and operation (12), the columns of this submatrix form a circuit
in M(A1) whose intersection with Y1 has size 3. However, we have
already deduced by Lemma 3.16 that this is impossible. Therefore,
A1 does not contain P as a submatrix, with the first three rows of P
contained in H and the last row of P contained in L. We will refer to
this fact by saying that A1 has no P -configuration.
Let {1, 2, . . . , m} be the rows of L. (So |V0| = m.) Let Si be the

submatrix of H obtained by restricting H to the columns j such that
Li,j = 1. Recall that H , and therefore Si, contain at most two nonzero
entries per column. Also, since H is linearly independent, each column
has at least one nonzero entry, and no column is a copy of another.
Suppose a column e of Si contains exactly two nonzero entries. Since
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A1 has no P -configuration, all other columns of Si must contain a
nonzero entry in exactly one of the same rows as e. Suppose that there
are columns f and g in Si such that f contains a nonzero entry in one
of the same rows as e, but g contains a nonzero entry in the other row.
Then Si contains the following submatrix:

e f g
[ ]

1 1 0
1 0 1

.

Since H is a linearly independent matrix, f or g (say f) must have
an additional nonzero entry in H . To avoid f and g forming a P -
configuration, g must have an additional nonzero entry in the same
row as f . Therefore, Si contains the following submatrix:

e f g
[ ]

1 1 0
1 0 1
0 1 1

.

Since each column of H contains at most two nonzero entries, {e, f, g}
is a dependent set of columns, contradicting the assumption that H is
linearly independent.
Therefore, we deduce that each Si either consists entirely of unit

columns or contains a row si consisting entirely of 1s. Note that each
Si is the incidence matrix of a star, with possibly one row removed.
We will call si the star center of row i. If Si consists entirely of unit
columns, then we define its star center to be si = ∅.
If the sets of columns of all the Si are pairwise disjoint, then by

adding each row i to its star center si, we see that every matroid
virtually conforming to Φ can be represented by a matrix with at most
two nonzero entries per column. Thus, Φ is trivial, contradicting the
assumption that (i) does not hold. Also, if i and j are distinct rows of
L with distinct star centers si and sj, then Si and Sj can have at most
one column in common because otherwise, the columns they have in
common form a linearly dependent set in H .
Now suppose there are Si and Sj with si = sj. Also, suppose that

neither Si nor Sj is a submatrix of the other. Then A1 contains the
following submatrix. In fact, after repeatedly performing y-shifts, oper-
ation (11), and operation (10), we may assume that A1 is the following
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matrix, with the first three columns indexed by Y1, the next two in-
dexed by V0, and the last three by V1:













1 0 0 0 0 1 1 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1













.

Add the fourth row to the first, and swap the fourth and sixth columns
to obtain the following matrix:













1 0 0 0 0 1 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1













.

The last two columns of this matrix contain a P -configuration.
Now suppose there are matrices Si and Sj so that Sj is a submatrix

of Si. Then A1 contains a submatrix obtained by deleting columns from
a matrix of the following form, where the left portion comes from the
set V0, the upper-right portion comes from the matrix H , the lower-left
portion comes from the matrix L, and x is 1 or 0 depending on whether
or not the last column is contained in Sj :































0 0 1 · · · 1 1 · · · 1 1
0 0 1 0
...

...
. . .

...
0 0 1 0
0 0 1 0
...

...
. . .

...
0 0 1 0
1 0 1 · · · 1 1 · · · 1 1
0 1 0 · · · 0 1 · · · 1 x































.

Choose any column contained in Sj and perform row operations so
that this column becomes a unit column with nonzero entry in L. Then
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we obtain the following matrix:


































0 1 1 · · · 1 0 0 · · · 0 x+ 1
0 0 1 0
...

...
. . .

...
0 0 1 0
0 1 0 1 · · · 1 x
0 0 1 0
...

...
. . .

...
0 0 1 0
1 1 1 · · · 1 0 · · · · · · 0 x+ 1
0 1 0 · · · 0 1 · · · · · · 1 x



































.

Now, by swapping the appropriate columns, we obtain the following:


































0 0 1 · · · 1 1 0 · · · 0 x+ 1
0 0 1 0
...

...
. . .

...
0 0 1 0
0 0 1 1 · · · 1 x
0 0 1 0
...

...
. . .

...
0 0 1 0
1 0 1 · · · 1 1 0 · · · 0 x+ 1
0 1 0 · · · 0 1 · · · · · · 1 x



































.

