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EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN
SOLVING RANDOM ELLIPTIC PDES∗

THOMAS Y. HOU† , QIN LI‡ , AND PENGCHUAN ZHANG†

Abstract. We propose a stochastic multiscale finite element method (StoMsFEM) to solve
random elliptic partial differential equations with a high stochastic dimension. The key idea is to
simultaneously upscale the stochastic solutions in the physical space for all random samples and
explore the low stochastic dimensions of the stochastic solution within each local patch. We propose
two effective methods for achieving this simultaneous local upscaling. The first method is a high-
order interpolation method in the stochastic space that explores the high regularity of the local
upscaled quantities with respect to the random variables. The second method is a reduced-order
method that explores the low rank property of the multiscale basis functions within each coarse grid
patch. Our complexity analysis shows that, compared with the standard FEM on a fine grid, the
StoMsFEM can achieve computational savings on the order of (H/h)d/(log(H/h))k, where H/h is
the ratio between the coarse and the fine grid sizes, d is the physical dimension, and k is the local
stochastic dimension. Several numerical examples are presented to demonstrate the accuracy and
effectiveness of the proposed methods. In the high contrast example, we observe a factor of 2000
speed-up.
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stochastic collocation
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1. Introduction. Many problems arising from various physical and engineering
applications have multiple scale features and uncertainties. For example, to simulate
flow in heterogeneous porous media, the permeability field is often characterized as a
multiple-scale random medium. The parametrization of a multiscale random medium
requires a large number of random variables, leading to a high dimensional random
partial differential equation (PDE), which is challenging to solve numerically. Sim-
ilarly, in shallow water modeling, the basin topography can contain multiple scales
and high dimensional uncertainties. Moreover, these problems are typically solved
for many source terms and boundary conditions. These problems can be formulated
using an input-output relation, as is typically done in reduced-order modeling. In the
case of flow in porous media, the input space consists of the random permeability
field, source terms, and/or boundary conditions. The output space depends on the
quantities of interest and may consist of the mean of coarse-grid solutions or some
other statistical quantities with respect to the solution. In many applications, the
dimension of the output space is typically smaller than that of the input space. The
main objective of this paper is to design an efficient reduced-order method that takes
advantage of the effective low dimensional solution space for problems with multiple
scales and large uncertainties.

The direct simulation consists of two steps. First, we generate a large number of
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662 THOMAS Y. HOU, QIN LI, AND PENGCHUAN ZHANG

samples of the random coefficient and numerically solve the corresponding determin-
istic PDEs. Second, we apply an appropriate stochastic method (e.g., Monte Carlo,
stochastic collocation) to compute the statistical quantities of interest. Because of
the presence of small scales in the physical space and high dimensional uncertain-
ties in the stochastic space, the direct simulations of these problems are prohibitively
expensive. We need to develop an efficient model reduction method by obtaining a
low dimensional parametrization of the solution in both the physical space and the
stochastic space. In this paper, when we refer to “stochastic space” we mean the
space of the parametrized random variables, and “stochastic dimension” means the
number of the parametrized random variables.

There are a number of multiscale methods that use multiscale bases to represent
the multiscale solutions in the physical space; see, e.g., [28, 30, 51, 45, 1, 46, 17, 47,
41, 10, 44]. Naive application of these multiscale methods to each sample of a multi-
scale random PDE provides little computational savings, because a low dimensional
representation needs to be recomputed for every sample. There have been many re-
search activities that explore the low dimensional representation of the solutions of
the corresponding random PDEs in the stochastic space. In particular, the general-
ized polynomial chaos (gPC) methods [23, 54, 3, 19, 2, 43, 42, 53] have received a lot
of attention in the last decade. These methods are very effective when the stochastic
dimension is small. However, their performance deteriorates dramatically when the
stochastic dimension increases due to the curse of dimensionality [12, 13].

It is important to point out that for the problems with high stochastic dimensions
their solutions typically have multiple scales in the spatial domain. For example,
a random permeability field with a short correlation length has a high stochastic
dimension, and at the same time it has multiple spatial scales ranging from the size
of the physical domain to the correlation length of the random permeability field. If
we use a traditional method to solve these deterministic problems, we need to use a
fine-grid mesh that is finer than the correlation length to obtain accurate numerical
solutions. Many existing stochastic methods that are used to solve high dimensional
stochastic PDEs use standard FEMs with linear nodal basis; see, e.g., [43, 42, 5,
25, 15, 50, 16, 55, 12, 13]. The computational cost of these methods could be very
expensive for every sample. The total computational cost can be tremendous since
we need to simulate many sample solutions.

In this paper, we propose a reduced-order method that performs model reduction
in the physical space for all samples simultaneously by using a local parametrization
of the random coefficients. Our method can significantly speed up the existing non-
intrusive stochastic methods. By “nonintrusive stochastic methods” we mean those
methods that can call a deterministic PDE solver as a blackbox, e.g., Monte Carlo,
multilevel Monte Carlo [24, 4, 11], (sparse-grid) stochastic collocation [2, 43, 42, 53],
least-squares methods [15, 50], and compressed sensing methods [16, 55]. Our method
is based on the following observation: most deterministic model reduction methods
require solving only local problems (e.g., [28, 30, 47, 41, 44]), and the local problems
often have much lower stochastic dimensions. To be more specific, the random coeffi-
cients restricted to a local subdomain can be parametrized by a much smaller number
of parameters, which depends only on the ratio between the subdomain size and the
correlation length of the random coefficients. Therefore, the local upscaling (equiv-
alent to deterministic model reduction in our paper) results in problems with low
stochastic dimension locally in the physical space and can be efficiently precomputed
by the gPC-like methods in the offline stage. Based on this observation, we propose a
stochastic multiscale finite element method (StoMsFEM) to solve the random PDEs
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that have high stochastic dimension globally but low stochastic dimension locally.
This method inherits almost all the advantages of the deterministic model reduction
methods but removes the limitation that the model reduction process needs to be
recomputed for every sample. In this paper, we use the following elliptic equation
with heterogeneous random coefficients as an example to illustrate the main idea of
our approach:

(1.1)

{
−∇x · (κ(x, ω)∇xu(x, ω)) = b(x), x ∈ D, ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D,
P -almost surely.

Here, D ∈ Rd is a bounded spatial domain, and (Ω,F , P ) is a probability space.
The random coefficient κ(x, ω) is of high stochastic dimension and has multiscale
features. We assume that κ(x, ω) is a symmetric positive definite matrix satisfying
λmin ≥ α > 0, for every x ∈ D and ω ∈ Ω, where λmin is the smallest eigenvalue of
κ(x, ω). For such coefficients, the solutions are only Hölder continuous. If κ(x, ω) has
multiple scales, the solution will have multiscale features as well. For simplicity, we
assume that the forcing function b(x) is deterministic.

Our StoMsFEM method consists of three steps; the first two are in the offline
stage, and the third is in the online stage. In the first step, we parametrize the random
coefficient κ(x, ω) by exploring the locally low dimensional property of the random
media. This can be done by using several approaches, including the local Karhenen–
Loève (KL) expansion of the random coefficient, sparse principal component analysis
(sparse PCA) [57, 14, 52, 48, 38], and the intrinsic sparse mode decomposition [31]. In
the second step, we apply a deterministic local upscaling method to obtain a paramet-
ric upscaled system. We provide two methods for doing the parametric upscaling: a
random interpolation method and a reduced basis method. The random interpolation
method takes advantage of the fact that the local upscaled coefficients are analytic
functions of the local stochastic parameters, and builds an interpolation scheme for
each upscaled coefficient at the coarse-grid level. The random interpolation method
can be viewed as a local reduced-order method in the stochastic space. The reduced
basis method makes use of the low rank property of the solutions for the local upscal-
ing problems and prepares a small set of spatial basis functions for each local upscaling
problem. The reduced basis method can be viewed as a local reduced-order method
in the physical space. In the online stage, for each sample of the random parameters,
we either interpolate the upscaled coefficients in the random interpolation setting or
solve the small reduced-order systems to obtain the upscaled coefficients. A numerical
coarse-grid solution for this sample can be obtained by solving the upscaled system.

We have performed a careful computational complexity analysis of our method.
The computational cost of the StoMsFEM consists of the offline and online costs.
The offline cost is equivalent to solving the random PDE for Noff samples on the
fine grid. In the online stage, the computational cost consists of solving the upscaled
system Non times. Our complexity analysis shows that Noff � Non and that the
offline computational cost of the StoMsFEM is negligible compared with the online
cost. Moreover, we show that the ratio between the online cost for the StoMsFEM
and the cost of the standard FEM on the fine grid is of the order (h/H)d(log(H/h))k.
Here H/h is the ratio between the coarse and the fine grid sizes, d is the physical
dimension, and k is the local stochastic dimension. Therefore, the StoMsFEM gives a
speed-up of order (H/h)d/(log(H/h))k over the standard FEM method on a fine grid
for a single query problem. We have applied the StoMsFEM to solve several random
elliptic PDEs with varying degrees of difficulty to demonstrate the accuracy and
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664 THOMAS Y. HOU, QIN LI, AND PENGCHUAN ZHANG

computational savings of the StoMsFEM. In the high contrast example, we observe a
factor of 2000 speed-up over the naive application of the MsFEM.

We remark that the MsFEM achieves computational savings only for multiple
queries. For a multiquery problem, the StoMsFEM can reuse the parametric upscaled
system that we obtain in the offline stage, and thus there is no offline cost for additional
source terms or boundary conditions. The computational savings for the StoMsFEM
are even more significant in a multiquery setting.

There are several other methods that share a philosophy similar to that of StoMs-
FEM. In [17], GMsFEM has been applied to solve parametric PDEs with multiple
scales. GMsFEM assumes that the coefficients are already parametrized, while in
StoMsFEM we need to first build a locally low dimensional parametrization of the
random coefficients. In addition, the StoMsFEM can be implemented with any lo-
cally upscaling method including GMsFEM. In [7], the authors also observed that the
random inputs have low stochastic dimension locally and used the local KL expansion
to parametrize the random coefficients. They proposed combining the deterministic
domain decomposition method (DDM) with the local gPC expansions and Monte
Carlo sampling to achieve computational savings. A major difference between the
StoMsFEM and the method proposed in [7] is that their method does not deal with
the multiscale feature, which contributes to the stochastic high dimensionality. As a
result, they have not explored the low dimensional structure in the physical space.
We will compare the StoMsFEM with these methods as we get into the details of
StoMsFEM.

