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Abstract

In this work, we present a continuous-time large-population game for modeling market microstructure be-
tween two consecutive trades. The proposed modeling framework is inspired by our previous work [23]. In
this framework, the Limit Order Book (LOB) arises as an outcome of an equilibrium between multiple agents
who have different beliefs about the future demand for the asset. The agents’ beliefs may change according to
the information they observe, triggering changes in their behavior. We present an example illustrating how the
proposed models can be used to quantify the consequences of changes in relevant information signals. If these
signals, themselves, depend on the LOB, then, our approach allows one to model the “indirect” market impact (as
opposed to the “direct” impact that a market order makes on the LOB, by eliminating certain limit orders). On
the mathematical side, we formulate the proposed modeling framework as a continuum-player control-stopping
game. We manage to split the equilibrium problem into two parts. The first one is described by a two-dimensional
system of Reflected Backward Stochastic Differential Equations (RBSDEs), whose solution components reflect
against each other. The second one leads to an infinite-dimensional fixed-point problem for a discontinuous
mapping. Both problems are non-standard, and we prove the existence of their solutions in the paper.

1 Introduction
In this paper, we continue the development of an equilibrium-based modeling framework for market microstruc-
ture, initiated in [23]. As in [23], we analyze the market microstructure in the context of an auction-style exchange
(as most modern exchanges are), in which the participating agents can post limit or market orders. A crucial com-
ponent of such a market is the Limit Order Book (LOB), which contains all outstanding limit buy and sell orders
(time and price prioritized), and whose shape and dynamics represent the liquidity of the market. We are interested
in developing a modeling framework in which the shape of the LOB, and its dynamics, arise endogenously from
the interactions between the agents. This is in contrast to many of the existing results on market microstructure,
which assume that the shape and dynamics of the LOB are given exogenously. Among the many advantages of our
approach is the possibility of modeling the reaction of the LOB to the changes in a relevant market indicator or in
the rules of the exchange.1

Herein, we extend the discrete time modeling framework proposed in [23] to continuous time, and restrict
our analysis to the dynamics of the market between two consecutive trades. The latter simplifies the problem
and is justified by the well known empirical fact that most changes in LOB are not due to trades. We manage to
establish the existence, and obtain a numerically tractable representation, of an equilibrium in a general continuous
time framework, in which the competing agents have different beliefs about the future demand for the asset.
∗Partial support from the NSF grant DMS-1411824 is acknowledged by both authors.
†Address the correspondence to: Mathematics Department, University of Michigan, 530 Church St, Ann Arbor, MI 48104;

sergeyn@umich.edu.
‡We would like to thank the anonymous referees whose constructive remarks helped us improve the paper.
1We refer the reader to [23], whose introduction contains a more detailed explanation of the problems of market microstructure and a

motivation for our study.
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These beliefs determine the future distribution of the demand, given the (common) information observed thus
far. The latter may, e.g., be generated by a relevant signal (or, market indicator). One can view such conditional
distributions as the “models” that the market participants use to predict future demand, and which are based on
the (commonly observed) relevant market indicators. Given the beliefs, the agents choose their optimal trading
strategies (i.e. limit and market orders), aiming to maximize their expected profits, and reach an equilibrium. The
modeling framework proposed herein can be used for predicting the reaction of a market to various changes in the
relevant indicators. In particular, if the relevant market indicator depends on the LOB, our framework allows one
to model the indirect market impact: i.e. how an initial change to the market may cause further changes to it, due
to the information revealed by the initial change (as opposed to the direct impact, e.g., made by a market order
eliminating a part of the LOB). An extreme example of such indirect impact is called “spoofing”, and it is an illegal
activity aimed at manipulating the market. Our model can be used to quantify such indirect market impact, and
it can be, ultimately, used to improve the optimal execution algorithms or to test the consequences of “spoofing”
activity. We provide a simplistic example illustrating the potential applications of our model in Section 5, although
an empirical investigation (including a more careful model specification, and its estimation), which is needed to
make any specific conclusions about the actual market behavior, is left for future research.

On the mathematical side, the problem we analyze is the construction of an equilibrium in a control-stopping
game with a continuum of players (cf. [3], [47], [7], for more on the general theory of continuum-player games).
The main mathematical challenges stem from three sources: the complicated dependence between the individual
payoffs and the controls of other players (which lacks the standard convexity and continuity properties), the pres-
ence of multiple participants (as compared to a two-player game) and the control-stopping nature of the game.
Equilibria in the games with any number of players can often be constructed directly, by means of a system of
Partial Differentia Equations or a system of (Forward-) Backward Stochastic Differential Equations (BSDEs).
However, in the case of multiple players, solving such systems numerically becomes very challenging. In such
cases, the description of an equilibrium is, typically, limited to the proof of its existence, which, in turn, is obtained
by an abstract fixed-point argument. However, even the latter method presents a challenge in the game considered
herein. Namely, the complicated dependence structure between the players’ controls and individual payoffs, along
with the control-stopping nature of the game, make it very challenging (or even impossible) to (a) to find a com-
pact set of individual controls, which is sufficiently large to include any maximizer of the objective function, and
(b) establish the continuity of the objective.2 In order to overcome these challenges, we assume the existence of
agents with “extremal beliefs” to split the problem into two parts: a control-stopping game with two players, and
a pure control game (without stopping) with a continuum of players. Such a split simplifies our task dramatically,
but both resulting problems remain challenging. The first one, concerned with the construction of an equilibrium
in a two-player game, leads to a non-standard system of Reflected BSDEs (RBSDEs), whose components reflect
against each other, and whose generator lacks to desired regularity. In Subsection 3.2, we prove the existence of a
solution to this system, and, in Section 5, we show how it can be computed in a simple example. The second prob-
lem, concerned with the equilibrium in a continuum-player game (without stopping), is formulated as a fixed-point
problem, and is solved in Subsection 4.1. This auxiliary game is complicated by the fact that it has a discontinuous
objective function and does not possess the desired monotonicity properties. Nevertheless, an appropriate “molli-
fication” technique is designed in Subsection 4.1 to construct a solution to the associated fixed-point problem, and,
in turn, to describe an equilibrium in the original market microstructure game. One of the computational benefits
of the solution method proposed herein is that the aforementioned fixed-point problem can be solved separately
for each (t, ω). In particular, it is not necessary to solve a forward-backward system at each step of the iteration,
as it is, for example, done in a typical mean field game (see, e.g., [38], [8]). On the other hand, the local nature of
the fixed-point problem causes additional measurability issues, in the proof of the existence result. All these issues
are addressed in Subsection 4.1, and the main existence result is stated in Theorem 1, in Section 4.

The literature on market microstructure is vast. Most of the theoretical work is concerned with the problem
of a single agent choosing an optimal trading strategy, consisting of limit and/or market orders. The trading
environment (e.g. market impact) for this agent is either specified exogenously, or is determined by the agent
herself, if she is the designated market-maker. The relevant publications include, among others, [2], [40], [15], [5],
[43], [28], [12], [29], [48], [4], [45], [27], [10], and references therein. Nevertheless, none of these works attempt

2Alternatively, one can exploit the monotonicity properties of the objective, to apply a different type of fixed-point theorem. Nevertheless,
such monotonicity is also lacking in the present setting.
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to explain how the key market characteristics (e.g. the shape and dynamics of LOB) arise from the interaction
between multiple market participants. Finally, several recent papers have applied an equilibrium-based approach
to the problem of optimal execution (cf. [46], [31]). These papers describe an equilibrium between several agents
solving an optimal execution problem, with the LOB (or, the market) against which these agents trade being
specified exogenously, rather than being modeled as an output of the equilibrium. The endogenous formation of
LOB in an auction-style exchange (i.e. without a designated market-maker) is investigated, e.g., in [42], [21],
[25], [9], [37], [44], [18]. However, the models proposed in the aforementioned papers do not aim to represent
the mechanics of an auction-style exchange with sufficient precision, which is needed to address the questions we
investigate herein.

The paper is organized as follows. Section 2 describes the proposed continuum-player game and defines the
associated equilibrium. Section 3 introduces an auxiliary two-player game. The latter is interesting in its own
right, but its main purpose is to facilitate the construction of an equilibrium in the continuum-player game. The
equilibria in the two-player game are described by a system of RBSDEs, whose solution components reflect against
each other and whose generator does not satisfy the global Lipschitz and monotonicity properties. Proposition 1,
in Subsection 3.2, provides the existence result for this system, which, to the best of our knowledge, has not been
available before. Section 4 completes the construction of an equilibrium in the continuum-player game, stating the
main result of the paper, Theorem 1. This section, in particular, describes the mollification technique for solving
a fixed-point problem with discontinuity, which appears in the auxiliary continuum-player game. We believe that
this method can be applied to other relevant fixed-point problems, with a similar type of discontinuity. Finally, in
Section 5, we consider a numerical example, in which we compute the equilibrium strategies and show how our
results can be used to study the indirect market impact (illustrated by the particular case of “spoofing”).

2 Modeling framework in continuous time

2.1 Preliminary constructions
We consider an auction-style exchange in which the trades may occur, and the limit orders may be posted, at any
time t ∈ [0, T ]. The market participants are split into two groups: the external investors, who are “impatient”, in
the sense that they only submit market orders and need to execute immediately, and the strategic players, who can
submit both market and limit orders, and who are willing to spend time doing so, in order to get a better execution
price. In our model, we focus on the strategic players, who we refer to as agents, and we model the behavior of
the external investors exogenously, via the external demand. The external demand for the asset is modeled using
three components: the arrival times of the potential external market orders, the value of the potential fundamental
price at these times, and the elasticity of the demand. In our previous investigation [23], we have considered a
general family of discrete time games for an auction-style exchange, with the exogenous demand process given by
a discretization of a (very general) continuous time demand process, over a chosen partition of [0, T ]. One of the
main conclusions of [23] can be, roughly, interpreted as follows: in order for a non-degenerate equilibrium3 to exist
in a high-frequency limit (i.e. as the diameter of the partition vanishes), the agents have to be market-neutral – i.e.
they should not expect the future fundamental price of the asset to increase or decrease. In other words, the results
of [23] seem to imply that it is hopeless to search for an equilibrium in a continuous time game (i.e. with unlimited
trading frequency) in which the agents have non-trivial trading signals about the direction of the future moves of the
asset price. This may sound very discouraging, however, there is a subtle feature hidden in the setting considered
in [23]. Namely, the assumptions of [23] imply that, in the limiting high-frequency regime, the (potential) external
market orders arrive with an infinite frequency, while the beliefs of the agents (i.e. their trading signals) satisfy
certain continuity properties. In other words, the agents’ signals are assumed to be persistent relative to the trades
– they cannot change on the same time scale on which the market orders arrive. It turns out that this assumption is
crucial, and, allowing the (potential) external market orders to arrive at a finite frequency, and making the agents’
beliefs be short-lived (i.e. only lasting until the next market order is executed), we can obtain a non-degenerate
equilibrium in the continuous time (i.e. unlimited trading frequency) regime. Thus, herein, we model the arrival of

3Degeneracy of an equilibrium is defined formally in [23]. For the discussion presented herein, it suffices to know that degeneracy is an
extremal state of the market, and the present work is concerned with the description of the typical (or, normal) states.
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the (potential) external market orders via a (rather general) point process, and we assume that the game ends after
the first trade occurs.

Let (Ω, F̃ = (F̃t)t∈[0,T ],P) be a stochastic basis, satisfying the usual conditions, and supporting a (multidi-
mensional) Brownian motion W and a Poisson random measure N . We assume that the compensator of N is finite
on [0, T ] × R (i.e. N is the jump measure of a compound Poisson process) and that it is absolutely continuous
w.r.t. Lebesgue measure in time and space. We denote by FW the usual augmented filtration generated by W .
We assume that W and N are independent under P. The arrival times of the potential external market orders and
the values of the potential fundamental price at these times are described by a counting random measure M on
[0, T ]× (R \ {0}), defined as

M(A) =

∫ T

0

∫
R
1A (t, Jt(x))N(dt, dx),

where J : (t, x) 7→ Jt(x) is a predictable random function (as defined in [30]). We assume that J is adapted to FW
(in particular, it is independent of N ). It is clear that the compensator of M is finite on [0, T ]× R, it is absolutely
continuous w.r.t. Lebesgue measure in time and space, and it is adapted to FW . Then, it can be represented as
λtft(x) dt dx, with an R-valued process λ ≥ 0 and a random function f : (t, x) 7→ ft(x) ≥ 0, progressively
measurable and adapted to FW , and s.t.

∫
R ft(x)dx = 1. Notice that, conditional on FWT , M is a Poisson random

measure with the compensator λtft(x) dt dx. The t-components of the atoms of M are the arrival times of the
potential external market orders, and their x-components represent the values of the potential fundamental price at
these times. A positive value of x corresponds to the arrival time of a potential external buy order, and a negative
value corresponds to the arrival time of a potential external sell order. More precisely, we define the fundamental
price process X (or, the reservation price process of external investors) as the jump process of M :

Xt =

∫
R
xM({t} × dx). (1)

Note that the X is the jump process of M , but it is not a cumulative jump process: it stays at X0 = 0 at all
times except the jump times (thus, X can also be interpreted as changes in the fundamental price). We choose
X0 = 0 to simplify the notation. In general, any X0 ∈ R is possible, but the only effect it would have on the
game is shifting all prices and values by X0. To develop a better understanding of the proposed framework, from
the economic point of view, it may be useful to think of X0 as the last transaction price, which occurred right
before the current game started (although this is not important for the mathematical constructions). The process λ
describes the intensity of arrival of the potential external market orders (both buy and sell). The function ft is the
probability density of the value of the potential fundamental price at time t. We refer to f as the density process of
the jump sizes. When the jump size of the fundamental price (along with the demand elasticity, defined below) is
not enough to trigger a trade, the jump remains “unregistered” by the agents, and the fundamental price returns to
zero. The elasticity of the external demand for the asset is described by the progressively measurable random field
D : (t, p) 7→ Dt(p), adapted to FW . We assume that, a.s., Dt(·) is a strictly decreasing continuous function taking
value zero at zero. Then, the total external demand to buy and sell the asset at time t, at the price level p and at all
more favorable prices, is equal to

D+
t (p) = max

(
0, Dt(p−Xt)1{Xt>0}

)
, D−t (p) = −min

(
0, Dt(p−Xt)1{Xt<0}

)
, (2)

respectively.
At any time t, every agent (i.e. strategic player) is allowed to submit a market order or a limit order. The

assumptions made further in the paper make it possible to submit a limit order at such a level that it may never
get executed – this, effectively, allows the agents to wait (i.e. do nothing). We do not allow for any time-priority
in the limit orders. Instead, we assume that the tick size is zero (the set of possible price levels is R), and, hence
an agent can achieve a priority by posting her order slightly above or below the competing ones (and arbitrarily
close to them). The game stops at the terminal time T or at the time when the first trade occurs – whichever one
is the earliest. The mechanics of order execution are explained in the next subsection. There is an infinite number
of agents, and the inventory of an agent is measured in “shares per unit mass of agents” (see a discussion of
this assumption in [23]). We assume that the agents are split into two groups: the ones whose initial inventory s is
positive (the long agents, typically, indicated with a superscript “a”), and those whose initial inventory s is negative
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(the short agents, indicated with a superscript “b”). We assume that the absolute size of each agent’s inventory is
the same, s ∈ {−1, 1}, and that an agent with inventory s posts orders of size s. These assumptions are motivated
by the results of our previous investigation [23], which demonstrate that, in equilibrium, the absolute value of
agent’s inventory only scales the size of her orders proportionally, but does not change their type and location.4

We also assume that we are given a pair of measurable spaces of beliefs, A and B, and, for each α ∈ A ∪ B, there
exists a subjective probability measure Pα on

(
Ω, F̃

)
, which is dominated by P. An agent with beliefs α models

the external demand under measure Pα. The empirical distribution of the agents across beliefs is given by a pair
of countably additive finite measures µ = (µa, µb), on A and B, respectively. Note that, because the game stops
right after the first market order is executed, the empirical distribution µ remains constant throughout the game.
We make the following assumption on the measures {Pα}.