We see that in this new matrix, Si and Sj have only one column in
common and si 6= sj . The last column is in Si if x = 0 and Sj if x = 1.
Thus, this case reduces to the final case that remains to be checked:
for all i and j, we have si 6= sj and Si and Sj have at most one column
in common. Since each column of H contains at most two nonzero
entries, and since all Si have distinct star centers, we see that a column
of H can be contained in at most two Si. By adding each row i to its
star center si, one can see that every matrix virtually conforming to Φ
can be rewritten so that every column contains at most two nonzero
entries. Therefore, Φ is trivial, and (i) holds.
This completes the contradiction and proves the result. �

Outcome (iii) of Theorem 3.19 only occurs in very specific situations.
In fact, due to connectivity considerations, it is not needed in order to
use Corollary 3.5.
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Definition 3.20. Let M be a minor-closed class of binary matroids,
and suppose there exist k, l,m ∈ Z+ and a set TM = {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt}
of binary frame templates such that

• M contains each of the classes Mw(Φ1), . . . ,Mw(Φs),
• M contains the duals of the matroids in each of the classes
Mw(Ψ1),. . . ,Mw(Ψt),

• if M is a simple vertically k-connected member of M with at
least l elements and with no PG(m−1, 2) minor, then either M
is a member of at least one of the classes Mv(Φ1), . . . ,Mv(Φs)
orM∗ is a member of at least one of the classesMv(Ψ1), . . . ,Mv(Ψt),
and

• for each template Φ ∈ TM, either Φ is trivial or Φ′ � Φ for some
Φ′ ∈ {ΦX ,ΦC ,ΦCX ,ΦY0

,ΦY1
}.

We say that TM describes M.

By combining Corollary 3.5 with Theorem 3.19, one can observe that
every proper minor-closed class M of binary matroids can be described
by a set of templates. Moreover, that set is nonempty if and only if M
contains all graphic matroids or all cographic matroids.

Corollary 3.21. Let M be a minor-closed class of binary matroids,
and let {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt} be a set of templates describing M.
If any of these templates is nontrivial, then M contains M(ΦY0

),
M(ΦY1

), M∗(ΦY0
), or M∗(ΦY1

).

Proof. Let Φ be a nontrivial template in the set {Φ1, . . . ,Φs}. By
Definition 3.20 and Lemma 3.8, either ΦY0

� Φ or ΦY1
� Φ. If ΦY0

� Φ,
then

M(ΦY0
) ⊆ Mv(ΦY0

) ⊆ Mv(Φ) ⊆ M,

where the first containment holds because every matroid conforming to
a template also virtually conforms to it, the second containment holds
by definition of �, and the third containment holds by Definition 3.20.
In the case where ΦY1

� Φ, a similar argument shows that M(ΦY1
) ⊆

M.
If Ψ is a nontrivial template in the set {Ψ1, . . . ,Ψs}, a similar argu-

ment shows that either M∗(ΦY0
) ⊆ M, or M∗(ΦY1

) ⊆ M. �

4. Growth Rates

Let M be a minor-closed class of matroids. Let hM(r) denote the
growth rate function ofM: the function whose value at an integer r ≥ 0
is given by the maximum number of elements in a simple matroid in
M of rank at most r. For a matroid M , we denote by ε(M) the size
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of the simplification of M , that is the number of rank-1 flats of M .
By combining the main result in [4] with earlier results of Geelen and
Whittle [3] and Geelen and Kabell [2], Geelen, Kung, and Whittle
proved the following:

Theorem 4.1 (Growth Rate Theorem). If M is a nonempty minor-
closed class of matroids, then there exists c ∈ R such that either:

(1) hM(r) ≤ cr for all r,
(2)

(

r+1
2

)

≤ hM(r) ≤ cr2 for all r and M contains all graphic
matroids,

(3) there is a prime-power q such that qr−1
q−1

≤ hM(r) ≤ cqr for all

r and M contains all GF(q)-representable matroids, or
(4) hM is infinite and M contains all simple rank-2 matroids.

If outcome (2) of the Growth Rate Theorem holds for a minor-closed
class M, then M is said to be quadratically dense. In this section, we
will consider growth rates of some quadratically dense classes of binary
matroids. Let EX (F ) denote the class of binary matroids with no F -
minor. If f and g are functions, we write f(r) ≈ g(r) if f(r) = g(r) for
all but finitely many r.
Since the growth rate function for the class of graphic matroids is

(

r+1
2

)

, the Growth Rate Theorem implies that, if F is a nongraphic
binary matroid,

hEX (F )(r) ≥

(

r + 1

2

)

.