The rest of the paper is organized as follows. In section 2, we give a brief re-
view of several locally low dimensional parametrization methods and the MsFEM. In
section 3, we present our StoMsFEM method, which uses either the random interpo-
lation method or the reduced basis method. We also perform complexity analysis for
our method. In section 4, we show how to combine our methodology with existing
stochastic methods, e.g., the Monte Carlo (MC), multilevel Monte Carlo (MLMC),
and sparse-grid stochastic collocation (SC) methods. In section 5, we demonstrate the
accuracy and efficiency of our method through several numerical examples. Finally,
some concluding remarks are given in section 6.

2. Preliminaries. The StoMsFEM that we propose relies on two building blocks:
locally low dimensional parametrization of a random field and deterministic local up-
scaling methods. Although these methods are not the focus of the current paper, we
give a brief review below for completeness.

2.1. Locally low dimensional parametrization. Typically for a random co-
efficient κ(x, ω) in (1.1), its parametrization is not known, but rather, its mean and
covariance are given:

(2.1) κ̄(x) = E[κ(x, ω)], Cov(x, y) = E[(κ(x, ω)− κ̄(x))(κ(y, ω)− κ̄(y))].

In order to solve the random PDE, one first needs to parametrize the random coeffi-
cient with some random parameters. The KL expansion [35, 40] is the most popular
method in parametrizing the random media. However, the eigenfunctions of the co-
variance function (also called the KL modes) are global in nature. As a result, the local
stochastic dimension is the same as the global stochastic dimension. In this section,
we will briefly review a few methods to get a locally low dimensional parametrization,
including the local KL expansion, the intrinsic sparse mode decomposition, and the
sparse PCA approach. For a detailed description and comparison of these methods,
please refer to the companion paper [31].
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2.1.1. Local KL expansion. The local KL expansion is a natural way to con-
struct a locally low dimensional parametrization of the random medium (also used
in [7]). Let D be divided into a set of nonoverlapping subdomains {Pm}Mm=1, called
patches:

(2.2) P =

M⋃
m=1

Pm, Pm ∩ Pn = ∅ for m 6= n.

Let Covm : Pm × Pm → R be the global covariance function Cov(x, y) restricted to
the mth patch:

(2.3) Covm(x, y) = Cov(x, y), x, y ∈ Pm.

Similar to the standard KL expansion, we can define a local KL expansion as follows.

Definition 2.1 (local KL expansion of κ(x, ω)). Perform KL expansion in each
subdomain Pm: ∫

Pm

Covm(x, y)fk,m(y)dy = λk,mfk,m(x),(2.4)

ξk,m(ω) =
1√
λk,m

∫
Pm

(κ(x, ω)− κ̄(x)) fk,m(x)dx.

Arrange λk,m in a descending order, and truncate the expansion at the Kmth mode.
Then, we obtain a local parametrization as follows:

(2.5) κ(x, ω) ≈ E[κ(x, ·)] +

Km∑
k=1

√
λk,mξk,mfk,m(x), x ∈ Pm.

2.1.2. Intrinsic sparse mode decomposition. In [31] the authors proposed
the intrinsic sparse mode decomposition (ISMD), which decomposes a symmetric
positive semidefinite matrix into several sparse rank-one components. We assume
that the covariance matrix, Cov, can be decomposed into a finite number of sparse
modes; i.e., Cov =

∑K
k=1 gkg

T
k . ISMD looks for a patchwise sparse decomposition by

minimizing the total local dimension, i.e.,

(2.6) min
g1,...,gK

M∑
m=1

dm subject to Cov =

K∑
k=1

gkg
T
k ,

where dm is the number of nontrivial modes among {gk}Kk=1 on the local patch Pm,
defined as

dm = #{k : gk|Pm
6= 0} .

Under certain nondegenerate assumptions on the covariance Cov and the partition
P, we proved that the ISMD produces exactly one minimizer of the minimization
problem (2.6); see Theorem 3.5 in [31]. After projecting the random field κ(x, ω) onto
the sparse modes {gk}Kk=1, we get a parametrization with K random parameters:

(2.7) κ(x, ω) = κ̄(x) +

K∑
k=1

gk(x)ξk(ω),
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where the random variables {ξk}Kk=1 are normalized (with center zero and variance
one) and uncorrelated. Moreover, the parametrization (2.7) achieves the minimal
total local stochastic dimension, as desired.

It is worth mentioning that there are several other methods that are able to achieve
locally low dimensional parametrization, for example, the sparse PCA [57, 14, 52, 39]
and sparse operator compression [32, 33].

When applying the proposed StoMsFEM, the most important factor in choosing
a parametrization method is the global stochastic method, which we will discuss in
section 4. If one wants to use the MC-type methods, we recommend using the local KL
expansion. This is the typical case because the StoMsFEM is aiming at stochastically
high dimensional problems, with which the gPC-type methods would have difficulties.
If the global stochastic dimension is within the range of the (sparse-grid) SC method,
and if one wants to use the (sparse-grid) SC method to save computational costs, one
should choose the ISMD or the sparse PCA, which would parametrize the random
coefficients more effectively. The ISMD is recommended when the random parameters
are required to be uncorrelated and a high accuracy parametrization is desired, e.g.,
for the synthetic porous media in sections 5.1 and 5.2. The sparse PCA and many
other matrix factorization methods are good at parametrizing random coefficients
whose covariance matrix has continuously decaying eigenvalues, e.g., the Gaussian
kernel exp(−|x− y|2/l2) in section 5.3. We give a more detailed comparison between
the ISMD and the sparse PCA in our companion paper [31].

2.1.3. Nonlinear transformations. All the parametrization methods above,
including the KL expansion, are affine with respect to the random parameters. In
some applications, the use of nonlinear transformations may reduce the number of
parameters significantly. For example, the following nonlinear transformation has
been widely used to parametrize a positive random field κ(x, ω):

(2.8) κ(x, ω) = κmin + exp(β(x, ω)) .

The expression has strict positive lower bound κmin, and in practice we can apply
affine parametrization to β(x, ω).

If the random field has both lower and upper bounds (κmin and κmax, respec-
tively), the following nonlinear transformation is usually used:

(2.9) κ(x, ω) =
κmax + κmin

2
+
κmax − κmin

2
tanh(β(x, ω)) .

2.2. Multiscale finite element method. Model reduction methods based on
local upscaling is the other building block in our StoMsFEM. There have been a
number of such local upscaling methods for elliptic equations with heterogeneous
diffusion coefficients; see, e.g., [28, 51, 30, 45, 1, 46, 17, 47, 41, 10, 44]. In this paper,
we will use the multiscale finite element method (MsFEM) developed in [28, 30] for
the local upscaling. We point out that, per the user’s preference, the MsFEM can be
replaced by other local upscaling methods with minor modifications. In the following,
we briefly review the MsFEM applied on (1.1) with a specific sample media, denoted
as κ(x, ω). Note that here the media is fixed and (1.1) is deterministic.

Suppose that the physical domain D is partitioned into a finite set of compact
triangles or quadrilaterals {Dm

H , 1 ≤ m ≤ M}, which forms a triangulation TH with
mesh size H. We assume that the coarse grid mesh size H is much larger than the
small scale ε in the rough coefficient κ(x, ω); i.e., H � ε. In block Dm

H , we compute
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the following cell problem:

(2.10)

{
−∇ · (κ(x, ω)∇φml(x, ω)) = 0 , x ∈ Dm

H ,

φml(x, ω) = pml(x) , x ∈ ∂Dm
H ,

l = 1, . . . , L .

Here L is the number of nodes onDm
H , and pml is defined on the boundary ∂Dm

H playing
the role of Dirichlet boundary conditions. In our computation we could choose pml as
a linear basis (for triangles) or standard bilinear basis (for quadrilaterals) that takes
value 1 at node l and 0 for all the other L − 1 nodes in the patch. In practice, we
solve the local cell problem on a fine mesh Th that resolves the small scales in κ(x, ω).
Thereafter, the local upscaled stiffness matrix and the load vector can be computed
as

Smll′(ω) =

∫
Dm

H

κ(x, ω)∇φml(x, ω) · ∇φml
′
(x, ω)dx,

bml (ω) =

∫
Dm

H

b(x)φml(x, ω)dx.

(2.11)

The standard assembling procedure can be utilized to assemble S and b by looping
over all the coarse grid elements. After solving the upscaled system

(2.12) SU = b,

we obtain the multiscale solution

(2.13) uH(x, ω) =
∑
m

Um(ω)φm(x, ω).

When the boundary conditions pml are linear, the following convergence theorem
was proved in [29].

Theorem 2.2. Let κε(x) = κ(xε ) be a smooth periodic medium, and uε(x) the so-
lution to (1.1). Denote by uεH(x) the multiscale finite element approximation obtained
from the space spanned by the multiscale basis with linear boundary conditions. Then
we have

‖uε − uεH‖H1 ≤ C(H + ε)‖f‖L2 + C

√
ε

H
‖u0‖H2 ,

where u0 is the solution to the homogenized equation of (1.1).

Remark 2.3. Theorem 2.2 implies that the MsFEM captures the correct homog-
enized results for small ε. However, the method may produce a large error if ε ∼ H.
This is called the resonance error between the coarse grid scale H and media small-
scale parameter ε. The oversampling technique proposed in [28] successfully reduces
the resonance error, based on the observation that the boundary layer typically gets
damped out quickly within a width of ε. This suggests that one compute (2.10) in a
larger domain of order H+O(ε) in each dimension and utilize the interior information
for basis construction. This significantly reduces the resonance error and gives more
accurate results, as demonstrated in numerical examples in [28].

We remark that the oversampling technique results in a nonconforming FEM. To
reduce the nonconforming FEM error, we use the Petrov–Galerkin MsFEM formula-
tion [30]. In the Petrov–Galerkin MsFEM, the local upscaled quantities are computed
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from

Smll′(ω) =

∫
Dm

H

κ(x, ω)∇φml(x, ω) · ∇φml
′

t (x)dx,

bml =

∫
Dm

H

b(x)φmlt (x)dx,

(2.14)

with {φmlt (x)}Ll=1, the test functions, being linear (triangular grid) or bilinear (quadri-
lateral grid) locally. One added benefit of using the Petrov–Galerkin MsFEM is that
the test functions are deterministic, and thus the local load vector bm is independent
of random samples.

It is important to point out that there is some computational overhead in com-
puting cell problems (2.10) and assembling the upscaled system (2.11). However, the
upscaled stiffness matrix S can be reused for different source terms b(x), and the
MsFEM achieves no computational savings except in the multiquery setting. This is
true for most model reduction methods since there is an overhead in the offline stage
in constructing the reduced-order models. In the random setting, with a single source
term in (1.1), if we naively apply the MsFEM for every sample media, the reduced
models need to be recomputed for every sample coefficient, which leads to no compu-
tational savings. In the multiquery case, since random samples may be different for
different queries, we are still not able to gain the full power of the MsFEM.