Assumption 1. Under every Pα, W remains a Brownian motion, and the jump process of N is a process with
conditionally independent increments w.r.t. FWT (in the sense of [30]).

The above assumption holds throughout the paper. It implies that, under every Pα, X is a process with condi-
tionally independent increments w.r.t. FWT . Using this observation and the absolute continuity of Pα w.r.t. P, it is
easy to deduce that, under every Pα, the compensator of the jump measure of X , i.e. of the measure M , is given
by

λαt f
α
t (x)dtdx, (3)

with some nonnegative FW -adapted λ and FW -progressively measurable fα, s.t.
∫
R f

α
t (x)dx = 1. The interpreta-

tion of λα and fα is the same as the interpretation of λ and f , but under the measure Pα. Note that we choose not to
change the distribution of W under different measures Pα for a technical reason – in order to avoid Z-dependence
in the generator of the associated RBSDE system (43).

It is clear that Assumption 1 is satisfied if ZαT = dPα/dP is given by a stochastic exponential of a process that
is an integral of FW -adapted random function w.r.t. compensated N . Namely,

dZαt = Zαt−

∫
R

Γαt (x) [N(dt, dx)− λtft(x)dtdx],

where Γα ≥ −1 is FW -progressively measurable. The compensator of N under Pα is obtained by multiplying its
compensator under P by 1 + Γα, hence, Assumption 1 is clearly satisfied in this case (cf. [30]). In Section 5, we
provide an example of a family of probability measures {Pα} in the above form.

In the proposed setting, the compensator of X under Pα, given by (3), represents the supply/demand signal
used by the agents with beliefs α: in particular, it determines the arrival intensities of external buy and sell orders.
Indeed, the value of X is determined uniquely by a path of W and a realization of the random measure N . As
the compensator of N may be different under each Pα, the resulting compensator of X may also vary, however,
it always remains adapted to FW . Thus, the distribution of X under Pα is uniquely determined by the choice of
(λα, fα).5 As a result, the agents’ beliefs can be viewed as the “models” they use to map the observed information,
given by W , into the predictive signal, given by (3).

2.2 The continuum-player game
Throughout the rest of this paper we, mostly, work with the filtration FW , hence, we denote F = FW . The
state of an agent is (s, α) ∈ ({1} × A) ∪ ({−1} × B) =: S. Let us now discuss the controls of the agents and
the order execution rules. First, we assume that α, representing the agent’s beliefs, does not change over time.6

Therefore, the state process of an agent represents only her inventory, which can only change once (because the
game ends after the first trade). The control of every agent is given by a pair of processes (p, v) = (pt, vt)t∈[0,T ],

4Note that the precise setting and the main questions of [23] are not the same as in the present paper. Nevertheless, the two modeling
frameworks have many common features. In particular, in both cases, each agent is risk-neutral and infinitesimally small (hence, has no
individual impact), which, ultimately, causes their equilibrium strategies to simply scale with the size of initial inventory.

5To have a complete model for the external demand, one also needs to know its elasticityD, but the latter is F-adapted, hence, its distribution
is the same under each Pα.

6Note that the conditional distribution of the future demand can change dynamically, according the new information revealed.

5



progressively measurable with respect to F.7 The process p takes values in P(R), the space of probability measures
on R, equipped with the weak topology, while v takes values in R. The second coordinate, v, determines the time
at which the agent decides to submit a market order, and its formal definition is given below. The first coordinate,
pt, indicates the time-t distribution of the agent’s limit orders across the price levels. For example, if pt is a Dirac
measure located at x, then, at time t, the agent posts all her limit orders at the price level x. The collection of
all limit orders is described by the Limit Order Book (LOB), which is a pair of process ν = (νat , ν

b
t )t∈[0,T ], with

values in the finite sigma-additive measures on R, adapted to F. Herein, νat corresponds to the cumulative limit
sell orders, and νbt corresponds to the cumulative limit buy orders, posted at time t.8 The bid and ask prices at any
time t ∈ [0, T ] are given by the random variables

pbt = Q+(νbt ), pat = Q−(νat ),

respectively, where the functions Q− and Q+ act on sigma-additive measures κ on R via

Q+(κ) = sup supp(κ), Q−(κ) = inf supp(κ). (4)

Notice that pbt and pat are always well defined as extended random variables, but may take infinite values.
Assume that, at time t, an agent posts a limit sell order at the price level p′. If the demand to buy the asset

at or below the price level p′, D+
t (p′), exceeds the amount of all limit sell orders posted below p′ at time t, i.e.

D+
t (p′) > νat ((−∞, p′)), then the limit sell order of the agent is executed. Analogous execution rules hold for the

limit buy orders. Thus, if an agent follows the limit order strategy p, her limit order is (partially) executed by an
external market order at the time

T p,a = inf{t ∈ [0, T ] : D+
t

(
Q−(pt)

)
> νat

(
(−∞, Q−(pt))

)
},

T p,b = inf{t ∈ [0, T ] : D−t
(
Q+(pt)

)
> νbt

(
(Q+(pt),∞)

)
},

for the long and short agents, respectively. Let us clarify the meaning of the above formulas. Assume, for simplicity
(and only for the sake of this example), that the demand elasticity curve, D, is deterministic. Note that D+

t ≡
D−t ≡ 0 unless X jumps at t. Thus, the above formulas say that a non-zero fraction of agent’s limit orders is
executed at time t, by an external order, if and only if X jumps at time t, and its jump is sufficiently large, so that
the demand at the agent’s “best limit order” is higher than the size of all limit orders with higher price priority. The
latter, along with continuity of D, ensures that a non-zero fraction of agent’s limit orders is executed at this time.

The value of vt indicates the critical level of the bid or ask price (i.e. a threshold), at which the agent decides
to submit a market order. We assume that the size of the agent’s market order is equal to her inventory, and it is
executed at the bid or ask price available at the time when the order is submitted. Thus, the agent will submit her
own market order at the time

τv,a = inf{t ∈ [0, T ] : vt ≤ pbt}, τv,b = inf{t ∈ [0, T ] : vt ≥ pat },

for the long and short agents, respectively.9 The collection of all thresholds v is described by the pair of processes
θ = (θat , θ

b
t )t∈[0,T ], with values in the finite sigma-additive measures on R, adapted to F.

Remark 1. The above definitions of the execution times make use of the assumption that each agent is infinitesi-
mally small, and, hence, her order is necessarily executed once the demand reaches it. They also use the following
two implicit assumptions: each agent believes that her limit order will be executed first among all orders at the
same price level, and her market order will be executed at the best price available. These assumptions and their
connection to a finite-player game are discussed in [23].

7It may seem natural to assume that the agents’ filtration is enlarged by the information generated by the external trades – i.e. by the jumps
of X that lead to a trade. Note that, since the game ends after the first trade, there may only be one such jump. Then, it is easy to see that the
predictable filtration of the enlarged filtration, restricted to the time interval until the first trade, is F itself. Naturally, we require the controls to
be predictable.

8For convenience, we sometimes refer to νt as a “measure”, rather than a “pair of measures”.
9It is clear that, for every stopping time τv,a/b with respect to F, there exists a process vt, adapted to F, such that τv,a/b has the above

representation.
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Recall that each agent is infinitesimal, hence, even if she executes a non-zero fraction of her inventory, this may
not constitute a trade of non-zero size. We, therefore, define the first “significant” execution time as the first time
when a non-zero mass of agents execute a non-zero fraction of their inventory (i.e. when a non-zero total inventory
mass is traded). Consider the first significant execution times of external market orders:

T a = inf{t ∈ [0, T ] : D+
t (pat ) > 0}, T b = inf{t ∈ [0, T ] : D−t (pbt) > 0}, (5)

Similarly, we define the first significant execution times of internal market orders:

τa = inf{t ∈ [0, T ] : θat ((−∞, pbt ]) > 0}, τ b = inf{t ∈ [0, T ] : θbt ([p
a
t ,∞)) > 0}. (6)

Finally, given (ν,X,D), we define the clearing prices:

p̃c,at = sup{p < Q+(νat ) : D+
t (p) > νat ((−∞, p))}, pc,at = p̃c,at 1{p̃c,at ≥pat },

p̃c,bt = inf{p > Q−(νbt ) : D−t (p) > νbt ((p,∞))}, pc,bt = p̃c,bt 1{p̃c,bt ≤pbt}
.

For a long agent with strategy (p, v), the game ends at the time T p,a ∧ τv,a ∧T ∧T a ∧T b ∧ τa ∧ τ b (and similarly
for the short agents). If an agent has any inventory left at the end of the game, then it is marked to market.10 The
precise rules for computing the payoff of a long agent, using strategy (p, v), are described below.

If the game is terminated by an external market order: T p,a ∧ T a ∧ T b < T ∧ τa ∧ τ b (note that equality
is impossible, as the right hand side is predictable and the left hand side is totally inaccessible).

• If T p,a ∧ T a < T b (equality is impossible), then the payoff is∫ p̃c,at

−∞
zpt(dz) +

∫ ∞
p̃c,at

(pc,at + pbt)pt(dz), with t = T p,a ∧ T a. (7)

• If T b < T p,a ∧ T a, then the payoff is pbT b + pc,b
T b

.

Notice that the remaining inventory of an agent is marked to the bid price shifted by the clearing price. This
choice can be (heuristically) interpreted as follows. Assume that, after the trade, a new game starts, with the agents
having the same distribution of inventory and the same beliefs about the distribution of future jumps of X (i.e. the
same {(λα, fα)}). Then, the only parameter that is different in the new game, as compared to the original one,
is the value of X0, which, in the new game, becomes equal to the clearing price. As mentioned in the discussion
following (1), the new value of X0 will simply shift all prices and values in the new game by X0, hence, the bid
price is shifted by the value of clearing price. Finally, it is easy to deduce (and will be shown later in the paper) that
it is suboptimal for an agent to post a limit buy order at positive levels. Thus, if an external sell order is executed,
the clearing price is non-positive, and, hence, the remaining inventory is marked to the current bid price shifted
downwards (the opposite holds if an external buy order is executed).

If the game is terminated by an internal market order: T ∧ τa ∧ τ b < T p,a ∧ T a ∧ T b.

• If τ b < τa ∧ T then the payoff is paτb .

• If τa ∧ T ≤ τ b then the payoff is pbτa∧T .

To explain the above, assume, e.g., that an internal buy order occurs: i.e. τ b < τa∧T . Note that the internal orders
are different, because they are predictable. Hence, the long agents can act exactly at the time τ b and “flock” their
limit orders to the best ask price, pa, to match the market orders from short agents (who initiated the internal buy
order). On the other hand, if any of the agents (long or short) do not trade at pa, they will mark their inventory to

10There is no canonical way to choose the marking-to-market rules in a setting where agents have no exogenously given valuation of the asset
(and we insist on using such a setting, because we think of the agents as “pure speculators”). In particular, other marking rules are possible.
Herein, we merely make a choice of marking rules which is economically meaningful.
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the bid or ask price shifted by pa, and, since pb ≤ 0 ≤ pa, it is easy to see that it is beneficial for all of them to
trade at pa.11

The following diagram (containing a reference to equation (7)) describes the payoff of a long agent:

t = 0

pbτa
internal sell

paτbinternal buyinternal market order

pbT
no market orders

pbT b + pc,b
T b

external sell

(7)external buy

external market order

Similar rules apply to short agents. Formally, given (ν, θ,X,D), the individual objective of an agent starting
at the initial state (1, α) and using the control (p, v) is given by:

J (ν,θ),(p,v)(1, α) = Eα
[∫

R

(
z1{z≤p̃c,a

T̂p,a
} +

(
pb
T̂p,a

+ pc,a
T̂p,a

)
1{z>p̃c,a

T̂p,a
}

)
pT̂p,a(dz)1{T̂p,a<T b∧τ̂v,a∧τb} (8)

+
(
pbT b + pc,b

T b

)
1{T b<T̂p,a∧τ̂v,a∧τb} +

(
paτb1{τb<τ̂v,a} + pbτ̂v,a1{τb≥τ̂v,a}

)
1{T̂p,a∧T b>τ̂v,a∧τb}

]
where T̂ p,a = T ∧ T p,a ∧ T a, τ̂v,a = T ∧ τv,a ∧ τa, and we assume that 0 · ∞ = 0. Similarly,

J (ν,θ),(p,v)(−1, α) = Eα
[
−
∫
R

(
z1{z≥p̃c,b

T̂p,b
} +

(
pa
T̂p,b

+ pc,a
T̂p,b

)
1{

z<p̃c,b
T̂p,b

}) pT̂p,b(dz)1{T̂p,b<Ta∧τ̂v,b∧τa}
(9)

− (paT b + pc,aTa)1{Ta<T̂p,b∧τ̂v,b∧τa} −
(
pbτa1{τa<τ̂v,b} + paτ̂v,b1{τa≥τ̂v,b}

)
1{T̂p,b∧Ta>τ̂v,b∧τa}

]
where T̂ p,b = T ∧ T p,b ∧ T b, τ̂v,b = T ∧ τv,b ∧ τ b. Every agents aims to maximize her objective. The above
objectives may seem convoluted – this is because they are meant to provide a close approximation of the real-world
execution rules and marking to market. In the next subsection, we establish a more transparent representation of
the objectives.

In the following definitions, we assume that a stochastic basis, a Brownian motion W , a random measure M ,
a random field D, spaces A and B, an associated set of measures {Pα}α∈A∪B, and the empirical distribution µ, are
fixed and satisfy the assumptions made earlier in this section. (Nevertheless, it is shown in Subsection 2.3 that the
input (M, {Pα}) can be replaced by the agents’ signals {λα, fα}.)

Definition 1. For a given market (ν, θ) and a state (s, α) ∈ S, a pair of F-progressively measurable processes
(p, v) is an admissible control, if the positive part of the expression inside the expectation in (8) (if s = 1) or (9)
(if s = −1) has a finite expectation under Pα.

Definition 2. For a given market (ν, θ) and state (s, α) ∈ S, we call an admissible control (p, v) optimal if

J (ν,θ),(p,v)(s, α) ≥ J (ν,θ),(p′,v′)(s, α)

P-a.s., for any admissible control (p′, v′).

In the above, we make the standard assumption of games with a continuum of players: each agent is too small
to affect the distribution of cumulative controls (described by ν) when she changes her control. Next, we define
Nash equilibrium in the proposed game.

11Of course, in practice, not all agents will act at the same time: only a fraction of them will submit the internal market orders at the end of
the game, the others will move on to the next game, with updated X0. However, such “flocking” of agents at the end of the game (provided the
game ends with an internal market order) is consistent with the empirical observation of “clustering trades”.
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Definition 3. A given market (ν, θ) and a pair of F-progressively measurable random fields (p, v) : Ω× [0, T ]×
S→ P(R)× R form an equilibrium, if

1. for µ-a.e. (s, α) ∈ S, (p(s, α), v(s, α)) is an optimal control for (ν, θ) and (s, α),

2. and the following holds P-a.s., for any t < T̄ := T ∧ T a ∧ T b ∧ τa ∧ τ b) and any x ∈ R:

νat ((−∞, x]) =

∫
A
pt (1, α; (−∞, x])µa(dα), νbt ((−∞, x]) =

∫
B
pt (−1, α; (−∞, x])µb(dα), (10)

θat ((−∞, x]) =

∫
A
1{vt(1,α)≤x}µ

a(dα), θbt ((−∞, x]) =

∫
B
1{vt(−1,α)≤x}µ

b(dα). (11)

Note that a trivial equilibrium, in which all agents stop immediately, is always possible. However, such equilib-
rium, clearly, is not sufficient for modeling purposes, and the existence of other, non-trivial, equilibria is far from
obvious. In the remainder of this paper, we use an auxiliary two-player game (cf. Section 3) to identify a class of
more realistic potential equilibria, in which the end time of the game is determined uniquely by the solution of an
associated RBSDE system (cf. (44)), and we prove the existence of equilibrium in this class, in Theorem 1. Even
though it is possible to construct models in which the resulting equilibrium is still trivial (i.e. the end time of the
game is zero), this is not the case in general, as confirmed by the example in Section 5.