Kung et. al. [6] pose the following question: For which nongraphic
binary matroids F of rank 4 does equality hold above for all but finitely
many r? Geelen and Nelson answer this question in [5]. Let N12

be the matroid formed by deleting a three-element independent set
from PG(3, 2). The nongraphic binary matroids F of rank 4 for which
hEX (F )(r) ≈

(

r+1
2

)

are exactly the nongraphic restrictions of N12. We
present here an alternate proof. Both proofs allow us to answer the
question when F is a matroid of any rank, not just rank 4. We will
prove the following theorem after proving several lemmas.

Theorem 4.2. Let M be a minor-closed class of binary matroids.
Then hM(r) ≈

(

r+1
2

)

if and only if M contains all graphic matroids
but does not contain Mv(ΦY1

).

Our proof of Theorem 4.2 will depend on the following theorem,
proved by Geelen and Nelson in [5]:
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Theorem 4.3. Let M be a quadratically dense minor-closed class of
matroids and let p(x) be a real quadratic polynomial with positive lead-
ing coefficient. If hM(n) > p(n) for infinitely many n ∈ Z+, then
for all integers r, s ≥ 1 there exists a vertically s-connected matroid
M ∈ M satisfying ε(M) > p(r(M)) and r(M) ≥ r.

An even-cycle matroid is a binary matroid of the form M = M
(

w

D

)

,
where D ∈ GF(2)V×E is the vertex-edge incidence matrix of a graph
G = (V,E) and w ∈ GF(2)E is the characteristic vector of a setW ⊆ E.
The pair (G,W ) is an even-cycle representation of M . The edges in W
are called odd edges, and the other edges are even edges. An odd cycle
of (G,W ) is a cycle of G with an odd number of odd edges. A blocking
pair of (G,W ) is a pair of vertices u, v of G so that every odd cycle
passes through at least one of these vertices. Resigning at a vertex u
of G occurs when all the edges incident with u are changed from even
to odd and vice-versa. It is easy to see that this corresponds to adding
the row of the matrix corresponding to u to the characteristic vector
of W . Therefore, resigning at a vertex does not change an even-cycle
matroid. It is also easy to see that if an even-cycle representation has
a blocking pair, then we can resign so that every odd edge is incident
with at least one vertex in the blocking pair. For our purposes, it will
be convenient to think of a blocking pair in this way.
For r ≥ 2, let Ar be the following binary matrix, where we choose

for the Γ-frame matrix the matrix representation of M(Kr−1), so that
the identity matrices are (r − 2)× (r − 2) matrices.

0
1 0 1 1 · · ·1 0 · · ·0 1 · · ·1
0 1 1 0 · · ·0 1 · · ·1 1 · · ·1

Γ-frame matrix 0 I I I

Note that M(Ar) is the largest simple matroid of rank r that virtually
conforms to ΦY1

.

Definition 4.4. Let Xr be the largest simple matroid of rank r that
virtually conforms to ΦY1

. Equivalently, X1 = U1,1, and for r ≥ 2, we
have Xr = M(Ar).

Lemma 4.5. The class Mv(ΦY1
) is the class of matroids having an

even-cycle representation with a blocking pair. This class is minor-
closed.

Proof. Any simple matroid M virtually conforming to ΦY1
is a restric-

tion of Xr for some r.
Label the rows of Ar as 1, . . . , r. Add to the matrix row r+1, which

is the sum of rows 2, . . . , r. This does not change the matroid Xr. We



28 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

see that Xr is an even-cycle matroid (G,W ), where row 1 is the char-
acteristic vector of W and rows 2, . . . , r + 1 form the incidence matrix
of G. Moreover, every edge in W is incident with the vertex corre-
sponding to either row 2 or row r + 1. Thus, every matroid virtually
conforming to ΦY1

has an even-cycle representation with a blocking
pair. Conversely, every matroid that has an even-cycle representation
with a blocking pair {u, v} virtually conforms to ΦY1

, by making u
correspond to the second row and making v correspond to row r + 1,
which can be removed without changing the matroid.
By resigning whenever we wish to contract an element represented by

an odd edge, it is not difficult to see that the class of matroids having
an even-cycle representation with a blocking pair is minor-closed. �

Lemma 4.6. Any simple, rank-r matroid M that is a minor of a ma-
troid virtually conforming to ΦY1

is a restriction of Xr.