We introduce our StoMsFEM below. In this new method, we prepare the upscaled
quantities (2.11) for all samples simultaneously in the offline stage. In the online stage,
for every sample we only need to assemble and solve the upscaled system (2.12). The
computational savings are achieved even in the single-query setting.

3. Stochastic multiscale finite element method. The StoMsFEM consists
of two stages: the offline stage, in which we construct reduced-order models and
prepare upscaled quantities, and the online stage, in which we sample media and
compute the upscaled system. We discuss the offline preparation stage in this section
and leave the online global computation to the next section.

The offline stage also consists of two steps. In the first step, we parametrize the
random coefficients κ(x, ω) using a local parameterization method, as reviewed in
section 2.1. More discussion is found in the companion paper [31]. In this paper, we
assume that the random coefficient κ(x, ω) has already been parametrized, denoted
as κ(x, ξ), where ξ ≡ [ξ1, ξ2, . . . , ξK ]T is the collection of K random variables. Note
that we do not assume the affine structure with respect to ξ in the parametrization
of κ(x, ξ). Our StoMsFEM works for any parametrization with locally low stochastic
dimensions.

With this parametrization, the cell problem (2.10) becomes a parametrized PDE:

(3.1)

{
−∇ · (κ(x, ξm)∇φml(x, ξm)) = 0, x ∈ Dm

H ,

φml(x, ξm) = pml(x), x ∈ ∂Dm
H ,

∀ξm ∈ Γm, l = 1, . . . , L.

Here ξm ∈ Γm ⊂ RKm are the local effective parameters, with Γm being its range, and
Km is the local stochastic dimension on patch Dm

H . Following the same assembling
procedure (2.11), the local upscaled quantities Sm and bm are functions of the local
parameters, i.e., Sm(ξm) and bm(ξm).

In the second step, we construct reduced-order models for the upscaled quantities
Sm(ξm) and bm(ξm). Two methods are proposed, i.e., the random interpolation
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method and the reduced basis method. The random interpolation method makes use
of the fact that φml(x, ξm) (and thus Sm(ξm) and bm(ξm)) are smooth with respect
to ξm, while the reduced basis method makes use of the low dimensional structure
of φml(x, ξm) in the physical space. The random interpolation method works for
all parametrized local coefficients κ(x, ξm) that are smooth with respect to the local
parameters ξm, while the reduced method basis is recommended only when κ(x, ξm)
is affine with respect to ξm.

3.1. Random interpolation method. In the random interpolation method,
we propose to compute the cell problem (3.1) and the local upscaled quantities
Sm(ξm) and bm(ξm) on multiple deterministic collocation points and use them to
build interpolants of the upscaled quantities in terms of the parameters ξm. These
interpolants allow us to efficiently approximate the upscaled quantities for any given
sample in the online stage.

We take patch Dm
H as an example to illustrate the idea. If κ(x, ξm) is smooth

with respect to ξm, the local multiscale basis functions φml(x, ξm) are smooth with
respect to ξm; see [3, 2, 13, 27]. Assume that the range for all these random variables
lies in the interval [−1, 1] (other bounded ranges can be rescaled accordingly), and in
the simplest scenario, we sample ν + 1 collocation points along each dimension; the
entire collocation set is the tensor product

Γ1d = {−1 ≤ ξ0 < ξ1 < · · · < ξν ≤ 1}, Γm,c =

Km∏
k=1

Γ1d ∈ Γm .
1

The “c” in the subscript stands for collocation. In total Nc = (ν + 1)Km collocation
points are sampled. If the joint distribution of ξm is known, we can choose the one
dimensional (1d) collocation nodes Γ1d in the same way as for stochastic collocation
methods [2]. For example, if elements of ξm are i.i.d. copies of the random variable
that is uniformly distributed on [−1, 1], then Γ1d should be the zeros of the Legen-
dre polynomials. If the joint distribution of ξm is unknown, we can simply use the
Chebyshev nodes.

For each collocation point ξm,c ∈ Γm,c, we solve the cell problem (3.1) for the

local basis functions, denoted as φml(x, ξm,c). We then assemble the local stiffness
matrix and the local load vector, denoted as Sm(ξm,c) and bm(ξm,c), according to
(2.11). Here Sm(ξm,c) is an L× L matrix and bm(ξm,c) is an L dimensional vector.
We then construct the interpolants of Sm and bm in terms of the random variables
ξm. Such interpolants are constructed for each element of Sm and bm. For example,
for each element in Sm and bm, we construct the Lagrange polynomial approximation,

denoted as Ŝ
m

and b̂
m

.
The interpolants Ŝm and b̂m will be used to obtain the approximation for every

sample in the online stage. We will discuss how to determine which sample set to
solve in the online stage in section 4.1.

Remark 3.1. Several remarks are in order:
• When the local stochastic dimensions are moderate, sparse grids and dimen-

sional adaptive grids [22, 36] can be used to reduce the number of collocation
points. We use these techniques in our numerical examples.

1To simplify the notation, we choose the same number of collocation points along different direc-
tions. However, in general we use different numbers of collocation points along different directions.
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670 THOMAS Y. HOU, QIN LI, AND PENGCHUAN ZHANG

• To determine the collocation points Γm, we do not need to know the density
of the parameters ξm. We need only know their ranges. This is very different
from the standard gPC method, which requires the joint density function
of the random parameters. It is possible that the range of some random
parameter is an unbounded domain, in which case we truncate its range to
a bounded domain that is large enough to cover the parameter range with
high probability. For parameter configurations that fall outside this bounded
domain, we directly compute φml(x, ξm), Sm(ξm), and bm(ξm) from (3.1)
and (2.11).

Finally, we summarize the offline and online implementation of random interpo-
lation method in Algorithms 1 and 2.

Algorithm 1 The offline stage of random interpolation method.

1: Partition the physical domain D into coarse grid blocks TH .
2: for each patch Dm

H do
3: Determine the set of interpolation nodes Γm,c.

4: Solve local multiscale basis {φml(x, ξm,c)}
Nc
c=1 according to (2.10).

5: Assemble the local upscaled quantities Sm and bmaccording to (2.11) or (2.14).
6: Build the Lagrange polynomial interpolants for Sm and bm.
7: end for

Algorithm 2 The online stage of random interpolation method for a specific config-
uration ξ.

1: for each patch Dk
H do

2: Determine the values of local variables ξm.
3: Interpolate the local upscaled stiffness matrix Sm and local upscaled loading

vector bm.
4: end for
5: Assemble and solve the upscaled system (2.12) to obtain ûH(x, ξ).

3.1.1. Accuracy of the random interpolation. In this subsection, we esti-

mate the interpolation error Ŝ
m
−Sm. If the media κ(x, ξm) smoothly depend on ξm,

we can prove that the solution to the cell problem (3.1) is also smooth with respect
to ξm. So are Sm and bm. The strong regularity of Sm(ξm) and bm(ξm), combined
with the high-order approximation method, is the key for the success of the random
interpolation method.

It is worth mentioning that the regularity problem has been well studied in the
literature; see [3, 2, 13, 27]. In particular, with a small modification of Lemma 3.2
in [2], we have the following lemma.

Lemma 3.2. Let φml be the multiscale basis function in the mth cell problem (3.1).
We use the notation ξm = [ξm,1, ξm,2, . . . , ξm,Km

] for the list of the random param-
eters effective in patch Dm

H . We assume that ξm ∈ Γm ≡ [−1, 1]Km . If the local
parametrization on patch Dm

H , i.e., κ(x, ξm), is infinitely differentiable with respect to
ξm and there exists some ck > 0 such that

(3.2)

∥∥∥∥∥∂
n
ξm,k

κ(ξm)

κ(ξm)

∥∥∥∥∥
L∞(Dm

H )

≤ cnkn! ∀n ≥ 0,
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then we have for every ξm ∈ Γm and n ≥ 0

(3.3)
∥∥∥√κ(ξm)∇∂nξm,k

φml(ξm)
∥∥∥
L∞(Γm;L2(Dm

H ))
≤ Cφ

√
κmaxn!(2ck)n,

where Cφ depends only on the local domain Dm
H and the deterministic boundary con-

dition pml for φml.

Assumption (3.2) holds true for most parametrization methods. For example, for
a linear parametrization

κ(x, ξm) = κ̄(x) +

Km∑
k=1

gm,k(x)ξm,k,

provided that such expansion guarantees κ(x, ξm) ≥ κmin for almost every x ∈ D
and ξm ∈ Γm, we can take ck = ‖gk‖L∞(D)/κmin. When a linear parametrization is
combined with the exponential transformation (2.8), i.e.,

κ(x, ξm) = κmin + exp

(
β̄(x) +

Km∑
k=1

gm,k(x)ξm,k

)
,

we can take ck = ‖gk‖L∞(D).

The regularity of φml(ξm) in Lemma 3.2 could be extended to that of Sm in a
straightforward manner.

Theorem 3.3. Under the same assumptions as in Lemma 3.2, for any l, l′ ∈
{1, 2, . . . , L}, Smll′ as a function of ξm,k, Smll′ : [−1, 1] → C([−1, 1]Km−1) admits an
analytic extension to the complex domain

(3.4) Σ([−1, 1]; τk) ≡ {z ∈ C,dist(z, [−1, 1]) ≤ τk}

with 0 < τk < 1/(2ck).

Finally, we have the following theorem, which guarantees the accuracy of the
random interpolation method.

Theorem 3.4. Under the same assumptions as in Lemma 3.2, for any l, l′ ∈
{1, 2, . . . , L} there exist positive constants rk, k = 1, . . . ,Km, and Cs, independent of
ν ≡ (ν1, ν2, . . . , νKm), such that

‖Smll′ − Ŝ
m

ll′‖C(Γm) ≤ Cs
Km∏
k=1

(
2

π
log(νk + 1) + 1

) Km∑
k=1

exp(−rkνk) ,

where Ŝmll′ is the Chebyshev interpolation of Smll′ with νk + 1 collocation points in the

ξm,k direction, rk = log
[
τk
(
1 +

√
1 + 1/τ2

k

)]
, and τk any positive constant that is

strictly smaller than the distance between the real line segment [−1, 1] and the nearest
singularity in the complex plane, as defined in Theorem 3.3.

The proof is the same as that of Theorem 4.1 in [2]. The only difference is that
we are considering the interpolation in the continuous function space. Therefore, we
have the Lebesgue constant of the Chebyshev interpolation, i.e., 2

π log(νk + 1) + 1,
which appears in our error estimation. The regularity and approximation accuracy of
bm can be analyzed similarly.
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Remark 3.5. Several remarks are in order:
• The estimates above are based on simple energy estimates and are far from

being sharp. More dedicated analysis has been carried in [13] for improved
results and could be easily carried over. Detailed regularity analysis is not
the focus of the paper, and we omit it.