Remark 2. In the above definition, it is implicitly assumed that the empirical measure of the agents’ states remains
constant in time until the game is over for all players. This is, indeed, the case, if the equilibrium is such that,
P-a.s., for all t < T̄ , we have:

µ ◦ ((s, α) 7→ St(s, α))
−1

= µ, (12)

with
St(1, α) = 1[0,Tp(1,α),a∧τv(1,α),a)(t), and St(−1, α) = −1[0,Tp(−1,α),b∧τv(−1,α),b)(t).

The condition (12) may fail if a non-zero mass of agents manages to execute their orders strictly before T̄ : i.e. if
T p(1,α),a∧τv(1,α),a < T̄ for a set of α with positive µa-measure, or T p(−1,α),b∧τv(−1,α),b < T̄ for a set of α with
positive µb-measure. The latter cannot occur due to external market orders, because they only arrive at a finite
number of times and, before T a ∧ T b ≥ T̄ , only a zero mass of agents can execute their limit orders against any
such market order (cf. (5)). It is also true that, at any time t, before τa ∧ τ b ≥ T̄ , only a zero mass of agents can
execute their internal market orders (cf. (6)). However, the set of such times t may be uncountable. Therefore, to
ensure that µ remains constant and, hence, (12) holds, it suffices to consider only the equilibria satisfying, P-a.s.,
for all t, except, possibly, a countable set:

vt(1, α) ≥ vat := Q−(θat ), vt(−1, α) ≤ vbt := Q+(θbt ), ∀α ∈ A ∪ B.

In the subsequent sections, we construct such an equilibrium.

2.3 Representation of the objective
In this section, we provide an equivalent representation of the objective of the agents, which makes it more tractable
and more convenient for the analysis that follows. In addition, it shows that the main input parameters for the
proposed equilibrium problem are the signals {(λα, fα)}α∈A∪B, forming the compensators of X under {Pα}, and
the demand elasticity D (the latter is independent of α and, in many realistic models, can be deterministic). In
particular, there is no need to keep track of the random measure N and the probability measures {Pα} – they
are only needed to show that the present setting fits within the standard framework for games with heterogenous
beliefs. The desired representation is derived following standard arguments, making use of the independence of
the driving Poisson measure N and the Brownian motion W . First, we introduce new notation that will be used
throughout the paper. For any α ∈ A∪B, t ∈ [0, T ], p, x, y ∈ R and κ ∈ P(R), we define the instanteneous filling
rates for limit orders at levels x and y:

F+,α
t (x) =

∫ ∞
x∨0

fαt (u)du, F−,αt (y) =

∫ y∧0

−∞
fαt (u)du, cαt (x, y) = λαt

(
F−,αt (y) + F+,α

t (x)
)
. (13)
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Next, we define the clearing price as a function of the fundamental price x:

lc,at (x) = sup
{
p < Q+(νat ) : Dt(p− x) > νat ((−∞, p))

}
, (14)

lc,bt (x) = inf
{
p > Q−(νbt ) : −Dt(p− x) > νbt ((p,∞))

}
. (15)

Notice that, if X has a positive jump at time t, then the clearing price at time t is given by p̃c,at = lc,at (Xt).
Similarly, if X has a negative jump at time t, then p̃c,bt = lc,bt (Xt). Finally, we introduce the instantaneous reward
rates from executed limit orders, distributed according to κ, with the bid and ask prices y and x:

hα,at (κ, x, y) = λαt

∫ ∞
(Q−(κ)∧x)∨0

fαt (u)

[∫ lc,at (u)

−∞
zκ(dz) +

(
y + lc,at (u)1{lc,at (u)≥x}

)
κ ((lc,at (u),∞))

]
du

(16)

+λαt

∫ y∧0

−∞
fαt (u)

(
y + lc,bt (u)

)
du,

hα,bt (κ, x, y) = λαt

∫ (Q+(κ)∨y)∧0

−∞
fαt (u)

[∫ ∞
lc,bt (u)

zκ(dz) +
(
x+ lc,bt (u)1{lc,bt (u)≤y}

)
κ
(

(−∞, lc,bt (u))
)]

du

(17)

+λαt

∫ ∞
x∨0

fαt (u) (x+ lc,at (u)) du.

Using the above notation, we can obtain a simplified expression for the objective, given in the following lemma.
Note that the expectation in this representation is taken under the reference measure, and the objective depends
only on the cumulative actions (ν, θ) and on ({λα, fα}, D) (as the expressions in (13)–(17) depend only on
({λα, fα}, D)).

Lemma 1. Let Assumption 1 hold. Given a market (ν, θ), for any α ∈ A ∪ B and any admissible strategy (p, v),
we have:

J (ν,θ),(p,v)(1, α) = E
[ ∫ τ̂v,a∧τb

0

exp

(
−
∫ s

0

cαu
(
pau ∧Q−(pu), pbu

)
du

)
hα,as (ps, p

a
s , p

b
s)ds (18)

+ exp

(
−
∫ τ̂v,a∧τb

0

cαu
(
pau ∧Q−(pu), pbu

)
du

)(
paτb1{τb<τ̂v,a} + pbτ̂v,a1{τb≥τ̂v,a}

) ]
,

J (ν,θ),(p,v)(−1, α) = −E
[ ∫ τ̂v,b∧τa

0

exp

(
−
∫ s

0

cαu
(
pau, p

b
u ∨Q+(pu)

)
du

)
hα,bs (ps, p

a
s , p

b
s)ds (19)

+ exp

(
−
∫ τ̂v,a∧τb

0

cαu
(
pau, p

b
u ∨Q+(pu)

)
du

)(
pbτa1{τa<τ̂v,b} + paτ̂v,b1{τa≥τ̂v,b}

) ]
,

where τ̂v,a = T ∧ τv,a ∧ τa, τ̂v,b = T ∧ τv,b ∧ τ b and the expectations are taken under P.

Proof: The proof follows easily by conditioning on W . Notice that, conditional on FT , M is a Poisson random
measure, with the deterministic compensator λαt f

α
t (x) dt dx, which is finite on [0, T ]×R. Recall also thatD, ν, θ,

p, v, pa, pb, τv,a, τv,b, τa, τ b, and all the random functions defined above the lemma, are adapted to F. Conditional
onFT , they become deterministic functions of time. Recall the fundamental price process,Xt =

∫
R xM({t}×dx),

and introduce
Yt = Xt

(
1{Xt>(pat∧Q−(pt))∨0} + 1{Xt<pbt∧0}

)
.

Notice that T̂ p,a is the time of the first positive jump of Yt, and T b is the time of its first negative jump. Notice
also that, conditional on FT , the clearing price p̃c,at becomes a deterministic function of t and Yt: p̃

c,a
t = lc,at (Yt).

Thus, conditional on FT , the expression inside the expectation in (8) becomes a function of the time and size of
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the first jump of Y . Conditional on FT , X is the jump process of a Poisson random measure with the compensator
λαt f

α
t (u)dudt. It is also clear that, conditional on FT , Y is the jump process of a non-homogeneous compound

Poisson process with intensity cαt
(
pat ∧Q−(pt), p

b
t

)
, and with the distribution of jump sizes at time t given by

λαt f
α(x)

cαt
(
pat ∧Q−(pt), pbt

) (1{x≤pbt∧0} + 1{x≥(pat∧Q−(pt))∨0}

)
dx.

A standard computation, then, yields (18). The equation (19) is derived similarly. The expectations in (18) and
(19) are taken under P, because the expressions inside the expectations are adapted to F = FW , and W has the
same distribution under P and Pα.

3 A two-player game
In this section, we consider an auxiliary non-zero-sum two-player control-stopping game. It is related to the
continuum-player game, but the precise connection will be established in the subsequent sections. We refer the
reader to [33], [34], and the references therein, for more on non-zero-sum two-player control-stopping games.12 It
is worth mentioning, however, that the present game does not fall within any of the classes considered before. A
more detailed description of this class of games is carried out in our forthcoming work [22].

Assume that all the probabilistic constructions made in Subsection 2.1 are in place. Namely, we are given a
stochastic basis, with a Brownian motion W , a Poisson measure N , a counting random measure M , a family of
probability measures {Pα}, and with the demand elasticity process D, as described in Section 2. We assume that
Assumption 1 holds. Assume, in addition, that A = {α0} and B = {β0}. Consider a two-player game, in which
the first (long) player starts with the initial inventory 1 and has beliefs α0, and the second (short) player starts with
the initial inventory −1 and has beliefs β0. The game proceeds according to the rules similar to those described in
the previous section: each agent can post limit orders on the respective side of the book, or can terminate the game
by submitting a market order. The execution of limit orders against the external market orders occurs in exactly
the same way as described in the previous section. However, herein, at any given time, each agent is only allowed
to post limit orders at a single location (i.e. the control pt is a Dirac measure). In addition, the main difference
between the present game and the one defined in the previous section is that, herein, each player has a non-zero
mass and, hence, can affect the LOB. In fact, since there is only one player on each side of the book, the LOB is
given by a combination of two Dirac measures: νat = δpat , νbt = δpbt , controlled by the locations of the players’
limit orders: pa for the long agent, and pb for the short one. Clearly, pa also coincides with the ask price, and pb is
the bid price. Note that each of these prices is now controlled by a single agent, which is not the case in the original
game described in the previous section. The same is true for the stopping thresholds: θa and θb are given by Dirac
measures, and the locations of these measures correspond to the thresholds va and vb used by the long and short
agents, respectively. In this new game (due to its simplicity), it turns out to be more convenient to work with the
associated stopping times τa and τ b. In fact, we will further constraint the agents’ controls, so that τa = τ b =: τ
and paτ = pbτ = p̄τ . The meaning behind these constraints is clear: every agent assumes that the counterparty will
execute a market order at exactly the same time as she does, and that these orders are executed at the same price.
Taking into account the above considerations, we transform (8) into the objective of a long player:

J̃a,(p
b,p̄),(p,τ) = Eα

0 [
pTp,a1{Tp,a<T b∧τ} + 2pbT b1{T b<Tp,a∧τ} + p̄τ1{Tp,a∧T b>τ}

]
, (20)

where pb, p̄ and p are R-valued F-adapted processes, τ is a stopping time with values in [0, T ], and

T b = inf{t ∈ [0, T ] : Xt < pbt}, T p,a = inf{t ∈ [0, T ] : Xt > pt}, Xt = M({t} × R).

Similarly, for the short agents,

J̃b,(p
a,p̄),(p,τ) = −Eα

0 [
pTp,b1{Tp,b<Ta∧τ} + 2paTa1{Ta<Tp,b∧τ} + p̄τ1{Tp,b∧Ta>τ}

]
, (21)

12See, e.g., [19], [36], [17], [6], and the references therein, for the related classical Dynkin games, which are zero-sum and stopping-only.
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where pa, p̄ and p are R-valued F-adapted processes, τ is a stopping time with values in [0, T ], and

T a = inf{t ∈ [0, T ] : Xt > pat }, T p,b = inf{t ∈ [0, T ] : Xt < pt}.

Using Lemma 1, we deduce the following form of the objective functions

J̃a,(p
b,p̄),(p,τ) = E

[ ∫ τ

0

exp

(
−
∫ s

0

cα
0

u (pu, p
b
u)du

)
gas (ps, p

b
s)ds (22)

+ exp

(
−
∫ τ

0

cα
0

u (pu, p
b
u)du

)
p̄τ

]
,

where cα is defined in (13) and

gat (x, y) = λα
0

t

(
2yFα

0,−
t (y) + xFα

0,+
t (x)

)
. (23)

Similarly,

J̃b,(p
a,p̄),(p,τ) = −E

[ ∫ τ

0

exp

(
−
∫ s

0

cβ
0

u (pau, pu)du

)
gbs(p

a
s , ps)ds (24)

+ exp

(
−
∫ τ

0

cβ
0

u (pau, pu)du

)
p̄τ

]
,

where
gbt (x, y) = λβ

0

t

(
yF β

0,−
t (y) + 2xF β

0,+
t (x)

)
. (25)

To ensure that the above expressions are well defined, and to analyze the equilibrium in a two-player game, we
need to make the following assumptions.

Assumption 2. There exists a constant C ′ > 0, s.t., P-a.s., |λαt |, |fαt (x)| ≤ C ′, for all α ∈ A ∪ B, t ∈ [0, T ] and
x ∈ R.

We also assume that the possible price jump sizes are bounded.

Assumption 3. There exists a constant Cp > 0, s.t., P-a.s., supp(fαt ) ⊆ [−Cp, Cp], for all α ∈ A ∪ B and
t ∈ [0, T ].

Denote by S2 the set of continuous F-adapted processes Y , such that sup0≤t≤T |Yt| ∈ L2. We say that the
terminal execution price p̄ is admissible if p̄ ∈ S2. A control (p, τ) is admissible if p is F-progressively measurable,
satisfying, P-a.s., |pt| ≤ Cp for all t ∈ [0, T ], and τ is F-stopping time. Next, we introduce the notions of optimality
and equilibrium in the two-player game – they are analogous to Definitions 2–3.

Definition 4. For a given admissible (pb, p̄), we call an admissible control (p, τ) optimal for the long agent if

J̃a,(p
b,p̄),(p,τ) ≥ J̃a,(p

b,p̄),(p′,τ ′),

for any admissible control (p′, τ ′). Similarly, for a given admissible (pa, p̄), we call an admissible control (p, τ)
optimal for the short agent if

J̃b,(p
a,p̄),(p,τ) ≥ J̃b,(p

a,p̄),(p′,τ ′),

for any admissible control (p′, τ ′).

Definition 5. A combination (pa, pb, τ, p̄) is an equilibrium in the two-player game, if it is admissible and, given
(pb, p̄), the control (pa, τ) is optimal for the long agent, while, given (pa, p̄), the control (pb, τ) is optimal for the
short agent.

In the next subsection, we characterize the equilibrium strategies via a system of Reflected Backward Stochastic
Differential Equations (RBSDEs).
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3.1 Characterizing the equilibria via a system of RBSDEs
The next assumptions are used to guarantee the uniqueness and regularity of the optimal control of an agent.

Assumption 4. P-a.s., for any α ∈ A ∪ B and t ∈ [0, T ], fαt (·) is continuous in the interior of its support,
fαt (0) = 0, and 0 < F+,α

t (0) < 1.

Assumption 5. P-a.s., for any α ∈ A and t ∈ [0, T ], F+,α
t (·)/fαt (·) is a decreasing function in the interior

of supp(fαt ) ∩ R+, vanishing at the right end of the interval. Similarly, P-a.s., for any β ∈ B and t ∈ [0, T ],
F−,βt (·)/fβt (·) is an increasing function in the interior of supp(fβt )∩R−, vanishing at the left end of the interval.

Remark 3. The monotonicity of F+,α
t (·)/fαt (·), for example, is implied by the log-concavity of the distribution of

positive jumps (similarly, for the negative jumps). Instead of requiring that F+,α
t (·)/fαt (·) is decreasing, it suffices

to assume that its growth rate is bounded from above by 1− ε, for a constant ε > 0 independent of (t, ω).

To prove the existence of a solution to a system of RBSDEs characterizing the equilibria in a two-player game,
we also need to assume that “the range of beliefs is relatively bounded”.

Assumption 6. There exists a constant C > 0, s.t., P-a.s.:

1

C
≤

∣∣∣∣∣λα
0

t

λβ
0

t

∣∣∣∣∣ ≤ C, 1

C
≤

∣∣∣∣∣fα
0

t (x)

fβ
0

t (x)

∣∣∣∣∣ ≤ C, ∀x ∈ R t ∈ [0, T ].