Proof. From the preceding lemma, M is a restriction of some Xr′ . So
M has an even-cycle representation (G,W ) with a blocking pair {u, v}.
Let w be the characteristic vector of W . There are r′ − r rows in the
matrix Ar′[(V ∪w)−v, E(M)] whose deletion does not alter the matroid
M . After these rows are deleted, the resulting matrix is a submatrix
of Ar. �

Lemma 4.7. Every matroid virtually conforming to ΦY1
is a minor of

a matroid conforming to ΦY0
.

Proof. By Lemma 3.8, we have ΦY1
� ΦC . Every matroid conforming

to ΦC is obtained by contracting an element from a matroid conforming
to ΦY0

. �

Lemma 4.8. Let k be a positive integer. Then there are at most finitely
many integers r such that the complete graphic matroid M(Kr+1) is a
rank-(≤ k) perturbation of a cographic matroid.

Proof. Let N be a cographic matroid. Observe that adding a rank-1
matrix to a matrix representation of a binary matroid N changes ε(N)
by a factor of at most 2. This occurs when, in every rank-1 flat of N ,
there is at least one nonloop element indexing a column that is changed
by adding the rank-1 matrix and at least one nonloop element indexing
a column that remains unchanged when the rank-1 matrix is added.
Thus, if M is a rank-(≤ t) perturbation of N , we have ε(M) ≤ 2tε(N).
Let r = r(M). Recall that a cographic matroid N has ε(N) ≤

3r(N) − 3. Therefore, ε(M) ≤ 2t(3r(N) − 3) ≤ 2t(3(r + t) − 3). For
fixed t and sufficiently large r, this expression is less than

(

r+1
2

)

=
ε(M(Kr+1)). �
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Lemma 4.9. Let M be a quadratically dense minor-closed class of ma-
troids representable over a given field F. Let {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt}
be a set of templates describing M. For sufficiently large r, the growth
rate hM(r) is equal to the size of the largest simple matroid of rank r
that virtually conforms to any template in {Φ1, . . . ,Φs}.

Proof. Let h′
M(r) denote the size of the largest simple matroid of

rank r that virtually conforms to any template in {Φ1, . . . ,Φs}. So
hM(r) ≥ h′

M(r). The size of the largest simple matroid of rank r that
virtually conforms to any particular template is a quadratic polynomial
in r. Thus, for sufficiently large r, the function h′

M(r) is a quadratic
polynomial as well.
By Definition 3.20, there exist k, l ∈ Z+ so that every simple verti-

cally k-connected member of M with at least l elements either weakly
conforms to a template in {Φ1, . . . ,Φs} or weakly coconforms to some
template in {Ψ1, . . . ,Ψt}. Suppose, for contradiction, that hM(r) >
h′
M(r) for infinitely many r. Theorem 4.3, with h′

M(r) playing the
role of p(r), implies that there is a sequence M1,M2, . . . of vertically
k-connected matroids in M such that ε(Mi) > h′

M(i) and r(Mi) ≥ i.
Thus, in this sequence, there are infinitely many matroids that are
vertically k-connected and have size at least l. Since these matroids
are too large to virtually conform to any template in {Φ1, . . . ,Φt},
there is at least one nontrivial template Ψ ∈ {Ψ1, . . . ,Ψt} such that
infinitely many vertically k-connected matroids in M coconform to
Ψ. However, since M contains all graphic matroids and since every
complete graphic matroid has infinite vertical connectivity (hence ver-
tical k-connectivity), we have that infinitely many complete graphic
matroids coconform to Ψ. For some t depending on Ψ, every matroid
coconforming to Ψ is a rank-(≤ t) perturbation of a cographic matroid.
This contradicts Lemma 4.8. By contradiction, the result holds. �

Proof of Theorem 4.2. First, suppose hM(r) ≈
(

r+1
2

)

. By the Growth
Rate Theorem, M contains all graphic matroids. For r ≥ 1, we have
|Xr| =

(

r−1
2

)

+ 3r − 3, which for r > 2 is greater than
(

r+1
2

)

. Thus, M
does not contain Mv(ΦY1

).
Now, suppose M contains all graphic matroids but does not contain

Mv(ΦY1
). Since M contains all graphic matroids, there is a nonempty

set {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt} of binary frame templates describing M.
By Lemma 4.9, hM(r) is equal to the size of the largest simple matroid
of rank r that conforms to any template in {Φ1, . . . ,Φs}. Suppose
Φ is a nontrivial template in {Φ1, . . . ,Φs}. By Corollary 3.21, either
ΦY0

� Φ or ΦY1
� Φ. Since M does not contain Mv(ΦY1

), we must
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have ΦY0
� Φ. However, by Lemma 4.7, this implies Mv(ΦY1

) ⊆ M.
Therefore, we conclude that hM(r) ≈

(

r+1
2

)

, completing the proof. �

Corollary 4.10. Let F be a simple, binary matroid of rank r. Then
hEX (F ) ≈

(

r+1
2

)

if and only if F is a nongraphic restriction of Xr.