• In the case when the random variables have infinite range (e.g., the Gaussian
variable), we can sample the collocation points in a range that is large enough
to cover the random variable with high probability. For example, denote by
Γm,0 the finite domain that is large enough to cover a very large portion of
Γm such that P (ξm /∈ Γm,0) < ε; then we can build an interpolant of Sm

such that Sm − Ŝ
m

is pointwise small on Γm,0. For ξm /∈ Γm,0 we directly
compute Sm(ξm) and bm(ξm) from (3.1) and (2.11). The computed upscaled

quantities, denoted as Ŝ
m

and b̂
m

, give a very accurate approximation of the
true values Sm and bm.

3.1.2. Complexity analysis. We summarize the computational cost in this
subsection. Without loss of generality, we assume that the diameter of the physical
domain is 1. The coarse mesh size is denoted by H, and thus the number of coarse
grid elements is M ∼ 1/Hd. In each coarse grid element, we use a fine mesh of size h
to solve the cell problem. Given a sample κ(x, ω), we assume that the computational
cost to solve a deterministic PDE (1.1) is

(3.5) µ = (1/h)dγ , γ ≥ 1,

where γ = 1 corresponds to the multigrid method (neglecting the logarithmic factor).
In the same manner, we assume that the computational cost of solving an upscaled
system (2.12) is Mγ ∼ (1/H)dγ , and that the computational cost of solving a local
cell problem is (ηH/h)dγ , where η is the oversampling ratio. We also assume that the
number of random variables in each coarse grid element is about the same, denoted
by Km. By an appropriate choice of H, Km could be as small as 2 or 3. The number
of offline collocation points is denoted as Nc = (ν+1)Km for each coarse grid element.

The computational cost of the random interpolation method consists of the offline
cost and the online cost. In the offline stage (see Algorithm 1) we need to solve L− 1
local cell problems and assemble local stiffness matrices for each collocation point on
each coarse-grid element.

• For each collocation point within a coarse-grid element, we need to construct
L − 1 basis functions by solving an elliptic equation with a total number of
(ηH/h)d fine grid points, where η is the oversampling ratio. The computa-
tional cost for this step is given by

Costbasis = (L− 1)MNc(ηH/h)dγ .

The oversampling ratio η is typically taken to be η = 2.
• The second step in the offline stage is to assemble the local stiffness matrix.

Such a procedure is performed on every collocation point within each coarse-
grid element, and the computational cost is

Costassemble =
(L+ 1)L

2
MNc(H/h)d .

Here (L + 1)L/2 is due to the fact that each local stiffness matrix has (L +
1)L/2 different entries (other (L − 1)L/2 elements are determined by sym-
metry), and the factor (H/h)d comes from evaluating the l2 inner product
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defined in (2.11) over a coarse-grid element by using (H/h)d many fine grid
points.

In total, we have

(3.6)
Costoffline

µ
∼ (L− 1)NcH

d(γ−1) +
(L+ 1)L

2
Nch

d(γ−1).

In the extreme case of γ = 1, we have Costoffline
µ ∼ O(Nc). If γ > 1, Costoffline

µ is even
smaller. This is to say that, compared with the multigrid method on the fine grid
(γ = 1), the offline computational cost is the same as solving the original equation (1.1)
for about Nc times. Here Nc = (ν+1)Km is the number of local collocation points and
is much smaller than the number of samples Non that is required to solve in the online
stage. Therefore, the computational overhead of the random interpolation method is
quite reasonable.

In the online stage, we need to interpolate the stiffness matrix and then solve the
coarse grid system. If Non samples are computed, the computational cost is

Costonline = Non

(
(L+ 1)L

2
MNc +Mγ

)
.

Here the first term comes from the stiffness matrix interpolation, and the second is
to solve the upscaled linear system (2.12). For every sample in the online stage, we
have

(3.7)
Costonline

µ
∼ (L+ 1)L

2
NcH

d(γ−1)(h/H)γd + (h/H)γd,

which is of the order Nc(h/H)d in the extreme case γ = 1 and is much smaller if γ > 1.
The computational savings (h/H)γd comes from the usage of MsFEM. However, since
we need to do interpolation to get the upscaled system, we have to pay a factor of Nc
as the interpolation cost.

Since the cell problem is solved on the fine mesh Th, there is O(h) error in the
upscaled system due to this spatial discretization. Therefore, as long as the inter-
polation error in the stochastic space is smaller than O(h), it will not influence the
accuracy of the computed upscaled system. Due to the exponential decay of the inter-
polation error (see Theorem 3.4), it is sufficient to choose the degree of interpolation
polynomial ν ∼ log(H/h). Therefore, the online cost would be

(3.8)
Costonline

µ
∼ (log(H/h))

Km

(H/h)γd
,

which implies that we obtain a significant computational savings in the online stage
if the local dimension Km is small. However, the computational savings quickly
decreases as Km increases. In this case, one should use a sparse-grid interpolation
instead. Finally, the total computational cost for this random interpolation method
is

(3.9)
CostStoMsFEM

µ
= Noff +RNon,

where Noff = O(Nc) is the effective number of samples we solve in the offline stage,
and R = O(Nc(h/H)γd) is the online computational savings achieved by the random
interpolation method.
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3.2. The reduced basis method. Besides exploring the regularity of the up-
scaled quantities Sm, as is done in the random interpolation method, another idea is
to make use of the low rank property of multiscale basis φm(x, ω). This leads to the
design of the reduced basis method. As in the last section, we suppress the superindex
l in φml in (3.1) when no confusion arises.

3.2.1. Reduced basis construction via KL expansion. To obtain the re-
duced basis, we apply the KL expansion to φm(x, ω) ∈ L2(Ω;H1

0 (Dm
H ; κ̄)),

(3.10) φm(x, ω) = φ̄m(x) +

∞∑
q=1

√
λqτq(ω)ζm,q(x), λ1 ≥ λ2 ≥ λ3 ≥ · · · ,

where φ̄m(x) =
∫
φm(x, ω)dP (ω) is the mean of φm(x, ω). Notice that this KL

expansion is performed in the Hilbert space L2(Ω;H1
0 (Dm

H ; κ̄)) (which is isometric
to L2(Ω) × H1

0 (Dm
H ; κ̄)) to guarantee that the reduced basis method is accurate in

H1
0 (Dm

H ; κ̄).2 Thanks to the local low stochastic dimensionality, the energies {λq}∞q=1

in (3.10) decay exponentially fast. We take the first Q KL modes {ζm,q}Qq=1 as the
reduced basis functions and expand the solution to (2.10) as

(3.11) φmrb(x, ω) = φ̄m(x) +

Q∑
q=1

cmq (ω)ζm,q(x).

Using the Galerkin method, we solve the following linear system to obtain the coeffi-
cients cm:

(3.12) Am(ω)cm(ω) = Fm(ω),

where Am(ω) is a Q × Q symmetric positive definite matrix with entries Am
qq′(ω) =

κ(ζm,q, ζm,q
′
;ω), 1 ≤ q, q′ ≤ Q, and Fm(ω) is the load vector with entries Fmq (ω) =

−κ(φ̄m, ζm,q;ω), 1 ≤ q ≤ Q. Since the number of the reduced basis Q is much smaller
than the number of fine grid points, (H/h)d, (3.12) can be solved very efficiently.
Finally we use {φmlrb } to build an approximation of the local stiffness matrix Sm,

denoted Ŝ
m

, as in (2.11).
To perform the KL expansion (3.10), we apply the stochastic collocation method

to estimate the mean and covariance. Due to the locally low dimensionality, the
SC method requires many fewer samples than the MC method does, and thus it
accelerates the offline computation significantly. We have the following theorem, which
guarantees the accuracy and efficiency of the reduced basis method.

Theorem 3.6. Suppose we take the first Q KL modes {ζm,q(x)}Qq=1 as the reduced
basis functions and use the Galerkin method to obtain the reduced basis solution of
(2.10), denoted as φmrb(x, ω) in (3.11). Assume that

1. there existsC1 > 0 and β > 1 such that λj ≤ C1β
−j, and

2. there exists a constant C2 such that κ(x, ω) ≤ C2κ̄(x) for all realizations
ω ∈ Ω.

Then we have for any ε > 0 the following:
(a)

(3.13) P
[
‖φm(x, ω)− φmrb(x, ω)‖H1

0 (Dm
H ;κ) ≥ ε

]
≤ C1C

2
2β
−Q

(β − 1)ε2
;

2H1
0 (DmH ; κ̄) is the function space {v ∈ H1

0 (DmH ) :
∫
Dm

H
κ̄|∇v|2dx ≤ ∞} with inner product

〈u, v〉 =
∫
Dm

H
κ̄∇u · ∇vdx.
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(b) for any l, l′ ∈ {1, 2, . . . , L}

(3.14) P
[
|Smll′(ω)− Ŝ

m

ll′(ω)| ≥ 2Cφ
√
κmaxε

]
≤ 2C1C

2
2β
−Q

(β − 1)ε2
.

Here, H1
0 (D;κ) is the Hilbert space with norm

∫
D
κ(x, ω)|∇f(x)|2dx; Cφ is a constant

that only depends on the local domain Dm
H and the deterministic boundary condition

pml for φml.

We point out that the first assumption in Theorem 3.6 holds true in general.
Moreover, under the same assumptions in Lemma 3.2, we can prove that the smaller ck
is, the bigger β is. This exponential decay is also observed in our numerical examples;
see Figure 7. The second assumption is also valid in general. We will demonstrate that
this assumption is satisfied in our numerical example with a high contrast random
medium; see section 5.2. We will not present the proof of Theorem 3.6 in this paper,
but refer the interested reader to [56].

Theorem 3.6 guarantees that for any prespecified ε > 0 and δ > 0, with only
Q = O(log(1/ε) + log(1/δ)) reduced basis functions, our reduced basis approximation

Ŝ
m

is O(ε) accurate with probability at least 1− δ. There are two ways to deal with
the rare event when our approximation is not guaranteed to be accurate. In the first
approach, with an appropriate a posteriori error estimate (see [49]), we are able to
efficiently detect the small-probability failure samples and recompute these samples
directly to make sure they are accurate. In the second approach, we do not care about
this rare event at all because this small probability error only introduces a small error
in estimating statistical properties of the solution uH . In this paper, we take the
second approach; see also [34, 6].

Remark 3.7. In the case when the distribution of local parameters ξm is unknown,
we need to choose an auxiliary distribution, its density denoted as ρ̂m(ξm), to do
the KL expansion (3.10). In practice, one can just use the uniform distribution for
bounded variables. For unbounded variables, one can choose a sufficient large square
domain, which covers the range of local parameters ξm with high probability, and
then use the uniform distribution on the square domain. Theoretically, we can prove
that when there exists a constant C > 0 such that ρm/ρ̂m ≤ C, our reduced basis

approximation Ŝ
m

is still O(ε) accurate with probability at least 1 − δ with only
Q = O(log(1/ε) + log(1/δ)) reduced basis functions. In practice, one can simply take
Q = 3Km, where Km is the local stochastic dimension.