First we analyze the individual optimization problem of an agent, taking the actions of the counterparty as
given. Assume that we are given a process p̄ ∈ S2 and progressively measurable (pa, pb), such that P-a.s.,
|pat |, |pbt | ≤ Cp, ∀t ∈ [0, T ]. Let us introduce the value functions of the agents:

V at = ess supτ∈Tt, p E
[ ∫ τ

t

exp

(
−
∫ s

t

cα
0

u (pu, p
b
u)du

)
gas (ps, p

b
s)ds (26)

+ exp

(
−
∫ τ

t

cα
0

u (pu, p
b
u)du

)
p̄τ

∣∣∣Ft],
V bt = ess infτ∈Tt, p E

[ ∫ τ

t

exp

(
−
∫ s

t

cβ
0

u (pau, pu)du

)
gbs(p

a
s , ps)ds (27)

+ exp

(
−
∫ τ

t

cβ
0

u (pau, pu)du

)
p̄τ

∣∣∣Ft],
where Tt is the set of F-stopping times with values in [t, T ], p is any F-progressively measurable process, with
|p| ≤ Cp, and cα, ga and gb are defined in (13), (23) and (25). In addition, we introduce the following random
functions:

Ga,xt (y, z) = −cα
0

t (x, z)y + gat (x, z), x, y ∈ R,

Gat (y, z) = sup
x∈R
Ga,xt (y, z) = −cα

0

t (P at (y), z) y + gat (P at (y), z) , y ∈ R,

where P at provides the optimal price location at the ask side, given in a feedback form:

P at (y) = inf arg max
p∈R

(p− y)F+,α0

t (p), y ∈ R. (28)

Similarly, for any admissible pa, we define

P bt (y) = sup arg max
p∈R

(y − p)F−,β
0

t (p), y ∈ R, (29)

Gbt (z, y) = −cβ
0

t

(
z, P bt (y)

)
y + gbt

(
z, P bt (y)

)
, y ∈ R.
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The value of P at (y) can be described as the unique nonnegative solution p of

p− y = F+,α0

t (p)/fα
0

t (p), (30)

unless y is too large, in which case P at (y) is the upper boundary of the support of fα
0

t , or too small, in which case
P at (y) = 0. Similarly, P bt (y) is the unique non-positive solution p of

y − p = F−,β
0

t (p)/fβ
0

t (p), (31)

or the lower boundary of the support of fβ
0

t , if y is too small, or zero, if y is too large.

Lemma 2. Let Assumptions 1–5 hold. Then, the random functions P a and P b are progressively measurable and
satisfy, P-a.s., for all t ∈ [0, T ]:

0 ≤ P at (y) ≤ Cp, −Cp ≤ P bt (y) ≤ 0, P at (y) ≥ y, P bt (y) ≤ y, ∀y ∈ R,

and, in addition, P at (·) and P bt (·) are non-decreasing and 1-Lipschitz.

Proof: The progressive measurability property and the above inequalities follow directly from Assumptions 2–4.
The monotonicity and 1-Lipschitz property follow from Assumption 5 and the representations (30)–(31).

The above lemma, along with Assumptions 2–4, implies that, for any admissible (p, pb, p̄), Gat (0, pbt) and
Ga,ptt (0, pbt) are bounded processes, and that Gat (y, pbt) and Ga,ptt (y, pbt) are Lipschitz in y, uniformly over a.e.
(t, ω). This allows us to use Proposition 7.1 from [35], to show that, for any admissible (p, pb, p̄), the process Y ,
which is a continuous modification of

Yt := Ĵ
a,(pb,p̄),p
t = ess supτ∈Tt E

[ ∫ τ

t

exp

(
−
∫ s

t

cα
0

u (pu, p
b
u)du

)
gas (ps, p

b
s)ds

+ exp

(
−
∫ τ

t

cα
0

u (pu, p
b
u)du

)
p̄τ

∣∣∣Ft],
is the unique S2 solution of the affine RBSDE,

−dYt = Ga,ptt (Yt, p
b
t)dt− ZtdWt + dKt 0 ≤ t ≤ T (32)

Yt ≥ p̄t 0 ≤ t ≤ T,
∫ T

0

(Yt − p̄t)dKt = 0 (33)

YT = p̄T , (34)

where Z is a progressively measurable square-integrable (multidimensional) process, K ∈ S2 is increasing and
satisfies K0 = 0. Similarly, the existence results from [35] imply that

−dYt = Gat (Yt, p
b
t)dt− ZtdWt + dKt 0 ≤ t ≤ T (35)

Yt ≥ p̄t 0 ≤ t ≤ T
∫ T

0

(Yt − p̄t)dKt = 0 (36)

YT = p̄T (37)

has a unique solution (Yt, Zt,Kt). Then, Theorem 7.2 in [35] implies that Y is a continuous modification of V a,
and that pat = P at (Yt) and τa = inf{s ≥ 0: Ys = p̄s} form an optimal control for the long agent. Similarly, for a
given admissible (pa, p̄), there exists a unique solution (Yt, Zt,Kt) to

−dYt = Gbt (pat , Yt)dt− ZtdWt − dKt 0 ≤ t ≤ T (38)

Yt ≤ p̄t 0 ≤ t ≤ T,
∫ T

0

(p̄t − Yt)dKt = 0 (39)

YT = p̄T , (40)
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Y is a continuous modification of V b, and pbt = P bt (Yt) and τ b = inf{s ≥ 0: Ys = p̄s} form an optimal control
for the short agent. It turns out that, because the optimal stopping time has to be the same for both agents in
equilibrium, we can formulate a system of equations for V a and V b without p̄. In order to state this result formally,
we need to introduce the following random functions

G̃at (y, z) = Gat (y, P bt (z)) = −cα
0

t

(
P at (y), P bt (z)

)
y + gat

(
P at (y), P bt (z)

)
, y, z ∈ R, (41)

G̃bt (y, z) = Gbt (P at (y), z) = −cβ
0

t

(
P at (y), P bt (z)

)
z + gbt

(
P at (y), P bt (z)

)
, y, z ∈ R, (42)

where cα, ga and gb are defined, respectively, in (13), (23) and (25), and P a and P b are given by (28) and (29).

Lemma 3. Let Assumptions 1–6 hold. For any equilibrium (pa, pb, τ, p̄) in the two-player game (in the sense of
Definition 5), the value functions of the agents, V a, V b ∈ S2, satisfy

−dV at = G̃at (V at , V
b
t )dt− Zat dWt + dKa

t

−dV bt = G̃bt (V at , V bt )dt− Zbt dWt − dKb
t

V at ≥ V bt ∀t ∈ [0, T ],
∫ T

0
(V at − V bt )d(Ka

t +Kb
t ) = 0

V aT = V bT ,

(43)

with some increasing processes Ka,Kb ∈ S2, starting at zero, and with progressively measurable square-
integrable (Za, Zb). Moreover, (p̂a, p̂b, τ̂ , p̄) also form an equilibrium, with the same value functions, where:
p̂at = P at (V at ), p̂bt = P bt (V bt ) and τ̂ = inf{s ≥ 0: V as = V bs }. Conversely, given a solution to (43), we can define
the optimal controls (p̂a, p̂b, τ̂) as above, and choose p̄ = (1 − η)V a + ηV b, with any progressively measurable
process η taking values in (0, 1), to obtain an equilibrium (p̂a, p̂b, τ̂ , p̄).

Proof: Consider an equilibrium (pa, pb, τ, p̄). As discussed earlier, the standard results on BSDEs (cf. [35]) imply
that (V a, Za,Ka) solves (35)–(37), and (V b, Zb,Kb) solves (38)–(40) (both systems are considered with the same
p̄). It follows from the optimality of τ , via the standard theory, that V bτ = p̄τ = V aτ . Consider the long agent. It is
clear that the objective of the long agent cannot increase if we replace p̄ by V b in its definition (cf. (22)). On the
other hand, τ is optimal and p̄τ = V bτ , hence, the value function V a remains the same if we replace p̄ by V b in its
definition (cf. (26)). Therefore, (V a, Za,Ka) solves (35)–(37) with p̄ replaced by V b. Similar argument applies
to the short agent, and yields that (V b, Zb,Kb) solves (38)–(40) with p̄ replaced by V a. Next, using the optimality
of pa and the comparison principle for the BSDE (32), we easily deduce that, for a.e. (t, ω), pat coincides with
p̂at = P at (V at ) whenever λα

0

t > 0 and V at < sup supp(fα
0

t ). On the other hand, Assumption 6 implies that, if
λα

0

t = 0 or V at ≥ sup supp(fα
0

t ), then λβ
0

t = 0 or V at ≥ sup suppfβ
0

t , and, in turn, Gbt
(
pat , V

b
t

)
= Gbt

(
p̂at , V

b
t

)
.

Thus, we conclude that V b satisfies (38)–(40) with pa replaced by p̂a. Similarly, we conclude that V a satisfies
(35)–(37) with pb replaced by p̂b. Thus, (V a, V b) satisfy (43).

Next, consider a solution to (43). Choosing p̄ as shown in the statement of the lemma, we conclude that
(V a, Za,Ka) solves (35)–(37), with pb replaced by p̂b. Then, the standard results (cf. [35]) imply that, given p̂b

and p̄, V a is the value function of the long agent, and her optimal control is given by p̂a and

inf{s ≥ 0: V as ≤ p̄s} = inf{s ≥ 0: V as = V bs } = τ̂ .

Similar argument applies to the short agent, completing the proof.

3.2 Existence of a solution
In this subsection, we address the question of existence of a solution to the RBSDE (43). The main difficulty in
analyzing (43) is the non-standard form of reflection: the components of the solution reflect against each other, as
opposed to reflecting against a given boundary. Related equations have been analyzed in the literature on BSDEs
arising in the problem of optimal switching: see, e.g., [13], [20], and the references therein. However, the exact
form of reflection in (43) is different, and its generator does not possess the desired monotonicity properties,

15



making it impossible to prove the existence of a solution to (43) using the methods developed in optimal switching
literature. Before we analyze the existence, it is convenient to consider the question of uniqueness. Note that there
are two reflecting components of the solution, but only one minimality constraint, which indicates the potential
lack of uniqueness of a solution to (43). The possibility of an arbitrary choice of η in Lemma 3 leads to the
same conclusion. Indeed, a different choice of η produces a different p̄, which results in a different pair of value
functions (V a, V b), which, nevertheless, have to solve the same system (43). This heuristic observation turns out
to be correct and, in fact, allows us to construct a solution to (43). Consider a solution (V a, V b,Ka,Kb, Za, Zb)
to (43). Introducing Kt = Ka

t + Kb
t , we notice that there must exist a process η, with values in [0, 1], such that

dKa
t = ηtdKt, dKb

t = (1 − ηt)dKt. Then, we introduce the new variables (Ỹ 1, Ỹ 2), s.t. Ỹ 1
t = V at − V bt and

dỸ 2
t = (1 − ηt)dV at + ηtdV

b
t , to replace (V a, V b). Assuming that the change of variables can be inverted, one

obtains a system of RBSDEs for (Ỹ 1, Ỹ 2), in which only the first component reflects against zero, and Ỹ 1
T =

0. Conversely, we can start by prescribing η and a terminal condition for Ỹ 2, solving the associated system
of RBSDEs for (Ỹ 1, Ỹ 2), and, then, recover (V a, V b) from (Ỹ 1, Ỹ 2, η) via the above formulas. Naturally, the
resulting (V a, V b) are expected to satisfy (43). This method seems to describe all solutions to (43), however,
herein, we are only interested in constructing a particular one.13 Hence, we choose η ≡ 1/2 and Ỹ 2

T = 0, to obtain
Y 1 = Ỹ 1 = V a − V b and Y 2 = 2Ỹ 2 = V a + V b, which are expected to satisfy:

−dY 1
t = G1

t (Y 1
t , Y

2
t )dt− Z1

t dWt + dKt

Y 1
t ≥ 0,

∫ T
0
Y 1
t dKt = 0, Y 1

T = 0

−dY 2
t = G2

t (Y 1
t , Y

2
t )dt− Z2

t dWt, Y 2
T = 0

(44)

where Y 1, Y 2 ∈ S2, the processes Z1, Z2 are progressively measurable and square-integrable, K ∈ S2 is increas-
ing and satisfies K0 = 0. In addition, we denote

G1
t (y1, y2) = G̃at

(
(y1 + y2)/2, (y2 − y1)/2

)
− G̃bt

(
(y1 + y2)/2, (y2 − y1)/2

)
,

G2
t (y1, y2) = G̃at

(
(y1 + y2)/2, (y2 − y1)/2

)
+ G̃bt

(
(y1 + y2)/2, (y2 − y1)/2

)
where G̃a and G̃b are defined in (41) and (42). The following lemma formalizes the connection between (44) and
(43), and its proof follows easily by a direct verification.

Lemma 4. Let (Y 1, Y 2, Z1, Z2,K) be a solution to (44). Then

V a =
1

2
Y 1 +

1

2
Y 2, V b =

1

2
Y 2 − 1

2
Y 1, Za =

1

2
Z1 +

1

2
Z2, Zb =

1

2
Z2 − 1

2
Z1, Ka =

1

2
K,Kb =

1

2
K

form a solution to (43).

Note that the specific choice of η ≡ 1/2 corresponds to choosing an angle of reflection of the process (V a, V b)
against the straight line “V a = V b” in R2. The specific angle chosen to obtain (44) implies orthogonal reflection
against this line, and (44) arises after a simple rotation, which turns this line into a horizontal axis. The systems
of RBSDEs with orthogonal reflection in a general convex domain have been analyzed in [24]. However, the latter
results are not applicable in the present case, as the generator of (44) lacks the global Lipschitz property. Indeed,
the generator can be written as

G1
t (y1, y2) = −c1t (y1, y2)y1 + c2t (y

1, y2)y2 + g1
t (y1, y2), (45)

G2
t (y1, y2) = −c2t (y1, y2)y1 − c1t (y1, y2)y2 + g2

t (y1, y2), (46)

where

c1t (y
1, y2) =

1

2
cα

0

t

(
P at
(
(y1 + y2)/2

)
, P bt

(
(y2 − y1)/2

))
+

1

2
cβ

0

t

(
P at
(
(y1 + y2)/2

)
, P bt

(
(y2 − y1)/2

))
13It is an interesting topic for future research, to describe rigorously all solutions of (43).
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c2t (y
1, y2) =

1

2
cβ

0

t

(
P at
(
(y1 + y2)/2

)
, P bt

(
(y2 − y1)/2

))
− 1

2
cα

0

t

(
P at
(
(y1 + y2)/2

)
, P bt

(
(y2 − y1)/2

))
,

g1
t (y1, y2) = gat

(
P at
(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
− gbt

(
P a
(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
,

g2
t (y1, y2) = gat

(
P at
(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
+ gbt

(
P a
(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
,

with cα, P a, P b, ga and gb defined in (13), (28), (29), (23) and (25). It is easy to see that every cit(·, ·) and git(·, ·)
is bounded and globally Lipschitz, uniformly over a.e. (t, ω). However, due to the presence of the multipliers y1

and y2, Git(·, ·) is unbounded and does not possess the global Lipschitz property. In addition, the existence and
uniqueness result established below (cf. Proposition 1) holds for any choice of constant η in (0, 1), which, in turn,
implies the “oblique” (i.e. non-orthogonal) reflection of (V a, V b) against the boundary, and brings the resulting
system outside the scope of [24].

Recall that the existence result for BSDEs with linear growth, and without global Lipschitz property, has only
been established in a one-dimensional case, whereas the present equation is multidimensional. Nevertheless, we
can make use of the fact that the generator of (44) has the “correct” asymptotic behavior, to prove the existence
of a solution. In particular, we exploit the fact that, due to the assumptions made earlier in this section, whenever
‖(Y 1

t , Y
2
t )‖ becomes large, the generator (G1

t ,G2
t ) pushes (Y 1

t , Y
2
t ) in the direction in which the largest |Y it |

decreases.

Proposition 1. Let Assumptions 2–6 hold. Then, there exists a solution to (44), s.t. its components Y 1 and Y 2 are
absolutely bounded by a constant. Such a solution is unique.