Proof. By Theorem 4.2, hEX (F ) ≈
(

r+1
2

)

if and only if EX (F ) contains
all graphic matroids but does not containMv(ΦY1

). The condition that
EX (F ) contains all graphic matroids is equivalent to the condition that
F is nongraphic. By Lemma 4.6, the condition that EX (F ) does not
contain Mv(ΦY1

) is equivalent to the condition that F is a restriction
of Xr. �

Note that X4 = N12; so this answers the question posed in [6].
We now consider the growth rate of EX (PG(3, 2)). We will prove

Theorem 1.3, which we restate below.

Theorem 4.11. The growth rate function for EX (PG(3, 2)) is

hEX (PG(3,2)) ≈ r2 − r + 1.

We will use the following.

Lemma 4.12. Let TEX (PG(3,2)) = {Φ1, . . .Φs,Ψ1, . . . ,Ψt}. If Φ ∈ {Φ1, . . .Φs},
then either Φ = ΦX or Φ is a template with C = ∅ and with Λ and ∆
trivial.

Proof. The class of matroids conforming to ΦX is exactly the class of
even-cycle matroids. This class is minor-closed. The largest simple,
even-cycle matroid of rank r has an even-cycle representation obtained
from the graph Kr by adding to each even edge an odd edge in parallel
as well as adding one odd loop to the graph. Therefore, the class of
even-cycle matroids has growth rate 2

(

r

2

)

+1 = r2−r+1. So the largest
simple, even-cycle matroid of rank 4 has size 13. Since PG(3, 2) has
size 15, we have M(ΦX) ⊆ EX (PG(3, 2)). Therefore, we may assume
that ΦX ∈ TEX (PG(3,2)).
Since Φ0 � ΦX , we may assume that Φ0 /∈ {Φ1, . . .Φs}. Let

Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ)

be a nontrivial template such that Φ 6= ΦX and Φ ∈ {Φ1, . . .Φs}.
Consider the graft matroid M(K6, V (K6)). A straightforward compu-
tation shows that, by contracting the nongraphic element, we obtain
PG(3, 2). Therefore, ΦY0

� Φ. By Lemma 3.8, we also have ΦC � Φ
and ΦCX � Φ.
Now, we may assume that Φ is in standard form. Since ΦC � Φ, by

Lemma 3.13 we may assume that C1 = ∅. Also, by Lemma 3.14, since
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ΦCX � Φ and ΦC � Φ, either Λ|X1 is nontrivial and ΦX � Φ or Λ is
trivial and C = ∅.
First, suppose that Λ is trivial andC = ∅. Since ΦY0

� Φ, Lemma 3.15
implies that Φ is equivalent to a template with ∆ trivial. So we may
assume

Φ = ({1}, ∅, X, Y0, Y1, A1, {0}, {0}),

which is one of the possible conclusions of the lemma.
Thus, we may assume that Λ|X1 is nontrivial and ΦX � Φ. Suppose

|Λ|X1| > 2. On the template

Φ = ({1}, C0, Y0, Y1, A1,∆,Λ),

perform operation (3) and then repeatedly perform operations (4) and
(10) to obtain the template

({1}, C0, X, ∅, ∅, A1[X,C0], {0},Λ).

Then repeatedly perform operation (7) to obtain

({1}, ∅, X1, ∅, ∅, [∅], {0},Λ|X1).

Since Λ|X1 has characteristic 2 and size greater than 2, it contains
a subgroup Λ′ isomorphic to (Z/2Z)× (Z/2Z). Perform operation (2)
to obtain the template

({1}, ∅, X1, ∅, ∅, [∅], {0},Λ
′);

then repeatedly perform operations (5) and (6) to obtain

({1}, ∅, X ′, ∅, ∅, [∅], {0},Λ′′),

where |X ′| = 2 and Λ′′ is the additive group generated by

[

1
0

]

and

[

0
1

]

.

One readily sees that PG(3, 2) conforms to this template. Therefore,
|Λ| = 2. We may perform row operations so that Λ is generated by
[1, 0 . . . , 0]T . Let Σ be the element of X such that Λ|{Σ} is nonzero.
Now, suppose there is an element x̄ ∈ ∆ that is not in the row space

of A1. Perform operations (2) and (3) on Φ to obtain

({1}, C0, X, Y0, Y1, A1, {0, x̄}, {0}).