3.2.2. Exploring the affine structure of the coefficient for further speed-
up. In the online stage, the reduced basis method described above still evaluates
φm(x, ω) in a pointwise manner according to (3.10) and assembles local stiffness ma-
trix (2.11) on the fine grid. Even in the case when φm(x, ξm) is prepared by gPC
expansions, as in [7], the evaluation of φm(x, ω) and numerical integration are still
performed on the fine grid, which offers little computational savings compared with
the multigrid method. To make the upscaling step more efficient, we assume that the
parametrization of κ(x, ξm) is affine with respect to the parameters ξm. With this
assumption, we can precompute the essential part of the stiffness matrix in the offline
stage, which leads to considerable savings in assembling the stiffness matrix for each
sample in the online stage. Specifically, we assume that the local random coefficient
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676 THOMAS Y. HOU, QIN LI, AND PENGCHUAN ZHANG

κ(x, ξm) can be expressed as follows:

(3.15) κ(x, ξm) =

Km∑
k=1

ξm,kκm,k(x), x ∈ Dm
H .

By applying the affine structure of the coefficient, we obtain

(3.16) Am(ω) =

Km∑
k=1

ξm,k(ω)Am
k , Fm(ω) =

Km∑
k=1

ξm,k(ω)Fmk ,

where the deterministic coefficientsAm
k and Fmk are given byAm

k,qq′ =κm,k(ζm,q, ζm,q
′
),

1 ≤ q, q′ ≤ Q, and Fmk,q = −κm,k(φ̄m, ζm,q), 1 ≤ q ≤ Q. We can precompute Am
k

and Fmk and efficiently assemble the stiffness matrix Am(ω) and load vector Fm(ω)
for each sample. We remark that the affine structure also simplifies the assembling of
local stiff matrix Sm and loading vector bm.

Finally, we summarize the offline and online implementations of the random in-
terpolation method in Algorithms 3 and 4.

Algorithm 3 The offline stage of the reduced basis method.

1: Partition the physical domain D into coarse grid blocks TH .
2: for each patch Dm

H do
3: Solve local multiscale basis (2.10) with affine coefficient (3.15) by the SC

method to obtain samples {φml(x, ξm,c)}
Nc
c=1.

4: Apply a KL expansion to get reduced basis {ζml,q}Qq=1.
5: end for

Algorithm 4 The online stage of the reduced basis method for specific parameter
configuration ξ.

1: for each patch Dk
H do

2: Determine the values of local variables ξm.
3: Assemble and solve local reduced systems (3.12) .

4: Assemble the local upscaled stiffness matrix Ŝ
m

and loading vector b̂
m

.
5: end for
6: Assemble and solve the upscaled system (2.12) to obtain ûH(x, ξ).

3.2.3. Complexity analysis. Using the same notation and assumptions as in
section 3.1.2, we analyze the computational cost of the StoMsFEM with local reduced
basis in this section. As for the random interpolation method, the computational cost
consists of offline and online parts.

The offline cost consists of three parts: obtaining samples for local cell problems
(2.10), performing the KL expansion to get reduced basis (3.10), and assembling
upscaled quantities. At the coarse-grid level, we have about M quadrilateral coarse-
grid elements, and on each element we solve Nc samples to do the KL expansion (3.10).
The cost of obtaining these solution samples is MNc(ηH/h)dγ . The cost of obtaining
the first Q KL modes in (3.10) is of order NfNc log(Q) + Q2(Nf + Nc); see [26, 8].
Since Nf = (ηH/h)d, this part of the cost is O

(
(Nc log(Q) +Q2)(ηH/h)d +Q2Nc

)
.

Finally, the cost of assembling the upscaled stiffness matrix and the loading vector is
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STOCHASTIC MULTISCALE FINITE ELEMENT METHOD 677

about (
∑M
m=1KmQ

2)(ηH/h)d. Assuming that Q = O(Km), η = O(1), and that all
the local dimensions are about the same, we have

Costoffline ∼ NcHd(γ−1)h−dγ + (Nc log(Km) +K2
m)h−d +K2

mNcH
−d +K3

mh
−d.

Therefore, the ratio between Costoffline and µ is bounded by

(3.17)
Costoffline

µ
. NcH

d(γ−1)+(Nc log(Km)+K2
m+K3

m)hd(γ−1)+K2
mNcH

d(γ−1)(H/h)−dγ .

For γ = 1, we can see that the ratio is of the order (Nc log(Km) +K3
m).

In the online stage, for a given configuration of the random parameters ξ, the
cost also consists of three parts: assembling and solving the reduced basis system
(3.12), assembling the local upscaled stiffness matrix and loading vector, and finally
globally assembling and solving the upscaled system (2.12). For each sample, the
computational cost is

Costonline ∼M(KmQ
2 +Q2) +MKmQ

2 +M +Mγ .

Here the first term comes from assembling and solving the reduced basis system (3.12);
the second term is for assembling the local upscaled stiffness matrix and loading vector;
and the third and forth terms are from globally assembling and solving the upscaled
system (2.12). In practice, we observe that Q = O(Km), and then the ratio between
Costonline and µ is given by

(3.18)
Costonline

µ
.

1 +K3
mH

d(γ−1)

(H/h)dγ
.

For γ = 1, the ratio is about K3
m(h/H)d, where (h/H)d comes from the usage of

the MsFEM and the factor K3
m comes from assembling and solving the reduced basis

systems. Again, the computational savings is more significant for γ > 1. Finally,
when we solve Non samples in the online stage, the total computational cost for this
reduced basis method is

(3.19)
CostStoMsFEM

µ
= Noff +RNon,

where Noff = O(Nc log(Km) + K3
m) is the effective number of samples that we solve

in the offline stage, and R = O(K3
m(h/H)γd) is the online computational savings

achieved by the reduced basis method.

4. Global stochastic methods. The StoMsFEM is designed to compute an
approximate solution ûH(x, ξ) for every parameter configuration ξ efficiently, as de-
scribed in Algorithms 2 and 4. It is straightforward to combine the StoMsFEM with
any nonintrusive stochastic method, which determines the sample set to solve in the
online stage, to finally estimate the statistical properties of the coarse-grid solution.
In subsection 4.1, we combine StoMsFEM with the MC method and the (sparse-grid)
SC method. In subsection 4.2, we show that to achieve the same level of estimation
error, compared with the standard FEM on a fine grid, StoMsFEM indeed offers sig-
nificant computational savings by optimally balancing the spatial discretization error
from MsFEM and the stochastic sampling error from the global stochastic methods.
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678 THOMAS Y. HOU, QIN LI, AND PENGCHUAN ZHANG

4.1. Global stochastic methods.

4.1.1. Global Monte Carlo method. The MC method estimates statistical
properties by ensemble average, i.e.,

(4.1) E[f(ω)] ≈M[f(ω)] ≡ 1

Non

∑
ωi∈S

f(ωi),

where ωi is the ith sample and Non is the total number of independent samples S.
This can be used to approximate the mean value or the variance of uH(x, ω) as

E[uH(x, ω)] ≈M [uH(x, ω)] ,

var[uH(x, ω)] ≈M
[
(uH(x, ω))2

]
− {M [uH(x, ω)]}2 .

For sample ωi, Algorithm 2 or Algorithm 4 can be applied to compute the solution
ûH(x, ωi) on the coarse mesh TH .

Due to the probabilistic nature of the MC estimator (4.1), we use the mean-
squared error (MSE) to quantify its performance. For example, to estimate E[u(x, ω)]
by M[ûH ], simple calculation shows that the MSE can be written as

(4.2)

ES
[
‖M[ûH ]− E[u(x, ω)‖22

]
= ‖E[ûH(x, ω)]− E[u(x, ω)]‖22 +

1

Non

∫
D

var[ûH(x, ω)]dx.

Here, ES is the expectation taken w.r.t. to the random ensemble S, the first part is
the spatial discretization error introduced by StoMsFEM, and the second part is the
sampling error introduced by the MC method.

Remark 4.1. We can also consider the following two-level MC estimator [24, 4, 11]:

(4.3) M(2)[ûH ] =
1

Non,H

Non,H∑
i=1

ûH(x, ωi,H) +
1

Non,h

Non,h∑
i=1

[uh(x, ωi,h)− ûH(w,ωi,h)] ,

where {ωi,H}
Non,H

i=1 and {ωi,h}
Non,h

i=1 are independent samples. Simple calculation shows
that its MSE is

‖E[uh(x, ω)]− E[u(x, ω)]‖22 +
1

Non,H

∫
D

var[ûH(x, ω)]dx(4.4)

+
1

Non,h

∫
D

var[ûH(x, ω)− uh(x, ω)]dx.

Compared with (4.2), the two-level MC estimator is able to reduce its MSE to the
order of fine-grid discretization error by properly choosing Non,H and Non,h. At the
same time, its computational cost, including computing Non,H + Non,h coarse-grid
solutions and Non,h fine-grid solutions, can be significantly smaller than that of the
standard MC method. The complexity analysis and comparison with the standard
MC method are provided in the last paragraph of section 4.2.

4.1.2. Global stochastic collocation methods. When the density ρ(ξ) is
known, the SC methods [2, 43, 42, 53] may have better convergence rates when ap-
proximating the expectation (multivariate integral) in some cases. To illustrate this
idea, we assume that the random variables ξ are independent. In this case, their joint
density ρ factorizes as ρ(ξ1, . . . , ξK) =

∏K
k=1 ρk(ξk).
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Similar to the MC estimator (4.1), the global SC method solves the parametrized
problem (1.1) on a deterministic set of collocation points, denoted as CN(K), and
then approximates E[f(ξ)] by some deterministic numerical quadrature rule, i.e.,

(4.5) E[f(ξ)] ≈ I[f(ξ)] ≡
∑

ξ∈CN(K)

w(ξ)f(ξ).

This can be used to approximate the mean value or the variance of uH(x, ω) as

E[uH(x, ω)] ≈ I [uH(x, ξ)] ,

var[uH(x, ω)] ≈ I
[
(uH(x, ξ))2

]
− {I [uH(x, ξ)]}2 .

For the standard SC method [2], CN(K) is a tensor product grid of all the 1d col-
location points. In our case when the global stochastic dimension K is large, the
sparse-grid SC method [43, 42] is preferred, where CN(K) is a high dimensional sparse
grid.

The locally low dimensionality can offer huge computational savings for the SC
method. The key observation is that the global collocation points CN(K) repeatedly
use the local collocation points. For example, the tensor product grid collocation
points

∏K
k=1 Γk, where Γk is the collocation points in the ξk direction, reuse the local

collocation points
∏
ξk∈ξm

Γk, which is the local tensor product grid with the same
degree. In the same manner, the local collocation points of a global sparse grid are
still a sparse grid of the low dimensional local parameter space.