Proof: Step 1: Existence for the fully capped system. For any constant C > 0, denote ΨC(y) = (−C ∨ y) ∧ C.
Clearly, this function is 1-Lipschitz in y and absolutely bounded by C. We fix arbitrary constants {Cji > 0} and
consider the fully capped system: −dY 1

t =
(
−c1t (Y 1

t , Y
2
t )ΨC1

1
(Y 1
t ) + c2t (Y

1
t , Y

2
t )ΨC2

1
(Y 2
t ) + g1

t (Y 1
t , Y

2
t )
)

dt− Z1
t dWt + dKt

−dY 2
t =

(
−c2t (Y 1

t , Y
2
t )ΨC1

2
(Y 1
t )− c1t (Y 1

t , Y
2
t )ΨC2

2
(Y 2
t ) + g2

t (Y 1
t , Y

2
t )
)

dt− Z2
t dWt

(47)

Here, and in some expressions that follow, we omit the terminal condition, barrier, and the minimality condition
for Kt, as they remain unchanged throughout. Assumptions 2–6 imply that c1t (y

1, y2), c2t (y
1, y2), g1

t (y1, y2) and
g2
t (y1, y2) are bounded and globally Lipschitz in (y1, y2), uniformly over a.e. (t, ω). Hence, the generator of (47)

is globally Lipschitz in (y1, y2) (and independent of (Z1, Z2)), and the standard existence results for Lipschitz
BSDEs (cf. for example, Theorem 2.2 in [49]) yield the existence (and uniqueness) of a solution to (47). Denote
the Y -component of this solution (Y 1c

t , Y 2c
t ).

Step 2: Bounds on solution components via partial uncapping. We want to bound the components (Y 1c
t , Y 2c

t ),
of the solution to the capped system, by using the control-stopping interpretation of the individual (R)BSDEs
comprising our system. Consider the associated equation for Y 1, with Y 2c

t being given:{
−dY 1

t =
(
−c1t

(
Y 1
t , Y

2c
t

)
Y 1
t + c2t

(
Y 1
t , Y

2c
t

)
ΨC2

1

(
Y 2c
t

)
+ g1

t

(
Y 1
t , Y

2c
t

))
dt− Z1

t dWt + dKt

Y 1
t ≥ 0,

∫ T
0
Y 1
t dKt = 0, Y 1

T = 0
(48)

Note that, as c1t ,c2t , g1 and ΨC2
1

are bounded, this one-dimensional RBSDE has a continuous generator with linear
growth in Y 1, and, for example, by Theorem 4.1 in [49], it has a solution, which we denote Y 1

t . Next, for Y 1 and
Y 2c constructed above, we introduce the processes

c̃1t = c1t (Y
1
t , Y

2c
t ), c̃2t = c2t (Y

1
t , Y

2c
t ), g̃1

t = g1
t (Y 1

t , Y
2c
t ), g̃2

t = g2
t (Y 1

t , Y
2c
t ),

and consider the one-dimensional RBSDE (for Ỹ ), obtained from (48) by pretending that the coefficients should
depend on the solution itself:{

−dỸ 1
t =

(
−c̃1t Ỹ 1

t + c̃2tΨC2
1
(Y 2c
t ) + g̃1

t

)
dt− Z1

t dWt + dKt

Ỹ 1
t ≥ 0,

∫ T
0
Ỹ 1
t dKt = 0, Ỹ 1

T = 0
(49)
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Note that Ỹ = Y 1 is the unique solution of this equation. On the other hand, the above RBSDE is affine in Ỹ , and,
for example, by Theorem 7.1 in [35], its unique solution admits the following interpretation, as the value function
of an optimal stopping problem:

Y 1
t = sup

τ∈Tt
E
[∫ τ

t

exp

(
−
∫ s

t

c̃1udu
)(

c̃2sΨC2
1
(Y 2c
s ) + g̃1

s

)
ds
∣∣Ft]

We will use this representation to establish a bound on |Y 1|. First, note that, under our assumptions, there exist
constants C0 > 0 and λ ∈ (0, 1), such that, for all t, y1, y2, and a.e. ω, we have:

∣∣∣∣git(y1, y2)

c1t (y
1, y2)

∣∣∣∣ = 2

∣∣∣∣∣∣
gat

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
± gbt

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
cα

0

t

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
+ cβ

0

t

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
∣∣∣∣∣∣ ≤ C0,

∣∣∣∣c2t (y1, y2)

c1t (y
1, y2)

∣∣∣∣ =

∣∣∣∣∣∣
cα

0

t

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
− cβ

0

t

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
cα

0

t

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
+ cβ

0

t

(
P at

(
y1+y2

2

)
, P bt

(
y2−y1

2

))
∣∣∣∣∣∣ ≤ λ < 1,

with cα, P a, P b, ga and gb defined in (13), (28), (29), (23) and (25). The first inequality holds with C0 = 5Cp,
and it follows from the boundedness of P a, P b and the jump sizes. The second one follows from Assumption 6.
The above inequalities imply: ∣∣∣∣∣ c̃2tΨC2

1
(Y 2c
t ) + g̃1

t

c̃1t

∣∣∣∣∣ ≤ λC2
1 + C0,

for all t and a.e. ω. The latter estimate, together with the following lemma, imply the desired upper bound:

|Y 1
t | ≤ λC2

1 + C0

for all t and a.e. ω.

Lemma 5. Consider any constant C > 0, any continuous function S : [0, T ]→ R, absolutely bounded by C, any
nonnegative continuous function c on [0, T ], and any continuous function g on [0, T ], satisfying |g| ≤ C|c|. For
any 0 ≤ t ≤ τ ≤ T , denote:

Yt,τ =

∫ τ

t

exp

(
−
∫ s

t

c(u)du
)
g(s)ds+ exp

(
−
∫ τ

t

c(u)du
)
S(τ).

Then
|Yt,τ | ≤ C, ∀ 0 ≤ t ≤ τ ≤ T.

Proof: For any 0 ≤ t ≤ τ ≤ T , we have∣∣∣∣∫ τ

t

exp

(
−
∫ s

t

c(u)du

)
g(s)ds+ exp

(
−
∫ τ

t

c(u)du

)
S(τ)

∣∣∣∣
≤ −

∫ τ

t

Cd

(
exp

(
−
∫ s

t

c(u)du

))
+ exp

(
−
∫ τ

t

c(u)du

)
C = C

Thus, we have a solution Y 1 of (48) which satisfies |Y 1
t | ≤ λC2

1 + C0, P-a.s., for all t. Then, for C1
1 ≥

λC2
1 + C0, we have ΨC1

1
(Y 1
t ) = Y 1

t , and, hence, Y 1 also solves{
−dY 1

t =
(
−c1t (Y 1

t , Y
2c
t )ΨC1

1
(Y 1
t ) + c2tΨC2

1
(Y 2c
t ) + g1

t (Y 1
t , Y

2c
t )
)

dt− Z1
t dWt + dKt

Y 1
t ≥ 0,

∫ T
0
Y 1
t dKt = 0, Y 1

T = 0
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Note that the above RBSDE coincides with the Y 1-equation in (47). This one-dimensional RBSDE has a globally
Lipschitz generator and, thus, a unique solution. This implies that Y 1 = Y 1c, and we obtain the desired bound on
Y 1c:

|Y 1c
t | ≤ λC2

1 + C0,

P-a.s. for all t, provided C1
1 ≥ λC2

1 + C0. Similarly, considering the Y 2 part of the capped system (47), with Y 1c

fixed, we obtain
|Y 2c
t | ≤ λC1

2 + C0,

P-a.s. for all t, provided C2
2 ≥ λC1

2 + C0.
Step 3: Solution of the appropriately capped system solves the original system. To show that the solution (Y 1c

t , Y 2c
t )

of (47) also solves the original system (44), we only need to show that, given the bounds on (Y 1c, Y 2c), the capped
system’s generator coincides with the original generator, which translates into

ΨC1
1
(Y 1c
t ) = Y 1c

t , ΨC2
2
(Y 2c
t ) = Y 2c

t , ΨC2
1
(Y 2c
t ) = Y 2c

t , ΨC1
2
(Y 1c
t ) = Y 1c

t .

The first two equalities are satisfied if

C1
1 ≥ λC2

1 + C0, C2
2 ≥ λC1

2 + C0,

while the last two require
λC1

2 + C0 ≤ C2
1 , λC2

1 + C0 ≤ C1
2 .

One can check these inequalities have a solution, as long as λ < 1. The “minimal” solution being

C1
1 = C1

2 = C2
2 = C2

1 =
C0

1− λ
.

With the above choice of capping, the solution to (47) also solves (44), thus, showing the existence of a solution
of (44). This solution is bounded by construction. The uniqueness of a bounded solution follows from the fact
that, when (y1, y2) vary over a bounded set, the generator of (44) is Lipschitz, hence, the standard results yield
uniqueness.

Remark 4. The above proof provides an existence result for any system (44), whose generator is given by (45)–
(46), with arbitrary (bounded and Lipschitz) progressively measurable random functions {ci, gi}, as long as the
following holds for a.e. (t, ω) and all (y1, y2) ∈ R2:

2∑
i=1

∣∣git(y1, y2)
∣∣ ≤ C0c

1
t (y

1, y2),
∣∣c2t (y1, y2)

∣∣ ≤ λc1t (y1, y2),

with some constants C0 > 0 and λ ∈ (0, 1).

4 Equilibrium in the continuum-player game.
In this section we construct an equilibrium for the continuum-player game described in Section 2, in the sense of
Definition 3. The main difficulty in constructing the equilibrium stems from the mixed control-stopping nature of
the game (and, of course, the fact there are multiple participants). Therefore, we attempt to break the problem into
two parts - isolating the “stopping” part of the game. In order to do this, it is convenient to make assumptions
that guarantee the existence of the so-called “extremal” agents on each side of the book. These agents are called
“extremal”, because their beliefs dominate the beliefs of the other agents on the same side of the book, in the sense
explained below. We denote the extremal beliefs on the long side by α0, and, on the short side, by β0. In short,
the agents with beliefs α0 are the least bullish among the long ones, and the agents with beliefs β0 are the least
bearish among the short ones. The extremal agents, e.g., can be interpreted as market-makers, as they are closer
to being market-neutral than any other agent on the same side of the book (recall that we, still, do not have any
designated market makers in this game – market-neutrality is only one of the characteristics of a market maker).
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Indeed, if one assumes that the long agents are bullish (which is natural, as, before the end of the game, the long
agents choose to wait instead of submitting market orders), then, the agents with beliefs α0 are the least bullish
ones. In this section, we construct an equilibrium in which the time of the first internal market order and the bid
and ask prices are determined by the extremal agents, while the rest of the shape of the LOB is due to the other
agents’ actions. The construction of an equilibrium, thus, splits into two parts. In the first part, the extremal agents
find an equilibrium among themselves, using the results of the auxiliary two-player game, and determining the
time of the first internal market order τ and the bid and ask prices pa and pb. In the second part, the other agents,
taking (pa, pb, τ) as given, determine their optimal actions. Of course, we, ultimately, prove that the strategy of
every agent is optimal in the overall market, consisting of both extremal and non-extremal agents. The resulting
LOB ν has two atoms – at the bid and ask prices – comprised of the limit orders of the extremal and some of the
non-extremal agents. The rest of the LOB contains limit orders of the non-extremal agents only.

In order to implement the above program, we assume that A = {α0} ∪ Â and B = {β0} ∪ B̂. We assume that
Assumptions 1–6 hold throughout this section. In addition, we make the following assumptions.

Assumption 7. For any α ∈ Â, β ∈ B̂ and a.e. (t, ω), we have:

λαt F
+,α
t (p) ≥ λα

0

t F+,α0

t (p), λβt F
+,β
t (p) ≤ λβ

0

t F
+,β0

t (p), ∀p ≥ 0,

λαt F
−,α
t (p) ≤ λα

0

t F−,α
0

t (p), λβt F
−,β
t (p) ≥ λβ

0

t F
−,β0

t (p), ∀p ≤ 0.

Assumption 8. For any α ∈ Â, β ∈ B̂ and a.e. (t, ω), we have:

F+,α0

t (p)

fα0
t (p)

≤ F+,α
t (p)

fαt (p)
,

F−,β0

t (−p)
fβ0

t (−p)
≤ F−,βt (−p)

fβt (−p)
∀ p ≥ 0.

Assumption 7 ensures that the distribution of the fundamental price at any time t, from an α-agent’s perspective,
dominates stochastically the respective distribution from the α0-agent’s perspective. The opposite relation holds
for the short agents. The first inequality in Assumption 8 ensures that logF+,α0

t (·) decays faster than logF+,α
t (·),

which is also consistent with the interpretation that α0-agents assign smaller probabilities to the large jumps of
the fundamental price, and larger probabilities to the small jumps, as compared to the α-agents. Analogous in-
terpretation holds for the second inequality in Assumption 8. Assumption 8 ensures that, in an empty LOB, the
non-extremal agents would prefer to post their limit order further away from zero than the extremal ones do.

Lemma 6. Let Assumptions 1–8 hold. Fix any α ∈ Â and β ∈ B̂. Then, for a.e. (t, ω), the following holds for all
y ∈ R: p 7→ (p− y)F+,α

t (p) is non-decreasing in p ∈ [y, P at (y)], and p 7→ (y − p)F−,βt (p) is non-increasing in
p ∈ [P bt (y), y].

Proof: The statement follows easily by differentiating the target functions, recalling (30)–(31), and making use of
Assumption 8.

We also need to make an assumption that limits the maximum possible demand size, as viewed by the extremal
agents. Namely, the extremal agents believe that the external demand can never exceed the inventory held by these
agents.

Assumption 9. For Leb⊗ P-a.e. (t, ω), we have:

Dt

(
−Q+

(
f
α0/β0

t (x)dx
))
≤ µa

(
{α0}

)
, −Dt

(
−Q−

(
f
α0/β0

t (x)dx
))
≤ µb

(
{β0}

)
,

where Q+ and Q− are defined in (4).

In order to construct an equilibrium, we need to impose certain topological conditions on the space of beliefs
and on the mapping α 7→ fα.

Assumption 10. The spaces Â and B̂ are compact metric spaces, with the Borel sigma-algebras on them (i.e. µa

and µb are measures with respect to the Borel sigma-algebras). In addition, for a.e. (t, ω), the mapping α 7→ fαt
is continuous as a mapping Â→ L1[0, Cp] and as a mapping B̂→ L1[−Cp, 0].
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Finally, we need to ensure that the demand size curve is “not too flat”.

Assumption 11. There exists an increasing continuous (deterministic) function ε : [0,∞)→ [0,∞), s.t. ε(0) = 0
and, for a.e. (t, ω), |D−1

t (x)−D−1
t (y)| ≤ ε(|x− y|), for all x, y ∈ R.

Now, we proceed to construct a special class of equilibria in the continuum-player game. As announced earlier,
the equilibrium is constructed by, first, solving the auxiliary two-player game, as described in Section 3. In the
two-player game, we assume that the two agents have beliefs α0 and β0. Thus, we consider the unique bounded
solution (Y 1, Y 2) to (44) and construct the associated (V a, V b), which solve (43), according to Lemma 4. Then,
Lemma 3 implies that (V a, V b) are the value functions of the two-player equilibrium (p̂a, p̂b, τ̂ , p̄), where

p̂at = P at (V at ), p̂bt = P bt (V bt ), τ̂ = inf{t ∈ [0, T ] : V at = V bt }, p̄t =
1

2
V at +

1

2
V bt .

Let us introduce
pat = p̂at 1{t<τ̂} + p̄τ̂1{t≥τ̂}, pbt = p̂bt1{t<τ̂} + p̄τ̂1{t≥τ̂}. (50)

Using these auxiliary quantities, we aim to construct an equilibrium for the continuum-player game, in which (ν, θ)
satisfy the following two conditions. First,

νat = µa({α0})δpat + ν̄at , νbt = µb({β0})δpbt + ν̄bt , (51)

with progressively measurable ν̄a and ν̄b taking values in the space of sigma-additive measures on R, such that,
P-a.s., for all t ∈ [0, T ], ν̄at is supported on [pat , Cp] and ν̄bt is supported on [−Cp, pbt ].14 Second,

θat = µa(A)δV at , θbt = µb(B)δV bt . (52)

Note that, in such a market, we have
τa = τ b = τ̂

The following theorem is the main result of this paper.