Now, by a similar argument to the one used in the proof of Lemma 3.15,
we have ΦY0

� Φ. Since we already know this is not the case, we deduce
that every element of ∆ is in the row space of A1.
Let x̄ ∈ ∆|C0 and ȳ ∈ Λ be such that there are an odd number of

natural numbers i such that x̄i = ȳi = 1. Then we call the ordered
pair (x̄, ȳ) a pair of odd type. Otherwise, (x̄, ȳ) is a pair of even type.
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Suppose (x̄, ȳ) is a pair of odd type with ȳ|X1 a zero vector. By per-
forming operations (2) and (3) and repeatedly performing operations
(4) and (10), we obtain

({1}, C0, X, ∅, ∅, A1[X,C], {0, x̄}, {0, ȳ}),

which is equivalent to ΦCX . We already know this is not the case.
Therefore, for every pair (x̄, ȳ) of odd type, ȳ|X1 = [1, 0, . . . , 0]T .
Suppose x̄ ∈ ∆|C and ȳ1, ȳ2 ∈ Λ are such that ȳ1|X1 = ȳ2|X1 =

[1, 0, . . . , 0]T , such that (x̄, ȳ1) is a pair of odd type, and such that (x̄, ȳ2)
is a pair of even type. Then (ȳ1+ ȳ2)|X1 is a zero vector, and (x̄, ȳ1+ ȳ2)
is a pair of odd type. Therefore, either all pairs (x̄, ȳ) ∈ ∆|C × Λ are
of even type, in which case Φ is equivalent to a template with Λ|X0

trivial and C = ∅, or if (x̄, ȳ) is a pair of odd type, then (x̄, z̄) is of
odd type for every z̄ ∈ Λ with z̄|X1 nonzero. In this case, consider any
matrix virtually conforming to Φ. After contracting C, we can restore
the Γ-frame matrix by adding Σ to each row where the Γ-frame matrix
has been altered. Therefore, Φ is equivalent to a template with Λ|X0

trivial and C = ∅.
So we now have that

Φ = ({1}, ∅, X, Y0, Y1, A1,∆,Λ),

with Λ generated by [1, 0 . . . , 0]T and with every element of ∆ in the
row space of A1. We will now show that, in fact, Φ is equivalent to a
template with ∆ trivial. On Φ, perform y-shifts to obtain the following
template, where Y ′

0 = Y0 ∪ Y1:

Φ′ = ({1}, ∅, X, Y ′
0, ∅, A1,∆,Λ).

By repeatedly performing operation (5) and then operation (6) on this
template, we may assume that A1 has the following form, with the star
representing an arbitrary binary matrix and v̄ representing an arbitrary
row vector:

[

0 · · ·0 v̄
I|X|−1 ∗

]

.

Also, since Λ|(D − {Σ}) is trivial, we may perform row operations on
every matrix conforming to Φ′ to obtain a template

Φ′′ = ({1}, ∅, X, Y ′
0, ∅, A1,∆

′′,Λ),

so that every element of ∆′′ has 0 for its first |X|−1 entries. Since every
element of ∆ was in the row space of A1, the only possible nonzero
element of ∆′′ is the row vector with 0 for its first |X| − 1 entries
and whose last |Y ′

0 | − |X| + 1 entries form the row vector v̄. Note
that operations (5) and (6) and the row operations we performed on
every matrix conforming to Φ′ each changes a template to an equivalent
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template. Thus, we may assume that v̄ is nonzero and that ∆′′ = {0,v̄}
because otherwise, Φ is equivalent to a template with ∆ trivial. So,
for some y ∈ Y ′

0 , we have v̄y = 1. On the template Φ′′, repeatedly
perform operation (11) and then operation (10) to obtain the following
template:

Φ′′′ = ({1}, ∅, {Σ}, {y}, ∅, [1],Z/2Z,Z/2Z).

The following matrix conforms to Φ′′′:












0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1
0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1













.