Therefore, the global (sparse-grid) SC method also contains the offline and online
stages. In the offline stage, we take the local interpolation nodes Γm to be the local
collocation points corresponding to the global (sparse-grid) collocation points CN(K),
and run Algorithm 1. Our estimate in (3.6) implies that

(4.6)
Costoffline

µ
∼ (L− 1)NcH

d(γ−1) +
(L+ 1)L

2
Nch

d(γ−1),

where Nc is the number of local collocation points. In the extreme case of γ = 1, we
have Costoffline

µ ∼ O(Nc).
The algorithm in the online stage is almost the same as Algorithm 2, but we simply

do search-and-plug-in instead of interpolation for every collocation point ξ ∈ CN(K).
Since searching cost is typically negligible, the online computational cost for each
collocation point only contains assembling and solving the upscaled system (2.12);
i.e.,

(4.7)
Costonline

µ
≈ Mγ

µ
∼ (h/H)γd .

Compared with (3.7), we do not have the interpolation cost when the global (sparse-
grid) SC solver is utilized. This is a big difference between the global SC solver and
the global MC solver when they are combined with the local random interpolation
method.

We still use Non to denote the number of samples to solve in the online stage,
which is |CN(K)| in the global SC solver. Therefore, the total computational cost for
the StoMsFEM with the global SC solver is

(4.8)
CostStoMsFEM

µ
≈ Nc +RNon,
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680 THOMAS Y. HOU, QIN LI, AND PENGCHUAN ZHANG

where the online savings factor R = (h/H)γd. On the other hand, the total computa-
tional cost for the standard FEM on the fine grid Th with a sparse-grid collocation is
µNon. Notice that Nc is the number of local sparse-grid collocation points, which is
nearly negligible compared with the number of global collocation points Non, thanks
to the locally low dimensionality. Therefore, we get a computational savings with
nearly a factor of R = (h/H)γd.

The estimation error of the SC method is determined by the error of the numerical
quadrature, i.e., I[f(ξ)]− E[f(ξ)]. For example, to estimate E[u(x, ω)] by I[ûH ], the
estimation error can be bounded as follows:

(4.9) ‖I[ûH ]−E[u(x, ξ)‖22 ≤ 2 ‖E[ûH(x, ω)]− E[u(x, ω)]‖22+2‖I[ûH ]−E[ûH(x, ω)]‖22.

Here, the first part is the spatial discretization error introduced by StoMsFEM, and
the second part is the sampling error introduced by the SC method.

Remark 4.2. In a general multivariate problem, if the random variables ξ are not
independent, the density ρ does not factorize, i.e., ρ(ξ1, . . . , ξK) 6=

∏K
k=1 ρk(ξk). To

this end, we first introduce an auxiliary probability density function ρ̂ : RK → R that
can be seen as the joint density of K independent random variables; i.e., it factorizes

as ρ̂(ξ1, . . . , ξK) =
∏K
k=1 ρ̂k(ξk) and satisfies ρ(ξ)

ρ̂(ξ) ≤ C for a positive constant C. For

each dimension k = 1, 2, . . . ,K, the 1d collocation nodes Vik can be the Gaussian
abscissas of ρ̂k or nested abscissas associated with ρ̂k. The auxiliary density ρ̂ should
be chosen as close to the true density ρ as possible, so that the quotient ρ/ρ̂ remains
bounded.

4.2. Global error analysis. The estimation error of both the MC method and
the SC method consists of the spatial discretization error from StoMsFEM and the
sampling error from the corresponding global stochastic methods; see (4.2) and (4.9).
We should balance these two kinds of errors to achieve the optimal estimate within our
budget of computing resources. To further analyze the estimation error, we assume
the following estimates:

‖E[uh(x, ω)]− E[u(x, ω)]‖22 . hβ , ‖E[ûH(x, ω)]− E[u(x, ω)]‖22 . Hβ ,(4.10)

‖I(uh)− E[uh]‖2 . N−ζon , ‖I(ûH)− E[ûH ]‖2 . N−ζon ,(4.11) ∫
D

var[ûH(x, ω)]dx ≈
∫
D

var[uh(x, ω)]dx ≈
∫
D

var[u(x, ω)]dx = c1.(4.12)

The rate β in (4.10) characterizes the discretization error from the standard FEM
on fine mesh Th and MsFEM on coarse mesh TH , and β ≈ 4 in our case. The
rate ζ in (4.11) characterizes the sampling error from the (sparse-grid) SC method,
and it is typically very small in our high stochastic dimension case. For some prob-
lems with moderate stochastic dimensions, ζ can be relatively large. For example,
in our high contrast example, the SC with the sparse Clenshaw–Curtis formulas,
we observe ζ ≈ 5; see Figure 10 below. We assume that

∫
D

var[u(x, ω)]dx = O(1)
in (4.12). Error analysis of the standard FEM gives ‖uh − u‖L2(D×Ω) = O(h2). For
any successful upscaling method, we expect ‖uH − u‖L2(D×Ω) = O(H2). For exam-
ple, Theorem 2.2 validates this for the MsFEM on periodic random coefficients with
period ε � H. Other local upscaling methods [47, 41, 44] satisfy this assumption
on a much richer set of random coefficients, and the StoMsFEM can be adapted to
work with them. Therefore, we have

∫
D

var[uh(x, ω)]−
∫
D

var[u(x, ω)]dx = O(h2) and∫
D

var[uH(x, ω)]−
∫
D

var[u(x, ω)]dx = O(H2), and thus we validate assumption (4.12).
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In (4.10), (4.11), and (4.12), we assume that ûH − uH is negligible. This is
reasonable since we can easily drive the error ûH − uH below other errors due to its
exponential decay implied by Theorem 3.4 in the random interpolation setting and
Theorem 3.6 in the reduced basis setting. Our numerical examples also validate this
assumption.

Combing the above assumptions and (4.2) and (4.9), we need Non = O(H−β)
for the MC method and Non = O(H−β/ζ) for the SC method to achieve O(Hβ)
estimation error. Notice that the number of samples required remains the same for
the standard FEM on a fine grid when it aims to achieve the same O(Hβ) estimation
error. Since in high stochastic dimensional problems the decay rate of the physical
discretization error is much faster than that of the sampling error, i.e., β and β/ζ is
large, the number of samples to be solved in the online stage is huge. For example, the
MC method requires about 100,000,000 samples when we take H = 0.01 for a physical
domain with O(1) size. Compared with this huge number, the effective number of
samples Noff in the StoMsFEM offline stage, which is roughly equal to the number of
local interpolation nodes, is negligible. Therefore, to achieve O(Hβ) estimation error,
the total computational cost ratio between StoMsFEM and the standard FEM on fine
mesh, i.e., Noff/Non + R, is nearly R. As we derived in the previous sections, R is
O(Nc(h/H)γd) for the random interpolation method, O(K3

m(h/H)γd) for the reduced
basis method, and O((h/H)γd) for the global SC method.

If we want to reduce the estimation error to the level of O(hβ), we can combine
StoMsFEM with the two-level MC estimator (4.3). Similar to the multilevel Monte
Carlo (MLMC) method, we reduce the variance part in (4.4) to O(hβ) while optimally
distributing computing resources to the coarse- and fine-grid computations. If we
assume that

∫
D

var[ûH(x, ω)− u(x, ω)]dx . Hα characterizes the variance reduction
effect of ûH , the ratio of total computation cost between this two-level MC estimator
and the MC based on the standard FEM on the fine grid is O((R2 +Hα/2)1/2), where
R is the cost ratio as before.

5. Numerical examples. In this section we demonstrate the accuracy and effi-
ciency of the proposed StoMsFEM. All our computations are performed using 64-bit
MATLAB R2015a on an Intel(R) Core(TM) i7-3770 (3.40 GHz).

5.1. Patch study of a synthetic 2d example. This synthetic example is
adopted from problems with porous media [20] where the medium contains some
channels and inclusions:

κ(x, ω) = 0.2 + 0.2 sin(πx) sin(πy) +

20∑
k=1

κm(x)ξm.

Here the first two terms give the background of the medium, and in the summation
κm(x) are the characteristic functions representing the channels/inclusions and ξm
are the associated random variables. In our computation we set them uniformly
distributed in [0, 1]. We plot one sample of the medium in Figure 1 and show the mean
and the variance of the medium. It is easy to see that the medium contains many
small inclusions, making the multiscale treatment necessary. For this 2d problem,
we first decompose it into 16 × 16 coarse grid elements. The oversampling ratio is
chosen as η = 2, meaning each patch is enlarged by 2 in each dimension for the
oversampling. In Figure 2 we plot the number of random variables in each patch. As
shown in Figure 2, in each patch there are about 2 to 3 random variables.

In this example, we only show how to apply the random interpolation method
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Fig. 1. One sample each of the media (left), the mean (middle), and the variance of the media
(right).
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Fig. 2. The number of random variables seen in each patch. The domain is decomposed into
16× 16 coarse grid elements.
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Fig. 3. Here we show the medium confined in patch (9, 9). The upper left panel presents the
background media, and in the upper right and lower left panels we plot the two physical modes
associated with two random variables. The lower right panel shows the sample media confined in
this patch.

and the reduced basis method on a local patch and study their performances. We will
show the full process of the StoMsFEM on more realistic examples later. Let us pick
patch (9, 9) for example; two random variables are present in this patch, as shown in
Figure 3, and thus the local stiffness matrix and the local load vector are functions of
only two random variables.
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Fig. 4. The dependence on the random variables of the (1, 1) (left), (1, 2) (middle), and (1, 3)
(right) entries in the local stiffness matrix, when confined in patch (9, 9). Both random variables
are uniformly distributed in [0, 1].
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Fig. 5. The relative interpolation error for the (1, 1) (left), (1, 2) (middle), and (1, 3) (right)
entries of the local upscaled stiffness matrix is in the order of 10−6. Its contribution to the final
estimation error is negligible compared with the spatial discretization error and sampling error.
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Fig. 6. The fast KL energy decay for the solutions of the local cell problems (2.10), when
confined to patch (9, 9). We truncate at 10−6 to obtain the reduced basis functions.

In the offline step, we use both the random interpolation method and the reduced
basis method to construct approximations for the upscaled local stiffness matrices.
In Figure 4 we plot the (1, 1), (1, 2), and (1, 3) entries of the stiffness matrix’s de-
pendence on the two random variables. For the random interpolation method, we
take nine Chebyshev nodes along each dimension and take their tensor products. In
Figure 5 we plot the relative interpolation error for the (1, 1), (1, 2), and (1, 3) en-
tries. The relative interpolation error is on the order of 10−6, whose contribution to
the final estimation error is negligible compared with the spatial discretization error
and sampling error. For the reduced basis method, we perform the KL expansion of
the three basis functions, obtain their reduced basis functions, and precompute the
relevant quantities. In Figure 6, we show the fast energy decay in the KL expansion
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Fig. 7. The relative error for the (1, 1), (1, 2), and (1, 3) entries of the local upscaled stiffness
matrix is in the order of 10−6.