Theorem 1. Let Assumptions 1–11 hold. Consider any solution (V a, V b) to (43) (whose existence is guaranteed by
Proposition 1 and Lemma 4) and the associated (pa, pb) given by (50). Then, there exist progressively measurable
measure-valued processes (ν, θ) and random fields p, v : Ω× [0, T ]×S→ P(R)×R, which form an equilibrium,
in the sense of Definition 3, and which satisfy (51)–(52) along with

• vt(1, α) = V at , vt(−1, α) = V bt , for all (t, ω, α),

• pt(1, α0) = pat , pt(−1, β0) = pbt , for all (t, ω).

Remark 5. Recall that there always exists a “trivial” equilibrium, in which all agents stop at time zero. How-
ever, such an equilibrium is unrealistic and does not appear to be useful from a modeling perspective. The main
contribution of the above result is the existence of a potentially non-trivial equilibrium, in which the duration of
the game, τ̂ , is determined by a solution to (43), and there is no reason for it to be zero, in general. The latter is
confirmed by the numerical experiments in Section 5.

Remark 6. Notice that, as announced in Remark 2, we have constructed an equilibrium, satisfying

vt(1, α) = vat = V at , vt(−1, α) = vbt = V bt , ∀α ∈ A ∪ B, (t, ω) ∈ [0, T ]× Ω.

Therefore, in such an equilibrium, no agents execute market orders before the end of the game τ̂ , and, hence, the
empirical distribution µ remains constant and (12) holds.

The remainder of this section is devoted to the proof of Theorem 1. First, we show that, in a market (ν, θ),
satisfying (51)–(52), it is never (strictly) optimal for the agents to post limit sell orders below the ask price or to
post limit buy orders above the bid price. In addition, it is never (strictly) optimal for the agents to submit a market
order before τ̂ . To achieve this, we need to compare the value functions of the agents to V a and V b, making use
of Assumptions 7, 8.

14The components ν̄a and ν̄b are introduced for convenience, in order to indicate that νat ({pat }) ≥ µa({α0}) and νb({pbt}) ≥ µb({β0}).
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Lemma 7. Let Assumptions 1–8 hold, and let (ν, θ) satisfy (51)–(52). Given any α ∈ A and any admissible control
(p, τ), for a long agent with beliefs α, there exists an admissible control p′, s.t., P-a.s., supp(p′t) ⊂ [pat ,∞), for all
t ∈ [0, T ], and (p′, τ̂) does not decrease the objective value, i.e.

J (ν,θ),(p,τ)(1, α) ≤ J (ν,θ),(p′,τ̂)(1, α).

Similarly, given any β ∈ B and any admissible control (p, τ), for a short agent with beliefs β, there exists an
admissible control p′, s.t., P-a.s., supp(p′t) ⊂ (−∞, pbt ], for all t ∈ [0, T ], and (p′, τ̂) does not decrease the
objective value, i.e.

J (ν,θ),(p,τ)(−1, β) ≤ J (ν,θ),(p′,τ̂)(−1, β).

The proof of the above lemma is given in the appendix. This lemma has a straight-forward but useful corollary.

Corollary 1. Let Assumptions 1–8 hold, and let (ν, θ) satisfy (51)–(52). Given any α ∈ A, let (p, τ) be an
optimal strategy for the long agents with beliefs α, in the class of all admissible strategies satisfying: P-a.s.
supp(pt) ⊂ [pat ,∞), for all t ∈ [0, T ], and τ = τ̂ . Then (p, τ) is optimal in the class of all admissible strategies,
in the sense of Definition 2. Similarly, given any β ∈ B, let (p, τ) be an optimal strategy for the short agents with
beliefs β, in the class of all admissible strategies satisfying: P-a.s. supp(pt) ⊂ (−∞, pbt ], for all t ∈ [0, T ], and
τ = τ̂ . Then (p, τ) is optimal in the class of all admissible strategies, in the sense of Definition 2.

Thus, no matter which limit order strategy p an agent is using, it is optimal for her to choose the following
stopping threshold:

v̂(s) = V a1{s>0} + V b1{s<0}.

This implies that, given a LOB ν in the form (51) and the stopping strategy v̂ as above, if an optimal limit order
strategy p̂(s, α) exists for any state (s, α), then (p̂(s, α), v̂) form an optimal control for the agents in state (s, α),
in the sense of Definition 2. Moreover, in such a case, θ, given by (52), satisfies the condition (11). Next, we need
to construct a LOB ν, in the form (51), and the associated optimal limit order strategies for all agents, s.t. (10) is
satisfied. In particular, the following lemma, whose proof is postponed to the appendix, shows that, for any ν in
the form (51), the strategies (δpa , V

a) and (δpb , V
b) are optimal for the extremal agents.

Lemma 8. Let Assumptions 1–9 hold, and let (ν, θ) satisfy (51)–(52). Then, given (ν, θ), the strategy (δpa , V
a) is

optimal for a long agent with beliefs α0, and the strategy (δpb , V
b) is optimal for a short agent with beliefs β0, in

the sense of Definition 2.

The remaining steps are carried out in the next subsection.

4.1 Equilibrium strategies of the non-extremal agents
In this subsection we construct the measure-valued processes (νa, νb), in the form (51), and a progressively mea-
surable random field (p̂t(s, α)), such that the controls (p̂(1, α), V a) and (p̂(−1, α), V b) are optimal for the non-
extremal agents with beliefs α, long and short, respectively (recall that the optimal strategies for the extremal
agents are constructed in Lemma 8), and the fixed-point constraint (10) is satisfied. In view of Lemma 7, we can
restrict the possible controls p to the those satisfying: supp(pt) ⊂ [pat ,∞), for all t ∈ [0, T ]. It is also obvious that
we can restrict the support of pt to be in [−Cp, Cp]. As the stopping strategy is fixed, for any α ∈ Â, the objective
of a long player reduces to J̄α,(p)0 , where

J̄
α,(p)
t = E

[ ∫ T

t

exp

(
−
∫ s

t

c̄αu
(
pau, p

b
u

)
du

)
h̄α,as (ps, p

a
s , p

b
s)ds+ exp

(
−
∫ T

t

c̄αu
(
pau, p

b
u

)
du

)
pbτ̂ |Ft

]
,

c̄αt (pat , p
b
t) = cαt (pat , p

b
t)1{t≤τ̂}, h̄α,at (pt, p

a
t , p

b
t) = hα,at (pt, p

a
t , p

b
t)1{t≤τ̂},

and cα and hα,a defined in (13) and (16). Due to Assumptions 7 and 9, we have

lc,bt (x) = inf
{
p > Q−(νbt ) : −Dt(p− x) > νbt ((p,∞))

}
= pbt ∨ x, ∀x ∈ supp(fαt ).

22



In addition, for any z ≥ pat ,

{u > 0 : lc,at (u) ≥ z} = {u > 0 : u ≥ z −D−1
t (νat ([pat , z)))},

and, hence, for any B ≥ pat ,∫ B

pat

fαt (u)(lc,at (u)− pat )du =

∫ lc,at (B)−pat

0

∫ Cp

u+pat−D
−1
t (νat ([pat ,p

a
t+u)))

fαt (y)dydu.

The above observations allow us to simplify the objective:

hα,at (pt, p
a
t , p

b
t) = λαt

∫ ∞
pat

[
(z − pbt)F

+,α
t

(
z −D−1

t (νat ([pat , z)))
)

+ pbtF
+,α
t (pat )

+

∫ z−D−1
t (νat ([pat ,z)))

pat

fαt (u)lc,at (u)du
]
pt(dz) + 2λαt p

b
tF
−,α
t (pbt)

= λαt

∫ Cp

pat

[
(z − pbt)F

+,α
t

(
z −D−1

t (νat ([pat , z)))
)

+

∫ z−pat

0

F+,α
t

(
u+ pat −D−1

t (νat ([pat , p
a
t + u)))

)
du
]
pt(dz) + 2λαt p

b
tF
−,α
t (pbt) + λαt p

b
tF

+,α
t (pat ).

Notice that the above objective does not depend on νb (for a given pb), hence, we can separate the equilibrium
problems of the long and short agents (this is only true for the non-extremal agents, of course). For simplicity,
we only consider the problem of the long agents – the short agents can be treated similarly. Denote by κt and
ν̂at the push-forward measures of pt and νat , under the mapping x 7→ x − pat . Clearly, the measurability property
is preserved by this transformation, hence, we can reformulate the equilibrium problem as a search for κ and ν̂a,
with the values in the space of measures with support in [0, Cp]. In the new variables, the objective takes a more
convenient form. In particular, hα,at (pt, p

a
t , p

b
t) = ĥα,at (κt, p

a
t , p

b
t), where

ĥα,at (κt, p
a
t , p

b
t) = λαt

∫ Cp

0

[
(z + pat − pbt)F

+,α
t

(
z + pat −D−1

t (ν̂at ([0, z)))
)

+

∫ z

0

F+,α
t

(
u+ pat −D−1

t (ν̂at ([0, u)))
)
du
]
κt(dz) + 2λαt p

b
tF
−,α
t (pbt) + λαt p

b
tF

+,α
t (pat ).

Note that J̄α,(p) solves a BSDE with the affine generator

Ĝαt (y) = c̄αu
(
pau, p

b
u

)
y + ĥα,at (κt, p

a
t , p

b
t).

In order to maximize J̄α,(p), it suffices to find a strategy κ which maximizes the above generator. The latter is,
in turn, equivalent to maximizing ĥα,at (·, pat , pbt). Thus, we need to find a progressively measurable random field
(κt(α)), with values in P(R) (with the weak topology on it), s.t., for µa-a.e. α ∈ Â,

κt(α) ∈ argmaxκ′∈ψĥ
α,a
t (κ′, pat , p

b
t) (53)

holds for dt× P-a.e. (t, ω), where ψ = {p ∈ P(Π): supp(p) ⊆ Π} and Π = [0, Cp]. The standard BSDE results,
then, imply that κ(α) is optimal for the agents in state (1, α), for µa-a.e. α ∈ Â. If, in addition, we ensure that
the fixed-point constraint (10) is satisfied (and a similar construction holds for the short agents), we obtain an
equilibrium in the continuum-player game, in the sense of Definition 3. Notice that we can rewrite

ĥα,at (κ′, pat , p
b
t) = λαt

∫
R
Ft(α, p, ν̂

a
t )κ′(dp) + 2λαt p

b
tF
−,α
t (pbt) + λαt p

b
tF

+,α
t (pat ),
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Ft(α, p, ν̂
a
t ) = (p+ pat − pbt)F

+,α
t

(
p+ pat −D−1

t (ν̂at ([0, p)))
)

+

∫ p

0

F+,α
t

(
u+ pat −D−1

t (ν̂at ([0, u)))
)
du.

(54)
Assuming the extremal long agents post limit orders at pa, the fixed-point constraint (10) (more precisely, the part
of (10) that corresponds to the long agents) becomes:

ν̂at ([0, x]) = µa({α0}) +

∫
Â
κt(α; [0, x])µa(dα), ∀x ≥ 0. (55)

The above equations can be solved separately for different (t, ω), hence, to this end, we fix (t, ω) and omit the t
subscript whenever it causes no ambiguity. The statements that follow hold for a.e. (t, ω). It turns out that it is
more convenient to search for a measure

K(dα, dx) = κ(α; dx)µa(dα),

which is an element ofMµa

(
Â×Π

)
, the space of finite sigma-additive measures on Â×Π, with the first marginal

µa. Transition from K to κ is accomplished via the usual disintegration. Thus, for a.e. (t, ω), we need to find
(K, ν) ∈Mµa

(
Â×Π

)
×Mµa(A) (Π) solving the following system K ∈ argmaxK∈Mµa(Â×Π)

∫
F (α, p, ν)K(dα, dp),

ν(dx) = µa({α0})δ0(dx) +K
(
Â× dx

)
,

(56)

whereMµa(A) (Π) is the space of finite sigma-additive measures on Π, with the total mass µa(A) = µa({α0}) +

µa(Â). The above system can be formulated as a fixed-point problem, in an obvious way. However, the main
challenge in solving this problem stems from the fact that F (α, ·, ·) is not continuous: e.g. it may be discontinuous
in p, if ν has atoms. Therefore, we replace F by its “mollified” version:

F̂ (α, p, ν) = sup
p′∈Π

F (α, p′, ν)− |p′ − p| .

The following lemma shows that we can replace F by F̂ in (56), and any solution to the new problem will solve
the original one.

Lemma 9. For any α ∈ Â and ν ∈Mµa(A) (Π), the function p 7→ F̂ (α, p, ν) is 1-Lipschitz in p ∈ Π, and

argmaxp∈Π F̂ (α, p, ν) = argmaxp∈Π F (α, p, ν).

Proof: For convenience, we drop the dependence on (α, ν). The first statement is clear from the definition. It is also
clear that supp∈Π F̂ (p) = supp∈Π F (p), and we denote this supremum by S. As F̂ is continuous in Π, it achieves
its supremum, hence, it suffices to show that F (p0) = S, for every p0 such that F̂ (p0) = S (note that the opposite
implication is obvious). Assume the contrary, then F (p) ≤ S− ε, for some ε > 0 and all p ∈ Π∩ (p0− ε, p0 + ε)
by the upper semi-continuity of F . Then, we obtain F̂ (p0) ≤ S − ε, which is a contradiction. To see that F is
upper semi-continuous, notice that it is left-continuous, with only downward jumps, which follows directly from
(54).

Summarizing the above discussion, to find a solution to (56), it suffices to find a fixed point of the following
correspondence

Mµa

(
Â×Π

)
3 K 7→ K̃ (ν̃(K)) ,

where
ν̃(K; dx) = µ({α0})δpa(dx) +K(Â× dx) ∈Mµa(A) (Π) (57)

is single-valued, and

K̃(ν) = argmaxK∈Mµa(Â×Π)

∫
F̂ (α, p, ν)K(dα, dp) ⊂Mµa

(
Â×Π

)
. (58)
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Proposition 2. Let Assumptions 10, 11 hold. Then, the correspondenceK : K 7→ K̃ (ν̃(K)), defined by (57)–(58),
has a fixed point.

Proof: To prove the proposition, we use the Kakutani’s theorem for correspondences (cf. Definition II.7.8.1 and
Theorem II.7.8.6 in [26]). Note thatMµa

(
Â×Π

)
, equipped with the weak topology, is convex and compact (by

Prokhorov’s theorem). In addition, it can be viewed as a subspace of the dual of the space of continuous functions
on Â × Π, which is semi-normed. Thus, in order to apply the Kakutani’s theorem, it only remains to show that
K is upper hemi-continuous (uhc), with nonempty compact convex values. Notice also that K̃(ν) is convex by
definition (as an argmax of a linear functional on a convex set), hence, K is convex-valued, and we only need to
show that it is uhc, with non-empty compact values. As p 7→ ν̃(p) is a continuous function, and a composition of
a continuous function and a uhc correspondence is a uhc correspondence, it suffices to verify that ν 7→ K̃(ν) is a
uhc non-empty compact valued correspondence. To achieve this, we use the classical Berge’s theorem (cf. [41],
section E.3), which reduces to problem to the continuity of the functon

(K, ν) 7→ φ(K, ν) =

∫
F̂ (α, p, ν)K(dα, dp), (59)

on Mµa

(
Â×Π

)
×Mµa(A) (Π), metrized via the Lévy-Prokhorov metric. In the remainder of the proof, we

show that φ(K, ν) is jointly continuous in (K, ν). More precisely, φ(K, ν) is continuous inK, and it is continuous
in ν (with respect to Lévy-Prokhorov metric), uniformly over K.