By contracting y, we obtain PG(3, 2). Thus, we have shown that Φ
must be equivalent to a template with ∆ trivial. So we may assume

Φ = ({1}, ∅, X, Y0, Y1, A1, {0},Λ),

with Λ generated by [1, 0, . . . , 0]T .
Now, let us consider the structure of the matrix A1. By repeated

use of operation (5), we may assume that A1 is of the following form,
with the top row indexed by Σ, with ∗ representing an arbitrary row
vector, with Y0 = V0 ∪ V1, and with each Li representing an arbitrary
binary matrix:

Y1 V0 V1

0 · · ·0 0 · · ·0 1 · · ·1 0 · · ·0 ∗
I L0 L1 0 L2

0 0 0 I L3

Suppose either L0 or L1 has a column with two or more nonzero
entries. Let y be the element of Y1 that indexes that column, and let
Y ′ be the union of {y} with the subset of Y1 that indexes the columns
of the identity submatrix of A1[X, Y1]. Repeatedly perform operations
(4) and (10) on Φ to obtain

({1}, ∅, X, ∅, Y ′, A1, {0},Λ).

On this template, repeatedly perform y-shifts, operation (11), and op-
eration (6) to obtain

({1}, ∅, X ′, ∅, Y ′′,





0 0 x
1 0 1
0 1 1



 , {0},Λ),
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where x = i if y indexes a column of Li and where X ′ and Y ′′ index

the set of rows and columns, respectively, of the matrix





0 0 x
1 0 1
0 1 1



.

The following matrix conforms to this template. By contracting the
columns printed in bold, we obtain PG(3, 2).



















0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 x x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0



















.

This shows that L0 and L1 consist entirely of unit and zero columns.
Thus, by Lemma 3.17, L0 is an empty matrix and L1 consists entirely
of distinct unit columns. Therefore, A1 is of the following form:

Y1 V0 V1

0 · · ·0 0 · · ·0 1 · · ·1 0 · · ·0 ∗
I 0 I 0 Q1

0 I 0 0 Q2

0 0 0 I Q3

with each Qi representing an arbitrary binary matrix.
Let M be any matroid conforming to Φ with rank and connectivity

functions r and λ, respectively. Let r′ be the rank of the submatrix of
A1 consisting of Q1, Q2, and the row vector we have denoted with a
star. Then r(Y0) = |V0| + r′ and r(E(M) − Y0) = r(M) − |V0|. Thus,
λ(Y0) = r′. So if k > r′ + 1, then M is not vertically k-connected
unless Y0 or E(M) − Y0 is spanning. If Y0 is spanning in M , then the
Γ-frame matrix used to construct M has 0 rows. Thus, M is not simple
unless |E(M)| ≤ |Y0| + |Y1| + 1, with the 1 coming from the element
[1, 0 · · · , 0]T of Λ. Thus, if we set l > |Y0| + |Y1| + 1, then no simple,
vertically k-connected matroid with at least l elements conforms to Φ
unless E(M)− V0 is spanning in M . Therefore, we have V0 = ∅.
Let Q be the submatrix of A1 consisting of Q1 and Q2. If every

column of Q has at most two nonzero entries, then Φ � ΦX , and as we
deduced above, we may assume Φ = ΦD. Therefore, we assume that
Q has a column c, indexed by the element y ∈ Y0 with three or more
nonzero entries.
Repeatedly perform operation (10) on Φ to obtain the template

Φ′ = ({1}, ∅, X, {y}, Y1, A1[D, Y1 ∪ {y}], {0},Λ).
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Let c =

[

c1
c2

]

, with c1 a column of Q1 and c2 a column of Q2. Consider

the following cases:

Case 1. The vector c1 has three nonzero entries.
Case 2. The vector c1 has two nonzero entries, and c2 has one nonzero

entry.
Case 3. The vector c1 has one nonzero entry, and c2 has two nonzero

entries.
Case 4. The vector c2 has three nonzero entries.

In Case i, repeatedly perform y-shifts and operation (11) to obtain
the template

Φ′′
i = ({1}, ∅, X ′, {y}, Y ′

1, A1,i, {0},Λ),

where A1,i is the matrix defined below with rows indexed by X ′ and
columns indexed by Y ′

1 ∪ {y}. In each case, the last column is indexed
by y, and it turns out that the value of x does not matter.

A1,1 =









0 0 0 1 1 1 x
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1









A1,2 =









0 0 0 1 1 x
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 0 0 1









A1,3 =









0 0 0 1 x
1 0 0 1 1
0 1 0 0 1
0 0 1 0 1









A1,4 =









0 0 0 x
1 0 0 1
0 1 0 1
0 0 1 1









In Case i, the matrix below virtually conforms to Φ′′
i . By contracting

the columns printed in bold, we obtain PG(3, 2).