Fig. 8. Left: one sample medium. Middle: medium mean. Right: medium variance. There are
13 high permeability (of order 104) channels in the x-direction and a few high permeability inclusions.
The background permeability is of order 1.

of these basis functions. We truncate the KL expansion at
√
λQ/λ1 < 10−6, resulting

in 15, 13, and 15 basis functions for φ1, φ2, and φ3, respectively. In Figure 7 we see
that the relative error to compute the (1, 1), (1, 2), and (1, 3) entries is also on the
order of 10−6.

It is worth mentioning that the oversampling domain is four times bigger than the
original patch. If the effective region for a random variable falls in the boundary layer
region, the associated random variable shows limited impact on the stiffness matrix.
This anisotropic property suggests that we can do interpolation on dimension-adaptive
grids to reduce the number of interpolation nodes when the local dimension grows.
We will use dimensional-adaptive grids in our next two examples. We point out that
the local reduced basis approach automatically detects this anisotropic property and
always gives the most important basis functions for the local cell problems (2.10).

5.2. Example with high contrast random medium. The random medium
of this example contains a nonconstant global background, channels with high per-
meability and localized inclusions. One sample and the statistical properties of the
random media are shown in Figure 8. We can see that there are several high perme-
ability channels in the x-direction and some high permeability inclusions. Utilizing
the ISMD presented in section 2.1.2, we parametrize this random medium as

(5.1) κ(x, y, ω) = f0(x, y) + ξ0(ω) +

13∑
k=1

fk(x, y)ξk(ω).

Here, ξ0 is the global random variable uniformly distributed in [0, 1] corresponding
to the low permeability background, and {ξk}13

k=1 are independent random variables
uniformly distributed in [104, 2 × 104] corresponding to the high permeability chan-
nels. In this problem, we incorporate the StoMsFEM with both the MC method and
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Fig. 9. Left: One sample solution from direct MsFEM. Middle: The absolute error of the
approximation by the random interpolation, which is of order 10−10. Right: The absolute error of
the approximation by the reduced basis method, which is of order 10−9.

the sparse-grid SC method. This demonstrates that our StoMsFEM can be easily
combined with most nonintrusive global stochastic methods.

We use the MsFEM in [28], with oversampling and linear boundary conditions.
We point out that the MsFEM is not the best local upscaling method for high contrast
coefficients, and it is not guaranteed to have error estimate ‖uH − u‖H1 small. Local
upscaling methods specifically designed for high contrast problems can be found at [9,
18, 46]. In this paper, we focus on the accuracy of the proposed random interpolation
and the reduced basis method, i.e., ûH −uH , instead of the accuracy of the upscaling
method, i.e., uH − u.

In the physical domain [0, 1]2, we have a uniform coarse mesh TH with mesh size
Hx = Hy = 0.05 and a fine mesh Th with hx = hy = 0.0025. Due to the high contrast
permeability, we take a relatively large oversampling ratio η = 3. Thanks to ISMD,
the local stochastic dimensions of the parametrization (5.1) are small, typically 2 or
3, on these oversampling local coarse-grid elements. As in the example of section 5.1,
we use both the random interpolation method and the reduced basis method to con-
struct approximations for local upscaled stiffness matrices. Due to the locally low
dimensionality, we achieve negligible errors when approximating the local upscaled
matrix Sm with a small number of interpolation nodes or reduced basis functions.
For example, when we approximate Sm1,1 on patch (14,9), the random interpolation
method achieves O(10−6) relative error with Chebyshev interpolation on a 5 × 16
Chebyshev grid, while the reduced basis method also achieves O(10−6) relative error
with only seven reduced basis functions for all φml’s. The error plots look similar to
Figures 5 and 7 in our patch-study example, and we do not show them here.

In the global MC solver, since the basis functions constructed from oversampling
are nonconforming, we apply the Petrov–Galerkin MsFEM formulation [30] with the
standard bilinear basis on the coarse mesh as test functions.

In the first experiment, we set the source b(x) = 1 and a zero Dirichlet boundary
condition. In Figure 9 we show one sample solution directly computed by the MsFEM,
i.e., uH , and the absolute error of the StoMsFEM approximating solutions ûH . We
can see that ûH − uH is of the order 10−10 for the random interpolation method
and 10−9 for the reduced basis method, which is negligible compared with the spatial
discretization error uH − u. Therefore, we can treat the approximating solution ûH
as the solution uH computed directly by the MsFEM. However, their computational
times are very different. Table 1 shows CPU times and the actual computational cost
ratio. In our setting, the grid size ratio ηH/h = 60, and on average we use Nc ≈ 50
local interpolation points. Theoretically, we have 1/R = O((ηH/h)γ/Nc) = O(72) for
the random interpolation method. The savings we observe is purely on the order of
O((ηH/h)γ), because the cost to evaluate interpolants is negligible in practice. For
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Table 1
Computational cost for one sample solution (units: s).

Naive MsFEM StoMsFEM (random interpolation) StoMsFEM (reduced basis)
27.38 0.0133 (1/R = 2060) 0.0814 (1/R = 336)

the reduced basis method with Km = 2, we have 1/R = O((ηH/h)γ/K3
m) = O(450)

theoretically, which matches what we observed numerically.
To balance the spatial discretization error and sampling error as discussed in

section 4.2, we need about Non = O(H−4) = O(105) for MC sampling. Therefore, we
estimate the mean and standard deviation of ûH by both the random interpolation
method and the reduced basis method on the same set of 105 independent samples.
The difference between these two methods is of the order 10−9, confirming again
that the error introduced by the random interpolation and reduced basis method
is negligible. To compute these 105 samples, it takes 1329 seconds for the random
interpolation approximation and 8146 seconds for the reduced basis method. If we
directly compute these samples by the MsFEM, it would take 2.7× 106 seconds.

In the second experiment, we combine our StoMsFEM with the sparse-grid SC
method. Since variables {ξk}13

k=0 are independent and uH is smooth with respect
to {ξk}13

k=0, we can implement the sparse-grid SC method to estimate E[uH ] and
var[uH ]. The dimension-adaptive sparse grid integration is performed on the sparse
grid toolbox [37, 36], and the dimension-adaptive degree is set to be 0.6. As described
in section 4.1.2, we prepare the local upscaled stiffness matrices at the local sparse
grid collocation nodes in the offline stage. Since the local dimensions are small, the
biggest number of local collocation nodes is only 1073. It takes about 6700 seconds
to finish the offline computation. In the online stage, each sample takes only 9.8 ×
10−3 seconds because we only look up the precomputed dictionaries to get the local
upscaled quantities. The numerical cost ratio 1/R = 2800, which exactly matches our
theoretical estimation 1/R = O((ηH/h)γ) = O(3600) for the global (sparse-grid) SC
method.

We implement the sparse-grid integration using both the trapezoidal rule and the
Clenshaw–Curtis formulas [21]. Taking the sparse-grid integration with the Clenshaw–
Curtis formulas with 50433 collocation nodes as the reference E[uH ], we define the
quadrature estimation error as

(5.2) equad (I[uH ]) := ‖I[uH ]− E[uH ]‖2.

In Figure 10, we compare the performance of the MC method, the SC method with
the sparse-grid trapezoidal rule (piecewise linear), and the sparse Clenshaw–Curtis
formulas (Chebyshev). Due to the smoothness of uH with respect to ξ, the SC with
the sparse Clenshaw–Curtis formulas has the best convergence rate (≈ 2.64 from linear
regression), the SC with the sparse-grid trapezoidal rule has convergence rate about
1.5, and that of the MC method is only about 0.65. Due to the stochastic nature of the
MC estimator, we can see that its estimation error oscillates while slowly decreasing.

In Table 2, we list different parts of CPU times for the most accurate SC with
the sparse Clenshaw–Curtis formulas in Figure 10, which has about 49805 collocation
points. Since the standard FEM on the fine grid takes 27.38 seconds per sample,
our SC method based on the sparse representation will have computational savings
as long as the total collocation points Non ≥ Noff

1−R = 246, which is obviously true in
our case.

In the third experiment, we reuse the offline computation above to explore the
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Fig. 10. Comparison between the MC method, the SC with the sparse-grid trapezoidal rule
(SC:piecewise linear), and the sparse Clenshaw–Curtis formulas (SC:Chebyshev). It shows that
sparse-grid collocation with high order quadrature rules is superior in this example.

Table 2
Computation cost for SC on a sparse grid (units: s).

Offline Online Online per sample
6700 488 0.0098 (1/R = 2800)
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Fig. 11. Oscillatory function applied to the x-direction or y-direction.

anisotropic property of this random media. We first set

u(x, y, ω) |x=0.1 = u(x, y, ω) |x=0.9= g(y),

n · ∇u = 0 on ∂D,
(5.3)

where g(y) is the oscillatory function shown in Figure 11. With zero-source term, we
get one solution uH(x, y, ω).

We then set the same zero-Neumann boundary condition and zero-source term
but specify the oscillatory function in the y-direction,

(5.4) u(x, y, ω) |y=0.1= u(x, y, ω) |y=0.9= g(x),

and get another solution uH(x, y, ω)
We compute 105 samples for each example and compare their means in Figure 12.

Because the results of the two approximations are visually the same, we show only the
results from the random interpolation method. Since high conductivity channels are
presented along the x-direction, the medium behaves as a homogeneous medium in
the first setting but shows high conductivity in the second setting. Note that our local
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Fig. 12. Left: Oscillatory condition applied in the x-direction. Right: Oscillatory condition
applied in the y-direction. The medium behaves as a homogeneous medium in the first setting but
shows high conductivity in the second setting.
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Fig. 13. Left: One sample of the anisotropic random media. Right: The eigenvalues of the
global and local KL expansion for covariance function Covβ .

upscaled quantities Sm are independent of the boundary conditions and the source
functions, and thus we can reuse them for different settings.

5.3. A 2d example with short correlation length. In this example, we
consider the 2d elliptic problem (1.1) in the physical domain D = [0, 1]2 with the
source b(x1, x2) = 2 + x1x2 and the zero Dirichlet boundary condition. The random
medium κ(x, ω) is given as

(5.5) κ(x, ω) = 0.1 + exp(β(x, ω)),

where β(x, ω) is a Gaussian random field with zero mean and a Gaussian covariance
function,

(5.6) Covβ(x,y) = exp

(
−|x1 − y1|2

l21
− |x2 − y2|2

l22

)
, l1 = 1, l2 =

1

64
.