First, we show that φ(K, ν) is continuous in K. By the definition of weak topology, the desired continuity
would follow from the joint continuity of F̂ (α, p, ν) with respect to (α, p). Due to Lemma 9, F̂ (α, p, ν) is 1-
Lipschitz in p (uniformly over α ∈ Â), hence, it suffices to check that F̂ (α, p, ν) is continuous in α. The latter
follows from the fact that F (α, p, ν) is continuous in α, uniformly over p ∈ Π. Indeed, notice that, if, for some
α′ ∈ U(α), we have |F (α′, p, ν)− F (α, p, ν)| ≤ ε ∀p ∈ Π, then

F̂ (α′, p, ν) = F (α′, p′, ν)− |p′ − p| ≤ F (α, p′, ν)− |p′ − p|+ ε ≤ F̂ (α, p, ν) + ε,

which, together with the analogous symmetric inequality, shows that
∣∣∣F̂ (α′, p, ν)− F̂ (α, p, ν)

∣∣∣ ≤ ε. The first
equality in the above follows from the fact that F is upper semi-continuous in p (and bounded from above by 2Cp),
which is shown in the proof of Lemma 9, and, hence, the supremum in the definition of F̂ is achieved at some
p′. To show that F (α, p, ν) is continuous in α, uniformly over p ∈ Π, we recall (54), and the desired continuity
follows directly from Assumption 10.

It remains to show that φ(K, ν) is continuous in ν ∈ Mµa(A) (Π), uniformly over K ∈ Mµa

(
Â×Π

)
. As

every such K has a fixed finite total mass, due to the definition of φ, the desired continuity follows from the fact
that F̂ (α, p, ν) is continuous in ν, uniformly over (α, p) ∈ Â × Π. To prove the latter, fix ε > 0, and let d0

be Lévy-Prokhorov metric onMµa(A) (Π). Let us show that there exists an increasing continuous deterministic
function C0 : [0,∞)→ [0,∞), s.t. C0(0) = 0 and∣∣∣F̂ (α, p, ν1)− F̂ (α, p, ν2)

∣∣∣ ≤ C0(ε), ∀ p ∈ Π, α ∈ Â, d0(ν1, ν2) ≤ ε.

If we manage to show that there exists an increasing continuous deterministic function B : [0,∞) → [0,∞), s.t.
B(0) = 0 and

F (α, p, ν1) ≤ F (α, (p− ε) ∨ 0, ν2) +B(ε), (60)

then

F̂ (α, p, ν1) = F (α, p′, ν1)− |p′ − p| ≤ F (α, (p′ − ε) ∨ 0, ν2)− |p′ − p|+B(ε)

≤ F (α, (p′ − ε) ∨ 0, ν2)− |(p′ − ε) ∨ 0− p|+B(ε) + ε ≤ F̂ (α, p, ν2) +B(ε) + ε.

The latter, together with the analogous inequality in which ν1 and ν2 are switched, yields the desired uniform
continuity of F̂ in ν. Thus, it is only left to prove (60). For any p ∈ Π, by the definition of the Lévy-Prokhorov
metric, we have:

ν1([0, p)) ≥ ν2([0, (p− ε) ∨ 0))− ε
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and, hence, by Assumption 11,

−D−1(ν1([0, p))) ≥ −D−1 (ν2([0, (p− ε) ∨ 0)))− ε(ε).

Then, for any p ∈ Π,

p+ pa −D−1(ν1([0, p))) ≥ (p− ε) ∨ 0 + pa −D−1 (ν2([0, (p− ε) ∨ 0)))− ε(ε),

which implies

F+,α
(
p+ pa −D−1(ν+

1 (p))
)
≤ F+,α

(
(p− ε) ∨ 0 + pa −D−1(ν+

2 ((p− ε) ∨ 0))
)

+Mf ε(ε),

where we used the fact that fα is bounded by some constant Mf . The above estimate, along with the boundedness
of pa, pb and F+,α, yields the desired inequality (60) for the first term in (54). Integrating the above estimate, we
obtain the analogous inequality for the last term in the right hand side of (54), thus, completing the proof.

Proposition 2 implies that, for a.e. (t, ω), we can find Kt,ω ∈Mµa

(
Â×Π

)
, s.t.

Kt,ω ∈ K̃ (ν̃(Kt,ω)) ,

and, hence, (Kt,ω, ν̃(Kt,ω)) satisfies (56). Next, we need to establish the measurability of Kt,ω with respect
to (t, ω). Namely, we need to show that there exists a progressively measurable mapping (t, ω) 7→ Kt,ω ∈
Mµa

(
Â×Π

)
, such that

Kt,ω ∈ argmaxK′∈Mµa(Â×Π)φt,ω (K ′, ν̃(Kt,ω)) , (61)

for Leb ⊗ P-a.e. (t, ω), where φ and ν̃ are defined in (59) and (57). We denote S = [0, T ] × Ω, and let S be the
progressive sigma-algebra (defined w.r.t. the filtration F) on S. We also denote X =Mµa

(
Â×Π

)
and introduce

the correspondence g1 : S × X→ X, given by

(t, ω,K) 7→ argmaxK′∈Xφt,ω(K ′, ν̃(K)).

Notice that X is separable and metrizable, and consider the function (t, ω,K,K ′) 7→ φt,ω(K ′, ν̃(K)), defined on
(S × X2,S ⊗ B(X2)). Note that this function is continuous in K ′ (as shown in the proof of Proposition 2) and
measurable in (t, ω,K) (as it is continuous in K and measurable in (t, ω), as shown in the proof of Proposition
2), hence, it is a Carathéodory function. Then, the Measurable Maximum theorem (cf. Theorem 18.18 in [1])
implies that g1 is a (S ⊗B(X))-measurable correspondence with nonempty and compact values. Consider another
correspondence g2 : S → X, given by

(t, ω) 7→ {K ∈ X : K ∈ argmaxK′φt,ω(K ′, ν̃(K))} .

Let us show how to measurably select from g2, for Leb⊗ P-a.e. (t, ω). The standard measurable selection results
(cf. Corollary 18.27 and Theorem 18.26 in [1]) imply that such a selection is possible if g2 has S ⊗ B(X)-
measurable graph and non-empty values. The latter follows from Proposition 2, and the former is guaranteed by
the following lemma.

Lemma 10. The correspondence g2 has a S ⊗ B(X)-measurable graph.

Proof: Denote this graph by Γg2 . Let IX : X→ X×X be given by IX(K) = (K,K). Then, Γg2 = (id× IX)
−1

(Γ),
where Γ ⊂ S × X× X is given by

Γ =
{(
t, ω,K,K ′|(t, ω) ∈ S, K ∈ X, K ′ ∈ argmaxK′′∈Xφt,ω(K ′′, ν̃(K))

)}
∩{(t, ω,K,K)|(t, ω) ∈ S, K ∈ X} .

Clearly, id× IX is a measurable map, and the set {(t, ω,K,K)|(t, ω) ∈ S, K ∈ X} is measurable. Therefore, we
only need to check that{(

t, ω,K,K ′|(t, ω) ∈ S, K ∈ X, K ′ ∈ argmaxK′′∈Xφt,ω(K ′′, ν̃(K))
)}

is S ⊗B(X2)-measurable. The latter set is precisely the graph of g1, and it is measurable as the correspondence g1

is measurable (cf. Theorem 18.6 in [1]).
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Thus, we conclude that there exists a progressively measurable K, with values inMµa

(
Â×Π

)
, satisfying

(61) for Leb⊗P-a.e. (t, ω). It only remains to construct κ from K, by disintegration. Let us introduce A = S× Â,
equipped with the sigma-algebra S ⊗ B

(
Â
)

, and the measure Q on A × Π, defined via Q(dt, dω, dα, dp) =

Kt,ω(dα, dp)dtP(dω). Note that the marginal distribution of Q on A is µa(dα)dtP(dω). Then, as the natural
projection from A × Π to Π has a Borel range, Theorems 5.3 and 5.4 from [32] imply that there exists a kernel
κ : A 3 (t, ω, α) 7→ κt,ω(α) ∈ P(Π), which is a regular conditional distribution of the natural projection from
A × Π to Π, given the natural projection from A × Π to A, under Q. Namely, for every absolutely bounded
measurable f : A×Π→ R, we have∫

A×Π

f(t, ω, α, p)Kt,ω(dα, dp)dtP(dω) =

∫
A×Π

f(t, ω, α, p)κt,ω(α; dp)µa(dα)dtP(dω). (62)

The above property yields that ν̂at,ω = ν̃(Kt,ω) and κt,ω satisfy the fixed-point constraint (55). It only remains to
show that κ satisfies (53), for Leb ⊗ P ⊗ µa-a.e. (t, ω, α). Assume that this is not the case, then, there exists a
measurable set B ⊂ [0, T ]× Ω, with positive measure, s.t. for any fixed (t, ω) ∈ B, there exists a measurable set
C ⊂ Â, s.t. µa(C) > 0 and, for all α ∈ C,∫

R
F̂t,ω(α, p, ν̃(Kt,ω))κt,ω(α; dp) ≤

∫
R
Ft,ω(α, p, ν̃(Kt,ω))κt,ω(α; dp)

< sup
κ′∈ψ

∫
R
Ft,ω(α, p, ν̃(Kt,ω))κ′(dp) = sup

κ′∈ψ

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ′(dp).

The above inequality becomes non-strict for all α ∈ Â \C. Then, for a fixed (t, ω) ∈ B, we can choose a measur-
able κ̃ : Â → P(Π) (in the same way as we chose a measurable K, except that, in this case, the measurability is
required in the α-variable), s.t.

sup
κ′∈ψ

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ′(dp) =

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ̃(α; dp), µa-a.e.α ∈ Â.

Thus, we obtain ∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κt,ω(α; dp) <

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ̃(α; dp),

for all α ∈ C, and the non-strict inequality holds for all α ∈ Â. Integrating with respect to µa, and using (62) with
f(t, ω, α, p) = F̂ (t, ω, α, p, ν̃(Kt,ω))), we obtain a contradiction with (61) on the set B (which has a positive
measure). Thus, for µa-a.e. α ∈ Â, (53) holds for Leb ⊗ P-a.e. (t, ω). This means that, if we define p̂t(α) as
the push-forward of κt(α), under the mapping x 7→ x + pat , the resulting strategy p̂(α) maximizes the generator
Ĝαt (y), for any y and a.e. (t, ω). Then, we define νat to be the push-forward of ν̂at , under the mapping x 7→ x+ pat ,
and use the standard BSDE results to conclude that, for µa-a.e. α ∈ Â,

J (ν,θ),(p̂(α),V a)(1, α) = J̄
α,(p̂(α))
0 ≥ J̄α,(p

′)
0 = J (ν,θ),(p′,V a)(1, α)

holds for all admissible strategies p′, which means that p̂(α) is optimal for the long agents with beliefs α. With
such a choice of νa and p̂, the fixed-point condition on νa, given in (10), is satisfied, as it is equivalent to (55)
(assuming the extremal long agents post limit orders at pa, which is optimal for them). This, along with Corollary
1, implies that (p̂(α), V a) is an optimal strategy for the long agents with beliefs α ∈ Â. The short agents are
treated similarly. Thus, we complete the proof of Theorem 1.

5 Example
In this section, we consider the simplest concrete example of our model and show how it can be used. Consider a
stochastic basis (Ω, F̃ = (Ft)t∈[0,T ] ,P), with a Poisson random measure N , whose compensator is λtft(x)dxdt,
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as described in Subsection 2.1. We assume that Jt(x) = x (i.e. M ≡ N ), so that N is the jump measure of the
(potential) fundamental price process X . We also assume that T = 20, λt ≡ 1 and ft is the density of a uniform
distribution on [−C0, C0], where the constant C0 is chosen to be sufficiently large, so that this interval contains the
supports of all fα described below. We take A = {α0} ∪ Â, B = {β0} ∪ B̂, where

Â =

{
i

K
|0 ≤ i < K

}
, B̂ =

{
− i

K
|0 ≤ i < K

}
are the uniform partitions of unit intervals, and K = 500 is used for most of the computations herein. The
restrictions of µa (resp. µb) on Â (resp. B̂) assign a mass of 1/K to every point of the corresponding discrete
space. Note that this implies µa(Â) = µb(B̂) = 1. We also define µa({α0}) = µb({β0}) = 0.1.

Next, we consider a collection of positive numbers {λ+,α, λ−,α, C+,α, C−,α}α∈A∪B, and define

fα(x) =
λ+,α

(λ+,α + λ−,α)C+,α
1[0,C+,α](x) +

λ−,α

(λ+,α + λ−,α)C−,α
1[−C−,α,0](x), λα = λ+,α + λ−,α.

Herein, we use C+,α0 = C−,α0 = C+,β0 = C−,β0 = 0.5 and

C+,α = a+ bα, C−,α = C−,α0 , ∀α ∈ Â, C−,β = a− bβ, C+,β = C+,β0 , ∀β ∈ B̂,

with a = 0.5 and b = 10. Finally, for any α ∈ A ∪ B, we introduce

Γα(x) =
λα

λ

fα(x)

f(x)
− 1, dZαt = Zαt−

∫
R

Γα(x) [N(dt, dx)− λf(x)dtdx],

and define Pα << P by its Radon-Nikodym density ZαT . One can easily check, using the general results in [30]
(or in [16], for the deterministic case, used herein) that, under such Pα, N is a Poisson random measure with the
compensator λαfα(x)dxdt.

We assume that the demand elasticity is deterministic, constant in time, and linear in price:

Dt(p) = −kp,

with the elasticity parameter k = 0.2. With the above choice of (C±,α0 , C±,β0 , µa({α0}), µb({β0}), k), it is
easy to see that Assumption 9 is satisfied. Notice that the choice of λ±,α, for α ∈ Â ∪ B̂, does not affect the
equilibrium, as long as Assumptions 7 and 8 are satisfied. This is, clearly, the case if we choose λ±,α = λ±,α

0

and
λ±,β = λ±,β

0

, for α ∈ A and β ∈ B. Herein, we consider several different sets of values for (λ±,α
0

, λ±,β
0

).
Let us construct an equilibrium in this example. Notice that, in the present case, the Brownian motion W

does not affect the jump intensities and, in turn, the agents’ objectives, hence, the RBSDE system (44) becomes a
system of reflected ODEs. We can solve it easily, using a simple Euler scheme, then, recover the value functions
(V a, V b), as shown in Lemma 4, and construct the bid and ask prices, (pa, pb), in the feedback form, as shown
in Lemma 3. We implement this strategy with the parameters chosen above, and with λ+,α0 = 2.5, λ−,α0 = 1,
λ+,β0 = 1, λ−,β0 = 2.5 (so that the extremal ask agents are bullish whereas the extremal bid agents are bearish).
The results are shown in the left part of Figure 1. Using the same parameters, we consider the book beyond the
best bid and ask prices. In order to construct it, we solve the fixed-point problem (56) numerically. The latter is
achieved by limiting the set of possible price levels for the limit orders to a finite set (i.e. to a partition of a large
interval), which reduces (56) to a finite-dimensional fixed-point problem. In addition, we allow each agent to post
a limit order at a single price level only, which further simplifies the problem.15 Thus, we find a solution by the
standard recursive iteration, maximizing, at each step, the objective over a finite set. The resulting optimal limit
order strategies of the agents (at time zero) are plotted in the right part of Figure 1, as a function of the agents’
beliefs α ∈ Â ∪ B̂. Notice that the optimal limit order strategy p(·) is piece-wise constant. It is worth mentioning

15Note that this restriction does not compromise the optimality of the agents’ actions, provided a fixed point can be found. Indeed, it is a
well known phenomenon that, in a continuum-player game, an equilibrium with pure controls also provides an equilibrium for a setting with
distributed controls. This is, in fact, one of the advantages of the continuum-player games. We consider distributed controls only to prove that
the equilibrium does exist, which is much harder (if at all possible) to show for a setting with pure controls.
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that this discreteness seems to be inherent in the model and not just an artifact of the discretization of prices or
beliefs that we chose herein, as the results do not change when we increase the number of possible beliefs (K) and
price levels.