Case 1:












1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 x

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0













Case 2:
















1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 x

0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0

0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0
















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Case 3:


















0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 x

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1

1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0



















Case 4:


















1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 x

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1

0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0



















By contradiction, this completes the proof. �

Proof of Theorem 1.3. Let M = EX (PG(3, 2)), and let TM =
{Φ1, . . .Φs,Ψ1, . . . ,Ψt}. By Lemma 4.9, for sufficiently large r, we
have hM(r) equal to the size of the largest simple matroid of rank
r that virtually conforms to any template in Φ ∈ {Φ1, . . .Φs}. If
Φ ∈ {Φ1, . . .Φs}, then by Lemma 4.12 either Φ = ΦX or Φ is of the
form ({1}, ∅, X, Y0, Y1, A1, {0}, {0}), for some matrix A1 and some sets
X , Y0, and Y1. Moreover, by operation (5), we may assume that A1 is
of the following form, with Y0 = V0∪V1 and with the stars representing
arbitrary binary matrices:

Y1 V0 V1

I ∗ 0 ∗
0 0 I ∗

.

The largest simple matroid of rank r that virtually conforms to Φ
is obtained by taking for the Γ-frame matrix a matrix representation
of M(Kn+1), where n = r − r(M(A1[X, Y1]))− |V0|. Thus, the largest
simple matroid of rank r that virtually conforms to Φ has size

(

n+1
2

)

+
|Y1|n + |Y1| + |Y0|. Substituting r − r(M(A1[X, Y1]))− |V0| for n, one
sees that for sufficiently large r, this expression is less than r2 − r + 1.
Since the class of matroids virtually conforming to ΦX is the class
of even-cycle matroids, which has growth rate r2 − r + 1, the result
holds. �
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5. 1-flowing Matroids

In this section, we prove Theorem 1.4. The 1-flowing property is a
generalization of the max-flow min-cut property of graphs. See Sey-
mour [10] or Mayhew [7] for more of the background and motivation
concerning 1-flowing matroids. We follow the notation and exposition
of [7].

Definition 5.1. Let e be an element of a matroid M . Let cx be a
non-negative integral capacity assigned to each element x ∈ E(M)− e.
A flow is a function f that assigns to each circuit C containing e a non-
negative real number fC with the constraint that for each x ∈ E − e,
the sum of fC over all circuits containing both e and x is at most cx.
We say that M is e-flowing if, for every assignment of capacities, there
is a flow whose sum over all circuits containing e is equal to

min{
∑

x∈C∗−e

cx|C
∗ is a cocircuit containing e}.

If M is e-flowing for each e ∈ E(M), then M is 1-flowing.

The matroid T11 is the even-cycle matroid obtained from K5 by
adding a loop and making every edge odd, including the loop. In [10],
Seymour showed the following.

Proposition 5.2. The The class of 1-flowing matroids is minor-closed.
Moreover, AG(3, 2), U2,4, T11, and T ∗

11 are excluded minors for the class
of 1-flowing matroids.

Seymour [10] conjectured that these are the only excluded minors.

Conjecture 5.3 (Seymour’s 1-flowing Conjecture). The set of excluded
minors for the class of 1-flowing matroids consists of AG(3, 2), U2,4,
T11, and T ∗

11.

Since U2,4 is an excluded minor for the class of 1-flowing matroids, all
such matroids are binary. Therefore, the results in this paper apply to
1-flowing matroids. We will now prove Theorem 1.4, which we restate
below.

Theorem 5.4. There exist k, l ∈ Z+ such that every simple, vertically
k-connected, 1-flowing matroid with at least l elements is either graphic
or cographic.

Proof. The matroid AG(3, 2) conforms to ΦY1
since it is a restric-

tion of N12. Indeed, consider the matrix representing N12 that vir-
tually conforms to ΦY1

. Add the rows labeled by X in this matrix
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to one of the other rows. Then we can see the matrix representa-
tion [I4|J4 − I4] of AG(3, 2) as a restriction of N12. Also, it is not
difficult to see that AG(3, 2) can be obtained from a matroid conform-
ing to ΦY0

by contracting Y0. Thus, EX (AG(3, 2)) contains neither
M(ΦY0

) nor M(ΦY1
). Since AG(3, 2) is self-dual, EX (AG(3, 2)) does

not contain M∗(ΦY0
), orM∗(ΦY1

) either. Therefore, by Corollary 3.21,
EX (AG(3, 2)) is described by the trivial template. Thus, since AG(3, 2)
is an excluded minor for the class of 1-flowing matroids, there exist
k, l ∈ Z+ such that every simple, vertically k-connected, 1-flowing ma-
troid with at least l elements either conforms or coconforms to the
trivial template. The result follows. �
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