Here, we have different correlation lengths in x1 and x2 directions to model the
anisotropic media. A sample of the random media is shown in Figure 13(left). We
can clearly see the small scales in the x2-direction due to the small correlation length.

We apply our StoMsFEM to solving this elliptic problem on a coarse mesh TH
with mesh size Hx = Hy = 2−6, which does not resolve the fine scales. For the local
upscaling method, we use the MsFEM with oversampling ratio η = 2 and with the
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Fig. 14. Interpolation error of Sm1,1 on sparse grids versus number of interpolation nodes.

oscillatory boundary condition under the Petrov–Galerkin formulation. We solve the
local cell problems (2.10) on a fine mesh Th with mesh size hx = hy = 2−11. For
the parametrization on every local patch, i.e., every oversampling domain, we use the
local KL expansion. Figure 13(right) shows the eigenvalues for the global and local
KL expansions of the Gaussian covariance function Covβ(x,y). It is obvious that
the local KL expansion exhibits a much faster eigenvalue decay than the global KL
expansion. In fact, to keep about 99% of the total spectrum, the global KL requires
168 terms, whereas the local KL expansion (on the oversampling domain) requires
only 4 terms. The stochastic dimensionality of the global KL expansion is 168, which
is too high for most gPC-based stochastic methods. On the other hand, the local
stochastic dimensionality is only 4, and the random interpolation method works well
in this nonaffine parametrization setting.

In the offline stage, we construct the interpolants Ŝm for the local upscaled stiff-
ness matrices. Notice that the local parameters have a standard normal distribution,
whose support is (−∞,+∞). To make the interpolation pointwise accurate, we con-
struct interpolants when all the parameters lie in [−3, 3]. We utilize the polynomial
interpolation on the Chebyshev Gauss–Lobatto sparse grid [37, 36]. The interpolation
error is estimated by the largest error among 104 randomly drawn points. The rela-
tive interpolation error of Sm1,1 versus the number of interpolation nodes is shown in
Figure 14. We show the results for three local KL expansions, which keep 95%, 99%,
and 99.9% of the total spectrum and whose local dimensions are 3, 4, and 5, respec-
tively. We also plot the interpolation error with the piecewise linear interpolation on
the Clenshaw–Curtis sparse grid. We can clearly observe that with the same number
of interpolation nodes, the high-order polynomial interpolation is more accurate than
the piecewise linear interpolation. In Figure 14, we consider only the interpolation

error, i.e., Ŝ
m

(ξm) − Sm(ξm). Given a sample of the medium, denoted as κ(x, ω),
we project it onto the local KL modes, obtain the local parameters ξm, and truncate
the small terms in the local KL expansion. The upscaled stiffness matrix Sm(ξm) is
defined based on this truncated local KL expansion. Due to this truncation, we in-
troduce another source of error Sm(ξm)−Sm(ω), where Sm(ω) is the exact upscaled
stiffness matrix based on the sample κ(x, ω). This truncation error is plotted in Fig-
ure 15 with respect to the number of terms we keep in the local KL expansion. The
error is estimated by the largest error among 104 randomly drawn samples. We notice
that the errors decay as more terms in the local KL expansion are retained. We also
note that the errors decay more slowly than those in Figure 14, which implies that the

predominant contribution in the overall error Ŝ
m

(ξm)−Sm(ω) is from the truncation
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Fig. 15. Error of Sm1,1 versus the number of terms retained in the local KL expansion.

of the local KL expansion. A theoretical result to estimate the parametrization error
can be found in Corollary 2.1 in [3].

We emphasize that the errors introduced by truncation of the local KL expansions
will typically dominate the errors induced by random interpolation or reduced basis
method when computing Sm(ω). As we discussed in section 3.1.1, Sm(ξm) is smooth,
and thus the random interpolation method will converge very fast. In addition, since
the local dimensions are of order 1, we are able to compute reasonably high-order
interpolants. The fast convergence and locally low dimensionality mean that we can
easily drive the interpolation error Ŝm(ξm) − Sm(ξm) below the error induced by
the truncation of the local KL expansions, i.e., Sm(ξm) − Sm(ω). Consequently,
the error arising from the local KL expansion provides the leading contribution to
the total error of the StoMsFEM method. Errors introduced by the parametrization,
e.g., either the standard KL expansion or the local parametrization methods in section
2.1, should be considered as modeling error, since they are not directly related to the
StoMsFEM algorithm. Moreover, the local parametrization methods presented in this
paper have smaller parametrization error compared with the popular parametrization
by the global KL expansion, because the local parametrization methods allow one to
capture a greater percentage of the uncertainties due to the fast eigenvalue decay in
the local KL expansion.

In the online stage, we retain four terms in the local KL expansion, which keeps
99% of the total spectrum. The interpolants for Sm(ξm) have about 1000 interpo-
lation nodes, and the maximal relative error is below 1%, which is smaller than the
error induced by the truncated local KL expansion. For every sample, we first gen-
erate the media sample κ(x, ω) by the standard spectral method. Then we project
it onto the local KL modes and get the local parameters ξm. If all the local pa-

rameters lie in [−3, 3], we evaluate the interpolant Ŝm. Otherwise, we directly solve
the multiscale basis functions on the fine grid and assemble the local stiffness matrix
directly from (2.10) and (2.11). In our case, the probability of doing interpolation
for a local stiffness matrix is 0.9892, and with a very small probability 0.0108 the
multiscale basis functions are required to solve on the fine grid. Finally, we solve the
upscaled system (2.12) to get the coarse-grid solution ûH . In Figure 16, we show
the solution sample corresponding to the media sample in Figure 13. We find that
the error ûH − uH induced by the interpolation is of order 10−5, while the error
uH(x, ξ) − uH(x, ω) induced by the truncated local KL expansion is of order 10−4.
Therefore, we again confirm that the local truncation error is the main contribution
of the overall error ûH(x, ξ)− uH(x, ω).
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Fig. 16. The sample solution corresponding to the medium sample in Figure 13. There are
several layers in the y-direction (the horizontal direction). The boundaries of these layers are exactly
the low permeability strips in the medium sample.

Table 3
Computational cost for one sample solution (units: s).

Naive MsFEM per sample StoMsFEM (offline) StoMsFEM (online per sample)
602.6104 389.3256 17.8173 (1/R = 34)
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Fig. 17. The statistics of the numerical solutions using 103 samples. Note that the layered
structures in sample solutions have been “homogenized” when we average over samples.

We summarize the computational cost in Table 3. The offline cost for the StoMs-
FEM is extremely small in this example because the random field κ(x, ω) is trans-
lational invariant and we can construct interpolants for Sm(ξm) on only one local
domain. In the online stage, the ratio of the computational cost between the naive
application of the MsFEM and the StoMsFEM is about 34. Finally, we use the
MC method as the global stochastic method to estimate the statistical properties of
ûH(x, ω). In Figure 17 we show its mean and standard deviation estimated from 103

samples. To compute these 103 samples, it takes 17431 seconds for the StoMsFEM.
If we directly compute these samples by naively applying the MsFEM, it would take
6.026 × 105 seconds. We remark that to balance the spatial discretization error and
stochastic sampling error, we need Non ≈ O(H−4) = O(107) samples, and 103 is far
from being enough. This fact shows the necessity of StoMsFEM because the compu-
tational savings from StoMsFEM grows closely with the number of samples we solve
in the online stage.

Remark 5.1. Similar to the two-level MC in Remark 4.1, the error induced by the
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local KL expansion can be corrected with a little more computation. We can write
the coarse-grid solution as

uH(x, ω) = ûH(x, ξ) + uH(x, ω)− ûH(x, ξ).

From Figure 16, we can see that ûH serves as a good variance reduction for the true
solution on the fine grid uH(x, ω). With a few more samples of uH(x, ω), we can
correct the errors introduced both by the random interpolation and by the local KL
expansion.

6. Conclusions and future work. We proposed a stochastic multiscale finite
element method (StoMsFEM) to solve random elliptic PDEs with a high stochastic
dimension. An essential difficulty in solving this type of elliptic random PDE is that
we need to generate a huge number of sample solutions to get an acceptable statistical
estimation and that the computational cost for every sample solution is already quite
high since we need to resolve the small scale features of the solution. The StoMsFEM
saves computational costs for every sample by simultaneously upscaling the stochastic
solutions in the physical space for all random samples and exploring the low stochastic
dimensions of the stochastic solution within each local patch.

Moreover, we proposed two effective methods to achieve this simultaneous local
upscaling. The first method is the random interpolation method, which explores the
high regularity of the local upscaled quantities with respect to the random variables.
The second method is the reduced-order method that explores the low rank property
of the multiscale basis functions within each coarse-grid element. For every sample
solution, our complexity analysis shows that the cost ratio between the StoMsFEM
and the standard FEM on a fine grid is R, where R = O(Nc(h/H)γd) for the random
interpolation method and R = O(K3

m(h/H)γd) for the reduced basis method. In
practice, the savings is even more significant due to highly optimized fast numerical
interpolation methods. In our high contrast example, we observed a factor of 2000
speed-up by the random interpolation method.

We also analyzed how different kinds of errors contributed to the final statistical
estimation error. We showed that the error introduced by the interpolation or the
reduced basis method is negligible, and thus we can treat our approximating solution
ûH(x, ξ) as the solution uH(x, ξ) directly computed from MsFEM. We also showed
that StoMsFEM optimally balances the spatial discretization error from MsFEM and
the stochastic sampling error from the global stochastic methods. In comparison, the
standard FEM on the fine grid wastes a lot of computational resources on resolving
the small scale of the solution in order to reduce the spatial discretization error, while
the total error is actually dominated by the stochastic sampling error. Therefore, to
achieve the same level of estimation error, the StoMsFEM indeed offers a factor of R
computational savings compared with the standard FEM on a fine grid.

In our last numerical example, we discussed the modeling error introduced by the
local KL expansion when we parametrize the random medium. We showed that the
errors introduced by truncating the local KL expansions will typically dominate the
errors induced by the random interpolation or the reduced basis method. In our fu-
ture work, we plan to combine the local parametrization step and the parametric local
upscaling step together, and to optimally balance the modeling error from the local
parametrization and that from the parametric local upscaling. We also briefly dis-
cussed the two-level Monte Carlo approach to achieving an O(h) statistical estimation
error; this topic will be further explored in future work.

D
ow

nl
oa

de
d 

05
/2

5/
17

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC MULTISCALE FINITE ELEMENT METHOD 693

REFERENCES

[1] I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite ele-
ment methods with application to multiscale problems, Multiscale Model. Simul., 9 (2011),
pp. 373–406, https://doi.org/10.1137/100791051.
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