Finally, we demonstrate how the proposed framework can be used to model the indirect market impact, which
appears when an initial change to the LOB creates “feedback loop” and causes further changes. Note that the
initial change may be triggered by a trade (which is the case in the classical models of optimal execution) or by
a new limit order. An extreme example of the latter is the so-called “spoofing” – i.e. posting a large limit order
with the goal to make the price of the asset move in the opposite direction.16 To the best of our knowledge, to date,
there exists no model capable of explaining how exactly this activity causes the LOB (and, in particular, the price)
to change. To model this process, we modify the present example by assuming that (λ±,α

0

, λ±,β
0

) are, in fact,
functions of a relevant market indicator, which we denote by I:

λ+,α0

= 2.3 exp (Is) , λ−,α
0

= exp (−Is) , λ+,β0

= exp (Is) , λ−,β
0

= 2.3 exp (−Is) , (63)

where s = 2.6 is the sensitivity. We further assume that I is the so-called market imbalance: the ratio of the size of
all limit orders at the best bid over the size of all limit orders at the best ask, less one. It is a well known empirical
fact (cf. [14], [11], [39]) that such an indicator has a predictive power for the direction of the next price move. Note
that I is a function of the LOB, which, in turn, is an outcome of an equilibrium, in which I is the input. Strictly
speaking, our results do not guarantee the existence of an equilibrium with this additional fixed-point constraint.
In fact, an equilibrium with “feedback beliefs”, given by (63), can be viewed as a fixed-point of the following
mapping:

(λ±,α
0

, λ±,β
0

) 7→ ν 7→ I 7→ (λ±,α
0

, λ±,β
0

), (64)

where (λ±,α
0

, λ±,β
0

) 7→ ν maps the numbers (λ±,α
0

, λ±,β
0

) into an equilibrium LOB ν, as it is done in the first
part of this section, and I 7→ (λ±,α

0

, λ±,β
0

) is given by (63). Herein, we do not prove a general existence result for
the aforementioned fixed point, but we can compute it numerically by applying the associated mapping iteratively
(assuming the iterations do converge). In particular, the top right part of Figure 2 shows an example of LOB arising
in equilibrium with feedback beliefs, given by (63), with I0 = .0984456.

Our next goal is to show how the market may move from one equilibrium to another, once the LOB is perturbed
(assuming the feedback beliefs (63)). It is worth mentioning that there is no canonical way to describe how agents
achieve an equilibrium. Nevertheless, we propose a specific algorithm, based on the iterations of (64), with the
following rationale behind it. For any parameters λ̄ = (λ±,α

0

, λ±,β
0

) (given as functions of time), the agents
know their equilibrium strategies: (p(λ̄), v(λ̄)), which can be computed as shown in the first part of this example
(and whose existence follows from the main result of this paper). If the LOB is perturbed, I changes, and, in turn,
the parameters change from λ̄ to λ̄′, via (63). Then, the agents change their strategies to (p(λ̄′), v(λ̄′)), which
form an equilibrium with respect to the new set of parameters λ̄′. In the new equilibrium, the LOB, and, hence,
the imbalance I , may change, causing further change to the parameters, and so on, until the agents reach a set of
parameters that coincides with the previous one (or, almost coincides, from a numerical point of view). We believe
that this algorithm for moving to a new equilibrium makes economic sense, although, of course, it is not the only
possible choice. Mathematically, it corresponds to iterating the mapping (64). To illustrate this approach, we add
an extra limit buy order of size 0.05, located at the best bid price, to the previously obtained equilibrium LOB – as
shown in the bottom right part of Figure 2. This implies a change to the imbalance I and, in turn, to the agents’
parameters (λ±,α

0

, λ±,β
0

), via (63). Hence, the agents adjust their controls to reach a new equilibrium, then,
re-calculate the parameters with the new imbalance, and so on. Figure 3 shows what happens to the LOB and to
the functions (V a, V b) in the first five iterations. We can see that the initial change in imbalance makes the agents
more bullish about the asset, and they tend to move their limit orders higher. In particular, the size of the best bid
queue increases, while the size of the best ask queue decreases, further increasing the market imbalance. The left
part of Figure 3 also shows that, starting from step three, the value functions V a and V b coincide at time zero,
which means that the agents, in fact, choose to submit an internal market order, terminating the game. The latter
constitutes an equilibrium with feedback beliefs (63).17 This experiment, in particular, shows why the predictive

16We stress that intentional spoofing is an illegal activity.
17It is important to notice that an equilibrium with feedback beliefs (63), typically, is not unique, but the proposed algorithm leads to a

specific one. The resulting equilibrium is degenerate, in the sense that the game ends immediately, but, of course, there exist other equilibria.
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power of market imbalance is a “self-fulfilling prophecy”: the fact that the agents base their beliefs about the type
of the next market order on the market imbalance, itself, implies that a sufficient change in market imbalance will,
indeed, trigger a market order of the right type.

Of course, the analysis provided in the second part of this section is merely an example, which is meant to
illustrate a potential application of our theoretical results. Namely, our main results show that a single iteration of
the mapping (64) is well defined. Nevertheless, a rigorous analysis of the resulting iterative scheme, including its
convergence to a fixed point, is missing. In general, it would also be interesting to consider other indicators: e.g.
choosing the size and direction of the last trade as the relevant indicator, would allow one to model the indirect
impact of a market order on the LOB (in addition to the obvious, direct, impact, resulting from the immediate
execution of limit orders). In our future research, we plan to find appropriate model specifications which would
allow us to conduct a more thorough analysis of the indirect market impact, within the proposed setting, and to test
the predictions of our model against the market data.

6 Appendix
Proof of Lemma 7. We consider a long agent with beliefs α and introduce

J̄
α,(p,τ)
t = E

[ ∫ τ

t

exp

(
−
∫ s

t

c̄αu
(
pau ∧Q−(pu), pbu

)
du

)
h̄α,as (ps, p

a
s , p

b
s)ds

+ exp

(
−
∫ τ

t

c̄αu
(
pau ∧Q−(pu), pbu

)
du

)
pbτ∧τ̂ |Ft

]
,

where
c̄αt (x, y) = cαt (x, y)1{t≤τ̂}, h̄α,at (κ, x, y) = hα,at (κ, x, y)1{t≤τ̂}, x, y ∈ R κ ∈ P(R),

with cα and hα,a defined in (13) and (16). Next, for any t ∈ [0, T ], any α ∈ A, and any admissible p, we introduce

Y α,pt = ess supτ∈Tt J̄
α,(p,τ)
t , (65)

The standard results on RBSDEs imply that Y α,p is the unique S2 solution of the affine RBSDE,

−dY α,pt = Ḡα,pt (Y α,pt )dt− ZtdWt + dKt 0 ≤ t ≤ T (66)

Y α,pt ≥ pbt∧τ̂ 0 ≤ t ≤ T,
∫ T

0

(Y α,pt − pbt∧τ̂ )dKt = 0 (67)

Y α,pT = pbτ̂ , (68)

where

Ḡα,pt (y) = −c̄αt
(
pat ∧Q−(pt), p

b
t

)
y + h̄α,at (pt, p

a
t , p

b
t) =

[
−cαt

(
pat ∧Q−(pt), p

b
t

)
y + hα,at (pt, p

a
t , p

b
t)
]
1{t<τ̂},

with cα and hα,a defined in (13) and (16). Recall that V a satisfies (43), with the generator

Gat (y, pbt) = 2λα
0

t pbtF
α0,−
t (pbt)− λα

0

t F−,α
0

t (pbt)y + λα
0

t P at (y)Fα
0,+

t (P at (y))− λα
0

t F+,α0

t (P at (y))y.

It is easy to deduce that
Ḡα

0,pa

t (V at ) = Gat (V at , p
b
t)1{t<τ̂}.

Hence, (V at∧τ̂ ) satisfies the same RBSDE as (Y α
0,pa

t ). From the comparison principle, we conclude that Y α
0,pa

t =
V at∧τ̂ . On the other hand, for any α ∈ A, let us choose pt = δpat , to obtain:

Ḡα,p
a

t

(
Y α

0,pa

t

)
= Ḡα,p

a

t (V at ) =

[
λαt p

b
tF
−,α
t (pbt) + λαt

∫ pbt

−∞
fαt (u)lc,bt (u)du− λαt F

−,α
t (pbt)V

a
t
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+λαt p
a
tF

+,α
t (pat )− λαt F

+,α
t (pat )V at

]
1{t<τ̂}

≥
[
λαt F

−,α
t (pbt)(p

b
t − V at ) + λαt F

+,α
t (pat )(pat − V at ) + λα

0

t pbtF
−,α0

t (pbt)
]
1{t<τ̂},

where lc,b is defined in (15), and the last inequality is based on the Assumptions 7, 9, and on the monotonicity of
lc,bt (·), which imply

λαt

∫ pbt

−∞
fαt (u)lc,bt (u)du ≥ λα

0

t

∫ pbt

−∞
fα

0

t (u)lc,bt (u)du = λα
0

t pbtF
−,α0

t (pbt).

Notice that, by construction, pbt ≤ V bt ≤ V at ≤ pat . Then, Assumption 7 implies

λαt F
−,α
t (pbt)(2p

b
t − V at ) ≥ λα

0

t F−,α
0

t (pbt)(2p
b
t − V at ), λαt F

+,α
t (pat )(pat − V at ) ≥ λα

0

t F+,α0

t (pat )(pat − V at ).

Thus, we obtain:
Ḡα

0,pa

t

(
Y α

0,pa

t

)
≤ Ḡα,p

a

t

(
Y α

0,pa

t

)
.

Using the comparison principle for RBSDEs, we conclude that Y α,p
a

t ≥ Y α
0,pa

t = V at∧τ̂ . Consider an arbitrary
strategy (p, τ). By switching between pa and p, we can construct a new strategy p′, such that Y α,p

′

t ≥ V at∧τ̂ ∨Y
α,p
t ,

for all t. More precisely, we define
Ḡα,p

′

t (y) = Ḡα,p
a

t (y) ∨ Ḡα,pt (y),

and solve the RBSDE (66)–(68). By the standard argument, the Y -component of the solution is Y α,p
′
, where p′t

is defined to be equal to δpat if the maximum in the above equation is achieved at Ḡα,p
a

t (Y α,p
′

t ), and it is equal to

pt otherwise. The comparison principle implies that Y α,p
′

t ≥ Y α,p
a

t ∨ Y α,pt ≥ V at∧τ̂ ∨ Y
α,p
t . Then, the standard

results on RBSDEs imply that the optimal stopping time associated with Y α,p
′

is

inf{t ∈ [0, T ] : Y α,p
′

t ≤ pbt∧τ̂} = inf{t ∈ [0, T ] : V at ≤ pbt∧τ̂} = τ̂ .

Thus,
J

(ν,θ),(p,τ)
0 (1, α) = J̄

α,(p,τ)
0 ≤ Y α,p0 ≤ Y α,p

′

0 = J̄
α,(p′,τ̂)
0 = J

(ν,θ),(p′,τ̂)
0 (1, α).

Next, we show that the control p can be chosen so that, P-a.s., for all t, supp(pt) ⊂ [pat ,∞). Consider any control
p. By switching, if necessary, between pa and p, we can ensure that Y α,pt ≥ V at∧τ̂ . Then, for t < τ̂ , the generator
of Y α,p is given by

Ḡα,pt (y) = −cαt
(
pat ∧Q−(pt), p

b
t

)
y + hα,at (pt, p

a
t , p

b
t)

= −λαt F
+,α
t (pat ∧Q−(pt))y + λαt p

b
tF

+,α
t (Q−(pt) ∧ pat )pt ((pat ,∞))

+λαt

∫ pat

(Q−(pt)∧pat )∨0

fαt (u)

∫ pat

−∞

[(
z ∧ u+

(
pbt − u

)
1{z>u}

)]
pt(dz)du+ λαt F

+,α
t (pat )

∫ pat

−∞
zpt(dz)

−λαt F
−,α
t (pbt)y + 2λαt p

b
tF
−,α
t (pbt)− λαt pbtF

+,α
t (pat )pt ((pat ,∞))

+λαt

∫ ∞
pat

fαt (u)

∫ ∞
pat

[(
z ∧ lc,at (u) + pbt1{z>lc,at (u)}

)]
pt(dz)du

Let us estimate the first four terms in the right hand side of the above (i.e. the ones that depend on pt(dx) restricted
to x < pat ):

−λαt F
+,α
t (pat ∧Q−(pt))y + λαt p

b
tF

+,α
t (Q−(pt) ∧ pat )pt ((pat ,∞))

+λαt

∫ pat

(Q−(pt)∧pat )∨0

fαt (u)

∫ pat

−∞

[(
z ∧ u+

(
pbt − u

)
1{z>u}

)]
pt(dz)du+ λαt F

+,α
t (pat )

∫ pat

−∞
zpt(dz)

≤ λαt sup
x≤pat

[ (
−y + pbt

)
F+,α
t (x) + pt ((−∞, pat ]) sup

z∈[x,pat ]

[
(z − pbt)F

+,α
t (z)

]]
.
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Notice that, for t < τ̂ and y = Y α,pt , we have pbt − y ≤ 0, and, hence,

sup
x≤pat

[ (
−y + pbt

)
F+,α
t (x) + pt ((−∞, pat ]) sup

z∈[x,pat ]

[
(z − pbt)F

+,α
t (z)

]]
= sup
z≤pat

[
(z − y)F+,α

t (z) + pbtpt ((pat ,∞))F+,α
t (z)

]
.

Due to Lemma 6, the function z 7→ (z − y)F+,α
t (z) is nondecreasing in z ≤ P at (y). As pbt ≤ 0, the function

z 7→ pbt pt ((pat ,∞))F+,α
t (z) is also nondecreasing, and, hence, the above supremum is attained at z = pat ,

provided P at (y) ≥ pat . The latter does hold for t < τ̂ and y = Y α,pt , as P at (·) is non-decreasing, pat = P at (V at )
and Y α,pt ≥ V at . Thus, the generator Ḡα,pt (Y α,pt ) does not decrease if we replace p by

p′t(dx) = pt(dx)1[pat ,∞) + pt((−∞, pat ))δpat (dx).

In other words,
Ḡα,pt (Y α,pt ) ≤ Ḡα,p

′

t (Y α,pt ).

The comparison principle, then, yields Y α,pt ≤ Y α,p
′

t . Moreover, the optimal stopping strategy associated with
Y α,p

′
is τ̂ . Repeating the argument used earlier in this proof, we conclude that any strategy (p, τ̂) can be modified

to (p′, τ̂), satisfying the properties stated in the lemma, so that the objective value does not decrease. The case of
short agents is treated similarly.

Proof of Lemma 8 Consider a long agent with beliefs α0. In view of Corollary 1, it suffices to show the
optimality in the class of strategies (p, τ̂), with supp(pt) ⊂ [pat ,∞). Notice that Assumption 9 implies:

lc,at (x) = x ∧ pat , ∀x ∈ supp
(
fα

0

t

)
.

Using the above observation, we recall the constructions from the proof of Lemma 7, to obtain, for any strategy p
and all t < τ̂ :

Ḡα
0,p

t (y) = −λα
0

t F+,α0

t (pat )y − λα
0

t F−,α
0

t (pbt)y + 2λα
0

t pbtF
−,α0

t (pbt)

+λα
0

t F+,α0

t (pat )
(
pat pt({pat }) + (pat + pbt)pt ((pat ,∞))

)
.

As pbt ≤ 0, the above expression is maximized at pt = δpat . Using the comparison principle for the RBSDE
satisfied by Y α

0,p, we conclude that p = δpa produces the largest Y α
0,p and, hence, the largest objective value for

the long agents with beliefs α0. The case of short agents is treated similarly.
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Figure 1: On the left: value functions (V b, V a) (red and blue), and the bid and ask prices (pb, pa) (purple and
orange), as functions of time. On the right: the optimal price level of a limit order, as a function of the beliefs
α ∈ Â ∪ B̂. Parameters: λ+,α0 = 2.5, λ−,α0 = 1, λ+,β0 = 1, λ−,β0 = 2.5.

Figure 2: Left: LOB at time zero, with λ+,α0 = 2.5, λ−,α0 = 1, λ+,β0 = 1, λ−,β0 = 2.5. Right: equilibrium
LOB at time zero, with the parameters depending on the market imbalance I (top), and the same LOB, with an
additional (yellow) limit order (bottom).
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Figure 3: On the left: value functions (V b, V a) (red and blue), as functions of time. On the right: LOB at each
step of the convergence to a new equilibrium.
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